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Abstract. We consider perturbations of the one-dimensional cubic Schrödinger
equation, of the form i ∂tψ + ∂2

xψ + |ψ|2ψ + g(|ψ|2)ψ = 0. Under hypotheses
on the function g that can be easily verified in some cases (such as g(s) = sσ

with σ > 1), we show that the linearized problem around a small solitary wave
presents a unique internal mode. Moreover, under an additional hypothesis (the
Fermi golden rule) that can also be verified in the case of powers g(s) = sσ, we
prove the asymptotic stability of the solitary waves with small frequencies.

a

a

1 Introduction
We consider the non-linear Schrödinger equation

i ∂tψ + ∂2
xψ + |ψ|2ψ + g(|ψ|2)ψ = 0, (t , x) ∈ R × R, (1)

which is a perturbation of the cubic NLS equation i ∂tψ + ∂2
xψ + |ψ|2ψ = 0. Here, g : R+ → R is a function

so that the term g(|ψ|2)ψ is small compared to |ψ|2ψ for |ψ| small. We refer to [19] or [10] for the physical
interest of such equations; it is a classical and important matter to perturb the Schrödinger equation near the
cubic non-linearity, and here we study the semi-linear perturbations of that equation.

The corresponding Cauchy problem is globally well-posed in the energy space H1(R) (see for example [1]).
We recall that, for any solution ψ ∈ H1(R), as long as it exists, the mass, momentum and energy are conserved:∫

R
|ψ|2, Im

∫
R
ψ ∂yψ,

∫
R

(
1
2 |∂xψ|2 − |ψ|4

4 − G(|ψ|2)
2

)
,

where G(s) :=
∫ s

0 g. We also recall the Galilean transform, translation and phase invariances of this equation:
if ψ(t , x) is a solution then, for any β, σ, γ ∈ R, ψ̃(t , x) = ei(βx−β2t+γ)ψ(t , x− 2βt− σ) is also a solution to the
same equation.

Solitary waves are solutions of (1) which take the form ψ(t , x) = eiωtϕω(x) where

ϕ′′
ω = ωϕω − ϕ3

ω − ϕωg(ϕ2
ω). (2)

Below we introduce the first elementary hypothesis:

(H1) : g ∈ C 5((0 ,+∞)) ∩ C 1([0 ,+∞)) , g(k)(s) =
s→0

o
(
s1−k) for all k ∈ {0 , 1 , 2 , 3 , 4},

g(5)(s) =
s→0

O
(
s−4) and g ̸≡ 0 near 0.
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In [20] it is proven that, assuming hypothesis (H1) holds and provided ω > 0 is small enough, the equation (2)
has a unique solution ϕω ∈ H1(R) that is nonnegative and even. The invariances previously described generate
a family of traveling waves given by ψ(t , x) = ei(βx−β2t+ωt+γ)ϕω(x − 2βt − σ). To begin with, we recall the
following standard orbital stability result (see [2], [8], [9], [24]).

Proposition 1. For ω0 small enough and any ϵ > 0, there exists δ > 0 so that, for any ψ0 ∈ H1(R) satisfying
||ψ0 − ϕω0 ||H1(R) ⩽ δ, if ψ is the solution of (1) with initial data ψ(0) = ψ0, then

sup
t∈R

inf
(γ,σ)∈R2

||ψ(t , · + σ) − eiγϕω0 ||H1(R) ⩽ ϵ.

The present paper establishes a result of asymptotic stability of small solitary waves for the equation (1), un-
der hypotheses that will be presented further. A vast literature deals with the asymptotic stability of solitary
waves for nonlinear Schrödinger equations, in different cases (various nonlinearities, with or without potential,
in different dimensions), see for example [5], [6], [7], [17] and the review [14].

Depending on the function g, (1) may (or may not) involve internal modes, that is to say, non-trivial solu-
tions (V1 ,V2 , λ) ∈ H2(R)2 × R to the system{

L+V1 = λV2
L−V2 = λV2

(3)

where L+ = −∂2
x +ω− 3ϕ2

ω − g(ϕ2
ω) − 2ϕ2

ωg
′(ϕ2

ω) and L− = −∂2
x +ω−ϕ2

ω − g(ϕ2
ω) are the operators that appear

when we linearize (1) around eiωtϕω. The existence of internal modes generates time-periodic solutions to the
linearized equation around the solitary wave, which constitute potential obstacles to the asymptotic stability
of solitons. As examples, g(s) = −s2 is a case without internal mode (see [17]) while g(s) = s2 is a case with
an internal mode (see [19] and [16]). In the case g = 0 (integrable case), there is a resonance (see [3]), which
justifies why we ask for g ̸≡ 0 in hypothesis (H1). Thus the sign of the perturbation determines whether there
exists an internal mode or not; see [3], [4] and [19] for related discussions.

