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SHARP QUANTITATIVE STABILITY OF THE YAMABE PROBLEM
HAIXIA CHEN AND SEUNGHYEOK KIM

ABSTRACT. Given a smooth closed Riemannian manifold (M, g) of dimension N > 3, we derive
sharp quantitative stability estimates for nonnegative functions near the solution set of the
Yamabe problem on (M,g). The seminal work of Struwe (1984) [46] states that if I'(u) :=
Agu — %Rgu + U%HH—l(A{) — 0, then [Ju — (uo + >0, Vi)llgri(ary = 0 where up is a
solution to the Yamabe problem on (M, g), v € NU {0}, and V; is a bubble-like function. If M
is the round sphere S, then uo = 0 and a natural candidate of V; is a bubble itself. If M is not
conformally equivalent to SV, then either uo > 0 or up = 0, there is no canonical choice of Vi,
and so a careful selection of V; must be made to attain optimal estimates.

For 3 < N < 5, we construct suitable V;’s and then establish the inequality |ju — (uo +
Y1 Vi)llarany < CC(T(u)) where C' > 0 and ((t) = t, consistent with the result of Figalli and
Glaudo (2020) [23] on S¥. In the case of N > 6, we investigate the single-bubbling phenomenon
(v =1) on generic Riemannian manifolds (M, g), proving that {(¢) is determined by N, ug, and
g, and can be much larger than t. This exhibits a striking difference from the result of Ciraolo,
Figalli, and Maggi (2018) [13] on S™. All of the estimates presented herein are optimal.

1. INTRODUCTION

1.1. Motivations. Throughout the paper, we always assume that (M,g) is a smooth closed
Riemannian manifold of dimension N > 3.

The Yamabe problem is one of the classical problems in geometric analysis, which asks the
existence of a metric on M with a constant scalar curvature in the conformal class [g] of g. This
problem is equivalent to searching for a positive solution u on M to the Yamabe equation

~Agju+kyRyu=cu* 7', u>0 on M (1.1)
where Ky = %, 2% = ]3—1172, R, is the scalar curvature on (M, g), and ¢ € R is a constant.

The linear operator L, := —A, + kN Ry is called the conformal Laplacian on (M, g).

Since the existence of a positive least energy solution to (1.1) was established through a series
of works of Yamabe [49], Trudinger [47], Aubin [2], and Schoen [41] (see also Lee and Parker [30]),
researchers have attempted to comprehend the whole solution structure of (1.1). To describe it,
let us define the Yamabe quotient Q(,s,5) and the Yamabe invariant Y (M, [g]) of (M, g) by

-1
K ulgudv Rpdv
Qg (u) = N_Jur 4L g — Jag Bn L forh:uﬁge[g], 0<ueC®M)

(S uz*d’“g)% (Jar dvn) v

where dv, is the volume form on (M, g) and
Y (M, [g]) = inf {Qrr,¢)(u) : 0 <ue C®(M)}. (1.2)
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The constant ¢ in (1.1) is positive (negative, respectively) if and only if Y (M, [g]) is positive
(negative, resp.). If Y/(M,[g]) < 0, it is easy to see that (1.1) has a unique solution. When
Y (M,[g]) = 0, (1.1) reduces to a linear equation and solutions are unique up to a constant
multiple. Therefore, the only case of significant interest is Y (M, [g]) > 0, in which case a number
of high-energy solutions may exist. For example, if M = S'(r) x SV ~! where S'(r) is the circle of
radius 7 > 0 equipped with the standard metric and SV~ is the (N —1)-dimensional round sphere
of radius 1, then the number of inequivalent solutions is one if r is small, is non-decreasing in r,
and tends to oo as r — oo; refer to [43]. Using gluing techniques, Pollack [37] showed that for any
manifold M with positive scalar curvature and n € N, there is a dense set (in the C%-topology)
of the positive conformal classes for which (1.1) has more than n inequivalent solutions.

As a means to understand the entire solution set of (1.1), Schoen [42] asked whether the set
is compact in C?(M) provided M is not conformally equivalent to SV. He also suggested a
general strategy to answer this question. Based on his idea, Khuri, Marques, and Schoen [29]
proved that the C?(M)-compactness holds for N < 24 under the validity of the positive mass
theorem. See also Druet [19] and Li and Zhang [31, 32| for the preceding results. Surprisingly,
counterexamples exist for N > 25 as shown by Brendle [8] and Brendle and Marques [9], which
illustrates a deep and mysterious behavior of the solution set of (1.1).

Researchers also studied whether the compactness is preserved under a perturbation of equa-
tion (1.1). Because the literature on this topic is so vast, we mention a few initial results only.
The first result in this direction was achieved by Druet [18]. By applying “the C°-theory for
blow-up” developed in [20], he deduced the C?(M)-compactness of positive solutions {uc}ccr
(for € € R small) to critical equations with 3 < N <5,

~Aguc +heue =u2 "1 on M where h, — hg in C*(M) as e — 0 (1.3)
under a certain pointwise condition on the function hg — ky R4y on M. On the other hand, by
perturbing (1.1) suitably (e.g. letting he = knRy + € in (1.3) for € € R small), one can make
the perturbed equation admit one of the following types of blowing-up solutions; solutions with
single or multiple blowing-up points [22], the bubble clusters [40], and the bubble towers [34].
In view of Struwe’s global compactness result [46] depicted in Theorem A below and Schoen’s
strategy in [42], these solutions represent essentially all the possible blow-up scenarios.

There is yet another approach to studying the solution structure of (1.1), which is closely
related to the aforementioned ones and the main topic of this paper. We will derive a quantitative
version of Theorem A for general smooth closed Riemannian manifolds (M, g).

For the moment, we assume that M = SV, in which case the quantitative analysis of Theorem
A was completed in the recent works [13, 23, 14]. The inverse stereographic projection, a confor-
mal map from RY to SV, allows us to work on the Euclidean space R" instead. Struwe [46] proved
that if u is a nonnegative element of the homogeneous Sobolev space H*(RY), then u tends to a fi-
nite sum of weakly interacting bubbles in the H* (RN )-sense as I'(u) := ||Au+u? 1 -1y = O
Here, a bubble refers to a function of the form

N—-2

0 ) i for y e RY, an:=(N(N —2))

02 + |y — of?

N—-2
4

Uso(y) = an < (1.4)

where § > 0 and o € RV. It is well-known that the set of all positive solutions to the Yamabe
equation in RV

~Au=v>"1 u>0 inRV
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is precisely the set {Us, :0 >0, 0 € RN } and any nonzero constant multiple of U;, attains the
sharp Sobolev constant

| el gy :
S := inf {m S Hl(RN) \ {0} where HUHHI(RN) = ”VUHLZ(RN). (15)

In [13], Ciraolo, Figalli, and Maggi derived the first sharp quantitative estimate of Struwe S

result for N > 3: For a nonnegative function v in H'(RY) with 9N < HuHHl &) = < 35N an

sufficiently small I'(u), it holds that ||u—Ul || g1 gy < CT'(u) for some bubble Uy. If Hu”Hl(RN) >

%SN , the number of the bubbles associated to u is at least two and delicate interactions between
different bubbles occur, resulting in astonishing dimensional dependent estimates: Suppose that
2 < v € Nand u is a nonnegative element in H'(RY) with (v — 1)SV < HU”H1 &) S <(v+3)sV

and sufficiently small I'(u). Then there is a constant C' > 0 depending only on N and v such
that

Y I'(u) if 3 < N <5 (by Figalli and Glaudo [23]),
u— ZU,- <CKTI'(u )]logF( )\% if N =6 (by Deng, Sun, and Wei [14]),
i=t RN T(w) 22 if N > 7 (by Deng, Sun, and Wei [14])

for some bubbles Uy,...,U,. Also, this inequality is optimal.

In this paper, we carry out the above type of analysis on smooth closed Riemannian manifolds
(M, g) that are not conformally equivalent to SV. We examine when 3 < N < 5 and an arbitrary
number of bubbles may develop, or N > 6 and only single bubble develops. For M = SV, our
study corresponds to that of [13, 23]. As we will discuss further in the rest of the introduction,
our general setting requires a variety of new perspectives, ideas, and techniques. One of our
notable discoveries is that the sharp quantitative estimate depends on N even for the single-
bubbling case. In fact, it also relies on the metric g and a solution ug to (1.1), which makes the
problem quite intricate.

1.2. Global compactness result. Let us remind the global compactness result of Struwe [46]
combined with the interaction estimate of Bahri and Coron [4]. Although the original statement
is formulated for a smooth bounded domain in R, it readily extends to any smooth closed
Riemannian manifold (M, g); refer to [7, 27, 17].

Let 79 > 0 be a sufficiently small number, particularly much smaller than the injectivity radius
of (M,g), and x € C°([0,00)) a cut-off function such that

0<x<1 on0,00), x=1 on[0,%], and x =0 on [rg,o0). (1.6)
Given (9,¢) € (0,00) x M, we define
Use(r) = U () = Uso(dg(,€)) for z e M (1.7)

where dg(z,€) is the geodesic distance between x and £ on (M, g) and we abused the notation
by writing Us0(y) = Us0(]y|). Then we have the following result.

Theorem A. Assume that (M, g) is a smooth closed Riemannian manifold of dimension N > 3

with positive Yamabe invariant so that (1.1) with ¢ = 1 has a positive solution. Let kn = %,
2% = ]\Q,N2, L, =—Ay+ kNRy be the conformal Laplacian on (M,g), H*(M) the Sobolev space

endowed wzth the norm

1
2

Fllsa = [ [ (9l + k) v, | (1.8)
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and H=Y(M) its dual.
Let {u, tnen be a sequence of nonnegative functions in H'(M) such that

lunllgrary < Co  and Hﬁgun —uZ — 0 asn — 00

7|

S 0%))
for some constant Cy > 0. After passing to a subsequence if mecessary, one can find a func-
tion 0 < ug € C®°(M), a number v € N U {0} satisfying v < CZS™, and a sequence

{01y« Oumy Etns - -5 &un) nen C (0,00)Y X MY such that the followings hold:
- ug is a smooth solution to the Yamabe equation (1.1) with ¢ = 1. By the strong maximum

principle, we have either ug >0 or ug =0 on M.
- For all 1 <i# j <v, we have that §;;, — 0 and

5in ] (gznagjn)
— 4 = 4 . 1.
5o —1-5 + Sondom — 00 asm — oo (1.9)
- It holds that
Up, — <UO+ZV5W§M>H —0 asn— o0 (1.10)
i=1 HL(M)

where each Vs, ¢, is a bubble-like function on M. Throughout the paper, a bubble-like
function refers to a function whose asymptotic profile gets closer to a truncated bubble
X(dg (- &in)Us,, ¢, in HY(M) as &, — 0. In other words,

Vsin em — X(dg(-,fm))b{(;m,gmHHl(M) —0 asn—oo0 fori=1,...,v. (1.11)

The interaction estimate (1.9), traced back to Bahri and Coron [4, (5)], implies that each bubble-
like function Vj, is less likely to interact with the other bubbles at the H!(M)-level as n — oo.
A combination of (1.9), (1.10), and (1.5) yields

letnl 31 ) = ol (ar +Z|!U5m,o|!H1(RN o(1) = lluollFps ary + 5™ + 0(1)

where o(1) — 0 as n — oo. This forces the bound v < C3S~.

On the other hand, if M = RV U{oc} (the one-point compactification of the Euclidean space),
then up = 0 and a natural candidate of V;;, is a bubble (1.4) itself. In contrast, if M is not
conformally equivalent to SV, then ug may be either positive or identically 0, and there is no a
canonical choice of V;, in general. Moreover, constructing V;, that accurately approximates u,,
is essential in achieving sharp quantitative estimates. By recalling the resolution of the Yamabe
problem [2, 41, 30], we will make use of bubbles, cut-off functions, conformal changes of a metric,
and the Green’s function of £, to build V;,’s; see (1.13), (1.16), and (1.18).

1.3. Main results. In this paper, we will work on the following setting.

Assumption B. Let (M, g) be a smooth closed Riemannian manifold of dimension N > 3 that
is not conformally equivalent to S™. We assume that the Yamabe invariant Y (M, [g]) is positive

so that the definition of the norm in (1.8) makes sense. Suppose that a nonnegative function u
in H'(M) satisfies

uw— <u0 + ZX 5) HHl(M) < ep (1.12)
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for some small g > 0 and v € N. Here, ug is a solution to (1.1) with ¢ =1, Us¢ is the function
n (1.7), and (0;,&;) € (0,00) x M satisfies that §; < gy and

N-2

0 6 dg(& 5%\ T L
ma + = + — g =1,...,v, 1 < &p.
X <5J 5, 53, J #J 0

Let also T'(u) = || Lqu — u2*_1|]H71(M).

Remark C. In Theorem A, the above situation happens when u, — ug strongly in H'(M). In
Section 6, we also treat the simplest case v = 0.

We now list our main results. First of all, we are concerned with 3 < N < 5. Specifically, we
address the case ug > 0 in Theorem 1.1 and the situation uy = 0 in Theorem 1.2.

Theorem 1.1. Suppose that 3 < N <5 and Assumption B holds with ug > 0 on M. We also
assume that ug is non-degenerate, meaning that the kernel of the operator Ly — (2* — 1)ug =2 on
HY(M) is trivial. Given (8,€) € (0,00) x M, we set a nonnegative function Vse on M by

Vse(@) = x(dg(z, )WUs e(x) + (1 — x(dg(x,6))Uso (%) for z € M. (1.13)
Here, Us is a bubble in (1.4), x is a cut-off function satisfying (1.6), and ro > 0 is a small num-
ber. After reducing the size of €9 > 0 if needed, one can find v functions Vi := Vs, ¢/,...,Vy i=

Vs, ¢, such that

< CT(u). (1.14)
H (M)

u— (uo + 21/: Vi>
=1

Here, C > 0 is a large constant depending only on N, v, ug, and (M, g).

In Theorems 1.2 and 1.3, we exploit the notion of conformal normal coordinates introduced by
Lee and Parker [30] to devise V;’s: Given any 6 € N and £ € M, there exists a smooth positive

function A¢ on M such that A¢(§) =1, VyA¢(§) = 0, and the conformal metric g¢ := Ag/(N_Z)g
satisfies

det ge(y) =1+ (9(|y|9) (1.15)
in ge-normal coordinates y around {. For our purpose, we pick 6 large enough. According to
Cao [11] and Giinther [25], (1.15) can be improved to det g¢(y) = 1.

Theorem 1.2. Suppose that 3 < N < 5 and Assumption B holds with ug = 0 on M. Given
(0,€) € (0,00) x M, we set a nonnegative function Vs¢ on M by

Vse() = InGy(2,€) | X{dge (2, ) dge (2, ) 2US5 (1) + (1 = x(dge (@, ))and = | (1.16)

for x € M. Here, an > 0 is the number in (1.4), vy := (N — 2)|SV=1|, [SN71| is the surface
measure of the sphere SN1, and Gy 1s the Green’s function of the conformal Laplacian L. After

reducing the size of €9 > 0 if needed, one can find v functions Vi := Vs, ¢,,...,V, := V5, ¢, such
that
="V < CD(u). (1.17)
i=1 TH'(M)

Here, C' > 0 is a large constant depending only on N, v, and (M,g).

Next, we handle the case when N > 6 and only a single-bubbling is permitted. Interestingly,
it turns out that the quantitative estimate depends on NN, ug, and g. This is a new phenomenon.
Here and after, l.c.f. stands for locally conformally flat.
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Theorem 1.3. Suppose that N > 6 and Assumption B holds with v = 1. We also assume that

- ifug > 0 on M, then ug is non-degenerate;
- in the case that (M, g) is non-l.c.f., if either [N > 11 and up > 0] or [N > 6 and ug = 0],
then the Weyl curvature tensor Weyl, (§1) at & € M is nonzero.

