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two-sided preconditioning techniques are proposed for non-local evolutionary equations,

which possesses (i) mesh-size independent theoretical bound of condition number of the

two-sided preconditioned matrix; (ii) small and stable iteration numbers in numerical tests.

In this paper, we modify the two-sided preconditioning by multiplying the left-sided and

the right-sided preconditioners together as a single-sided preconditioner. Such a single-

sided preconditioner essentially derives from approximating the spatial matrix with a fast

diagonalizable matrix and keeping the temporal matrix unchanged. Clearly, the matrix-

vector multiplication of the single-sided preconditioning is faster to compute than that of

the two-sided one, since the single-sided preconditioned matrix has a simpler structure.

More importantly, we show theoretically that the single-sided preconditioned generalized

minimal residual (GMRES) method has a convergence rate no worse than the two-sided

preconditioned one. As a result, the one-sided preconditioned GMRES solver requires less

computational time than the two-sided preconditioned GMRES solver in total. Numerical

results are reported to show the efficiency of the proposed single-sided preconditioning

technique.
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1 Introduction

Consider a space and time fractional Bloch-Torrey equation (see, e.g., [24, 37, 39]), which is a

non-local evolutionary equation with weakly singular kernels as follows























1
Γ(1−α)

∫ t
0

∂u(x,s)
∂s (t− s)−αds =

d
∑

i=1
ci

∂βiu(x,t)

∂|xi|βi
+ f(x, t), x ∈ Ω ⊂ R

d, t ∈ (0, T ],

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = ψ(x), x ∈ Ω,

(1.1)

where Γ(·) is the Gamma function, 0 < α < 1, f and ψ are both given functions; the boundary

of Ω is ∂Ω; Ω =
∏d

i=1(ǎi, âi); x = (x1, x2, ..., xd) is a point in R
d; for i = 1, . . . , d, ci are

positive constants; ∂βiu(x,t)

∂|xi|βi
is the Riesz fractional derivative of order βi ∈ (1, 2) with respect

to xi defined as

∂βiu(x, t)

∂|xi|βi
:=

−1

2 cos(βiπ/2)Γ(2 − βi)

∂2

∂x2i

∫ âi

ǎi

u(x1, x2, ..., xi−1, ξ, xi+1, ..., xd, t)

|xi − ξ|βi−1
dξ. (1.2)

Since the analytical solution of (1.1) is usually unavailable, discretization schemes are pro-

posed for numerical solution; see, e.g., [1, 3, 5, 9, 12, 28, 30, 33, 34, 38, 40]. Due to the nonlocal

properties of the fractional differential operators, linear systems arising from these schemes

are usually dense, which makes direct solvers like Gaussian elimination time-consuming and

thus impractical to use. Fortunately, due to the shift-invariant kernel involved in the fractional

differential operators, the dense matrices have Toeplitz-like structure, whose matrix-vector

multiplications can be fast implemented by fast Fourier transforms (FFTs). Based on the fast

matrix-vector multiplication, iterative solvers are developed for solving the linear systems.

The solvers for the linear systems are mainly classified as two types: time-stepping type and

all-at-once type. The time-stepping solvers solve the linear system in a time-sequential manner

(i.e., the unknowns at n-th time level have to be computed before computing the unknowns

at n + 1-th time level). For time-stepping type solvers, one may refer to [2, 15, 18]. The

all-at-once type solvers aim to solve the time-space linear system and update the unknowns at

all time levels in a parallel manner; see, e.g., [11, 19, 35, 36]. Recently, new all-at-once type

methods are studied in [21, 37], in which two-sided preconditioning techniques are studied for

time-space linear systems arising from time-fractional diffusion equations. In the two-sided

preconditioning method, the spatial discretization matrix is approximated by a τ -matrix (i.e.,

a matrix is diagonalizable by sine transform, see, e.g., [14]) and the temporal discretization

matrix keeps unchanged. Then, an inverse of the square root of the τ -matrix is spitted from

the τ -matrix approximation matrix as the right side preconditioner and the remaining part

is taken as the left preconditioner. This is the so-called two-sided preconditioning method.
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The condition numbers of the two-sided preconditioned matrices are proven to be uniformly

bounded by constants independent of discretization step sizes; see, e.g., [21, 37]. Numerical

results in [21, 37] have shown the efficiency of the two-sided preconditioning method in terms

of small and stable iteration numbers.

Nevertheless, we find that the two-sided splitting is not necessary. In this paper, we show

theoretically that the GMRES solver for the single-sided preconditioned system converges no

slower than the GMRES solver for the two-sided preconditioned system.

Compared with the two-sided preconditioned system, solving the problem on the single-

sided preconditioned system has two advantages: (i) computing the matrix-vector product

associated with the single-sided preconditioned matrix requires less operations and is easier to

implement (i.e., the code is simpler); (ii) the single-sided preconditioning is more flexible in

the sense that the τ matrix can be replaced by other spatial approximations without a fast

computable square root.

Indeed, the numerical results in the later section further show that the single-sided pre-

conditioning method is more efficient than the two-sided preconditioning method in terms of

computational time and iteration numbers, which supports our theoretical results.

The contribution of this paper is twofold. Firstly, we significantly modify the two-sided

preconditioning method by simplifying it to the single-sided preconditioning method that is

easier to implement and requires less computational time. Secondly, the paper is not just fo-

cused on a single spatial discretization scheme. Actually, the theoretical results are established

on common properties shared by several spatial discretization schemes. Hence, the proposed

preconditioning method can be used to efficiently solve several discrete problems arising from

several spatial discretization schemes in the literature, which demonstrates the range of its

applicability.

The paper is organized as follows. In Section 2, the discretization of (1.1) and the cor-

responding linear system are presented. In Section 3, the τ -preconditioner is proposed and

the convergence behavior of the GMRES solver for the preconditioned system is discussed. In

Section 4, a fast implementation of the matrix-vector product of the preconditioned matrix

is presented. In Section 5, numerical results are reported for showing the performance of the

proposed preconditioning method. Section 6 gives a conclusion.

2 Discretization of Eqn (1.1) and the time-space linear system

For any nonnegative integer m, n with m ≤ n, define the set m ∧ n := {m,m+ 1, ..., n− 1, n}.
Denote N

+ be the set of all positive integers.
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2.1 Temporal discretization

Let N ∈ N
+ and the temporal step size µ = T/N . With the L1 scheme (see, e.g., [16, 17, 23,

31, 35]), the temporal discretization has the following form

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s
(t− s)−αds

∣

∣

∣

t=nµ
=

n
∑

k=1

l
(α)
n−ku(x, nµ) + l(n,α)ψ(x) +O(µ2−α), (2.1)

where x ∈ Ω, n ∈ 1 ∧N and

l
(α)
k =







[Γ(2− α)µα]−1, k = 0,

[Γ(2− α)µα]−1[(k + 1)1−α − 2k1−α + (k − 1)1−α], k ∈ 1 ∧ (N − 1),

l(n,α) = [(n− 1)1−α − n1−α][Γ(2− α)µα]−1, n ∈ 1 ∧N.