A general analysis of the case without internal mode as been conducted in [20]: under a certain hypothesis
on the function g, it is shown that there is no internal mode and that asymptotic stability holds (see Theorems
1 and 2 in [20]). This hypothesis encompasses in particular the case g(s) = −sσ with σ > 1. In this paper we
prove that, for g(s) = sσ with σ > 1, just like g(s) = s2, there exists a unique internal mode and that, despite
this internal mode, asymptotic stability holds. We introduce the following hypothesis, that we will comment
later on:

(H2) : lim
ω→0

1
ε2
ω

√
ω

∫
R
B(ϕ2

ω) dx = +∞,

where B(s) := −3g(s) + sg′(s) + 4G(s)
s

and εω := max
0⩽k⩽4

sup
0⩽s⩽3ω

|sk−1g(k)(s)|.

In the definition of εω, 3ω can be replaced by 2+ω where 2+ is any constant strictly greater than 2. Note that
hypothesis (H1) implies that εω → 0 as ω → 0. We shall prove that hypotheses (H1) and (H2) are enough to
ensure the existence of a unique internal mode.

Theorem 1. Assume that hypotheses (H1) and (H2) hold. Then, for ω > 0 small enough, the system (3)
has a solution (V1 ,V2 , ωλ) ∈ H2(R)2 × [0 ,+∞) where (V1 ,V2) ̸= (0 , 0) and λ → 1− as ω → 0. Moreover,
the only solutions (Ṽ1 , Ṽ2 , ωλ̃) ∈ H2(R)2 × [0 ,+∞) of the system (3) are:

• (0 , 0 , µ) for any µ ⩾ 0,

• (aϕ′
ω , bϕω , 0) for any a, b ∈ R,

• (cV1 , cV2 , ωλ) for any c ∈ R.

Remark 1. Properties and estimates of this internal mode (V1 ,V2) can be found in Proposition 2 in section 2
(for their rescaled counterparts (V1 , V2), which will be introduced at the beginning of section 2).

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 2



Remark 2. As in [20], we can easily check that hypotheses (H1) and (H2) hold in the case g(s) = sσ with
σ > 1. Indeed, we have B(s) = (σ−1)2

σ+1 sσ, εω = Cσω
σ−1 and ϕω(x) ⩾ c

√
ωe−

√
ω|x|, with Cσ > 0 and c > 0

constants that do no depend on ω. Therefore

1
ε2
ω

√
ω

∫
R
B(ϕ2

ω) dx = Cσ(σ − 1)2

σ + 1 ω
3
2 −2σ

∫
R
ϕ2σ
ω ⩾ C̃σω

1−σ −→
ω→0+

+∞,

which proves that (H2) holds in this case. As in [20], (H2) still holds in the case g(s) = a1s
σ1 + · · · + aNs

σN

with 1 < σ1 < · · · < σN , a1 > 0 and ai ∈ R for i ⩾ 2.

Remark 3. The hypothesis (H2) echoes to the hypothesis (H2) in [20]. We sum up both cases with the
notation of the present paper as follows:

• if 1
ε2

ω

√
ω

∫
R B(ϕ2

ω) dx −→
ω→0

−∞, then we are in the situation considered in [20], there is no internal mode
and the asymptotic stability result holds for small ω;

• if 1
ε2

ω

√
ω

∫
R B(ϕ2

ω) dx −→
ω→0

+∞, then we are in the situation of the present paper and there exists a unique
internal mode (see Theorem 1).

The fact that the same integral appears in both cases is natural. Indeed, the construction of the inter-
nal mode (or the proof of the absence of internal modes in [20]) relies on a factorisation introduced in [17]:
S2L+L− = M+M−S2, where S = ϕω · ∂x · ϕ−1

ω and M± = −∂2
x + ω + a±

ω , with a+
ω = g(ϕ2

ω) − 2G(ϕ2
ω)

ϕ2
ω

and

a−
ω = 5g(ϕ2

ω)−6G(ϕ2
ω)

ϕ2
ω

−2ϕ2
ωg

′(ϕ2
ω). The analysis of the internal mode (or the absence of internal modes) involves

the integral
∫
R(a+

ω +a−
ω ), which is precisely the integral involved in the hypothesis (H2) since B(ϕ2

ω) = −a+
ω +a−

ω

2 .
The arguments linking the existence of an internal mode to the sign of this integral come from [21] and [18].
Roughly, if this integral is positive in some sense (case of [20]), we have an hypothesis of repulsivity: there is no
internal mode, we can directly use virial arguments on the transformed problem that involves (M− ,M+) and
establish the asymptotic stability that way. On the other hand, if this integral is negative in some sense (case
of the present paper), we do not have repulsivity on the potentials of (M− ,M+): there is an internal mode
and we need a second factorisation in order to end up with a repulsive potential and use virial arguments to
prove the asymptotic stability. This second factorisation will be displayed in section 2 below (Lemma 2).