Given (6,€) € (0,00) x M, we set a nonnegative function Vse on M by
NGy (, ) [X(dgg (z,€))dg, (507§)N72u§,2(55) ) [N >6, (M,g) is l.c.f., or }
V(;’g(:c) _ +(1 _ X(dg5 (1},5)))0{]\7(5¥] Uug = 0, 6 < N < 10, (M, g) 8 non—l.c.f. ’

; >0’N267 (M7 ) ] -l. .f.,
Ae(@)x(dye (2, UL () ; [“0 g) is non-L }

up =0, N > 11, (M, g) is non-l.c.f.
(1.18)
forx € M. After reducing the size of g > 0 if needed, one can find a function Vi := Vs, ¢, and a

large constant C > 0 that depends only on N, uy, and (M, g) such that the following inequalities
hold:

(1) In case that ug > 0 on M, we have
[l = (uo + V)l 1y < CCI(w) (1.19)
where ¢ € C°([0,00)) satisfies
t|logt|z if N =6,

(o) = tﬁ #7<N <10 0r [N > 10 and (M,g) is Le], (120
t 16 if 11 < N <13 and (M, g) is non-Lc.f.,
t if N > 14 and (M, g) is non-l.c.f.
fort > 0.
(2) In case that ug =0 on M, we have
Ju = Vil oy < CE(Tw) (1.21)
where ¢ € C°([0,00)) satisfies
t|logt|z if N =6,
() = tQ(JX’ité) if N> 7T and (M,g) is l.c.f., (1.22)

t if N> 7 and (M, g) is non-l.c.f.
fort > 0.
Remark 1.4. We present several remarks on Theorems 1.1-1.3.

(1) The non-degeneracy assumption for ug is generic. By [29, Theorem 10.3], one can perturb
the metric g on M slightly so that every positive solution to (1.1) with the new metric is non-
degenerate, provided 3 < N < 24 and the positive mass theorem is valid.

In contrast, there are concrete examples for which ug is non-degenerate: Let M = S'(r) x SV—1
be a manifold that appeared in Subsection 1.1. According to [39, Proposition 3.4], the constant
solution ug = (¥52)(N=2)/2 to (1.1) with ¢ = 1 is non-degenerate for all 7 € (0,00)\ {I/VN =2
l € N}

(2) In our proof, we crucially use the positive mass theorem when 3 < N < 5 or [N > 6 and
(M, g) is lL.c.f]; refer to Lemmas 3.7 and 4.6, and Proposition 4.10. Their validity was proved by
Schoen and Yau [44, 45].



SHARP QUANTITATIVE STABILITY OF THE YAMABE PROBLEM 7

(3) As a matter of fact, the choice of Vs¢ in (1.16) is applicable to all cases in Theorems 1.1-1.3.
This Vs ¢ is qualitatively similar to the test functions of Schoen in [41, Section 1], of Brendle in
[7, (203)], and of Esposito, Pistoia, and Vétois in [22, (2.7)—(2.8)].

However, we decided to select simpler test functions (1.13) in Theorem 1.1 and (1.18) in Theo-
rem 1.3, respectively, to manifest which factors determine the right-hand side of the quantitative
estimates (1.14), (1.17), (1.19), and (1.21); see Subsection 1.5(3) for more discussion.

(4) We opted to work only with nonnegative u for Theorems 1.1, 1.2, and 1.3, where as the
authors in [23, 14] permitted u to assume both positive and negative values. Our choice reflects
the geometric meaning of positive solutions to the Yamabe equation (1.1), and forces the H'(M)-
weak limit ug of u as I'(u) — 0 to be either positive or 0 on M.

Remark 1.5. We provide comments regarding the cases that are untouched in this paper.

(1) In Theorem 1.3, we imposed a generic condition Weylg(gl) # 0 for some non-l.c.f. manifolds
(M, g) to avoid additional technical issues. If Weyl (1) = 0 for those manifolds, one will need
to consider the vanishing rate of the Weyl tensor near £; to seek the optimal function (.

(2) Deducing the sharp quantitative estimate for the multiple bubble case with N > 6 is more
difficult, because we must take account of the effect of a solution ug to (1.1), the metric g, and
the mutual interaction between bubble-like functions Vi, ..., V), at the same time. In view of [14],

we may also need a pointwise estimate of the function w in (1.12), whose derivation is extremely
complicated. We expect that the C%-theory of Druet, Hebey, and Robert [20] will be helpful.

The following theorem demonstrates the optimality of Theorems 1.1, 1.2, and 1.3.

Theorem 1.6. Let ( be a continuous function on [0,00) given by ((t) = t in the setting of
Theorems 1.1 and 1.2, and by (1.20) and (1.22) in the setting of Theorems 1.5. Estimates (1.14)
in Theorem 1.1, (1.17) in Theorem 1.2, and (1.19) and (1.21) in Theorem 1.3 are all sharp in
the following sense: Given any €9 > 0, there exists nonnegative u, € H'(M) satisfying (1.12)
such that

inf{ Uy — <u0 + Z V5i75i>
i=1

where C > 0 depends only on N, v, ug, and (M, g).

H :(04,&;) € (0,00) X M fori= 1,...,1/} > CC(T(uy))
H' (M)

Finally, by combining Theorem A and Theorems 1.1, 1.2, and 1.3, we obtain

Corollary 1.7. Let S > 0 be the sharp Sobolev constant in (1.5) and vy € NU{0}. We assume
that every positive solution to (1.1) with ¢ =1 is non-degenerate.

(1) Assume that 3 < N <5 and v9 € NU{0}. If u is a nonnegative function in H*(M) with
||u\|%{1(M) < (vo+3)SN, then there ezists a constant C' > 0 depending only on N, vy, and (M, g)
such that

inf{ u— (uo + ZV@,&)‘
i=1

where ((t) =t fort € [0,00) and

tug solves (1.1) withc=1, Vs, ¢, € B,v=0,.. .,ug} < C¢(T(w) (1.23)
HL(M)

B := {Vs¢ : Vse is a bubble-like function defined by (1.13) if ug >0
and (1.16) if up =0, (0,€) € (0,00) x M}.

We obey the convention Z?Zl Vsi.e; = 0.
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(2) Assume that N > 6 and (M,g) is Le.f. If u is a nonnegative function in H'(M) with
||uHH1(M) 35N, then there ezists a constant C > 0 depending only on N and (M, g) such that

(1.23) with vy = 1 holds where ¢ € C°([0,00)) satisfies
1
tllogt|z if N =6,
cwz{LéJ !
T N> T
fort >0 and
B := {Vs¢ : Vse is a bubble-like function defined by (1.18), (0,&) € (0,00) x M}. (1.24)

(3) Assume that N > 6 and the Weyl tensor on (M, g) never vanishes. If u is a nonnegative
function in H*(M) with Hu”%p(M) < 35N, then there exists a constant C > 0 depending only on

N and (M, g) such that (1.23) with vy = 1 holds where ¢ € C°([0,00)) satisfies
t|logt|z if N =6,

N+2
(=TT TSN <D,
6 if 11 < N < 13,
t if N > 14

and B is defined by (1.24).

1.4. Related results. Quantitative stability for sharp functional inequalities is a classical sub-
ject that have attracted to researchers for decades. In a seminal work [10], Brezis and Lieb raised a
question of quantitative stability for extermizers of the Sobolev embedding H'(RY) < L (RYN).
Bianchi and Egnell [6] answered it by deriving

el vy = 2l oy = Copint {Jlu = Usollpngry 10> 0, 0 € RY, ce R} (1.25)

for any v € H'(S") and some Cgg > 0 determined by N. Let gy be the metric on the round
sphere SV and M(ar,g) the set of minimizers of (1.2) that attain the Yamabe invariant. Owing

to the conformal equivalence between the manifolds RY U {oo} and S¥, inequality (1.25) is
rephrased as

inf{Hu - UH?{l(SN) HONS M(SN,go)}

Qe g0y (1) — Y (8™, [90]) > Ciom o
Ul sy

(1.26)

for any 0 < u € H'(SY) and some 5]3]3 > 0. By utilizing the Lojasiewicz inequality, Engelstein,
Neumayer, and Spolaor [21] recently obtained a generalization of (1.25)—(1.26) that holds on any
smooth closed Riemannian manifold (M, g). Their main result is that if (M, g) is not conformally
equivalent to (S, go), then there exists Cgng > 0 and v > 0 depending on (M, g) such that

inf {|lu— vl v € Mg }
[l

for any 0 < u € HY(M). In addition, one can take v = 0 generically (in the sense made in [21]),

but v = 2 is optimal if M = S!( m) x SN=1 as shown by Frank [24]. In [35], Nobili and Violo

established a similar stability result on a wide class of Riemannian manifolds, which makes a
direct comparison between almost extremal functions and bubbles.

Qu,g)(w) — Y (M, [g]) > Crns

(1.27)

Inequalities (1.26) and (1.27) concern the stability of the variational problem (1.2) near its
minimizers, or equivalently, that of equation (1.1) near positive least energy solutions. On the
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other hand, our quantitative estimates (1.14), (1.17), (1.19), and (1.21) take into account the
overall solution structure of (1.1), so their accompanying analysis is much more cumbersome.
The latter type of studies have been spotlighted after the works of [13, 23, 14] mentioned in
Subsection 1.1. Analogous results were achieved for the Caffarelli-Kohn-Nirenberg inequalities
[48], the fractional Sobolev inequalities [1, 16, 12], the half-harmonic maps [15], the Poincaré-

=

Sobolev inequalities [5], the Hardy-Littlewood-Sobolev inequalities [33, 36], among others.

1.5. Novelty of the proof. Our argument is influenced by Deng, Sun, and Wei [14], which
essentially provides an alternative proof of [23, Theorem 3.3] for 3 < N < 5 as a by-product.
To work on arbitrary smooth compact Riemannian manifolds (M, g), one has to develop several
new technical novelties. We briefly explain the unique features of our proof.

(1) Unlike the case M = SV, our ug may not be zero. The presence of nonzero ug increases the
complexity of the analysis as can be seen in the derivation of a coercivity inequality (see e.g.
Proposition 2.2) and evaluation of the interaction strength between ug and bubble-like functions
Vi (see e.g. Lemmas 2.5, 2.6, and 2.8). Particularly, compared to [14], we also have to control an

sz

additional term max;—, in Propositions 2.4 and 2.7. This term is non-comparable to

Q in (2.10) directly.

(2) In contrast to [13], the function ¢ in the quantitative estimates (1.19) and (1.21) may be
significantly larger than ¢ even for the single-bubbling case with N > 6. This phenomenon
happens due to the combined effects of the bubbles, a solution ug to (1.1), and the metric g.

(3) The choice of the bubble-like functions V; depends on the dimension N, geometric assumptions
on (M, g), and whether ug is positive or identically 0 on M.

If 3< N <5 and ug > 0, then ug is the most dominant factor for the quantitative estimate,
enabling us to take a truncated bubble x(dy(-,&))Us, ¢, for V; near the concentration point
& € M. The term (1—x(dy(-,£)))Us0(%) is required to capture the interactions among different
V;’s.

If 3< N <5 and uyp = 0, then we need more precise information of V; than before, which we
achieve by using conformal changes of the metric g and the Green’s function G of the conformal
Laplacian L.

If N > 6 and v = 1, then the combined effects of the bubbles, ug, and g determine which
choice of V; is the simplest. If the metric g, more precisely, the Weyl tensor Weyl, on M, prevails

over the others, then one can simply take Aglx(algé1 (-, {1))0{5915151 for V.

(4) Unlike [13], we need pointwise estimates of p := u— (up+ V1) to deduce the optimal estimates
for N > 6 and v = 1. If N = 6, the L*N/(N+2)(M/)-estimates of the error terms in the proof of
Propositions 4.1 and 4.10 yield merely a rough estimate of powers of the |log ;| terms in (4.2)
and (4.27). To obtain the optimal result (see Corollaries 4.3 and 4.9), we appeal to pointwise
estimates of p (see Lemmas 4.2 and 4.8). We need pointwise estimates of p even for N > 7; refer
to (4.24) and Subsections 5.2 and 5.3.

(5) In the derivation of the coercivity inequalities in Propositions 2.2 and 3.2, we do not use
bump functions as in [23], providing a relatively simpler proof. This method is also used in [12].

(6) In Section 5, we give a proof for the optimality of Theorem 1.1 and 1.2. When M = SV, this
result was taken for granted in [23] and [14], and can be shown by modifying [13, Remark 1.2]
suitably. However, we decided to include the proof here to point out the necessity of delicate
estimates arising from the interaction between different bubbles.
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1.6. Structure of the paper. Our paper is organized as follows:
In Section 2, we handle the case when 3 < N <5 and ug > 0, proving Theorem 1.1.
In Section 3, we treat the case when 3 < N <5 and ug = 0, deducing Theorem 1.2.
In Section 4, we deal with the situation when N > 6 and v = 1, establishing Theorem 1.3.
The proofs of Theorems 1.1-1.3 follow a parallel structure, though the difficult parts in each
theorem vary, as illustrated in the following table.

Cases

Results

3< N <5,
ug >0

N>6,v=1,
ug >0

N>6,v=1,
UQ:O

coercivity
estimates for
multi-bubbles

Proposition 2.2

Proposition 3.2

(not applicable)

(not applicable)

2N/ (N+2) (M)-
estimates for the
error terms

Lemma 2.3

Lemma 3.3

in the proof of
Proposition 4.1

in the proof of
Proposition 4.7

||P||H1(M) S Hf”H*l(]M)
+ (auxiliary terms)

Proposition 2.4
(followed by
Lemmas 2.5

and 2.6)

Proposition 3.4

Proposition 4.1
(for N > 7),
Corollary 4.3
(for N =6)

Proposition 4.7
(for N > 7),
Corollary 4.9
(for N =6)

(auxiliary terms)
S Iflla—on

Proposition 2.7

Proposition 3.5

Proposition 4.4

Proposition 4.10

projections of
the error terms in

the ¢; %-direction
J

Lemmas 2.8,
2.9, and 2.10

Lemmas 3.6
and 3.7

Lemmas 4.5
and 4.6

in the proof of
Proposition 4.10

In Section 5, we show that the quantitative stability estimate stated in Theorems 1.1, 1.2, and
1.3 are all optimal, deriving Theorem 1.6.
In Section 6, we prove Corollary 1.7.
In Appendices A and B, we present some useful estimates and technical computations that
are necessary in the proof of the main theorems.

1.7. Conventions. Here, we list some notations that will be used throughout the paper.

- Given any 6 >0 and 0 = (07, ...

1

is spanned by the functions

0
4,0

—Av = (2" — 1)U§Z_2U in RY,
8U670— k aUé’o—
=0 85 and Z&O. = 5W

v e HY(RY)

fork=1,...,N.

,o¥) € R¥ the solution space of the linear problem

Let U be the standard bubble U; o and Zk = Z{io for k=0,..., V.

- The notations Vg4, Ag, <',->g, | - |g, dvg and exp9 stand for the gradient, the Laplace-
Beltrami operator, the inner product, the norm, the volume form and the exponential
map with respect to the metric g, respectively. If the metric g is Euclidean, we drop the
subscript g. Also, the subscript z in the integral [ a - (dvg), represents the variable of
integration.

- We occasionally use the Einstein summation convention for repeated indices.
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- For £ € M, a metric g on M, and r € (0,00), we write BY(§) = {x € M : dy(z,£) <r}
and (BY(€))¢ = {x € M : dy(x,€) > r}. Let also B.(0) = {y € RV : |y| < r} and
Bi(0) = {y e RN : [y[ > r}.

- h1 = O(hg) means that |h;| < C|hy| for a universal constant C' > 0 independent of
go > 01in (1.12) and the parameters (01,...,d,,&1,...,&,) € (0,00)” X MY of bubble-like
functions Vs, ¢,,..., Vs, ¢, Also, we write h1 = o(ha) if hq/|he| — 0 as g — 0.

- h1 < hy or hy 2 hy denote that hy < Chg or hy > Chy for a universal constant C' > 0,

~

respectively. We write hy ~ hg if hy < hg and hy 2 ho. Also, hy < hg and hy > ho

~

signify that hy = o(hs) and ha = o(hq), respectively.
- Given a condition (C), we let 1(¢) = 1 if (C) is true and 0 otherwise.
2. THE CASE 3 < N <5 AND ug >0

This section is devoted to the proof of Theorem 1.1. Throughout this section, we always
assume that 3 < N <5 and ug > 0 on M.