2.2 Space discretization

Actually, the theoretical results and algorithmic implementation in the later sections are appli-

cable to a number of numerical schemes for the spatial discretization. Hence, in this subsection,

we will present a general form of the spatial discretization and some common properties which

will be utilized in the theoretical discussion.

Let mi ∈ N
+, i ∈ 1 ∧ d, and the i-th direction space step size hi = (âi − ǎi)/(mi + 1).

Setting the j point along the i-th direction xi,j = ǎi + jhi, for j ∈ 0 ∧mi + 1. In general, the

discretization of ∂βiu(x,t)

∂|xi|βi
on the grid points xi,j (i = 1, 2, ..., d, j = 1, 2, ...,mi) is of the following

form (see, e.g., [6, 8, 13, 22, 26, 32]),

∂βiu(x, t)

∂|xi|βi

∣

∣

∣

x=(x1,j1
,x2,j2

,...,xd,jd
)
≅ − 1

hβi

i

mi
∑

k=1

w
(βi)
|ji−k|u(x1,j1 , ..., xi−1,ji−1

, xi,k, xi+1,ji+1
, ..., xd,jd , t),

(2.2)

where ji ∈ 1 ∧mi.

Some common properties of the numbers w
(β)
k , β ∈ (1, 2) are listed as follows, which will

be utilized in the later theoretical analysis. There are several spatial discretization scheme

possesses the following properties (see the discussion in Appendix).

Property 1 For β ∈ (1, 2), it holds1

(i) w
(β)
0 > 0, w

(β)
k ≤ 0 for k ≥ 1;

(ii) inf
m≥1

(m+ 1)β
(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

> 0;

1See the spatial discretization schemes satisfying property 1 discussed in the Appendices
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(iii) w
(β)
k ≤ w

(β)
k+1 for k ≥ 1.

2.3 All-at-once system

Denote

J =

d
∏

i=1

mi, m−
1 = m+

d = 1, m−
i =

i−1
∏

j=1

mi, i ∈ 2 ∧ d, m+
k =

d
∏

j=k+1

mj , k ∈ 1 ∧ (d− 1).

With Eqn (2.1) and Eqn (2.2) , we obtain the following all-at-once linear system as a discretiza-

tion of the continuous problem (1.1)

Au = f , (2.3)

where u = (u1;u2; . . . ;um1
) ∈ R

NJ×1, f = (f1; f2; . . . ; fm1
) ∈ R

NJ×1. uj is a vector component

by lexicographic order approximate values of u(ǎ1 + jh1, ·), j ∈ 1 ∧ m1, while fj contains

the initial values and the approximate values of f(ǎ1 + jh1, ·) on the spatial grid points (or

f(ǎ1 + (j + 1/2)h1, ·) in Eqn (2.3));

A = B⊗ IN + IJ ⊗T,

B =
d
∑

i=1

ηiIm−

i
⊗W(βi)

mi
⊗ Im+

i
, ηi =

ci

hβi

i

,
(2.4)

‘⊗’ denotes the Kronecker product; for any k ∈ N
+, Ik denotes a k × k identity matrix; the

lower triangular toeplitz matrix T ∈ R
N×N denotes the temporal discretization matrix, its first

column is (l
(α)
0 , l

(α)
1 , . . . , l

(α)
N−1)

T . For any β ∈ (1, 2) and any m ∈ N
+, the symmetric Toeplitz

matrix W
(β)
m ∈ R

m×m formed as

W(β)
m =



















w
(β)
0 w

(β)
1 . . . w

(β)
m−2 w

(β)
m−1

w
(β)
1 w

(β)
0 w

(β)
1 . . . w

(β)
m−2

...
. . .

. . .
. . .

...

w
(β)
m−2 . . . w

(β)
1 w

(β)
0 w

(β)
1

w
(β)
m−1 w

(β)
m−2 . . . w

(β)
1 w

(β)
0



















.

Lemma 1 For any β ∈ (1, 2) and any m ≥ 1, W
(β)
m is a positive definite matrix.

Proof: By Property 1 (i)− (ii) and definition of W
(β)
m , we have

m
∑

j=1,i 6=j

|W(β)
m (i, j)| =

m−1
∑

j=1

|w(β)
j | < −2

m−1
∑

k=1

w
(β)
k < |w(β)

0 | = W(β)
m (i, i), for i = 1, · · ·m.
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Combining with Gershgorin circle theorem 2, Matrix W
(β)
m is a positive definite matrix.

Although matrix W
(β)
m and matrix B are positive definite symmetric matrices, the matrix A is

an unsymmetric matrix due to matrix T is a lower tridiagonal matrix. Therefore, some popular

iterative methods, like the conjugate gradient method and the Minimal Residual Method, are

not applicable. We use the GMRES method to solve this general nonsymmetric linear system.

3 The τ preconditioner and the convergence behavior of GM-

RES solver for the preconditioned system

In this section, our τ preconditioner is proposed for the linear system (2.3), which is used as

a single-sided preconditioner. We employ GMRES solver to solve the single-sided precondi-

tioned system. To investigate the convergence behavior of GMRES solver for the single-sided

preconditioned system, we consider an auxiliary two-sided preconditioned system. We show

that (i) GMRES solver for the single-sided preconditioned system has a convergence rate no

worse than that for the auxiliary two-sided preconditioned system; (ii) the auxiliary two-sided

preconditioned system has a condition number uniformly bounded by 3.

We first define some notations that will be used later. For any real symmetric positive

semi-definite matrix H ∈ R
k×k, define

Hz := VTdiag[(D(i, i))z ]ki=1V, z ∈ R,

where H = VTDV denotes the orthogonal diagonalization of H. For a symmetric Toeplitz

matrix Tm ∈ R
m×m with (t1, t2, ..., tm)T ∈ R

m×1, define its τ -matrix approximation as

τ(Tm) := Tm −Hm, (3.1)

whereHm is a Hankel matrix with (t3, t4, ..., tm, 0, 0)
T as its first column and (0, 0, tm, ..., t4, t3)

T

as its last column. An interesting property of the τ -matrix defined in (3.1) is that it is diago-

nalizable by sine transform matrix, i.e.,

τ(Tm) = SmQSm, (3.2)

where Q = diag(qi)
m
i=1 is a diagonal matrix with

qi = t1 + 2
m
∑

j=2

tj cos

(

πi(j − 1)

m+ 1

)

, i ∈ 1 ∧m. (3.3)

2see the definition of Gershgorin circle theorem in [10]
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Sm :=

[

√

2

m+ 1
sin

(

πjk

m+ 1

)

]m

j,k=1

(3.4)

is a sine transform matrix. It is easy to verify that Sm is a real symmetric orthogonal matrix,

i.e., Sm = ST
m = S−1

m . The product between matrix Sm and a given vector of length m can be

fast computed within O(m logm) operations using fast sine transform (FST). Let em,i ∈ R
m×1

denotes the ith column of the m×m identity matrix. We also note that the m numbers {qi}mi=1

defined in (3.3) can be computed by

(q1; q2; · · · ; qm) = diag(Smem,1)
−1[Smτ(Tm)em,1].

From the equality above, we see that the computation of {qi}mi=1 requires only a few FST,

which requires O(m logm) operations.