The internal mode will be constructed and studied in the section 2 below, and in particular in Proposition
2. Its understanding is the first one of the two key ingredients of the proof for the asymptotic stability of the
small solitons. The second key ingredient is the Fermi golden rule, which aims at proving that the internal
mode component of the solution is nonlinearly damped. The approach here is inspired by [11], [12] and [16].
The idea is that, in the proof, it is crucial that a certain constant does not vanish. This is rigorously checked
in [16] for the cubic-quintic case g(s) = s2.

To introduce the Fermi golden rule hypothesis, we need some quantities which may appear cryptic for the
moment, but they will be explained and related to the proof of the asymptotic stability in sections 5 and 6. In
section 5 we will show that there exist g1 and g2 non-trivial bounded even solutions of{

L+g1 = 2ωλg2
L−g2 = 2ωλg1,

where λ is the eigenvalue introduced in Theorem 1. Now we introduce

G1 = V2
1ϕω(3 + 3g′(ϕ2

ω) + 2ϕ2
ωg

′′(ϕ2
ω)) − V2

2ϕω(1 + g′(ϕ2
ω)) and G2 = 2V1V2ϕω(1 + g′(ϕ2

ω)),

where ⟨·, ·⟩ denotes the scalar product in L2(R). The Fermi golden rule hypothesis we will need is the following:

(H3) : there exists a positive quantity FGR(ω0) depending only on ω0 such that,

|ω − ω0| ⩽ ω0
2 =⇒

∫
R (G1g1 + G2g2) ⩾ FGR(ω0) > 0.

Note that FGR(0) = 0 (integrable case). Combining the hypotheses (H2) - the control of the internal mode -
and (H3) - the Fermi golden rule -, we are able to prove an asymptotic stability result.

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 3



Theorem 2. Assume that hypotheses (H1) and (H2) hold. Assume that the Fermi golden rule hypothesis
(H3) also holds. Then, for ω0 > 0 small enough, there exists δ > 0 with the following property: for any
even function ψ0 ∈ H1(R) with ||ψ0 −ϕω0 ||H1(R) < δ, there exist two C 1 functions ω : [0 ,+∞) →

[
ω0
2 , 3ω0

2
]

and γ : [0 ,+∞) → R such that, if ψ denotes the solution of (1) with initial data ψ(0) = ψ0, then, for any
bounded interval I ⊂ R,

lim
t→+∞

||ψ(t) − eiγ(t)ϕω(t)||L∞(I) = 0.

Remark 4. As it is pointed out in [16], the symmetry assumption in Theorem 2 is technical, in the sense that
it simplifies the proof, but no deep additional difficulty is expected in the non symmetric case.

Remark 5. Contrary to the cubic-quintic case in [16], we cannot prove here, without losing generality, that
ω(t) converges as t → +∞. However, we have ω̇(t) → 0 as t → +∞. Moreover, it could be shown that, for any
η > 0, δ > 0 may be chosen small enough so that ω(t) ∈ [ω0 − η , ω0 + η].

As it will be shown in section 5, although hypothesis (H3) may appear difficult to check in general, it can
be numerically verified for g(s) = sσ, where σ > 1. Henceforth, the asymptotic stability result holds for such
cases, since all three hypotheses (H1), (H2) and (H3) are verified.