2.1. Setting of the problem. Given £ € M, we choose an orthonormal basis {8%1’ e agiN}
on the tangent space Tz M and define
OVse d
ZI08 )y = f M.
oek (x) dtvdexpg (ta%)(x) » orx €
Then we set V; = Vs, ¢, as in (1.13),
5 Vi 5 Vi ,
Z?:(Si@—:;i’ and Zfz&iagk fori=1,...,vand k=1,...,N. (2.1)

By Assumption B, there exist (d1,...,0,,&1,...,&) C (0,00)” x M" and 1 > 0 small such that
e1 —>0aseg— 0,
= inf
HL(M)

u— <U0+Zvi>
i=1
5 5 d 9 _N;Z
max{(a—i—ka—j—kM) 1i7j=17---7V}§€1; (2.2)
i 7

u — <UO + iv&,éi>‘
i=1

:(&-,é) € (0,00) x M, z‘—l,...,u} <e,

H(M)

and
3;0;
refer to [4, Appendix A]. Setting p =u — (ug +Y_,_; Vi) and f = Lyu — u? 1, we have
v 2% _9
ﬁgp—(Q*—1)<uo+ZVi> p=f+Tlp] +1a+I3+1s on M,
i=1

<p,Z~ik>H1(M):O fori=1,...,vand k=0,...,N

(2.3)

where (-,-) 1.5y be the inner product on H' (M) associated with the norm || - || g1 (as) in (1.8),

v 2% —1 v 2% —1 v 2% -2
Lifp] == <U0 + Z Vi+ P) - <u0 + Z Vi) -(27-1) (UO + Z Vi> P
i=1 i=1 i=1
v 251 ) v 21
Iy := <u0 + Z Vi> - ug - <Z Vi> ) (2.4)
i=1 i=1

v v

v 2*—1
b (X)X w= Y (e ) e
i=1

i=1 =1
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To prove Theorem 1.1, it is enough to verify that

ol e ary S WF -1 (2.6)

provided g¢ > 0 small.

On the other hand, since the Yamabe invariant Y (M, [g]) is assumed to be positive, so is
the conformal Laplacian £,. Then the spectral theorem guarantees the existence of sequences of
functions {t, }men € H' (M) and positive numbers { i, }men satisfying the following properties:

- ¥, solves an eigenvalue problem
Lgthm = ,Hmug*_z%n on M.
- The set {1, }men is an orthonormal basis of the space L*(M,u2 ~2dv,). Thus

1 forl=m
0 Phrmdug = 6 = ’ 2.7
/M Yrmdvy 0 forl# m. 27)

-0<mp<ppr <z < =00
Elliptic regularity ensures that i, € C°°(M) for all m € N. Since ug > 0 on M, we also know
N/( N 2)
that fi = 1 and ¢1 = Juol[ 2,
0< <2 —1=72+2 foralll<L
Finally, it is noteworthy that

—Agu=—Au— (g7 — V) 82 U+ g”F Opu (2.8)

ug. For later use, let L be the greatest number such that

in g-normal coordinates around any fixed point £ € M, where F is the Christoffel symbol, and
g (x) = 69(2) + O (dy(w,€)?)  and (7T} () = O(dy(,€)) (2.9)
for x € M near &.

2.2. Preliminary computations. Let us define
;

L _+_]+ (5276]) 77 Q—max{l—l I/}<E
qij = (5 (5 (55 ; - qij ) =1,..., > <l

3 5 d(g é“) ) (2.10)
o 0 [0 dg(& &) | v
% ma"{\/é/\/aﬁ N }_q“ |

The following lemma serves estimates for the inner products of V;, glk and ,,, which will be
frequently invoked later.

Lemma 2.1. Assume that i,j € {1,...,v}, k, 1€ {0,1,...,N}, and m € N. We have
o N=2 =k N-2
(Vi Vi (any z/ U +0(8,7 ), (ZE V) man =o(8,7 ),

]RN
~ N-2
(2}, 2] >H1(M = HZkH?Jl(RN)ékl +0(5z ’ )a
and

<Vi7VJ>H1(M)‘+‘ (ZF V) H1 ‘—F‘ (ZF Zl>H1 ‘— (q,])—ko(Zmax 51\’22)

1,...,v

provided i # j. Additionally,

‘<¢mvvi>H1(M)‘ + ‘<¢M=Z~f>H1(M)‘ = O(éiNgz)'
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Proof. Using (A.5) with £ = ¢; and y2 = 0, we obtain

Zf ()
52
N —2ay——=——= (/*+ O (|y? if z = exp? i =@y,
_ Wy (v*+0 () pL(y) € Bl (&) y =" y")
N—2
0(52.2 ) if 2 € M\ BY (&)
2

fori=1,...,vand k=1,...,N. Once we have this, the proof becomes standard. O

Next, we present a coercivity estimate tailored to our setting, which serves as an important
tool in the proof of Proposition 2.4. Its Euclidean version can be found in [23, Proposition 3.10]
where bump functions is a key ingredient. Here, we present a different proof based on a blow-up
argument. Because the proof is a bit lengthy, we defer it to Appendix B.1.

Proposition 2.2. Suppose that ug is non-degenerate. Let

EL:{QGHI(M)<Q7VZ> —<Q,Zk>H1(M) <Q wm>H1 ):07
fori=1,...,v, k=0,1,...,N, m=1,...,L}. (2.11)

Then there ezists a constant co € (0,1) such that
v 2% -2
(2" — 1)/ <u0 + ZV2> o*dvy < CoHQH%l(M) for any o € E*. (2.12)
M ‘

We will also need estimates for the L2N/(N+2)(AM)-norm of I, I3, and ;.

Lemma 2.3. We have

N=2
Tl g2ty oy + sl 25y + el 5y ) S @ g ® (2.13)
Proof. By Lemma A.2 below, it holds that
N—2 . N-2
Vil 2x. <6, %  and HV~2 _2H N S (2.14)
LNFE (M) too v T
Using (A.2), (2.14), and up € L>®(M), we readily compute
—2
< 2% -2 2% —2 < 2
||| NiN Z HUOV H 2712 —|— Z H LA o) m?xé . (2.15)
Besides, (A.2) and Lemma A.3 tell us that
-2
ITall, 425 Vil e (2.16)

Let z = expgi(y) € M for y € B,,(0) and Xl(x) = x(dg(,&)). We have

Li(z) = H(Xi(l’)U&i,o(y) + (1= xi(@)Us,0(58))* ™ = xi(@)UE 3 (v )}
=1
+ (Agxi) (@) (Us,0(y) — Us,0(3)) + (Vgxi(a), VgUai,o(y»g] (2.17)

—Z Xi(2) {Lg(Us, 0(y)) + (AUs,0) ()} + snRy(x)(1 = xi(x))Us, 0 ()] -
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By applying (1.6), (2.8), and (2.9), w easﬂy check that
, _ (o 2" y2-1 < SN-2
H(XzUéi,O(y) (1 Xi U(SMO 2 ) - xiU. 8;,0 (y)HL%(M) ~ 51 Nﬁ;
| (@9x) (Us.0(0) = Us.0(5$)) + (Voris VU olw) ||, g, S 07
N—2
Xi(2) {£4(Us;.0(9)) + (AUs;0)(y)} + rnBy(2)(1 = xi(2))Us; 0(5)] S x(1yDUs, 0(y) +6; -
(2.18)
From (2.14) again, we observe
N-—-2
< =
HI4HL7‘27%(M) S mgmxéé . (2.19)
Putting (2.15), (2.16), and (2.19) together, we obtain (2.13). O

2.3. Proof of Theorem 1.1. One can decompose the function p = u — (up + Y, Vi) in
Subsection 2.1 as

p—p1+25,v +226kzk+2ﬁmwm for some B, Bf, U € R, p1 € E- (2.20)

=1 k=0 m=1

where E* is the space defined in (2.11). We will accomplish the proof of Theorem 1.1, that is,
the verification of (2.6) in two stages; Propositions 2.4 and 2.7.

Proposition 2.4. Let Q be the quantity in (2.10). It holds that
N-2

ez oy S N ll-2ary + Q + max 6%

=L,V

The quantities Q and max,—; ., 5éN_2)/ % are non-comparable. We establish Proposition 2.4 by
deriving Lemmas 2.5 and 2.6 and then combining them.

Lemma 2.5. Define a number

A= Z|52| +ZZIBkI + Z [0l

i=1 k=0
which is small by virtue of Lemma 2.1. It holds that

—2

ol ey S W10y + A+ Q+ H'ilaX 0y 7 . (2.21)
Proof. Using (A.3), we obtain
ITloM, g, 0y = ol oy + el 7 ay = ol F ca- (2.22)

By testing (2.3) with p; and then invoking (2.13), (2.20), and (2.22), we arrive at

v 2*¥ -2
I nan = -1 | (uo +Zvi) pprdvy + O (1 on o1l s o)
M i=1 (2.23)

N-2
O (Il an loalran) + 0 (@ maxd, = Yol o )

In addition, since p; € E+, Proposition 2.2 gives

v 2% -2
(2" — 1)/ <u0 + ZV2> pidv, < coleH%{l(M) for some ¢p € (0,1). (2.24)
M i=1
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We see from Holder’s inequality that

(2° - 1) /M (uo + Zv) ) (Z BiVi + ZZ@ ZF+ Z 19m1/1m> dvg = O (Alprllnan)  (2.25)

i=1 k=0

and from (2.20) that

ol e ary S ol e ary + A (2.26)
Plugging (2.24)—(2.26) into (2.23) produces (2.21) as desired. O
Lemma 2.6. It holds that
N_2
AZS A1) + @+ max 6,2 . (2.27)

Proof. Firstly, given any j € {1,...,v} and ¢ € {0,1,..., N}, it holds that (p, ZN?>H1(M) =0, so
by (2.20),

<ZBZV +ZZ@Z’€+Z%%,ZQ> ( ):o.
HY (M

1=1 k=0
By virtue of Lemma 2.1, it reads

15| [/RN |VZ‘1|2+0<5;V22>] + > 1B [O(Q)+O<mgmx5e]v?2>]

(1,k)#(5,9)

+I5JIO<5 2 >+Zlﬁz [ <maX5 2 )] Zlﬁmlo@ z ):0. (2.28)

i#£]
Secondly, after testing (2.3) with V; for j € {1,...,v}, we apply (2.13), which yields

v 2% —2
‘/ [ﬁgp — (2 —1) (uo + Z Vi> ,0] Vidv,
M i=1

Let us examine the left-hand side of (2.29). Employing (A.2), Holder’s inequality, ug € L>(M),
(2.14), Lemma A.3, and

/ V¥ prdug = / (—,cgvj+vf*—1) p1du,
M M

N-—2
2*—1 N=2

N-2
S lla-rany + Q+maxd, * 4 o(A). (2:29)

we calculate

v 2*—2
/ <U() + Z Vi> ,oledvg
M i=1

_ /M VZ prdug +0<H -2, HLM

+ HUOV?*_zH i

Vi2*_2VjHL%( o0

LN+

e HE [P
i#J

No2
— O(Q +max, * )HPlHHl(M)-
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Also, direct computations show that

'<ZBZV +ZZ@ zF+ Z Optbm, V. >H1(M)

1=1 k=0
22 [ v

—(2" - 1)/ <uo + Zm-) [Z sy Z BEZE 1 Z Dot | Vidvg| (231

M i=1 i=1 k=0
— (@ =25 [ U o).
RN
Having p; € E+ in hand, we conclude from (2.29)-(2.31) and (2.21) that
* N=2

@ =20 [ VT Sl + Q-+ maxs, T +o(A). (232

Lastly, given any s € {1,..., L}, by appealing to (A.2), Holder’s inequality, 15 € L (M), and
(2.14), we find

v 2% —2
‘/ ug + ZV2> — ug _2] psdug| S
i=1 =1

Testing (2.3) with ¢ and using (2.33), we derive
@ 1=l [ o v, S Il + @ maxs, T Fold). (234
Inequality (2.27) is a consequence of (2.28), (2.32), and (2.34). O
Proposition 2.7. It holds that
Q-+ max 6,7 Il (235)

Its derivation is the most involved part of the proof of (2.6). Fix j € {1,...,v}. By testing (2.3)
with Z]Q, we obtain

/ L Z%dv, + / I320dv, + / L, Z0dvy = — / F2dv, — / I [p] 20 dv, (2.36)
M M M M M
v 2% -2
+/ [ﬁgp—(Z*—1)<u0—|—ZVi> p}zfdvg.
M i=1

In Lemmas 2.8-2.10, we analyze the left-hand side of (2.36) term by term, which is essential in
proving (2.35).

2% —
Lemma 2.8. Let ay = aN* ., v}, we have

/ IQZ dvg—aNuo(fj)é 7 +0(Q+ max (5 = > (2.37)
M 1
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Proof. Employing (A.3), we see that there exists a constant n > 0 such that
v 2% 2 4 2% -3
L= [(2* - 1)UO<ZVZ-) +0 <ug<;V) ) + O( 2 *1) Ly, e
v 2 v 2% —1
2 —1)ud 221}#0( 2 3<;v> ) +(’)<<;Vi> )} 1“?:1<Bi¢s—i<f“)c‘

We compute the integral || M Ing()d'Ug by splitting it into three steps.

(2.38)
N

Step 1. Since |§]0| < Vj, it holds that

(2" — 1)/ uovjz*_2§?dvg
_1BZ\/5_¢(5i)
=(2"-1) / rof*_zgjodvg — / rof*_2§]deg
M (ue,B BY /(&)

N—

— (2 - 15, /{ e wo(expf, (05)) (U 722°) (y) (1 + O (2]yP?)) dy + 0(5%) (2:39)

N —2 N2 2 2% _1 2*—1 %
= =557 |w() [ U140 059lU* M y)dy ) | +0(57)
RN {lvl<5%)
N_2 N_2
= aN5j 2 U()(fj) + O<5j 2 >
In addition, by (A.2), we have

(S

=1

ZDdv,

< Z /M (vF 2 v =) |20 v,

< Z/ v2 VAV —2) dvy = 0(Q)
i#j

(2.40)

where the last equality is proved in Appendix B.2.

Step 2. By Young’s inequality and Lemma A.2,

v 2*_3 v
/M ul ( 3 vi> (ZJQ‘ oy S /M V23 du, (2.41)
=1 i=1

&; if N=3
v N-—-2

< 22y < {82 |log ;| fN=4% = 7).

NZ:/MVZ dvy S 7| log 0;] 1 0<m?x<5z >
52 if N =5

Furthermore,
22—:1 N+2
/ ‘ZO‘ dvg < Z </ ul dvg> Hgo‘ Smaxd, * . (2.42)
uv . BY Hl(M) l
Y1 nﬁ(& n\/— &)
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Step 3. Let us write Q = ﬂl’-jzl(Bf] ﬁ(&))c. From Young’s inequality again, we observe

> ud Vi |29 do 52/  Vidv
i:l/Q ’ ]‘ ! i1 (Bf,\/g—i(ﬁi)) ’

i it N=3

(2.43)
<)o logs;| fN=4\_ O<maxé¥>‘
67 if N=5
Since Z~]0 is uniformly bounded on the set {z € M : dy(z,&;) > n+/9,}, it follows that
v v N—2
2" =3y)2 | ZC < 20y, = N 2.44
;/guo V; ]‘dvgN;/ﬂVldvg 0<m?x<5z ) (2.44)
and
Y N
/ <ZV> ‘Zo‘dvg,SZ/Vz _1dvg <max62 (2.45)
LI

Putting (2.39)—(2.40), (2.41)—(2.42), and (2.43)—(2.45) together, we finish the proof of (2.37). O
Lemma 2.9. For any j € {1,...,v}, it holds that

w_o . OU;
/ ,20dv, = (2" — 1 Z/ U =26, (%J Vidvg + 0(Q) (2.46)
1#£] ro/2 (&)
where Uj := Us; ¢, is defined by (1.7). Moreover, if 6; > 6; for some indices 1 <1 # j < v, then
* au
/ Z/[j2 _25] a&j Vidvg 2 qij (2.47)
.,40/2(5])

provided q;; in (2.10) small.
Proof. Arguing as in [14, Lemma 2.1] and using the estimate

Z/ V2*_25]2?Vdvg _0<25N+2 .N22> =o( Y ay) =o(Q

it (Bfo/z(fj))c ’

i i#]
we get
/ I320dv, = (2" — 1) ;/ V2, 85’Vdvg—|—o(Q)
77 o (2.48)
o * 2% -2 ]
=2 -1 ur e~ 7, Vidvg + 0(Q),

i Broa &)
0 (2.46) is true.
In the rest of the proof, we establish (2.47) for all indices 1 <@ # j < v satisfying §; > ;. To

achieve this, we analyze the integral in the rightmost side of (2.48) by considering three cases.
Let g > 0 be a small number appearing in (1.13).