With Eqn (3.2), we define an approximation Bτ to B as follows

Bτ =

√
3

2

d
∑

i=1

ηiIm−

i
⊗ τ(W(βi)

mi
)⊗ Im+

i
. (3.5)

The reason why we put a factor
√
3
2 in the above definition will be explained in Subsection 3.1.

From Eqn (3.2), (3.3) and properties of the single-dimension sine transform matrix Sm, we see

that Bτ is diagonalizable by a multi-dimension sine transform matrix, i.e.,

Bτ =

√
3

2
SΛS, (3.6)

S :=

d
⊗

i=1

Smi
, Λ =

d
∑

i=1

Im−

i
⊗Λi ⊗ Im+

i
, Λi = diag(λi,j)

mi

j=1,

λi,j =
1

hβi
w

(βi)
0 +

2

hβi

mi
∑

k=2

w
(βi)
k−1 cos

(

πj(k − 1)

mi + 1

)

. (3.7)

Then, our τ preconditioner is defined as

P := IJ ⊗T+Bτ ⊗ IN . (3.8)

Instead of solving (2.3), we employ the GMRES solver to solve the following equivalent system

by

P−1Au = P−1f . (3.9)

7



3.1 Convergence behavior of GMRES solver for system (3.9)

This section introduces a two-sided variant of (3.9) as an auxiliary problem (see (3.10)), which

helps us understand the convergence behavior of GMRES solver for (3.9).

It is straightforward to verify that the solution of (3.9) is equivalent to the following two

steps.

P−1
l AP−1

r û = P−1
l f , (3.10)

where the solution of (3.9) and the solution of (3.10) are related by u = P−1
r û;

Pl = B
− 1

2
τ ⊗T+B

1

2
τ ⊗ IN , Pr = B

1

2
τ ⊗ IN .

In this section, we will show that (i) the GMRES solver for (3.9) converges no slower than

that for (3.10); (ii) (3.10) is a well-conditioned system, i.e., sup
N,J>0

κ2(P
−1
l AP−1

r ) < +∞. Here,

κ2(C) := ||C||2||C−1||2 is called condition number of an invertible matrix C. Typically, Krylov

subspace solvers converge quickly for well-conditioned system. Indeed, the numerical results

in [21, 37] show that GMRES solver for the two-sided preconditioned system converges in a

few iteration number no matter how large the matrix size is. Hence, a theoretical result that

GMRES solver for (3.9) converges no slower than that for (3.10) guarantees that the GMRES

solver for (3.9) is a fast solver which further improves the iteration number and computational

time compared with the two-sided preconditioning method.

For any Hermitian matrices C1,C2 ∈ R
k×k, denote C2 ≻ (or �) C1 if C2 −C1 is positive

definite (or semi-definite). Especially, we denote C2 ≻ (or �) O, if C2 itself is positive definite

(or semi-definite). Also, C1 ≺ (or �) C2 and O ≺ (or �) C2 have the same meanings as those

of C2 ≻ (or �) C1 and C2 ≻ (or �) O, respectively.

For a Hermitian matrix H, denote by λmin(H) and λmax(H), the minimal and the maximal

eigenvalues of H, respectively.

Proposition 1 The Matrices Λ ≻ O, Bτ ≻ O and B ≻ O. And inf
J>0

λmin(Bτ ) ≥ č > 0, where

č :=

√
3

2

d
∑

i=1

1

(âi − ǎi)βi
inf
m≥1

(m+ 1)βi

(

w
(βi)
0 + 2

m−1
∑

k=1

w
(βi)
k

)

.

Proof: By equation (3.6), we know that the spectrum of Bτ consists of

S :=

{√
3

2

d
∑

i=1

λi,ji

∣

∣

∣

∣

1 ≤ ji ≤ mi, 1 ≤ i ≤ d

}

.
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By (3.7) and Property 1, we have

λi,ji =
1

hβi

i

w
(βi)
0 +

2

hβi

i

mi
∑

k=2

w
(βi)
k−1 cos

(

πji(k − 1)

mi + 1

)

≥ 1

hβi

i

w
(βi)
0 +

2

hβi

i

mi
∑

k=2

w
(βi)
k−1

=
1

(âi − ǎi)βi
× (mi + 1)βi

(

w
(βi)
0 + 2

mi−1
∑

k=1

w
(βi)
k

)

≥ 1

(âi − ǎi)βi
× inf

m≥1
(m+ 1)βi

(

w
(βi)
0 + 2

m−1
∑

k=1

w
(βi)
k

)

> 0.

Hence,

λmin(Bτ ) = min
y∈S

y ≥
√
3

2

d
∑

i=1

1

(âi − ǎi)βi
inf
m≥1

(m+ 1)βi

(

w
(βi)
0 + 2

m−1
∑

k=1

w
(βi)
k

)

= č.

As the inequality above holds for arbitrary J > 0,

inf
J>0

λmin(Bτ ) ≥ č.

As indicated by Property 1(ii), inf
m≥1

(m+ 1)βi

(

w
(βi)
0 + 2

m−1
∑

k=1

w
(βi)
k

)

> 0 for each i. Therefore,

č > 0. Hence, Λ ≻ O and Bτ ≻ O.

Finally, with Lemma 1, it is easy to see that B ≻ O. The proof is completed.

The convergence behavior of GMRES is closely related to the Krylov subspace. For a square

matrix E ∈ R
m×m and a vector x ∈ R

m×1, a Krylov subspace of degree j ≥ 1 is defined as

follows

Kj(E,x) := span{x,Ex,E2x, . . . ,Ej−1x}.

For a set S and a point z, we denote

z + S := {z + x|x ∈ S}.

We recall the relation between the iterative solution by GMRES and the Krylov subspace in

the following lemma.

Lemma 2 (see, e.g., [27]) For a non-singular m×m real linear system Zy = b, let yj be the

iterative solution by GMRES at j-th (j ≥ 1) iteration step with y0 as initial guess. Then, the

9



j-th iteration solution yj minimize the residual error over the Krylov subspace Kj(Z, r0) with

r0 = b− Zy0, i.e.,

yj = argmin
v∈y0+Kj(Z,r0)

‖b− Zv‖2.

Theorem 3 Let û0 be the initial guess for (3.10). Let u0 := P−1
r û0 be the initial guess for

(3.9). Let uj (ûj , respectively) be the j-th (j ≥ 1) iteration solution derived by applying GMRES

solver to (3.9) ( (3.10), respectively) with u0 (û0 , respectively) as initial guess. Then,

‖rj‖2 ≤
1√
č
‖r̂j‖2

where rj := P−1f − P−1Auj

(

r̂j := P−1
l f −P−1

l AP−1
r ûj , respectively) denotes the residual

vector at j-th GMRES iteration for (3.9) ( (3.10), respectively); č > 0 defined in Proposition 1

is a constant independent of N and J .

Proof: By applying Lemma 2 to (3.10), we see that

ûj − û0 ∈ Kj

(

P−1
l AP−1

r , r̂0
)

,

where r̂0 = P−1
l f−P−1

l AP−1
r û0. Notice that

(

P−1
l AP−1

r

)k
= Pr

(

P−1A
)k

P−1
r for each k ≥ 0.