Case 1. (dg(&,&;) > 20): If dy(z,&;) < 2, then dy(x, &) > 1o and so V; = Us, o(%2). Hence

) N2 . =
/ U s 82:5{] Vidvg = Us, o (%) 9, ° / U2 220 2 (6:0,) 7 =~ qij.
/2(53) 4 RN
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=]
=

Case 2. (ro < dy(&,&5) < 37’0) If dy(x, &) < 3, the < dg(z,&) < 2rg and so

<
{U(Si,O(TO) <V; <Usp (%O) if %O <d (;1: &) <o,
d

2.49
Vi = Us, o (%) if ro < dg(z,&) < 2r0. (2.49)

We write

/ u2 25, 0% Vidv, = H;
r /2(§J)

U =25, =2 V;dv,

J ]65 /Bgo/2(5j) ( L (€)\B? /26 )) J 385

+Us,0 (%) / U2, a%{] dvg =: Ji + Ja.
BfO/Q(Sj)ﬂ(BgTO (&)\BY, (fi)) 9

The definition of the function %{j and (2.49) yield

* 8“
Ji > Uai,o(ro)/ U =265 dv,

J
(BZ, /2 (€)\BL, (€)) N (B2, (€)\BY, (&) 09;
au;

+ Us, 0 (T—O)/ Uy 26—, dv,
2 b1 en (B Enme e) T 09

By direct computations,

* 8“ * y
J1+J2 > Uéi,o(ro)/ uy2 285 95, dvg + Us, 0 (70)/ uj2 25'—.d”9
BY E\BL (&)
N=2 * *
2 6;° Uéz—,O(To)/ U? _2ZO+U6i,0(T7°)/ R
B{(0)

~

i.%(2+\/§)_3.@ if N =

7

o
<

o
w
)

N

*

N— . N-—-2
~ (8;0;) 2 ok X rr i EN=43~(56;)2 =~qy.

§m| =
B
167 ot
-
o
S
oo

§w| =
|
i
[\V]
+
=
SN—
|
ow| o)
=i
=2
Il

Case 3. (dgy(&,&5) < 1op): We write

/ . U —2s; g?ﬂ Vidv,
BTO/Q(SJ)

* 8“ * az/[
_ 2 -2 ] 2 ) . o) _ '
ro/2 J 7“ /2 7

=:J3+ J4.
By employing (A.4) and arguing as in the derivation of [3, (F16)], we observe

N—-2

o d 96:), &) 3
I :aN/ (U%_zzo) (y) " o X, (50, &) dy + o(gi5)
{lyl<3 }

0 1% (2.51)

N—-2

& dg(&i. &) 2 / 2*—-2 0
[53' + 55, an ox U + 0(qij) ~ qij
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If dy(&,&5) < 2, then it is easy to see that Jy = o(g;j) so that J3 + Jy 2 ¢;5. In the rest of the
proof, we assume that 2 < dy(&;,&;) < ro. We have

_ N-2 )
G = (85:8)°2 and J3> Us,0(r0)d; / U 22° + o(gij).
RN

Noticing that dy(z,&;) < 3¢ for all z € Bfo/2(§j), we decompose Jy as

J4:/ _|_/ coe=0 g+ Jyo.
BfO/Z(Sj)m(BgO (Si)\Bfo/z(&)) Bfo/z(ﬁj)ﬂ(Bé’ro/z(&)\Bé’o (Ei))
Then, it holds that
«_o. OU;
Jy1 > [U(S 0(%) - U(L-,O(TO)] / ujz 26 a5jd g
B (6N (B, (6)\BY, ,(&))
and 5
* Z/{
Jia > [U&,O (59) — Us.o (3%)} / -2, M g,
B (€N (BL,, »€0\Bl (&) 99;
Therefore,
Y Uéi,o(ro)/ U2 =22° 4 {Us, o(ro) + Us, 0 (%2) — Us, 0 (32)) U2 220 4 o(qsy)
Bf(0) B1(0)
2 @ij
where the last inequality is justified as in (2.50). This completes the proof of (2.47). O
Lemma 2.10. For any j € {1,...,v}, we have
S0 o
1,2 = . 2.52
s = of o 5.7) @52

Proof. By means of (2.17), (2.18), \Z~Q\ < Vj, Young’s inequality, and Lemma A.2, we see

‘ / 120y, < Z / Vzdvg+z /
M

N-2
:O<H1?X5£2 > O

V2*—1 Vi + [V Vily ) Vidvg

M\B} ,

We are now in position to conclude the proof of Proposition 2.7.

Completion of the proof of Proposition 2.7. Choose any j € {1,...,v}. Since —AZ? = (2* —
DU? 229 in RY, it holds that

le,30 - @ -1y _2ZOHLN+2<M> :0(5;%2). (2.53)

By (2.53) and (2.30),

v 2* =2
‘/ Lgp—(2F-1) (uo —|—ZV¢> p] Z]deg
i=1

s [|esZ - @ - 22|

1
52 (2.54)
Lz () + (Q—i—m?x ¢ ﬂ ol aa

1
< (Q+maxd? ) ol an
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It follows from (2.22) that

[ nla R

Inserting (2.37), (2.46), (2.52), (2.54), and (2.55) into (2.36) yields

Sl an) + 1ol ary- (2.55)

N2 o OU,;
aNUO(fj)éj (2 -1 Z " )Uf 2(5] 85] Viduv,
7] T0/2 7

—2
<l + Dol + oWllpllany +o(Q + maxs, T ),
and so by Proposition 2.4,

* __ 82/{
aNuo(gj) =03 / U %, 8(5] Vidv,

N—2
S Iy +o( Qimaxs, 7 ) (2.56)
i#] T0/2 &)

forall j € {1,...,v}.
We observe from Lemma A.3 that

u2*_25 82/{

B ]8(5 Vdvg

TO/Z(SJ)

Also, either ¢;; < Q or ¢;; ~ Q must take place.
For each j € {1,...,v}, we define an index set

Ci={ie{l,...,v}i#j, ¢ ~ Q}.

Let jo € {1,...,v} be such that C;, # 0 and d;, < ¢, for all j with C; # (. On account of (2.47),
* oU;

> U 205,22 Vidvg 2 dijo +0(Q) = Q. (2.58)

Jo
i#g0 ” Bro 2 (&) 00jo i€Cy,

As a result, we infer from (2.56), (2.58) and the positivity of ay and wug that

Q S anuo(&,)5,; QS |l )+O<Q+m?x5ﬁ). (2.59)

Jo

Furthermore, if j; € {1,...,v} is such that d; > ¢§; for all j, then (2.56), (2.57), and (2.59)
imply

N2 N2
maxs, ? = 6,
.o OU; 32
sy w 25”85111)@9 1 l-rn +o(Q+maxd; T ) (2.60)
iz Bros2(&in)

N=2 N2
SO+ O<Q+m?x5g 2 > + HfHH*l(M) < HfHHfl(M) _|_0<Q +m?X5z 2 )
Proposition 2.7 is a consequence of (2.59) and (2.60). This concludes the proof. O

3. THE CASE 3< N <5 AND ug =0

This section is devoted to the proof of Theorem 1.2. Throughout this section, we always
assume that 3 < N <5 and ug =0 on M.
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3.1. Setting of the problem. Given { € M, we recall the smooth function A¢ on M that raises

conformal normal coordinates around &; see (1.15). Using Ag(§) =1, g¢ = A‘;/ (N=2) g, and the
conformal covariance property of the conformal Laplacian L4 on (M, g),
Lo (8) = A7V Lg(Aeo) for all ¢ € CP(M), (3.1)
we find that
where G is the Green’s function of £4. In [30, Lemma 6.4], it was shown that
Ggg(expgé v,€) =78 1yl + A¢ + O(Jy|) C'-uniformly in y and ¢ (3.3)

in conformal normal coordinates y around £. The quantity A¢ (called the mass at £) is determined
by (M, g) and &, and positive by the positive mass theorem in [44]. Besides, the map & — Ag¢ is
smooth.

Fori € {1,...,v}, let V; = Vs, ¢, be the function in (1.16). By Assumption B and (1.11), there
exist (61,...,0,,&1,...,&) C (0,00)” x M"Y and €1 > 0 small such that e; — 0 as g9 — 0,

u—ZV inf{ ZV“& (&-,é)e(O,oo)xM,izl,...,y}gsl,
=1

and (2.2) holds. Settlng p=u—>>" Viand f = Lyu—u? ! we have

H(M)

v 2*—2
ﬁgp—@*—l)(Zm) p= f+T0[g + 10 + 15 on M,

= (3.4)
<p,Zk>H1(M) =0 fori=1,...,vand k=0,...,N
where ZO = (5,%?, Zk = (Lg:g fork=1,...,N,
2% -1 v 251 v 22
mp (zv+p) —(zvi) ~e (X)) s
i=1 i=1
271 v v )
Il := (Zw) =Y VP and IIyi= Y (—zgvi + V2 —1> .
i=1 i=1 i=1
To prove Theorem 1.2, it is sufficient to verify that
ol e ary S WF -1 (3.5)

provided g9 > 0 small. Since the proof of (3.5) is rather parallel to that of (2.6), we will minimize
the overlaps and focus on the distinct parts.

3.2. Preliminary computations. The following two results are analogies of Lemma 2.1 and
Proposition 2.2, respectively.

Lemma 3.1. Assume that i,5 € {1,...,v} and k,l € {0,1,...,N}. We have
N-—2

N—2 ~
<Vi7vi>H1(M) = /RN U2 +O(5i ? )7 <sz=VZ>H1(M) = 0(52 ? )7

S N2
(2528 1 oy = 2% oy 8 08 7).

and

- . N-2
<Vivvj>H1(M)‘ + ‘<szvvj>H1(M)‘ + ‘<Zik’Z]l'>H1(M)‘ = O(gij) + 0 <émax 0 * >

:17"'7V
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provided i # j.
Proof. Following the proof of [22, Lemma 3|, we can show that

N N
5.2 yk 52 ) . .
~ (N — 2)aN217yN +0 Z—|y|N72 if v = expgfl (y) € B% (&),
Zi(r) = (07 + [yl?)= (07 +y?) =~ >
N2 g
0(52.2 ) if o € M\ B (€)
fori=1,...,vand k=1,..., N. Once we have this, the rest of the proof is standard. (]

Proposition 3.2. Let
EL = {g € H' (M) : (0.V3) i any = (028 p gy =0 fori=1,...,w, k= 0,1,...,N}. (3.6)

Then there exists a constant ¢y € (0,1) such that

v 2% _9
-1) /M <ZV2> g2dvg < cngH%ﬂ(M) for any o € B
i=1

Proof. The proof is similar to that of Proposition 2.2, so we omit it. U
We will also need estimates for the L2N/(N+2) (M )-norm of I, and ;.

Lemma 3.3. We have
1L | 2N +HH3H 2N <Q+ max (5N 2,
LN+2(M LN+2 (M)

=1,...,v

Proof. 1t is straightforward to check

L] e, Vil e S 2
+2 M 2 (M)
From now on, we are devoted to estimating the L2N/(N+2) (M )-norm of II3. Fixing i € {1,...,v},

we examine three different cases determined by the distance between a point z € M and ¢;.

Case 1. (dg,, (2,&) > 10): We know that V; = aN’yNdl-(N_2)/2Gg(a:,&) and so

LYV VET = —annd T AT T, Gy (&) 1V =VE = 0(67 ) (37

where we used Ly, Gy, (z,€;) = 0 for the second equality.
Case 2. (dg, (2,&) < F): We define

Fy(x) = dgg, (2, &)V 72U (2) for & = expg y € B, (&) (38)

where L{gg’ = Z/{ggl, is defined by (1.7) so that Vi(x) = ywGgy(x,&)Fi(x). Since Fj(&;) = 0 and
Ly, G, ( &) = 552, it holds that

. . 2+ -1
- ﬁgvz + VZ2 I = Agl ! |:(’YNGg§Z. (762)F) + fYNGggi('7§i)A

12y <Vggicg§i(-,gi),vgéiF>gg_] . (3.9)
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Notice that if z = expgé y for a given & € M, v(z) = u(y), v is radially symmetric, and r = |y| is
the radial variable of polar coordinates, then (1.15) gives

Or/
Agov = Au+ \gg =Au+0 < 0= 1]8ru]> around 0; (3.10)

Vil

refer to [26, (2.18)] for more explanations. Direct computations using (3.10) show that

. 5 N2
Age Fi(z) = =0, BN | ™ < > + - OéNiN S
' 0i (07 + ly*) = (07 + ly2)2
(3.11)
and
<v9§i Gggi (x7§i)7vggi Fl(x)>g v: 87“G9§i (x7§l)a7“Fl(x)
Nrz o N_3 iz N-s (3.12)
_ —(N _ 2)2OCN7];1|:U|17N 62 |y| - + (/) 51 |y| - .
(67 +yI?)= (67 + 1yl =
Plugging (3.11), (3.12), and (3.3) into (3.9), we obtain
2% 1 2% 1 M2
<—£gVi +V, ) (x) = Ag,  (@)anTnAgd; °
N—-2 N—4 N-3
« [4NLN+2 DA - <LN>] . (3.13)
(07 +yI?) (07 + |y|*)z (07 + |y?)z
Thus
N+2 ]\2,—52
. 5T’y‘N—4 2N(N—2)
/g (,cv p2-l 2, </ 9 WL | gy <, N (3.14)
B, {wl<2} | (62 + |y|*) 2

where we used 3 < N <5 and dv, = Agz dvgéi.

Case 3. (3 <dy (7,&) < ro): We rewrite

Then the definition of G4 leads to

« N+2
CaNNG, T LGy, ) + VY = O(éi 2 ) (3.15)
Moreover, it follows from (3.11) and (3.12) that
N_2 Ni2
£, (M (26016, 0.6) B0 — s = | ) = 0(5F) (3.16)
Therefore,
0% _1 N;»Z
—LVi VT =0(6 7). (3.17)
From (3.7), (3.14), and (3.17), we conclude that
< N—-2
|[1L]] LR gy S X0

This completes the proof. O
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3.3. Proof of Theorem 1.2. We adopt the approach used in Subsection 2.3. Specifically, we
decompose p =u — Y7, V; as follows:

v v N
p:p1+ZﬁiVi+ZZﬁfZik for some f3;, ﬁf eER, ;1 € E+

1=1 i=1 k=0

where EL is the space defined in (3.6).
By employing Lemma 3.1, Proposition 3.2, and Lemma 3.3, one can prove the following
proposition as we did for Proposition 2.4. We omit its proof.

Proposition 3.4. Let Q be the quantity in (2.10). It holds that
ol ey S NN E-10am) + Q+ max (5N 2, (3.18)

seesV

(5N 2 5N—2

The term max,—1 . n (3.18) stems from Lemma 3.3. The quantities Q and maxy—;

are non—comparable
Owing to Proposition 3.4, deducing the subsequent proposition will lead us to establish (3.5).
Proposition 3.5. It holds that
5N—2 < _
Q+ max 6y "5 | fllm-

Fix j € {1,...,v}. By testing (3.4) with ZVJQ, we obtain
/ 11, 20 dv, + / I1520dvy = — / f2dvy — / 11 [p] 20w,
M M M
2*-2
+/ LyZ) - —1<Zv> Z9
M

In Lemmas 3.6 and 3.7, we evaluate two integrals on the left-hand side of (3.19), respectively.

(3.19)
pdug.

Lemma 3.6. For any j € {1,...,v}, we have
9¢;
* 9&» 2*—2 82/[
/ I, 20dv, = (2° — 1 Z/% A2] 1 uj ) 8 —2— 35 Vidvg + 0(Q). (3.20)
i#j T0/2
Moreover, if 0; > 0; for some indices 1 <1 # j < v, then
. 9¢;
g1 [, 9\ 22 U,
Z/QEJ N (W) o= 85 Vidvg 2 qi; (3.21)
i#] 70/2 7
provided q;; in (2.10) small.
Proof. By (3.2), (3.3), and (A.2),
9¢;
21 . ge \ 22 82/{ /
5 fr, o [ttt Cor=) g ()" o v
i7#] T0/2(£3

_ gg. 2*—1 M *_
<> / v, o, (CENT(UY)T Viduy 30,7 1 VE Vi = 0(Q)
i#j * Bro/2 (&) i B, 72(&)
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where the proof of (2.40) in Appendix B.2 validates the equality on the last line. Thus we can

argue as in Lemma 2.9 to deduce

1
2*x -1

_Z/gsj

i#] 7‘0/2(5])

11, Z0dv,
M
ge .

g§.>2*—2 ]62/{ !

2*—1
[/VNGQ(% gj)dggj (z, gj)N_2] (Z/[j ! 85 Vidvg + 0(Q)

9¢ 5
*_ gf‘ 2*—2 82/[ J
=y B e I T 5 Vida +0(Q),
i#j T0/2(£3)

which is (3.20).

We next derive (3.21) provided dy(&;,&;) < ro. It is easier to handle the case dg(&;,&;) > ro.
From (1.7) and (3.2), we know that

9e;
*_ g&. 2% -2 82/{ 7
/g% AZTH (W) g Vi

B O N J 35
:/ (& )Agf (") 538—5] [V Gy, ) dge (. )V 2
70/2 J

(1= Xl (26w G, T Gyl &) {1 =67 g (€N U H (doy).

A i *_ _ g ’
- /{y|< }<i> (exve” (@30) (U2 220) () - <Ggsidfzvsi 2) (expe” (3. &)

N-—-2
9z, P i
% (51 + d!]&i (eprjJ (5Jy)751) i dy + ( )
5; 5:0; Yol
=: J5 + o(qij).
Also, by using (3.3), (A.4), the equivalence between the metrics dge, » dggj, and dy on M, and the

expansion

A . . . .
<A§> (expgJ (0;9)) = Mg, (&) + O (;y])  for y € By j25,)(0) and 1 < i # j <,
J

and reducing the size of 1y > 0 if necessary, we can adopt the argument in the proof of [3, (F16)]
to prove that

Js = OzNAgi (5])/ <U2*—2ZO) (y) [1 + ’yNA&df]\gi—Q(engjj (5jy), fl)

{v<3&}
9e 27"
. . d ,(exp 7 (05y) fi)
N—1 ggg . . é 9¢; 5] J ’ L.
+O (dgéi (expgj (5Jy)7 £Z)>:| 5]' + 515] dy + 0((]2])

>qZJ+A§(55) >qu
cf. (2.51). This leads to (3.21). O
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In the above proof, exploiting a more refined bubble-like function V; than the one used in Section
2 allows us to avoid calculating integrals as in (2.50) in the proof of Lemma 2.9.

Lemma 3.7. Let by = (N;2)2 %NSV > 0. For any j € {1,...,v}, we have
/M 3 Z)dvy = by Ag,d) 2 +0(Q+ max 472). (3.22)
Here, A¢; > 0 thanks to the positive mass theorem in [44].
Proof. We provide the proof in two steps.
Step 1. We claim that
/M (—L£gV5 +VE 1) Zhdvy = bxAg 0V 2 +0 (0772). (3.23)

By (3.7) and (3.17), we have

LoV V1) 20y, — LoV VT 1) 2042 N
/M< LoV +VETY) 2, /B e (ﬁj)( LoV +VET) 200 dvg +O (). (3:24)

ro/2

Estimate (3.13) and identity (3.2) show

2*—1 0 A —2*
/ P (—,cgvj+vj )szgj dug,
B, 75 (&5)

ro/2

N2 N—2 sha 2 2
20T A / ;% "= 6% (lyl® = 67)
= N VN, N2 N
THw=y (2 + )T (82 +[yl?)
M3 IN—4 a2 2
2 — 2
5j lyl 5]‘ (lyl* = 63)

+ (N = 2)%a%n A, / Idy + O (6N (3.25)
Ty B2+ D)7 (82 + [y <J )

0o ,.2N—3(,.2 0 ,2N—5/(..2
*_2 T (re=1) 3 T (r*—1) 2 N-1 N-—2
= [2%\/ /0 —(1+r2)N+1 dr+ (N —2) ; —(1+T2)N dr OéN’YN|S |A5j ;

= bNAgj 5§V_2 +o0 <5§V_2> .
Hence the claim holds.

Step 2. We assert that
/ (—ﬁgVi + Vf*_l) gjodvg = 0<Q + max 5?7_2) for1<i#j<w. (3.26)
M 4
Indeed, (3.7), (3.13), (3.17), and (2.40) yield
‘ / (—Lovi+ VE") Zav,
M

for N = 4,5, while

‘ /M (—£ovi+VEY) Bav,

N-—-2

<6, 2 /Bg (S)UE*_zujdvg—i-(’)(m?xééV):0(Q+m?x5év_2)
ro/2 i
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dg(z,&:)

=:Jg

N 3
géf/ UlU;dv, + 5; / L{L{)( )( vg)x—l—(’)(maxég’) :0<Q+maxég)
9 (&) ¢ ¢

for N = 3. To deduce the last inequality, we applied an estimate
|Js| < 6,9 = 0(111;1)( (55) (3.27)
whose derivation is postponed to Appendix B.2. The assertion is proved.
By virtue of (3.23) and (3.26), estimate (3.22) is true. O

Completion of the proof of Proposition 3.5. Choose any j € {1,...,v}. By following the estima-
tion procedures of HII3HL2N/(N+2)(M) depicted in the proof of Lemma 3.3 and using Lemma A.3,
we derive

2% -2
Ly2) — (2" -1 <Zv> Z9

2N _
LN+2 (M)
S Hﬁg’Zf—(z* a 1)VJZ*_2Z~JQHL£—§2(M) 2T LNEZ (A1) PP LNF2 ()
i#£j i#]
- O<Q+m?x5év_2) — o(1). (3.28)

Moreover, we observe from (3.19), (3.20), Lemmas 3.1 and 3.7, (3.28), and Proposition 3.4 that

)2*—2 5 82/{

N-2 * 2% —1 (7,9
byAg, 0N 2+ (2= 1) AETH (u ; 35

75 /B
S 12 ony + 1003y + 0oDllol ary + 0( @ + max 57 2)

S Il an) + 0 @+ max 7 2).

——Vidv,

Keeping (3.21) and Ag; > 0 in mind, we can now repeat the proof of Proposition 2.7 to
complete the proof. We omit the details. O

4. THE CASE N > 6 AND v =1

This section is devoted to the proof of Theorem 1.3. Throughout this section, we always
assume that N > 6 and the number v of the bubbles in Assumption B is 1. We also assume that
ug > 0 on M in Subsection 4.1 and ug = 0 on M in Subsection 4.2.

Let Vs¢ be the bubble-like function in (1.18). As in the previous sections, there exist (d1,&;) €
(0,00) x M, g1 > 0 small, and Vi = V5, ¢, such that

ot = o+ VO s ary = inf{Hu— (104 V5,6) |y * (51:61) € (0,00 M} <er

In the statement of Theorem 1.3, we imposed the condition that Weyl, (51) # 0 when (M, g) is
non-l.c.f. and either [N > 11 and uy > 0] or [N > 6 and ug = 0]. By reducing the size of £; > 0
if necessary, we can assume that Weyl,(£1) # 0.
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Setting p = u — (up + V1) and f = Lyu — u? ~1, we have

{,cg,o — (2 =) (ug + V1)? “2p = f + 1L [p] + 11y + III3  on M,

~ 4.1
<p,Zf>H1(M):0 for k=0,...,N (4.1)

where Z =52 Zl Y for k= 1,..., N,

85 ? 8&-1@
1L [p] := (uo + Vl + P) = (g + V1) = (2° = D) (ug + V1)* ?p,
Il = (ug +V1)* ' — w2 = = V¥~ and M0 := — LW + VL

Reminding the conformal factor A¢, giving (1.15), we write g¢, = Agl/ (N-2) g.

4.1. The case ug > 0. This subsection is devoted to the derivation of estimate (1.19). We recall
that Weyl, (1) # 0 when N > 11 and (M, g) is non-l.c.f.

Proposition 4.1. It holds that
82|log 61|13 if N =6,
N+2
ol S W lE-1an + 4 6,3 if7T<N<13 or [N > 14 and (M, g) is Lc.f], (42)
51 if N > 14 and (M, g) is non-l.c.f.

Proof. The proof is presented in three steps.

Step 1. Since ug <V if dge, (x,&1) < V01 and ug 2 Vy if dge, (z,&1) > /01, we obtain from
(A.2) that

2% —2 2*—1 -2 2% —1
’IIIQ’ < (uOV + UO ) ].dg5 (x’51)<\/* + (UO Vl + V > 1dg§1 (%51)2\/&

S Ul My, ensvar T U Vila, (ne)2var

Direct computations show

L]l g, N2 (4.3)

82|log 61|3 if N =6,
o S9N
o~ 6, if N > 7.

Step 2. (1) We first assume that (1M, g) is non-l.c.f. so that V1 = Ag x(dg,, (-, 51))2/{61 &, on M.
By (3.10),

II15(z) = Ag_l(x) (AXUél,O +2Vx - VUs, 0 + xAUs, o + xz*_anQf,El) (¥)

) (4.4)
= A M @) Ry, (@) (XUs,0) ) + O (1y1~ 1V Us, 0(9)])
for x = expgfl (y) € By (&). On the one hand,
* * N=2
A1 @) (AxUs 0 +2VX - VU0 +xAUs 0+ X TUE T )] 0,7 . (45)
On the other hand, since (1.15) implies
1
Ry (§) =0, Vg Ry () =0, and Ay Ry (§) = —6|Weylg(£)|3 for { € M, (4.6)
we have that Ry, (z) = O(|y|?), and so
N+2

2N i
/ —AZ T (@)RN Ry, () (xUs, 0)(y) + O (yy\ﬂ—lyvUého(y),)‘NH "
{lyl<ro}
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N-2
o N[0T if6< N <9,
< </ < (ly[Usy 0(y)) ¥+ dy) S Q64 logd|s ifN=10, (47
Hol=ro} & if N> 11
Thus (4.4), (4.5), and (4.7) produce
N-2
0,2 if 6 <N <9and (M,g) is non-l.c.f.,
[T | L3 () S 4 64 log 51]% if N =10 and (M, g) is non-l.c.f., (4.8)
51 if N > 11 and (M, g) is non-l.c.f.

(2) We next assume that (M, g) is Lc.f. so that Vi = ywGy(-, &) x(dg,, (-, €1))dy,, (-, &)V 20{6915151
(1 = x(dge, (+:&1)))un 5 (V= 2)/2] on M and (3.3) still holds. Then the proof of Lemma 3.3 gives

21 2 Jy|N
Ag, T (@)aninAg 8y ® AN ——=— ey
1113 () Jyl N [ o (261 = % (4.9)
x) = .
wd e ()
(0 + [yl*) 2 (07 + [y[?) 2
N2 _ i
(’)(51 2 ) if dge (,61) > 3.
By employing (4.9), we compute
N+2
5,2 Ni2
L) xSl 0y
EREQn (6 1 P) 7| e
LNF2 (B, /2(0)) (4.10)
§¢|log 51|§ if N =6 and (M,g) is Lc.f,
S N2
0, ° if N> 7and (M,g) is Lef.

Step 3. An analogous argument to the proof of Proposition 2.4 (namely, we use a coercivity
estimate for ug + V; as in Proposition 2.2, a decomposition of p similar to (2.20), and analogs of
Lemmas 2.5 and 2.6) with (4.8) and (4.10) yields

lellscan S 17 1-scon + N0l g o4 Il g,
52| log 613 1fN:6,

N+2
S -1 + 0! if 7<N<13or [N > 14 and (M, g) is Lc.f],
61 if N > 14 and (M, g) is non-l.c.f.

(4.11)

The proof is done. U
We derive a pointwise estimate of p that will be useful later.

Lemma 4.2. Assume either 6 < N < 13 or [N > 14 and (M, g) is l.c.f.]. Then there exist a
function pg € HY(M) and numbers &y, ¢1,...,cn € R satisfying

N
Lypo — {(uo V) 2 Vl*—l} =Y &LZS on M, (4.12)

<ﬁo,§f>H1(M) =0 fork=0,1,...,N
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with estimates
N—4

. 01 01 ’
<4 1 + 1 4.13
‘pO(x)‘ ~ Y1 5% + dg51 (x7 51)2 d9§1 (z,£1)<Vé1 (5% n dg§1 (LZ', 61)2> dg‘El (z,£1)>V1 ( )

and
N N-2
> lel S0, (4.14)
k=0

Furthermore, if we let p1 = p — pg so that

N
Lypr — [(uo +Vi+do+p)? T = (wo i+ p0)t T = FH T = > GLEZY on M,
~ k=0
<ﬁ1,Zf>H1(M) =0 fork=0,1,...,N,
(4.15)
then we have
~ N+2
161l ary S 1 f Nl -1 (ary + [TIs | LA T 0% . (4.16)

Proof. 1t is simple to verify

g g 2% -2
M| SUE Ly, epovs + () La wensvmr (4.17)

Hence, by taking h = III;[j] + III; in Proposition B.2, we obtain a solution jg to (4.12) and
numbers ¢y, é1,...,¢n € R satisfying (4.13) and (4.14).
By conducting computations similar to those in Proposition 2.4, we find

1oLl e ary S N1 ary + (T3] s

2 (M)
+Z|ék| / L,Z8V1dv,| + g Zbmdu,
k=0 M = —1
N+2
S le=ran + T8 e o400
o (4.16) is true. O

By utilizing the previous lemma, one can improve (4.2) for N = 6.

Corollary 4.3. Suppose that N = 6. It holds that
ol g ary S I Il-1(ar) + 65 log 6,2
Proof. By (4.12) and (4.13),
1ol an) S /M L0l + (2~ D(uo + V00238 + [pf?] doy 5 g 1.
It follows from (4.8), (4.10) and (4.16) that

~ ~ 1
ol ary S 1ol + 11l oy S I F1la-1ar) + 67/ log 61 2. O

As in the previous sections, (1.19) is a consequence of Proposition 4.1, Corollary 4.3, and the
following proposition.
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Proposition 4.4. When N > 6 and (M, g) is l.c.f., we have

N=2
61 S Iflla—n)- (4.18)
When (M, g) is non-l.c.f., we have
N2
07 f6<N<LI0
Sl any- (4.19)
h if N >11

By testing (4.1) with 2?, we obtain
/ 11,20 dv, + / 13 2)dv, = — / FZdv, — / 111, [p) 20 dw,
M M M M

N N (4.20)
+/ [,cgz? — (2" — 1) (ug + V1)2*—2Z?] pdv,.
M

In Lemmas 4.5 and 4.6, we evaluate two integrals on the left-hand side of (4.20), respectively.

Lemma 4.5. If N > 6, we have

—2

~ N-2 N-2
/ 1, 20dv, = ayuo(61)8, > + 0(51 z ) (4.21)
M
where an > 0 is the constant in (2.37).

Proof. When (M, g) is l.c.f., one can easily check that

~ 2" -2 ous Ntz N-2
/ M52 dv, = / g (XA&uffl) XA§151ﬁdvg + (9(51 2 ) = anup(&1)6; 2 (14 o(1)).
M M 1

If (M, g) is non-l.c.f., then (4.21) follows from (2.38), (2.39), (2.42), (2.43), dv, = A§_12*d’0g517
and Ag, (z) = 1+ O(dy, (=, £1)?), and the estimate

252 | N+2
/95 dge, (z,&)? (Z/{i%l) ‘Zlo‘ (dvge, ) S 6,7 [logdy| for a constant ' >0. O
1
B &)
Lemma 4.6. When N > 6 and (M, g) is l.c.f., we have

/ 13 20dv, = by A, 67 72(1 + o(1)) (4.22)
M

where by > 0 is the constant in (3.25). Also, A¢, > 0 thanks to the positive mass theorem in
[45]. When (M, g) is non-lLc.f., we have
51 log dul(1 + o(1)) i N =6,

541+ o(1)) if N >17 (4.23)

/ 1113 2{dv, = cn|Weyl, (&1)]2 x {
M

where cg 1= 3¢ for N =6 and cy = %]SN_H I %dr >0 N>T.
Proof. When (M, g) is l.c.f., (4.22) results from (3.24) and (3.25).
Assume that (M, g) is non-l.c.f. By (4.4) and (4.5),

/ I3 20dv, = —ky / Ry (expi(v) (Us, 028, ) (v)dy
M {lyl<2}

+0 (/ , !y\g_lUi,o(y)dy) +0(6772).
{yl<9}



SHARP QUANTITATIVE STABILITY OF THE YAMABE PROBLEM 33

Also, owing to (4.6), we know

— KN /{| o Ry, (expet (1)) (Usy 028, 0) (9)dy + O </{ \yl("lUi,o(y)dy)
Y=<

lyl<2}

2 [Weyl, (&1)|2 / yI* (Us, 028, 0) (y)dy + O (/ ly|*U§ ,o(y)dy>
12N g {lyl<2} e {lyl<3} 1
51 if N =6
= L [Weyl, (€1) 261 /{ gy WP (O27) @ 4.0 | gl N =7
= 63 it N >8

64 log 01|(1 4 o(1)) if N =6,

. 2
= e [Weyly (&)l x {5%(1 +o(1)) if N> 7.