Therefore,

Kj

(

P−1
l AP−1

r , r̂0
)

= span
{

(

P−1
l AP−1

r

)k (
P−1

l f −P−1
l AP−1

r û0

)

}j−1

k=0

= span
{

Pr

(

P−1A
)k

P−1
r

(

P−1
l f −P−1

l AP−1
r û0

)

}j−1

k=0

= span
{

Pr

(

P−1A
)k (

P−1f −P−1Au0

)

}j−1

k=0

where the last equality comes from the facts that P = PlPr and that u0 = P−1
r û0. Therefore,

P−1
r ûj − u0 = P−1

r (ûj − û0) ∈ span
{

(

P−1A
)k (

P−1f −P−1Au0

)

}j−1

k=0
= Kj

(

P−1A, r0
)

,

where r0 = P−1f −P−1Au0. In other words,

P−1
r ûj ∈ u0 +Kj

(

P−1A, r0
)

.

By applying Lemma 2 to (3.9), we know that

uj = argmin
v∈u0+Kj(P−1A,r0)

∥

∥P−1f −P−1Av
∥

∥

2
.

10



Therefore,

‖rj‖2 =
∥

∥P−1f −P−1Auj

∥

∥

2
≤
∥

∥P−1f −P−1AP−1
r ûj

∥

∥

2

=
∥

∥P−1
r r̂j

∥

∥

2

=
√

r̂Tj P
−2
r r̂j

=
√

r̂Tj
(

B−1
τ ⊗ IN

)

r̂j

≤
√

1

č
r̂Tj r̂j =

1√
č
‖r̂j‖2 ,

where the last inequality comes from Proposition 1.

The residuals relationship between our single-sided preconditioner (3.9) and the two-sided

preconditioner method (3.10) is proven in Theorem 3. In the next, we estimate the condition

number of the matrix P−1
l AP−1

r in (3.10).

For a square matrix C, denote by σ(C), the spectrum of C.

Lemma 4 For any β ∈ (1, 2) and any m ∈ N
+, σ(τ(W

(β)
m )−1W

(β)
m ) ⊂ (1/2, 3/2).

Proof: Denote H
(β)
m := W

(β)
m − τ(W

(β)
m ). Rewrite H

(β)
m as H

(β)
m = [hij ]

m
i,j=1. Then, straight-

forward calculation yields that

hij =



















w
(β)
i+j , i+ j < m− 1,

w
(β)
2m+2−(i+j), i+ j > m+ 1,

0, otherwise.

By Property 1(i), we know that

hij ≤ 0, 1 ≤ i, j ≤ m. (3.11)

Denote pij = w
(β)
|i−j| − hij . Then, (3.11) and Property 1(i),(iii) imply that

pij =































w
(β)
0 − hii > 0, i = j,

w
(β)
|i−j| − w

(β)
i+j ≤ 0, i+ j < m− 1 and i 6= j,

w
(β)
|i−j| − w

(β)
2m+2−(i+j) ≤ 0, i+ j > m+ 1 and i 6= j,

w
(β)
|i−j| ≤ 0, otherwise.

(3.12)

Let (λ, z) be an eigen-pair of τ(W
(β)
m )−1H

(β)
m such that ||z||∞ = 1. Then,

H(β)
m z = λτ(W(β)

m )z. (3.13)

11



Rewrite z as z = (z1, z2, ..., zm)T. (3.13) implies that for each i = 1, 2, ...,m, it holds

m
∑

j=1

hijzj = λ

m
∑

j=1

pijzj .

Hence,

λpiizi =

m
∑

j=1

hijzj − λ

m
∑

j=1,i 6=j

pijzj , i = 1, 2, ...,m.

As ||z||∞ = 1, there exists k0 ∈ {1, 2, ...,m} such that |zk0 | = 1. Then,

|λ||pkk| ≤
m
∑

j=1

|hkj|+ |λ|
m
∑

j=1,k 6=j

|pkj|. (3.14)

By (3.12) and Property 1(ii), we have

|pkk| −
m
∑

j=1,j 6=k

|pkj| − 2
m
∑

j=1

|hkj|

=(w
(β)
0 − hkk)−

m
∑

j=1,j 6=k

(hkj − w
(β)
|k−j|) + 2

m
∑

j=1

hkj

=w
(β)
0 +

m
∑

j=1,j 6=k

w
(β)
|k−j| +

m
∑

j=1

hkj

=w
(β)
0 +





k−1
∑

j=1

w
(β)
j +

m−k
∑

j=1

w
(β)
j



+





m−1
∑

j=k+1

w
(β)
j +

m−1
∑

j=m−k+2

w
(β)
j





≥w(β)
0 + 2

m−1
∑

j=1

w
(β)
j > 0,

which combined with (3.14) implies that

|λ| ≤

m
∑

j=1
|hkj|

|pkk| −
m
∑

j=1,k 6=j

|pkj|
≤

m
∑

j=1
|hkj |

2
m
∑

j=1
|hkj|

=
1

2
.

Therefore,

σ(τ(W(β)
m )−1H(β)

m ) ⊂ (−1/2, 1/2). (3.15)

Since τ(Wm) = Wm −Hm,

τ(W(β)
m )−1W(β)

m = τ(W(β)
m )−1(τ(W(β)

m ) +H(β)
m ) = I+ τ(W(β)

m )−1H(β)
m ,

12



which means σ(τ(W
(β)
m )−1W

(β)
m ) = 1 + σ(τ(W

(β)
m )−1H

(β)
m ) ⊂ (1/2, 3/2). The proof is com-

pleted.

Remark 1 The proof of Lemma 4 is similar to that of [14, Lemma 4.3]. But the proof in

[14, Lemma 4.3] is solely for the shifted Grünwald spatial discretization. When handling a new

spatial scheme, repeating the proof is too redundant. Because of this reason, we present Lemma

4, a more general result, which tell us that to prove the spectrum inclusion σ(τ(W
(β)
m )−1W

(β)
m ) ⊂

(1/2, 3/2), it suffices to verify Property 1 of a spatial scheme.

With Lemma 4, one can immediately prove the following Proposition.

Proposition 2 For any β ∈ (1, 2) and m ∈ N
+, it holds

(i) O ≺
√
3
3 Bτ � B �

√
3Bτ ;

(ii)
√
3
3 IJ � B

1

2B−1
τ B

1

2 �
√
3IJ .

Lemma 5 (see, e.g., [21]) Let B1,B2 ∈ R
k×k be real symmetric matrices such that O ≺ B1 �

B2. Then, O ≺ B−1
2 � B−1

1 .

Lemma 6 (see [19]) For any α ∈ (0, 1), it holds that l
(α)
0 > 0 and T+TT ≻ O.

The following proposition holds obviously.

Proposition 3 For positive numbers ξi and ζi (1 ≤ i ≤ m), it obviously holds that

min
1≤i≤m

ξi
ζi

≤
( m
∑

i=1

ζi

)−1( m
∑

i=1

ξi

)

≤ max
1≤i≤m

ξi
ζi
.