Completion of the proof of Proposition 4.4. We note from (A.1) that

‘ /M [cgp —(2F = 1)(uop + v1)2*—2p} Z0dv,

<ozt @ - B e, Il + /M 3 220 )| du.

By direct computations, we obtain

02 if 6 <N <9 and (M,g) is non-l.c.f.,
B B 53| log 51|% if N =10 and (M, g) is non-l.c.f.,
HﬁgZ? — (2" = 1)V _2210HL1\2’_%(M) R . if N > 11 and (M, g) is non-l.c.f.,
6tllog 1|3 if N =6 and (M,g) is l.c.f.,
Ni2
Uk if N> 7and (M,g) is Lcf.

If N > 14 and (M, g) is non-l.c.f., then Proposition 4.1 shows
] 1220 oy < || 28] gy Wollmcan S0 (W an + )
Suppose that 6 < N < 13 or [N > 14 and (M, g) is L.c.f.]. We have
/ ‘ _QZ?P‘ dvg S /M ‘U(Q)*_QZ%O‘ dvg + HZ?HL%(M) 1611 1 (ar)-
By (4.13) and (4.16),

/ ‘ z 723150“1%
N—4

~ (51 61 :
S| OE@|60 | g1 o
N/M‘ 1( )‘ 1 [5%+d9£1 (2,6)2 dge, (@,61)<Vo1 <5%+d9§1 (x7§1)2>

Ntz
<9, 2 |logdi]

1dg§1 (zvfl)>m] (dvg)= (4.24)

2 ap 1Ptlinan = o (1Fll-ran)
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N2 .
+o(1) x 6,7 if6<N<9or [N >10and (M,g) is Lef],
&4 if 10 < N <13 and (M, g) is non-lc.f.

Collecting the above calculations, we discover

‘/M [ﬁgp — (2" = 1)(up + V1)2*_2p} ZN?dvg

N_2
o(Iflu - ) +o(1) x {51 > f6<N<9or [N >10and (M,g) is l.c.f], (4.25)

51 if N > 10 and (M, g) is non-l.c.f.
On the other hand, by (A.3), Proposition 4.1, and Corollary 4.3,

' /M 1T, [p] 20du, | <

T ifG< N < > i
07 if N > 10 and (M, g) is non-l.c.f.

S [ 108 |28 vy < ol
(4.26)

Now, by putting Lemmas 4.5 and 4.6, (4.25), (4.26), and | [,, fg?dvg\ S I fll-1(ar) into
(4.20), we obtain the desired estimates (4.18) and (4.19). This concludes the proof of Proposition
4.4. U

4.2. The case up = 0. This subsection is devoted to the derivation of estimate (1.21). We recall
that Weyl, (1) # 0 when (M, g) is non-l.c.f.

Proposition 4.7. It holds that

5f‘|log51|§ if N =6 and (M, q) is Lc.f,
§tllogd1]3  if N =6 and (M, g) is non-l.c.f.,
ol oy SN lE-1an) + Nt , , (4.27)
9, if N>7and (M,g) is l.c.f.,
61 if N> T and (M, g) is non-l.c.f.
Proof. An analogous argument to the proof of Proposition 2.4 yields
ol e ary S N1 any + (T3] L% ) (4.28)

2 (M)
cf. (4.11). If (M, g) is Lc.f., then (4.27) immediately follows from (4.28) and (4.10). In the rest
of the proof, we assume that (M, g) is non-l.c.f.
Let y = (y',...,y") € B,,(0) and = = expgél y € M. In [30, Lemma 6.4], it was shown that

1

W 1440|Wey1 (€1)lg log [y| + O(1) if N =6,
= KN [Weyl, (€1)13
MG, (2,61) = =z - - N=6 (4.29)
3 Yl 144(N — 4)(N - 6) |y| 1 N T
AN vy
12(N 4)89 v foe, (51)‘ |N—1 +0 <‘y’N—7>

where the indices k and [ range from 1 to N. If dg, (z,&1) < 7, then by (3.8), (4.29), and the
expansion g5 (expgfl y) = 6 + O(|y|?), it follows that

<vg§1 Gy, (@,61), V., Fi (x)> (4.30)

gfl
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( 1 54 54’y‘2
Y . R, (17> if N =6,
lyl? (67 + 1112\2)3 (07 + [y[?)? N
-V =D | N2 W, GBI — S5O e, ()5
N+t2 N+t2 1
" 512 Lo 512 |y|3 1fN27
(07 +[yl*)= (0F + [yI*)=

Thus, employing (4.30) instead of (3.12), one can argue as in the proof of Lemma 3.3 to deduce

4
My (2) = A2 (2) [ IWeyl (€0) Iyl log [y] <
’ & ! (52+| BE
51 iyl
W 1 2] 7+0<17>} 4.31
for N =6 and
s () = AZ 7 (x) o ! L Weyl, (€012l — Byt Roc, (€1)5" 3! 2 -
ST a 12(N — 1)(N —4) | 12(N —6) "+ Vatst)lglyl = Cyhyt fae, SUY Y 1Y 0t o)
N+2
(N_Q)BO‘N 2 2 k1 6, 2
R LT e Il O R o |
N;»Q 3
vo | Ll (4.32)
02+ 91 %

for 7 < N <10. If dg, (x,&1) = 7, calculations similar to (3.7), (3.15), and (3.16) reveal that
N2
IIII3] < 6; % . As a result,

54log 6|3 if N =6,
[REAEY BEISEERSE ) .
Lz ()~ ) o if 7< N <10,
which together with (4.8) and (4.28) implies (4.27). O

By (3.7), (3.15), (3.16), (4.9), (4.31), and (4.32), it holds that

ITTI5(z (4.33)

dggl z 51 |10gd9g1 (‘r 51)|
(67 +dg§1 z,£1)?)?

1dg51 (@, e)<t0 T 1dg§1 (,61)> 70 if N =6 and (M, g) is non-l.c.f.,

N+2

2
2
o (m) 1d§§1 (z,61)< P +4, ldygl (z,61)> 72

if N> 6 and (M,g) is Lc.f.

By reasoning as in the proof of Lemma 4.2 with (4.33) in hand, we establish the following lemma.
The proof is omitted.

Lemma 4.8. Assume either N =6 or [N > 7 and (M, g) is l.c.f.]. Then there exist a function
po € HY (M) and numbers &, ¢y, ...,én € R satisfying

N
Lo — [V +50)" 1= VET =Ty + Y aLyZE on M,

~ (4.34)

<ﬁo,§f>H1(M) =0 fork=0,1,...,N
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with estimates
5 dge, (2,61)*|log g, (2,&1)]
1

4 e .
ldgsl(w,ﬁl)é%o + (511dg51 (,61)> 20 if N =6 and (M,g) is non-l.c.f.,

po(z) < ¢, @ tsdgsl(rc,&)2)2 o
T d a5 Y0 i epzg N Z6md Mg) s Lef
(4.35)
and
f:‘é < §tllog 81| if N =6 and (M,g) is non-l.c.f.,
R C T if N > 6 and (M, g) is Lc.f.
Moreover, if we let p1 = p — po so that
N
Lypr — [(Vl +po+p) =+ /30)2*_1] =f- Zékﬁng on M,
~ k=0
<51,Zf>H1(M) =0 fork=0,1,...,N,
then we have
8%|log 61| if N =6 and (M, g) is non-Lc.f.
p < 1) 4 oh ’ ’ 4.36
HPlHHl(M) S flla (M) {5{V if N> 6 and (M, g) is l.c.f. ( )

By exploiting (4.34)—(4.36), one can improve (4.27) for N = 6. We skip its proof.
Corollary 4.9. Suppose that N = 6. It holds that

ot[logdrl2 if (M. g) is Lc.f.

N ~1(m) +
el oy S 1 e o {5%\1052;51]2 if (M, g) is non-l.c.f.

Proposition 4.10. When N > 6 and (M, g) is l.c.f., we have

02 S WMl any-
When (M, g) is non-l.c.f., we have
6i|logdy| if N=6
A S lla— -
01 if N >T7

Proof. Let us estimate the integral [, IIIgZ~?dvg. If either (M, g) is Lc.f. or [N > 11 and (M, g)
is non-l.c.f.], then we use the same bubble-like function V; in both cases ug > 0 and ug = 0; see
(1.18). Hence, we can borrow estimates (4.22) and (4.23). In contrast, if 6 < N < 10 and (M, g)
is non-l.c.f., the definition of V; differs, so we need to compute the integral anew.
If N =6 and (M, g) is non-l.c.f., it follows from (4.31) that
> (Tly? +4) Jy> -1
(yi<gey (AP A+ [yP)?

= 06| Weyl, (€1)[301] log 81/ (1 + o(1))

where dg := 18[SP| > 0. If 7 < N < 10 and (M, g) is non-l.c.f., one can infer from (4.32) and
(4.6) that

/ 1115 2 dv,
M

N =V =6) S ey (1+y2)"=" (1+ )%

~ 32
/ M3 20 dv, = gyweylg(gl)\gaﬂ log 41| dy(1 + o(1))
M
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W - 2akn g SN TN Ll 12N =22 1
G &) 1/{ys;+;} (1+lyP) ™ (4 F o
N —2)a? o pNHLU(ONZ — 7N +8)r2 + 2(N — 2)Y(r2 — 1 _

=S ) R L AN DU = g e, (€0 2511 +of1)

= O |[Weyl, (&1)[201 (1 + o(1))

for some o > O.
Using the above estimates, we can argue as in Proposition 4.4 to deduce Proposition 4.10.
The details are omitted. O

Consequently, Propositions 4.7 and 4.10 lead to the desired estimate (1.21) for N > 7. If
N =6 and (M, g) is Le.f., then (1.21) follows directly from Corollary 4.9 and Proposition 4.10.
If N =6 and (M,g) is non-lc.f., then 6 < &f|logdi| < Cil|f||g-1(ar) for some Cp > 0 so that

61 < AC| fll -1 (a1 og Cu| f | -1 (ary |t Since the function ¢ — ¢4| logt]% is increasing for ¢t > 0
small and

li 1 =1 f 0
t—l>%l+|10gt|‘0g|logt|‘ orany ¢ >0,

it follows that X
5t|log 6112 S ACH[|f |- v og Cull fll -1y |2,

which implies (1.21) again.

5. OPTIMALITY OF THE RESULTS
This section is devoted to the proof of Theorem 1.6.

5.1. Optimality of (1.14) and (1.17). We shall consider (1.14) only, since (1.17) can be treated
analogously. The proof consists of two steps.
Step 1. Choose any 6 € (0,1) and (&1,...,&,) € M” such that dg(§;,&;) > cforall1 <i#j<v

and some ¢ > 0, and take § = §; = -+ = §,. Let V; = Vs, ¢, and ZF be the functions defined in
(1.13) and (2.1), respectively, and

14
u*ZUQ—l-ZVi—i-E(Zﬁ

i=1
where ¢ is a nonzero smooth functlon on M satisfying <¢, >H1( am =0fori=1,...,v and

k=0,...,N. We also select ¢ = C6"7 with a constant C > 0 independent of §. It holds that
Q ~ §N-2,
Denoting p = ¢, we observe
HPHHl(M) = H5¢”H1(M
We set f by

v 2*—1
f:ﬁgu*—uz*_l gp—l—ug _1+Z£V <u0+zvi+p> .

i=1

Then (2.3) and (2.13) imply
2% 1
U(we) = 1 L=y S Nl oy + 10050 + HI2HL%( T 1T5] Lo T (14l LB

N_2
Sl +Q+672 = |pllmary +€ = llpllaran
where Ig, I3, and I are the functions defined in (2.4) and (2.5).
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Step 2. We claim that

inf{ Us — <u0 + ZV&,’&) H
i=1 H(

: <57,757,> € (0700) X M7 1= 17"'7”} Z HpHHl(M

M)
where Vs g i defined by (1.13). There exist parameters (dy,...,0,,£1,...,&) € (0, ) x MY,
where we Stlll use the same notation, such that the above mﬁmum is achieved by p := u, — (up+
Zz 1V )
It holds that HpHHl(M S lella () = €, so

Vy,éi - Z Vi
=1 =1

which implies that &; = (1 4 o(1))d and d,(&;,&) = o(1) where o(1) — 0 as § — 0.
We set ¢’ = max{|0; — 6| + dg(&,&) :i=1,...,v} and write w; = (expgi)_l(ﬁi) € B,,(0). By
Taylor’s theorem with respect to the variables (4, &), there exist W; € H'(M) such that

= llp = pllar oy < llollarany + 121 a0y S &
H(M)

Vi =
Vg —Vi= W((SZ —o+ <VU~JV5’Ongi (@)‘mzo’ wi> Wi
= 120(6 —5)4—l 3 Zk [(exp ) (5)} +W;, on M
s § =~ ‘ & ‘
and |[[Will gy = O(e"?) for i = 1,...,v. Using Lemma 2.1, one realizes

s =V ~ ¢l d 5 & = ?).
iel{ﬂﬁ}f}/}ll%i,gi Villgrary =€ an ;@5 —Vi Vs g VJ>H1(M> ole”)

Also, from (p,Z VHL (M) = 5((;5, >H1( ) =0for k=0,...,N, it can be shown that

Vi ; —Vi s = )/\)Z.7 5 Wz
<;( e ) p>H1(M) <; p>H1(M) ;” I lolla any

> (Ve V)

i=1
Recalling that p = p+ 37 (V5. g — Vi), we get

=o(1)

| ol on-
H (M)

v

> (Ve V)

i=1

v

2 E 2< > (Vie - Vi>,p>

1811y = o1 (ary +
HY (M i=1

which proves the assertion. The optimality of (1.14) was established.

5.2. Optimality of (1.19). If N > 14 and (M, g) is non-l.c.f., that is, when ((¢) = t, one
can slightly modify the argument in the previous subsection to prove the optimality of (1.19).
Therefore, we only need to deal with the cases that 6 < N < 13 or [N > 14 and (M, g) is Lc.f].
The proof is long, so we separate it into three steps.

Step 1. Choose any d; > 0 small and § € M such that Weyl (1) # 0 provided N > 11 and
(M, g) is non-l.c.f. Let Vi = Vs, ¢, be the function in (1.18). The standard invertibility argument
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combined with the non-degeneracy of ug and the Banach fixed-point theorem shows the existence
of (cg,...,cn) € RV+L and p € HY(M) such that

N
Lop— (2= D(ug+V1)¥ 2p=1L[p| + Il + I3 + >  cpLyZF,
o = (2 = Dluo + V1" = MNPl + 1ML + 1My + 3 Ly 2, 51)
<p,Z~f>H1(M):0 for k=0,1,...,N

where III; [p], ITIy, 1113, and Z~f are the functions appearing in (4.1). In light of Lemmas 4.5 and
4.6, (4.25), and (4.26), we infer that

N

> lerl S «u6n)

k=0
N_2
_ )67 i [N>6and (M,g)islctf]or [6 <N <10 and (M,g) is non-lc.f.],
51 if 11 < N <13 and (M, g) is non-l.c.f.

We write u, = ug + V1 + p so that
N ~
fi=Lpu, —u2 ! = Z ckLyZY,

which implies
N
D(w) = [ fla-1an S lekl S ().
k=0

Similar to Lemma 4.2, we have the followings:

- The function p can be decomposed into p = py + p1 where pg and p; solve (4.12) and

(4.15), respectively.
-If6 < N<13or [N > 14 and (M, g) is L.c.f], then (4.13) and (4.14) are valid.

- It holds that

N42
o1l ary S W f1l-1ary + (TS| JEE. 46,2
N_2
0, ° . if [N >6and (M,g)islLef]or [6 <N <9 and (M,g) is non-l.cf], (5.2)
S 5%’ log 1|5 if N =10 and (M, g) is non-l.c.f.,
51 if 11 < N <13 and (M, g) is non-l.c.f.

As a result, we observe
82|log 6y|z it N =6,

ol e S s2(01) == N2
HY(M) 5, ! if 7< N <13or [N >14 and (M,g) is Le.f.].

Step 2. We assert that
T'(u,)|logD(u,)|z  if N =6,

N
ol () 2 F(u*)ﬂNj) if 7< N <10or [N > 11 and (M,g) is Lc.f.],
I‘(u*)Nl_E2 if 11 < N <13 and (M, g) is non-l.c.f.

It is enough to show that
ol e ary 2 <2(61)-
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Taking into account (4.12), we obtain a representation formula
N

po(z) = / Gy(z, 2) [(2* — 1) (uo + V1)* 2o + 1Ty [fo] + 1Ty + > &Ly ZF
M k=0

(2)(dvg)-

)g and (3.1), we deduce

1
Gy(w,2) = Mg, (2)Gy, (z,2)A¢ (2) S dye (2, 2N 2

for x € M. Employing the conformal change g¢, = Agl/ (N=2

Let

3
1 01 57
1) 1 -1 dvg)
A/f dgsl (z,2)* |: 1 <5% +d951 (2751)2> dge, (z,60)<vET T 5% —|—d951 (z,6)2 dge, (2,61)>V381 (dvg)
if N =6,

N—6

s3(x) = 2 E
52 01 1 n 01
1 5% T d951 (z,61)? dge, (z,€1)<V6E1 5% ¥ dgsl (z,61)?

if7<N<13or [N > 14 and (M,g) is L.c.f]

Lag, (z,sl)wa]

for € M. Using (4.13), it is not hard to check that

| Gol@,2)(wo+ V1)” 7% (2) o (2) (dvg) -

3 2
< / 01 o1 1 4 o1
~ Jar dog, (@,2)N"2 |\ 67 +dg, (2,61)2 ) “Poea BEISVIT G2 4 d, (2,60)2

S s3(@),

Lage, (z,§1>>m] (dvg)-

‘/@mmmW@mw
M

s@%dmmﬁﬂmm»

N2_4N-—4

. 52* 5 2% 2 ) s 52* 5, 2(N— L
~ e dg, (2,61)?2 dge, (z.61)<Vor T Pl 52 + dge, (z,€1)? dgg, (#.61)2V00

and

N ~
kzzo C /M Gy(z,2) (ﬁng) (2)(dvg)-

k=0

5 J
<6 < T (%61)2) (by (4.14)).

Putting all the information above together, we arrive at

po(z) = /M Gy(x, 2)IIIx(2)(dvg), + p(x) for x € M where |p(z)| < s3(x).

N—2
N 5, 5
< -
~ Z |Ck | (5% T dggl ($7£1)2>
x5

Meanwhile, testing (5.1) with p reveals

1ol (ar) = /M {(2* — 1) (up +W1)* “2p + 10 [p] + I + 1113] pdv,

> / [ITL, [p] + I, 4 I1T3) pdu,.
M
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Using (4.8), (4.10), and (5.3), we verify

/ (HIl [p] + IHg)pd’Ug
M

By (4.3) and (5.2), we also find

‘ / MIxpidvg| S

We turn to estimate f v Hz2podug. Note that

1
> >_ -
Gy(z,2) 2 Gg51 (z,2) 2 dggl @2

iy + T|| Y )HPHHl(M) =0 (2(61)?) .

HIH2HL7§%(M)Hﬁ1HH1(M) = 0 (s(61)?).
>0 forz,ze Bit(&), x# 2

and
Iy (z) = [(u0+v1)2*‘1 ud vl*‘l}( )

> (2 —1) [rof*_z + ug*—%] () (by the binomial theorem),

2% 2
g
2 <Z/{151> (:p)ldg51 @e)<yve (byuo 1) forze M.
Straightforward computations relying on (5.4) and (5.5) show that

/ / TTT5(2) Gy (, 2)TTTa(2) (dvy ) (dvy )

41

(5.4)

(5.5)

1 ge 2r=2 ge 2% -2
T oo U (z) (U™ (2)(dvg)e (dv, )
/dgfl( 1)<V /dggl (z,€1)<VoL dggl (‘Taz)N 2 ( > < 1 > g g

§tllog 61| if N =6,
gy [ ok yge
lyls——y (L +|y*) 5, 2 if N >7.

Furthermore, by applying (4.17) and the bound

51 5
_ 1 — 1 / d z d x
/1;1 <5% + dggl (:C7 51)2> dgsl (@:£1)2v31 ~/]\1 dggl (:C7 Z)4 6% + dggl (27 51)2 d‘%l (=61)2 61( vg) ( vg)

2
L 1 51
— 1 57 (dvg)z(dvg) -
M 0f +dge, (2,61)? 51(2'51)2 s /M dge, (x,2)* <5%+d9g1 (33751)2) dog, (2:61)= wr(dva)z vy)

<&t ifN=6,

one computes

o N =67,
' / 15 pdvy| < 5§j’v| logén| if N =8,
M 62 if9< N <13 or [N > 14 and (M, g) is Lcf].

This proves the claim.

Step 3. Finally, by adapting Step 2 of the previous subsection, one can obtain that

inf{‘ Uy — <u0 +V517§~1) 51,51) € (0,00) x M} z HpHHl(M)a

o

provided Weylg(fl) # 0 when N > 11 and (M, g) is non-l.c.f. This establishes the optimality of

(1.19).
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5.3. Optimality of (1.21). If N > 7 and (M, g) is non-l.c.f., that is, when ((t) = t, we can
slightly modify the argument in Subsection 5.1 to prove the optimality of (1.21). Therefore, we
only need to consider the cases when N = 6 or [N > 7 and (M, g) is l.c.f.]. Because we can
follow the steps of Subsection 5.2 with Lemma 4.8 in hand, we will only highlight the differences
between the previous and current settings.

Step 1. By Proposition 4.10, we have

Z Ckﬁ Zl

N . .
0t|log 61| if N =6 and (M,g) is non-lc.f.,
5 E ‘Ck’ 5 5}\[_2 . .
1 if N> 6 and (M,g) is Lef.

U(we) = [1fl -1y =

H=H(M)

k=0

Step 2. It holds that

N
le) = [ Gyfa2 [( V2 4 T ] + T+ Ly 2 | (2)(duy ).
k=0
= / Gy(z, 2)III3(2)(dvg), + p(x) forxz e M
M
with
d
/ C +g;1 (Z(flél ‘log dge, (2,€1) | (dvg)- if N =6 and (M, g) is non-l.c.f.,
91
Ip(x)] < ( o) ) log <2 + #) if N =6 and (M, g) is Lc.f.,
gfl 1 1
N2 51 ’ Ni6 . .
51 m 1dg§1 (E’ﬁl)STTO + 61 1d9§1 (1’51)27‘70 lf N 2 7 a,nd (]\47 g) 1S le

From (4.33), we discover

8%|log 81)> if N =6 and (M, g) is non-l.c.f.,
8 llog 81| if N =6 and (M,g) is Le.f.,
'/ HIzpdug| < < 010 if N=7and (M,yg) is Le.f.,
M 81%|log 61| if N =8 and (M, g) is Lc.f.,
SN+ if N >9and (M,g) is Lef.

Recalling (5.4) and (A.4), we consider as follows:
(1) If N =6 and (M, g) is non-l.c.f., then (4.31) implies

/ / I3(2)Gy(, 2)I3(x)(dvg) . (dvg)»

1 §1y2|? log lya| 81ly1|? log [y1
Z/ / 12| ly2| 611l | |dy1dy2+6§llog61\2
7‘0/2(0 ro/2 |y1

=yt (67 +[32?)? (67 + []?)?
2 07 |log 61>,
(2) If N > 6 and (M, g) is Lcf,, then (3.7) and (4.9) imply that III3(x) > 0 for dg, (x,&1) = 7o,

N+t2
5 2 ‘y’N—2

9ge
III3(eXp&1 y) > (52 N |y| )N+2

for |y| < %2,
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and

() = a(o) + A7 (0) | (B )0 { G, (0:60) (g (0 0¥ U () — oy ) |

) <(vg§1 X)(@), Ve, {Ggél (z,&) <dg51 (2, 672U () - O‘N‘Sl]vz?) }> ]
9¢1

3(N—2)

=q(x) + (’)(51 2 > for 3 < dg (x,&1) <o

where q is a nonnegative function on M. These result in

/ / IMI3(2)Gg(, 2)II3(x)(dvg) o (dug)
M JM

5¥| |N—2 5¥| |N—2 N+2 | 3(N—2)
/ / Y2 Y1 dyldy2_’_0<612 +== >
o N—-2 N+2
Byy2(0) J By 1o(0) |91 y2| (8 + [12) T (82 + )

§¢|log 81| if N =6,
SN2 if N> 7.

Step 3. Combining the above computations and adapting Step 2 of Subsection 5.1, one can derive
the sharpness of (1.21). In particular, if N = 6 and (M, g) is non-l.c.f., then T'(u.) < C287|log 81|
for some Cy > 0 so that

1 1 3
T (u)|log T'(u.)[2 < Cadi|log 81 [log Cadi|log 6112 < 61l log 6112 < llpll
6. PROOF OF COROLLARY 1.7

We will only show the proof of (1) in Corollary 1.7 here, because the proofs of (2) and (3) are
similar.

Proof of (1.23). Since Hu”%p(M) < (vo + 3)SV, we have

I'(u) = Hﬁgu - u2*_1H < sup

21
Ho1 () (u, 90>H1(M) _/ u” "~ pdug

M

||50”H1(M):1

S Nl + llul
Let ©(u) be the left-hand side of (1.23). Because (1.1) has a tr1v1al solution, ©(u) is bounded
by a positive constant depending only on N and 1.

Suppose that (1.23) is false. Then there are sequences {uy}nen C HY(M) and {Cp}nen C
(0, 00) such that

”Un”%fl(M) < (V() + %) SN O(up) > CpI'(uy), T'(uy) >0, and C,, — 00 as n — oo,

‘2* 1 1

~

since I'(u) = 0 implies that ©(u) = 0. In particular, I'(u,) — 0 as n — co. By Theorem A, there
exist v € {0,1,..., 140}, a smooth solution ug to (1.1) with ¢ = 1, and a sequence of bubble-like
functions {(Vin, - . ., Vun) }nen such that (1.9) and (1.10) hold. We may choose each V;, by (1.13)
if ug > 0 and by (1.16) if up = 0. Let us consider the following two cases: v > 0 and v = 0.

(1) If v > 0, then there exists ng € N large such that {u, }nen n>n, fulfills Assumption B. Hence,
by Theorems 1.1 and 1.2, there exists a constant C' > 0 independent of n such that
Up — <’LL(] + Z Vzn)

O(uy) < < CT(ug).

H (M)
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(2) If v = 0, then u,, — ug strongly in H'(M) as n — oo. By following the strategy in Section
2, we will derive O(uy,) < CT'(uy,) for some C > 0 independent of n.

For the moment, we assume that ug > 0 on M. Setting p, = u, —up and f, = Lyu, —u
we decompose p, as

2*—1
n 9

L
Pn = Pln T+ Zﬁmnwm where 79mn€R7 Plni{T/Jmm:la,L}

m=1
where 1, is the function defined in Subsection 2.1. Since ug is non-degenerate by the hypothesis,
there exists a constant ¢y € (0,1) such that

(2" —-1) /M ud "2p dv, < colenH?{l(M) for all n € N. (6.1)
Notice also that
Lopn — (27 =1) 2*_2Pn = fn + (uo + Pn)z*_l - u(2)*_1 - (2" = 1)“(2)*_2/0% (6.2)
By testing (6.2) with p1,, and using (6.1), one can show

L L
lonll e any S lownllm-1a0) + D> Womnl S I fallir-2ar) + D [l

Furthermore, for any s € {1,..., L}, testing (6.2) with 15 yields
(2 = 1 — i) [9sn] / ug TPidvg S | fall-rary  with fig € (0,2 = 1),
M

80 |Usn| < [ fnllg—1(ar)- This gives

O(un) < llpullarany < Cllfalla—1ary = CT (un).
The case ug = 0 is easier to handle.

In both cases, we obtain

oo(—C’ng(a(un)SC’ as n — oo,
(uy)
which is absurd. Consequently, (1.23) holds. O

APPENDIX A. SOME USEFUL ESTIMATES

We recall that (M, g) is a smooth closed Riemannian manifold of dimension N > 3.

The next two elementary lemmas result from straightforward calculations.

Lemma A.1. Assume that a,b > 0. It holds that
(a+bP —aP =0O(P) for0<p<1, (A1)
(@ +b)P —aP| SaP o4+ 0P, |(a+Db)P —aP — 0| S aP o+ abP™t forp > 1, (A.2)
and

(a+b)P = aP + paP~'b + ]@ap—%?lm +O(P) forp>1. (A.3)

Lemma A.2. Let Us¢ be the function in (1.7), 0 < § < ro small numbers, and & € M. For
p > 0, it holds that

N—
5P if0<p< 5,

N .
/Bg. © Usedvg 54 9% [logdl il p =5,
0 N ifp > .
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Lemma A.3. Suppose that 3 < N < 5. Let Vs¢ be a bubble-like function defined by (1.13) or
(1.16). For any indices 1 < i # j < v, a fivred number 7 > 0, and nonnegative exponents p and
q such that p + q = 2%, it holds that

q{ﬂ}in{pvq}

/Vf; VI dvy <4 n
& 05,659 ~ ) .
M o gi; “logai;| ifp=gq

if [p—q| >,

provided q;; in (2.10) small.

Proof. By applying a change of variables, (2.9), and (3.3), and referring to the proof of [3,
(E1)-(E3)] or [23, Proposition B.2], one can derive the above inequality. O

Lemma A.4. Suppose that p > 2. Then we have

1 5; >
/M dg(a;,z)N—Q <5z2 +dg(2’,§i)2> (dvg)-

4 _p=2
5; (5,2 + dg(x,&)z) E if2<p<N,
N _N-2
SN0 (07 +dg(2,6)7) " 7 log (2+dy(2,6)0; 1) if p=N,
—B _N-—2
5 (82 + dgz, &)%) 7 if p> N.
Proof. Refer to [14, Lemma A.7]. O

Lemma A.5. For any a,b € (1, %), 0 > 0 small, and £ € M, we have

1
/M dg(.il’, Z)N_2

1) a § b
<62+dg<z,s>2> Lozt <m> 1dg(z,5)zﬂ] (dvy):

< - -
S0 (52 + dg($,£)2> Li@o<ve t 0 <52 + dg(x,£)2> Liy@e)>ve

and

1 5 a )
/M dg(x,z)N—2 [(52 +dg(z,§)2> Li,(z)<p +9 1dg(z7§)>"20} (dvg)

S

<

5 a—1 “
<52 + dg(JE, 6)2> ldg(x,f)f%o +9 1d9($75)2%0'

Proof. The above inequalities can be proved as in the proof of [14, Lemma 3.6]. The details are
omitted. O

Lemma A.6. For £ € M and y1,y2 € By,(0) where ro > 0 is small enough, it holds that
2
dy (exp?(y1), expl(y2))” = [y1 — val* + O ((Jtl? + y2l?) lv2 — w2l*) (A.4)
and
2
Vg (expl (1), expf(y2))” = 2(y2 — v1) + O ((lya* + [v2l*) Iy — v2l) - (A.5)

Proof. Refer to [28, Lemma A.8]. O
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APPENDIX B. TECHNICAL COMPUTATIONS

B.1. Proof of Proposition 2.2. We argue by contradiction. Suppose that there exist sequences
of parameters {(0;y, &in) Jnen, functions { g, }nen, and numbers {cy, }nen C (0, 1] such that d;, —
0 and cop, — 1 as n — 00, |lon|l g1y = 1 for all n € N,

v 2% —2 v 2
/ <uo + Z Vm> Qidvg = sup { / (uo + Z Vi)
M i=1 M i=1

<vam>H1( M) — <QmZk >H1( M) = <Qnawm>H1(M) =0
fori=1,...,v, k=0,1,...,N, m=1,...,L. (B.2)
Hma1@f=wa»QMﬂ@m@n+(1—xa@@sm»ﬂam450,?J—amz?nandzk——&ngk.
By (B.1) and (B.2),

v 2*—2
»Can — Hn <UO + Z Vm) On

i=1

Co
vy lelmon =1} 2 520, (B)

and

— Z ftinLgVin + Zzﬂmﬁ zZk 4 Z fimnul "%, on M (B.3)

i=1 k=0

where fin, tin, 1, fimn € R are Lagrange multipliers. Testing (B.3) with g, and applying (B.2),
we arrive at

P = [/M (Uo + ZZ:;Vm> 2*_2Q%d’0g] € [e(v,N, L), ¢, (2° = 1)]

where the lower bound ¢(v, N, L) is positive and dependent only on v, N, and L. Hence we may
assume that i, — i € [c(v, N, L), cor (2* —1)] as n — oo.

Let Gijn, Qn, #ijn be the quantities introduced in (2.10) where (&;,€;,6;,0;) is replaced with
(&in>&jn, Oin, 0jn). We present the rest of the proof by dividing it into four steps.