Recall that there is a factor
√
3
2 appearing in the definition of (3.5). Such a factor is for

minimizing the condition number upper bound estimation in Theorem 7. To see this, we denote

Bτ,η := η
d
∑

i=1

ηiIm−

i
⊗ τ(W(βi)

mi
)⊗ Im+

i
, Pη := IJ ⊗T+Bτ,η ⊗ IN ,

Pl,η := B
− 1

2
τ,η ⊗T+B

1

2
τ,η ⊗ IN , Pr,η = B

1

2
τ,η ⊗ IN ,

for some constant η > 0. It is clear that

Bτ,η =
2η

√
3

3
Bτ , (3.16)

Pη
η=

√
3/2

=====P, Pl,η
η=

√
3/2

=====Pl, Pr,η
η=

√
3/2

=====Pr.

13



When η =
√
3
2 , it holds Bτ,η = Bτ , Pη = P, Pl,η = Pl and Pr,η = Pr. In what follows,

we estimate an upper bound of κ2(P
−1
l,ηAP−1

r,η) in terms of η, and the upper bound achieves

minimal when η =
√
3
2 .

Theorem 7 Condition number of the preconditioned matrix P−1
l,ηAP−1

r,η is uniformly bounded,

i.e.,

sup
N,J

κ2(P
−1
l,ηAP−1

r,η) ≤ ν(η),

with

ν(η) :=

√

√

√

√

√

3max
{

1
2η , 2η, 1

}

min
{

1
2η ,

2η
3 , 1

} .

In particular, ν(
√
3/2) = min

η∈(0,+∞)
ν(η) = 3, i.e.,

sup
N,J

κ2(P
−1
l,ηAP−1

r,η)
η=

√
3/2

=====sup
N,J

κ2(P
−1
l AP−1

r ) ≤ ν(
√
3/2) = 3.

Proof: Denote Â = B
1

2 ⊗ IN +B− 1

2 ⊗T. Then, it is clear that

A = Â(B
1

2 ⊗ IN ),

(P−1
l,ηAP−1

r,η)(P
−1
l,ηAP−1

r,η)
T = P−1

l,η Â[(B
1

2 (Bτ,η)
−1B

1

2 )⊗ IN ]ÂTP−T
l,η .

By (3.16), we have B
1

2 (Bτ,η)
−1B

1

2 =
√
3

2η B
1

2 (Bτ )
−1B

1

2 , which together with Proposition 2(ii)

implies that
1

2η
IJ � B

1

2 (Bτ,η)
−1B

1

2 � 3

2η
IJ .

That means

1

2η
P−1

l,η ÂÂTP−T
l,η � (P−1

l,ηAP−1
r,η)(P

−1
l,ηAP−1

r,η)
T � 3

2η
P−1

l,η ÂÂTP−T
l,η . (3.17)

It thus remains to estimate Rayleigh quotient of P−1
l,η ÂÂTP−T

l,η . Let z ∈ R
JN×1 denote any

non-zero vector. Then,

zTP−1
l,η ÂÂTP−T

l,η z

zTz

y=P
−T

l,η
z

======
yTÂÂTy

yTPl,ηP
T
l,ηy

=
yT[B⊗ IN + IJ ⊗ (T+TT) +B−1 ⊗ (TTT)]y

yT[(Bτ,η)⊗ IN + IJ ⊗ (T+TT) + (Bτ,η)−1 ⊗ (TTT)]y
, (3.18)

By Lemma 6, we know that T+TT ≻ O. Since T is a lower triangular matrix with its diagonal

entries all equal to l
(α)
0 > 0, T is invertible and thus TTT ≻ O. That means the matrices
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appearing in the numerator and the denominator of right hand side of (3.18) are all positive

definite. Thus, Proposition 3 is applicable to estimating (3.18).

(3.16) and Proposition 2(i) imply that

O ≺ 1

2η
Bτ,η � B � 3

2η
Bτ,η. (3.19)

Hence,
1

2η
≤ yT(B⊗ IN )y

yT[(Bτ,η)⊗ IN ]y
≤ 3

2η
. (3.20)

Lemma 5 and (3.19) imply that

O ≺ 2η

3
B−1

τ,η � B−1 � 2ηB−1
τ,η .

By (3.16), Proposition 2(i) and Lemma 5,

2η

3
=

2η

3
× yT[(Bτ,η)

−1 ⊗ (TTT)]y

yT[(Bτ,η)−1 ⊗ (TTT)]y
≤ yT[B−1 ⊗ (TTT)]y

yT[(Bτ,η)−1 ⊗ (TTT)]y

≤ 2η × yT[(Bτ,η)
−1 ⊗ (TTT)]y

yT[(Bτ,η)−1 ⊗ (TTT)]y
= 2η. (3.21)

Applying Proposition 3 to (3.18), (3.20) and (3.21), we obtain that

min

{

1

2η
,
2η

3
, 1

}

≤
zTP−1

l,η ÂÂTP−T
l,η z

zTz
≤ max

{

1

2η
, 2η, 1

}

,

which together with (3.17) implies that

1

2η
min

{

1

2η
,
2η

3
, 1

}

INJ � (P−1
l,ηAP−1

r,η)(P
−1
l,ηAP−1

r,η)
T � 3

2η
max

{

1

2η
, 2η, 1

}

INJ . (3.22)

(3.22) implies that

κ2(P
−1
l,ηAP−1

r,η) ≤ ν(η).

ν(·) is a single-variable function. It is easy to check that

ν(
√
3/2) = min

η∈(0,+∞)
ν(η).

Recall that

P−1
l,ηAP−1

r,η
η=

√
3/2

=====sup
N,J

P−1
l AP−1

r .
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Hence, sup
N,J

κ2(P
−1
l AP−1

r ) ≤ ν(
√
3/2) = 3. The proof is completed.

Remark 2 Theorem shows that the upper bound ν(η) of condition number of κ2(P
−1
l,ηAP−1

r,η)

achieves minimum at η =
√
3
2 , which explains why we take a factor

√
3
2 in the definition of Bη

given in (3.5). Although Theorem 7 shows that P−1
l AP−1

r , numerical evidence in [21] shows

that P−1A is ill-conditioned. Then, Theorem 3 indicates that even for an ill-conditioned sys-

tem, one may have a good convergence rate estimation for Krylov subspace solver by relating

the ill-conditioned problem to a well-conditioned problem via their associated Krylov subspaces.

Hence, the significance of Theorem 3 is that it provides more flexibility for designing a precon-

ditioner and estimating the convergence rate of the Krylov subspace solver.

4 The Implementation

In this section, we propose a fast implementation of the Krylov subspace solver for solving

the preconditioned system (2.3). It suffices to implement the underlying matrix-vector product

efficiently to implement a Krylov subspace solver. In other words, we will discuss in this section

how to efficiently compute a matrix-vector product P−1Av for an arbitrarily given vector v.

In what follows, we discuss the fast computation of a matrix-vector product v̂ = P−1Av

for a given vector v ∈ R
NJ×1. The computation of v̂ can be divided into two steps.

Step 1 : Compute v̇ = Av, (4.1)

Step 2 : Compute v̂ = P−1v̇. (4.2)

In step (4.1), notice that v̇ = Av = (B ⊗ IN )v + (IJ ⊗T)v. It is clear that B and T are

both (multilevel) Toeplitz matrices. Hence, the computation of (4.1) requires O(JN log(JN))

flops.

To see the fast implementation of step (4.2), we will utilize a block diagonalization form of

P−1. By Equation (3.6) and Lemma 1, we know that

Bτ = SΛ̃S, Λ̃ =

√
3

2
Λ ≻ O. (4.3)

From the definition of S, we know that S is real symmetric and orthogonal, i.e., S−1 = ST = S.

By Equation (4.3) and (3.8), we know that

P−1 = (S⊗ IN )(IJ ⊗T+ Λ̃⊗ IN )−1(S⊗ IN ). (4.4)

Thus the matrix-vector product v̂ = P−1v̇ for a given vector v ∈ R
NJ×1 can be fast computed

as following stps,
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Step 2.1 : Compute v̈ = (S⊗ IN)v̇.

Step 2.2 : Compute
...
v = (IJ ⊗T+ Λ̃⊗ IN)−1v̈.

Step 2.3 : Compute v̂ = (S⊗ IN)
...
v .

Steps 2.1, 2.3 can be fast implemented by multi-dimension fast sine transform, which re-

quires O(NJ log J) operations. It remains to discuss the computation of step 2.2. Rewrite Λ̃

in (4.3) as

Λ̃ = diag(λ̃i)
J
i=1.

Clearly, λ̃i’s (i = 1, 2, ..., J) are all positive numbers. Then, from Step 2.2, we see that

...
v = blkdiag(T̃−1

i )Ji=1v̈, (4.5)

where

T̃i = T+ λ̃iIN , i = 1, 2, ..., J. (4.6)

These T̃i’s are invertible lower triangular Toeplitz (ILTT) matrices. [7] proposed a fast algo-

rithm for fast inversion of ILTT matrices. With the fast inversion algorithm proposed in [7],

step 2.2 can be fast computed within O(JN logN) flops. Summing over the operation cost for

steps 2.1–2.3, we see that the computation of (4.2) requires O(NJ log(NJ)) flops.

Summing up the above discussion, for a given vector v ∈ R
NJ×1, the matrix-vector product

P−1v can be fast computed within O(NJ log(NJ)) flops.

Remark 3 Recall the two-sided preconditioning matrix in (3.10). As proposed in [21, 37], the

matrix-vector product of the two-sided preconditioned matrix is computed by P−1
l (A(P−1

r v)).

Meanwhile, the matrix-vector product of our single-sided preconditioned matrix is computed

by P−1Av. It is easy to see that the computation of a matrix vector product associated with

P−1 = (S ⊗ IN)(IJ ⊗ T + Λ̃ ⊗ IN )−1(S ⊗ IN ) is slightly faster than that of P−1
l = (S ⊗

IN )(Λ̃− 1

2 ⊗T+Λ̃
1

2 ⊗IN)−1(S⊗IN), not to mention that the two-sided one requires an additional

matrix-vector product associated with P−1
r . Therefore, each matrix-vector product of our single-

sided preconditioning method requires less operations than that of the two-sided one. Moreover,

Theorem 3 shows that GMRES solver for the single-sided preconditioned system converges faster

than that for the two-sided one. That means our single-sided preconditioning method requires

less computational time in total than that of the two-sided one. Indeed, numerical results in

Section 5 show that our preconditioning method requires less computational than that of the

two-sided one in the actual numerical tests.
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5 Numerical examples

In this section, we test the performance of our proposed preconditioner. All numerical exper-

iments are carried out using Octave on an HP EliteDesk 800 G5 Small Form Factor PC with

Intel Core i5-8500 CPU @ 3.00GHz and 16GB RAM.

Numerical results for different discretization schemes presented in the Appendices are sim-

ilar. Hence, we only present the result associated with the spatial discretization scheme B.1 in

this section.

To demonstrate the effective of our proposed preconditioned GMRES solver, we will com-

pare its performance with the two-sided preconditioned GMRES solver proposed in [37] and

GMRES solver without preconditioner. We adopt the notations GMRES-OS, GMRES-TS and

GMRES-I to represent the GMRES solver with single-sided preconditioner (our proposed),

two-sided preconditioner [37] and no preconditioner, respectively.

In any case, the GMRES solver is implemented using the built-in functions in Octave. In

details, for all the experiments presented in this section, the initial guess of GMRES is set as

zero and its stopping criterion is set as ||rk||2 ≤ 10−10||r0||2, where rk denotes the residual

vector at kth GMRES iteration for k ≥ 1 and r0 denotes the initial residual vector. The

restarting number for GMRES is set as 20.

The computational time, denoted by ”CPU” in the tables below, is counted in unit of second

by the Octave built-in function tic/toc. The number of iterations of GMRES is denoted by

“Iter”. In any case, when the number of iterations of GMRES solver is over 10000, we stop

the GMRES iteration by hand and use the notation “–” to represent its CPU.

Define the measure of error as

Error := ||u∗ − uexact||∞,

where u∗ denotes some iterative solution of the linear system (2.3); uexaact denotes the values

of exact solution of the continuous problem (1.1) on the time-space grid. As the errors between

the exact solution and the numerical solutions by the three solvers are always roughly the same,

we only present “Error” of GMRES-OS in each table below.
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Example 1 Consider the equations (1.1) with

d = 2, T =1, Ω = (0, 1) × (0, 1), c1 = c2 = 1, ψ(x1, x2) ≡ 0,

f(x1, x2, t) =
tα+1

2 cos(β1π/2)











2
[

x2−β1

1 + (1− x1)
2−β1

]

Γ(3− β1)
−

12
[

x3−β1

1 + (1− x1)
3−β1

]

Γ(4− β1)

+
24

Γ(5− β1)

[

x4−β1

1 + (1− x1)
4−β1

]

)

x22(1− x2)
2

}

+
tα+1

2 cos(β2π/2)











2
[

x2−β2

2 + (1− x2)
2−β2

]

Γ(3− β2)
−

12
[

x3−β2

2 + (1− x2)
3−β2

]

Γ(4− β2)

+
24
[

x4−β2

2 + (1− x2)
4−β2

]

Γ(5− β2)



x21(1− x1)
2







+ Γ(α+ 2)tx21(1− x1)
2x22(1− x2)

2,

the exact solution of which is given by u(x, t) = tα+1x21(1− x1)
2x22(1− x2)

2.

Example 1 is discretized with N temporal grid points and M spatial grid points along

each spatial direction (i.e., M1 = M2 = M). Numerical results of GMRES solver with differ-

ent preconditioners for solving Example 1 are presented in Tables 1-2. As GMRES without

preconditioner is too time-consuming for Example 1, we skip the results of unpreconditioned

GMRES in Example 1. Tables 1-2 show that GMRES-OS and GMRES-TS have roughly the

same iteration numbers while the CPU cost of GMRES-OS is less than that of GMRES-TS.

The close iteration numbers of the two solvers demonstrates that GMRES-OS converges no

slower than GMRES-TS, which supports Theorem 3. Besides, each iteration of GMRES-OS

requires less flops than GMRES-TS, which leads to GMRES-OS costing less computational

time than GMRES-TS in total. It is also observed that the iteration numbers of GMRES-

OS and GMRES-TS changes slightly and are always small no matter how (α, β1, β), N and

M change. That demonstrates the effectiveness and robustness of preconditioning technique

based on τ -matrix approximation.
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Table 1: Numerical results of GMRES with different preconditioners for Example 1 with M =
129.