Step 1. We claim that

Z |Hin| + ZZ |:ufn| + Z |fmn| = o (B.4)

i=1 k=0
where o(1) — 0 as n — oco. To prove it, we argue as in the proof of Lemma 2.6.

Firstly, we test (B.3) with V;,, for j € {1,...,v} and employ (B.2) to get

v 2% -2 .
—Hn /M (UO + Z Vm> anjndvg - < Z WinVin + Z Z ,Uzn z + Z Pmn®m,s an>
i=1 '

i=1 k=0 HY(M)

Thus we infer from Lemma 2.1 and (2.30) that

a0 (Qn+ max 6,7 ) = [l / v+ (\ugnHZ\um!)( ) f_j a0 (5,7
Z’MZ"’—FZZ‘MWL’ [ Qn)+0<maX5£J:LQ2>] (B'5)

i#] i#j k=0
as n — oo.
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Secondly, by testing (B.3) with Z]qn forany j € {1,...,v} and ¢ € {0,1,..., N}, we deduce

L
bl ([ 928 500) =00 | S+ 3 4 3 | 40t 30

(4,k)#3,q) m=1

Finally, we test (B.3) with ¢, for s € {1,...,L}. According to Lemma 2.1, (2.7) and (2.33),
it holds that

’NSTL’/ uO 21/}st9 _O<ma‘X5Zn ) [Z‘Mzn"FZZW@n’

i=1 k=0
Claim (B.4) now follows from (B.5), (B.6) and (B.7).

Step 2. We assert that

+(’)<max5 2 ) (B.7)

—0 kly in H'(M
on weary (8), as m — 00. (B.8)
on — 0 strongly in LP(M) for p € (1,2*)
Since ||on| g1 (ary = 1, there exists oo € H' (M) such that
On — 00 Weakly in HY(M),
) as n — 0o,
On — 0o strongly in LP(M) for p € (1,2%)

up to a subsequence. Given any ¢ € C°(M), we test (B.3) with ¢ and take the limit n — co.
As in (2.33), we can derive

v 25—2
/ <u0 + Z Vm> — u(z) _2] onpdug = o(1).
M i=1

This fact, (B.2), and (B.4) imply

Ly00 = uoou%*_2goo on M and (goo,q/}m>H1(M) =0 form=1,...,L,

which together with the non-degeneracy of uy and peo € [c(v, N, L),2* — 1] yields 9o = 0 on M.
This proves the assertion.

Step 3. For a fixed index j € {1,...,v}, let
N—2
Gin(y) = 0,7 X(8jnlyl)on(exp, (8jny)) for any y € RY
provided n € N large enough. We claim that
Ojn — kly in H'(RN
éj] 0 weakly in H'( )]if as n — 0o. (B.9)
ojn — 0 strongly in LV (R") for p € (1,2*)

Because ||on|| g1 (ar) = 1, the set {9, }nen is bounded in H'(RM). By passing to a subsequence,
we may assume that gj, — 0jo weakly in H'(RM) and Ojn — Ojoo Strongly in LlOC(RN ) for all
p € (1,2%). Given a function ¢ € CX(RY), we set

2—N
5 =N _ -1
Gin(r) = x(dg (2, §5n))05, @ <5jn1(expgjn) (m)) for z € M.
Testing (B.3) with ¢y, we obtain

J,

v 2% —2
<Vg9m V5]95)'n>g + “NRanQEjn — Un <u0 + Z Vin) Qn@jn] dUg
i=1
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L
<Z :um mn + Z Z:um mn + Z ﬂmn¢ma ¢jn> . (BlO)
m=1

i=1 k=0 HY(M)
It holds that [|Gjnll g1 ary < C, s0

/ V2 2 0n@jndug = / U2 25 + (9 / U? 255000 + 0(1),
M {lvl< 52
/M uy 20n@jndvg = / ug ~2(expd. (60)) (8jn) (y)dy = o(1).

supp(

Also, if dg(&in,&jn) < 3, then

* N—2 2%=2 o
‘/M Vi2n _2Qn95jndvg N |:6jn2 Vin <engjn (5jn : )):| =o(1) fori# j,

~

2N
L N+2 (supp(¢))

because
4N

)" N
din supp(y) (1 +9;, 2|6]ny — (exp ) (gm)‘ )N_

~ (J_> / _dy
0 {lorea 2 exn?, )1 €)IS5,050 } (14 [y[2) V2
5jn % . . 5jn
— if lim — =0,
57,71 4_N2_N 5 _Ié_Nz n—=00 Ojn
. ¥ . F
S <ﬂ + <ﬂ> if lim 2% = oo,
in8 52n n—00 O4p,
%’;? if nh_}ngo ]" € (0,00)
wm
= o(1).

If dy(nsEjn) > 2, then

/ Vf;_zgncﬁjndvg < 5z2n/ |on@jn|dvg = o(1) for i # j.
M M

Therefore, a reasoning analogous to (2.30) demonstrates

v 2*—2
/ <uo+2vm> enpindty = [ UF Fgjpt of)
M i—1 RN

as n — oo.
On the other hand, it is plain to verify that

/ ((vggna vg()Z’jn>g + KNRanQZ’jn) dvg = / V@]oo : VCP + 0(1)7
M RN

while Lemma 2.1 and (B 4) guarantee

L
<ZM21’L zn+22/~l2n n +Z[Lmn¢m,¢]n>

zlkO

[Z |um|+§j§j|ufn|+z |umn|] lellen any (10122 vy + 1281 oy + Wm0 ) |

i=1 k=0

H'(M)
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=o(1).
Sending n — oo in (B.10), we observe from (B.2) that
—Afjoo = fooU? 20joo in RY, 0o € HHRY),
LéNvgm-VUziéNvgm-vzkzo for all k =0,...,N.
Because U is an extremizer of the Sobolev embedding (see (1.5)), 0joc = 0 on M as claimed.

Step 4. We prove that

v 22
lim (uo + Z Vm> 02dv, = 0. (B.11)
M i=1

n—oo

This contradicts (B.1), so (2.12) must be valid.
We have

v 2% -2 v
[ (e ova)  dtdo s [ g+ 3 [ Vi,
M i=1 M i=17M

On the other hand, (B.8) gives

ud 2 02dv, = o(1).
Also, we know from (B.9) that §2, — 0 weakly in L%(RN), S0

[ vET s [ 0P+ 0 el oy = o1,
M RN
Consequently, (B.11) follows.

B.2. Derivation of (2.40) and (3.27). We derive two estimates (2.40) and (3.27) appearing in
the proofs of Lemmas 2.8 and 3.7, respectively. In this subsection, we write d;; = d4(&;,&;), and
Yij = (expgi)_l(ﬁj) /d; whenever it is well-defined.

Proof of (2.40). Tt suffices to check that [, VE*_Qdevg =0(Q) for 1 < i # j < v. There are
three possibilities:

di _ .
Case 1. (%;; = \/63_6]-): It holds that d;; > ¢; and (w/éiéj/dij)N 2 ~ ¢i; < Q. Taking x = §;
and p = 4 in Lemma A.4, one confirms that

1
607 d " if N=3
/ VP T Hidvg S 4 670;d;% log (24 dygdy ') if N =40 =0(Q).
M
3
0762 d;;” if N=5

Case 2. (%;; = 1/(‘;—;): It holds that d;; < ¢, i.e., |y;;] <1 and (g—z)¥ ~ ¢;; < Q. By (A4),

N-—-2

/ Vi2*_2vjd?}9§/ < 2 d 2>2 2 ’ 3 2 (dvg)x+0<5z'25;v772>
M B} j2(&) 67 +dg(z,&) 5]' +dg(x, ;)
N2 1 dy N2
S / . 4+ 0(8252
R N T e G
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N2 e N-2 N2
U 1+/ 34t +0(535j2 ):@.2 =0(Q).
2

Case 3. (%;; = \/gjj): It holds that d;; < ¢; and (g—;)¥

~ q;; < Q. Hence

. oN—2 1 dy N-2
/V2 2Vd’UgNW (1+||) 5 2M+O<5i25j2>
57 <z} YT+ (§tly = wigl)?)

2
5N—2

i % Nos 2 ot
Ny 1+/ trdt +O<5i5j )ZO(Q)-
6.2 1

j
Consequently, (2.40) is proved.

Proof of (3.27). Recall that N = 3. For indices 1 < i # j < v, there are three possibilities
Case 1. (%;; =

\/ﬁ) We consider two subcases separately.
SUBCASE 1-1. (d;; > 2¢): We have

d
Jo < 55512 / T S 610
{lvl<5} (L+ [y[?)2 ]yl

SUBCASE 1-2. (d < 30Y): If dy(,&) < dij/2, then dy(z,&;) > dij/2. Also, if dg(z,&) > 2d;,
then dy(x,&;) dg x,&)/2. Thus

5 1
52 07
/ 2 Z 23 2 3 23 (dvg)a
B /2(52 d /2(53) (52 +dg(x7£2) )zdg(x7£i) (5_7 +dg x’&]) )2
5 1
0762
7 d N
* / 2d (52 d /2(52)) +/(Bfo/2(5i)\Bgdij(fi)) dg(x7£2)4dg(x7£])( Ug)
d /2 67 ) |M'(BZ”/2(5]))

AN

=9
ST
= Sl
_—
=
A

dy 07 0 dy
T iy T
A+ lyP)zlyl g Swi<zdy L+ [yP)>2

5 1
5252
+ /d dy4+525;/ gy
dij  J(%i<py)<2a;y Y] (2di;<lyl< 2} Y]
5252
<29 <5
~ d ~Y ’LQ

where we employed d;; > max{d;,d;} for the third inequality.
Case 2. (%;; = 1/2—;): We have

J6N5252/ ! dy - <0
{lyl<2o }(1+!y\) lyl [(% L)%+ ly — vijl?]2

T0

3
0; 14—/2

NS

Sl

t—3dt> < 6;0.
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Case 3. (%;; = \/(;—Z): We have

3 3 .
5 1 _ 7 3
Jo < 5, il T ST (1—1‘/5 t_2dt> < 0, 9.
52 (ol<38} (L4 [yl 2 [yl [+ (3 ly — wis))?)2 52 2
As a result, (3.27) holds. O

B.3. Potential analysis. Lemma 4.2 is based on the following linear theory. It also has an
analogous result for the case ug = 0, which is crucial in the proof of Lemma 4.8.

Definition B.1. Given two functions
N—4

V(r) = (5% + dggl ($’£1)2) 1dg§1 (@e)<var T o1 (5% T dggl (m,£1)2> 1dg,31 (z,61)>V81

and
N-—2

2
51 51 2
(z) <5% + dge, (x,§1)2> dge, (#:.£)<Vo1 + (5% e, (x7§1)2> dge, (#.6)2V/381

4/(N 2)

for z € M where g¢, = A, g, we define two weighted L (M )-norms || - ||« and || - ||« by

170ll« = sup |fo(«)|V(z)~" and  |[Als = sup [A(a)[W (z)~!
zeM zeM
Proposition B.2. Assume that N > 6 and uy > 0 is non-degenerate. Let V| and Z~f for

k=0,...,N be functions in Subsection 4.1. Given any h with HizH** < 00, there exist unique
po € HY (M) and ¢y, ¢1,...,én € R satisfying

N
Loo— (2 — Do + V0" 20 = b+ 3 Ly on M, (B.12)

k=0
<50,Zf>H1(M) =0 fork=0,1,...,N
as well as
3 . N N2
Ipoll« S NBlles  and Y l| S 6,7 [[Bllas (B.13)
k=0

Proof. The existence of py will follow from the standard argument once (B.13) is established.

To show the first inequality of (B.13), we argue by contradiction. If it is false, there exist

sequences {pon fneN, {7 tnens {(01ns&1n) nen C (0,00) x M, {Vs,, &1, dnen, and {érnlneny € R
for k =0,..., N satisfying (B.12),

lonll« =1 forallm e N, and &1y + |[hnllss — 0 as n — oo.

Let Vin = Vi1, 61> Zln = 51n avl , and gfn = 01n, ?gll” for k=1,...,N. For simplicity, we drop

the subscript n in Steps 1 and 2.
Step 1. Let us prove that

N
dolal S 7 1l +5  |1og 31/ o]l (B.14)
k=0
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Indeed, testing the first equation in (B.12) by 2{ for [ =0,..., N, we obtain

N o~ o~
<Z 53", Zi>
k=0

By direct computations,

- / [cgﬁo — (2" — 1)(uo + v1)2*—2,30] Zldv, — / hZldv,.
HY(M) M M
~l * 2% -2 1 < %
s ‘zgzl — (2~ 1)) zl‘ Vv, < 6,2 .

— g
Hence, using |Z!| < U, we have

'/ [ﬁgﬁo — (2" = )(up + V1)2*_2P~0] gidvg
M

.o~ ~ ~ . . o~ N+2 ~
< /M\ua 22 | dvy + 0]l /M 2,21 - 2" = 1)VE 22| Vv, 6,7 1ogéulloll..

Additionally,
‘ / izZ? dvg
M

Since (ZF, Z~{>H1(M) = cd* + 0(1) for some constant ¢ > 0, (B.14) follows.

N-2
S 017 (Al

Step 2. We claim that

o [ — S I LGLIS T SPATPA S
70 6T dg, (2,61)2 o1 ! HilpoT '
Owing to the non-degeneracy of ug, there exists the unique Green’s function Gg of £, — (2% —
1)u3*_2. From [38] with the boundedness of ug, we know
1 < 1

G ':U7 z 5 ~y
Gola, 2)] dg(z,2)N=2 "~ dg, (v,2)N 72

and so

@IS [
0 S —
M dggl (x,z)N 2

for z € M. Let us analyze the right-hand side of (B.16). Making use of ||pg||« = 1 and Lemma
A5, we get

(2)(dvg),  (B.16)

N
[(uo TRV ug*_z] b0+ h + Z 6k£ng
k=0

/M m ‘ {(uo FV)T 2 u%*_z] ﬁo‘ (2)(dvg)s

1 - 53 dge, (2,€1)
S /M dye, (z,2)N 2 <V1 V) (2)(dvg)= 5 03 + dge, (z,61)? log <2 A T V(z)

and
/M W’ﬁ(@\(dvg)z S ol V ().
&1

, 2

Also, since

‘(ﬁgZNf> (z)‘ S Z/llg51 (2) + (Z/li%l) (z) for ze M, (B.17)
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we see from Lemma A.4 and (B.14) that

N
/Mﬁ > (£2F) (2)] (dvy)= S (1Bl + 8 10g 8110l ) V (@),
€1 ’
Thus (B.15) holds.

k=0

Step 3. Since ||pon |« = 1, there exists x € M such that
|pon (25)] Vi (%) 71 > + forallmeN.
< Oin.-

~

This together with (B.15) guarantee that dg, (7, &1n)

Step 4. Given a cut-off function x € C2°([0,00)) satisfying (1.6), we define
ﬁOn(y) = X(éln‘y’)ﬁOn(engfln (51ny)) for ye RN-

If we write y := 07, (expgfl") L(x¥), then |yf| <1,

|6on ()] < Nl Aol X (S1n [y Vi (expést™ (S1ay)) S 1,
and

|p0n(yn)| 2 X(51n|yn|) (eXp;M (51ny;;)) Z 1.

By standard elliptic regularity theory, there exist poso € H LRN) and y?, € RY such that

Pon = Pose in CET(RN) asn— oo for some 7 € (0,1) (B.18)

loc
and

Yp = Yoo asn — 00  where |poso(Ys)| 2 1 and |ys | <1, (B.19)
along a subsequence. It follows from (1.15) and (g, Z~fn> i) = 0 that

/ Voo - VZF =0 fork=0,1,...,N. (B.20)
RN

Besides, one can verify that

03 ,kn Ry (exps™ (51ny)) pon(y) = 0 (by (B.18)),

63, (1o + Vip)? (expgf“‘ 51nY)) Pon(y) — (U2 _2/)000) (y) (by (B.18) and uy € L>(M)),

N
62 Zé <£ Zln> (expggl” (61ny)) = 0 (by (B.14) and (B.17)),
k=0
and

81t (exp (810)) = 0 (by [Pl — 0)

uniformly in compact sets of RY as n — oco. Therefore, passing the equation of pg,, to the limit
yields

—Appoe = (2F = 1)U 2pps in RV,
By (B.20), we conclude that pos = 0, which is impossible in view of (B.19). As a consequence,

the first inequality of (B.13) must hold. The second inequality of (B.13) immediately follows
from it and (B.14). O
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