(α, β1, β2) N Error
GMRES-OS GMRES-TS

Iter CPU(s) Iter CPU(s)

(0.1,1.1,1.1)

26 3.01E-04 8 5.56 8 7.50

27 3.01E-04 8 12.64 8 15.11

28 3.01E-04 8 23.93 8 30.09

(0.1,1.1,1.5)

26 1.44E-04 8 5.55 8 7.49

27 1.44E-04 8 11.79 8 15.16

28 1.44E-04 8 22.33 8 30.39

(0.1,1.1,1.9)

26 9.37E-05 7 5.38 7 6.79

27 9.37E-05 7 10.86 7 13.92

28 9.37E-05 7 19.85 7 27.34

(0.1,1.5,1.5)

26 3.17E-05 8 5.59 8 7.46

27 3.17E-05 8 13.07 8 15.20

28 3.17E-05 8 24.44 8 30.28

(0.1,1.5,1.9)

26 1.26E-05 7 4.93 8 7.64

27 1.26E-05 7 9.98 8 15.25

28 1.26E-05 7 20.57 8 30.43

(0.1,1.9,1.9)

26 4.92E-07 6 4.40 6 6.12

27 4.92E-07 6 9.31 6 12.30

28 4.92E-07 6 18.84 6 24.70

(0.9,1.1,1.1)

26 2.69E-04 9 6.11 9 8.25

27 2.71E-04 9 13.10 9 16.67

28 2.72E-04 9 24.05 9 33.26

(0.9,1.1,1.5)

26 1.30E-04 9 6.74 9 8.19

27 1.31E-04 9 12.51 9 16.52

28 1.32E-04 9 24.16 9 33.13

(0.9,1.1,1.9)

26 8.64E-05 7 5.39 7 6.84

27 8.76E-05 7 10.00 7 13.70

28 8.81E-05 7 20.54 7 27.41

(0.9,1.5,1.5)

26 2.71E-05 8 6.21 9 8.26

27 2.85E-05 8 11.05 9 16.50

28 2.91E-05 8 22.40 9 33.20

(0.9,1.5,1.9)

26 1.02E-05 7 5.53 8 7.50

27 1.12E-05 7 10.10 8 15.16

28 1.17E-05 7 21.42 8 30.24

(0.9,1.9,1.9)

26 1.70E-06 6 4.85 6 6.06

27 7.92E-07 6 10.15 6 12.17

28 3.66E-07 6 18.58 6 32.07
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Table 2: Numerical results of GMRES with different preconditioners Example 1 with N = 128

(α, β1, β2) M − 1 Error
GMRES-OS GMRES-TS

Iter CPU(s) Iter CPU(s)

(0.1,1.1,1.1)

26 5.51E-04 7 2.78 8 4.00

27 3.01E-04 8 12.64 8 15.11

28 1.58E-04 8 45.01 9 72.18

(0.1,1.1,1.5)

26 2.70E-04 8 2.97 8 3.99

27 1.44E-04 8 11.79 8 15.16

28 7.41E-05 9 49.02 9 71.25

(0.1,1.1,1.9)

26 1.77E-04 6 2.88 7 3.68

27 9.37E-05 7 10.86 7 13.92

28 4.82E-05 7 40.48 8 65.40

(0.1,1.5,1.5)

26 6.10E-05 7 2.47 8 4.03

27 3.17E-05 8 13.07 8 15.20

28 1.61E-05 8 44.42 9 72.30

(0.1,1.5,1.9)

26 2.36E-05 7 2.48 7 3.66

27 1.26E-05 7 9.98 8 15.25

28 6.53E-06 8 44.21 8 65.26

(0.1,1.9,1.9)

26 6.77E-07 6 2.47 6 3.28

27 4.92E-07 6 9.31 6 12.30

28 4.14E-07 6 35.68 6 56.09

(0.9,1.1,1.1)

26 5.01E-04 8 2.71 8 3.98

27 2.71E-04 9 13.10 9 16.67

28 1.41E-04 9 53.91 9 72.10

(0.9,1.1,1.5)

26 2.49E-04 8 2.75 9 4.38

27 1.31E-04 9 12.51 9 16.52

28 6.68E-05 9 50.40 9 75.11

(0.9,1.1,1.9)

26 1.67E-04 7 2.52 7 3.56

27 8.76E-05 7 10.00 7 13.70

28 4.45E-05 8 46.76 8 65.37

(0.9,1.5,1.5)

26 5.61E-05 8 2.71 9 4.38

27 2.85E-05 8 11.05 9 16.50

28 1.39E-05 9 49.60 9 69.97

(0.9,1.5,1.9)

26 2.17E-05 7 2.46 8 4.01

27 1.12E-05 7 10.10 8 15.16

28 5.34E-06 8 48.87 8 64.59

(0.9,1.9,1.9)

26 1.03E-06 6 2.21 6 3.21

27 7.92E-07 6 10.15 6 12.17

28 3.68E-07 6 39.97 6 51.83
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6 Conclusion

This paper proposes a single-sided preconditioning method based on τ -matrix approximation

for a block triangular Toeplitz linear system arising from all-at-once of a non-local evolutionary

equation with weakly singular kernels. Theoretically, we proved that the GMRES solver for

the single-sided preconditioned system converges no slower than that for a auxiliary well-

conditioned two-sided preconditioned system. Fast implementation is proposed for the matrix-

vector multiplications associated with the preconditioned matrix. The theoretical results and

the fast implementation are valid for several spatial discretization schemes. Numerical results

reported have shown the efficiency and robustness of the proposed preconditioning technique.
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Appendices

In the appendix, we verify {wk}(β)k≥0 arising from spatial discretization schemes in the literature,

which satisfy Property 1.

A Verification of {wk}(β)k≥0 arising from [4]

{wk}(β)k≥0 arising from [4] is defined by

w
(β)
0 =

Γ(β + 1)

Γ(β/2 + 1)2
, w

(β)
k+1 =

(

1− β + 1

β/2 + k + 1

)

w
(β)
k , k ≥ 0. (A.1)
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As Γ(z) > 0 for z > 0 and β ∈ (1, 2), it is clear that w
(β)
0 = Γ(β+1)

Γ(β/2+1)2
> 0 and that

w
(β)
1 =

(

1− β + 1

β/2 + 1

)

w
(β)
0 =

( −β
β + 2

)

w
(β)
0 < 0.

Notice that 1 − β+1
β/2+k+1 = 2k−β

2k+β+2 > 0 for k ≥ 1. Therefore, it is trivial to see by induction

that

w
(β)
k+1 =

(

1− β + 1

β/2 + k + 1

)

w
(β)
k < 0, k ≥ 1.

Hence, Property 1(i) is valid. Moreover, 1− β+1
β/2+k+1 = 2k−β

2k+β+2 ∈ (0, 1) for k ≥ 1,

|w(β)
k+1| =

∣

∣

∣

∣

(

1− β + 1

β/2 + k + 1

)

w
(β)
k

∣

∣

∣

∣

=

∣

∣

∣

∣

2k − β

2k + β + 2

∣

∣

∣

∣

|w(β)
k | < |w(β)

k |, k ≥ 1,

which combined with w
(β)
k < 0 for k ≥ 1 implies that w

(β)
k < w

(β)
k+1 for k ≥ 1. In other words,

Property 1(iii) is valid.

It is indicated in [4] that 2
∞
∑

k=1

|w(β)
k | = w

(β)
0 , which together with w

(β)
k < 0 for k ≥ 1 implies

that

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k = −2

∞
∑

k=1

w
(β)
k + 2

m−1
∑

k=1

w
(β)
k = −2

∞
∑

k=m

w
(β)
k = 2

∞
∑

k=m

|w(β)
k |, m ≥ 1

It is also shown in [4] that |w(β)
k | = O((k + 1)−β−1), which means

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k = 2

∞
∑

k=m

|w(β)
k |

&

∞
∑

k=m

1

(k + 1)β+1
≥
∫ ∞

m

1

(1 + x)1+β
dx =

1

β(1 +m)β
, m ≥ 1.

Hence,

(m+ 1)β

(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

&
1

β
> 0, m ≥ 1.

Therefore,

inf
m≥1

(m+ 1)β

(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

> 0,

which means Property 1(ii) is valid.
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B Verification of {w(β)
k }∞k=0 arising from [26]

{w(β)
k }∞k=0 arising from [25] is defined by

w
(β)
k = γβw̃

(β)
k , k ≥ 0, γβ =

−1

2 cos(βπ/2)
> 0, (B.1)

w̃
(β)
k = 2g

(β)
1 , w̃

(β)
1 = g

(β)
0 + g

(β)
2 , w̃

(β)
k = g

(β)
k+1, k ≥ 2,

g
(β)
0 = −1, g

(β)
k+1 =

(

1− β + 1

k + 1

)

g
(β)
k , k ≥ 0.

Property 1(i), (iii) of {w(β)
k }∞k=0 defined in (B.1) has been verified in [14, Lemma 4.1].

It thus remains to verify Property 1(ii). By [20, Lemma 8], it holds

∞
∑

k=0

g
(β)
k = 0. (B.2)

Therefore,

w
(β)
0 + 2

∞
∑

k=1

w
(β)
k = γβ

(

w̃
(β)
0 + 2

∞
∑

k=1

w̃
(β)
k

)

= γβ

[

2g
(β)
1 + 2(g

(β)
0 + g

(β)
2 ) + 2

∞
∑

k=2

g
(β)
k+1

]

= 2γβ

∞
∑

k=0

g
(β)
k = 0,

which together with Property 1(i) implies that

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k = −2

∞
∑

k=1

w
(β)
k + 2

m−1
∑

k=1

w
(β)
k = −2

∞
∑

m

w
(β)
k = 2

∞
∑

k=m

|w(β)
k |.

It is shown in [25] that g
(β)
k = O((k + 1)−β−1) for k ≥ 0, Therefore, |w(β)

k | = O((k + 1)−β−1),

which means

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k = 2

∞
∑

k=m

|w(β)
k |

&

∞
∑

k=m

1

(k + 1)β+1
≥
∫ ∞

m

1

(1 + x)1+β
dx =

1

β(1 +m)β
, m ≥ 1.
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Hence,

(m+ 1)β

(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

&
1

β
> 0, m ≥ 1.

Therefore,

inf
m≥1

(m+ 1)β

(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

> 0.

Thus, Property 1(ii) of {w(β)
k }∞k=0 defined in (B.1) is valid.

C Verification of {w(β)
k }∞k=0 arising from [29]

{w(β)
k }∞k=0 arising from [29] is defined by

w
(β)
k = γ̂βŵ

(β)
k , k ≥ 0, γ̂β =

−1

2 cos(βπ/2)Γ(4 − β)
> 0, (C.1)

ŵ
(β)
0 = 2p

(β)
1 , ŵ

(β)
1 = p

(β)
0 + p

(β)
2 , ŵ

(β)
k = p

(β)
k+1, k ≥ 2,

p
(β)
0 = −1, p

(β)
1 = 4− 23−β , p

(β)
2 = −33−β + 4× 23−β − 6,

p
(β)
k = −(k + 1)3−β + 4k3−β − 6(k − 1)3−β + 4(k − 2)3−β − (k − 3)3−β , k ≥ 3.

It is easy to see that w
(β)
0 = γ̂βŵ

(β)
0 = 2γ̂βp

(β)
1 > 0 and that

w
(β)
1 = γ̂β(p

(β)
0 + p

(β)
2 ) = γ̂β(−33−β + 4× 23−β − 7) < 0, β ∈ (1, 2).

Moreover, it is shown in [29, Lemma 4] that p
(β)
k ≤ 0 for k ≥ 3. Then, w

(β)
k = γ̂βŵ

(β)
k =

γ̂βp
(β)
k+1 ≤ 0 for k ≥ 2. So far, Property 1(i) of {w(β)

k }∞k=0 defined in (C.1) is shown to be valid.

Notice that

ŵ
(β)
1 − ŵ

(β)
2 = p

(β)
0 + p

(β)
2 − p

(β)
3

= 43−β − 5× 33−β + 10× 23−β − 11 ≤ 0, β ∈ (1, 2).

In other words, w
(β)
1 = γ̂βŵ

(β)
1 ≤ γ̂βŵ

(β)
2 = w

(β)
2 . Moreover, it is shown in [29, Lemma 4] that

p
(β)
k ≤ p

(β)
k+1 for k ≥ 3. Thus, w

(β)
k = γ̂βp

(β)
k+1 ≤ γ̂βp

(β)
k+3 = w

(β)
k+1 for k ≥ 2, which means Property

1(iii) of {w(β)
k }∞k=0 defined in (C.1) is valid.

It thus remains to verify Property 1(ii). By [29, Lemma 4], it holds

∞
∑

k=0

p
(β)
k = 0. (C.2)
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Therefore,

w
(β)
0 + 2

∞
∑

k=1

w
(β)
k = γ̂β

(

ŵ
(β)
0 + 2

∞
∑

k=1

ŵ
(β)
k

)

= γ̂β

[

2p
(β)
1 + 2(p

(β)
0 + p

(β)
2 ) + 2

∞
∑

k=2

p
(β)
k+1

]

= 2γ̂β

∞
∑

k=0

p
(β)
k = 0,

which together with Property 1(i) implies that

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k = −2

∞
∑

k=1

w
(β)
k + 2

m−1
∑

k=1

w
(β)
k = −2

∞
∑

m

w
(β)
k = 2

∞
∑

k=m

|w(β)
k |

It is shown in [20] that p
(β)
k = O((k + 1)−β−1) for k ≥ 0, Therefore, |w(β)

k | = O((k + 1)−β−1),

which means

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k = 2

∞
∑

k=m

|w(β)
k |

&

∞
∑

k=m

1

(k + 1)β+1
≥
∫ ∞

m

1

(1 + x)1+β
dx =

1

β(1 +m)β
, m ≥ 1.

Hence,

(m+ 1)β

(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

&
1

β
> 0, m ≥ 1.

Therefore,

inf
m≥1

(m+ 1)β

(

w
(β)
0 + 2

m−1
∑

k=1

w
(β)
k

)

> 0.

Thus, Property 1(ii) of {w(β)
k }∞k=0 defined in (C.1) is valid.
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