The layout of this paper is globally adapted from [16] and [20]. As said previously, the key arguments are
the understanding of the internal mode and the Fermi golden rule. Once these two points studied, the rest
of the proof is almost unchanged from [16] and [20]. In section 2, we construct the internal mode and its
properties. Using the identity S2L+L− = M+M−S2 mentioned above, we first construct the internal mode for
(M+ ,M−) then come back to (L+ ,L−). We then introduce the second factorisation that will lead further to
the second transformed problem, based on a new differential operator K. Finally we prove a sort of coercivity
property on the operator K, and the uniqueness of the internal mode. In section 3, we introduce the rescaled
modulation decomposition of the solution, a standard decomposition for stability arguments, and in particular
we introduce the internal mode component of the solutions (that will be denoted b). In section 4, we prove
a first virial argument directly on the solution, without transformation of the linearized operators. In section
5, we study the second key point of the proof: the Fermi golden rule. We will explain how hypothesis (H3)
can be explicitly checked for g(s) = sσ with σ > 1 using simple numerical computations. In section 6, we
control the internal mode component of the solution: more precisely, we control

∫ s
0 |b|4. This is the estimate

that requires the Fermi golden rule. In section 7, we introduce the setting of the double transformed problem
and technical results related to it; in section 8, we prove coercivity results that will enable us to go back from
the transformed problem to the original problem. In section 9, we prove the second virial argument, on the
transformed problem this time. Gathering all previous results, in section 10 we finally prove the Theorem 1,
assuming all three hypotheses (H1), (H2) and (H3) hold.

In all the remainder of this paper, assume hypothesis (H1) holds.

The letters u, v, w and z will denote complex-valued functions; we will index by 1 their real part and by
2 their imaginary part. The L2 scalar product will be denoted by ⟨u , v⟩ = Re

(∫
R uv dx

)
and the L2 norm by

|| · ||. The H1 norm will be denoted by || · ||H1(R). The scalar product in RN will be denoted by ·. Lastly, the
letter C will denote various positive constants whose expression change from one line to another. The concerned
constants do not depend on the parameters ω0, ϵ, θ, ϑ, A and B (that will be introduced in sections 3, 4 and
7, except in the proof of Proposition 5 and in section 10, when some of these parameters are already fixed.

This paper is the result of many discussions with Yvan Martel. The motivation of this paper and its proof
are inspired by his paper [16]. May he be warmly thanked for it here.

2 Construction of the internal mode
2.1 Properties of the solitons
We begin by recalling some properties of the solitons, and proving another estimate that we will need further.
But first, and until the end of this paper, let us rescale the solitons: ϕω(x) =

√
ωQω(

√
ω x). We denote

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 4



2.1 Properties of the solitons

y = x/
√
ω the rescaled variable. Now Qω is solution of the equation

Q′′
ω = Qω −Q3

ω − g(ωQ2
ω)

ω
Qω (4)

Integrating this equation, we find the following relation which will be useful:

(Q′
ω)2 = Q2

ω − 1
2Q

4
ω − G(ωQ2

ω)
ω2 . (5)

From [20] we recall the following estimates: for ω > 0 small enough, for any k ⩾ 0 there exists positive constants
ck and Ck such that cke−|y| ⩽ |Q(k)

ω (y)| ⩽ Cke
−|y| for all y ∈ R. We also recall that, for ω > 0 small enough,∣∣∣∣g(ωQ2

ω)
ω

∣∣∣∣+
∣∣∣∣G(ωQ2

ω)
ω2Q2

ω

∣∣∣∣+
∣∣Q2

ωg
′(ωQ2

ω)
∣∣+ |ωQ4

ωg
′′(ωQ2

ω)| ⩽ CεωQ
2
ω ⩽ Cεωe

−2|y|.

These quantities are involved in the linearized operators we will have to deal with. Indeed, linearizing the
equation (1) and rescaling, we obtain the operators

L+ = −∂2
y + 1 − 3Q2

ω − g(ωQ2
ω)

ω
− 2Q2

ωg
′(ωQ2

ω)

and L− = −∂2
y + 1 −Q2

ω − g(ωQ2
ω)

ω
.

Spectral properties of the operators L+ and L− can be found in [23]. Let S = Qω ·∂y · 1
Qω

and S∗ = − 1
Qω

·∂y ·Qω.
We recall from [20] the relation S2L+L− = M+M−S

2 with M± = −∂2
y + 1 + a±

ω , where

a+
ω = g(ωQ2

ω)
ω

− 2G(ωQ2
ω)

ω2Q2
ω

and a−
ω = 5g(ωQ2

ω)
ω2Q2

ω

− 6G(ωQ2
ω)

ω2Q2
ω

− 2Q2
ωg

′(ωQ2
ω).

The previous bound shows the following crucial estimate: for ω > 0 small enough and all y ∈ R,

|a±
ω (y)| ⩽ CεωQ

2
ω(y) ⩽ Cεωe

−2|y|. (6)

We simply write Q := Q0, solution of Q′′ = Q − Q3. We can write Qω as an expansion of Q in the following
sense.

Lemma 1. Assume that hypothesis (H1) holds. Let Dω := Qω − Q. For ω > 0 small enough and any
k ∈ {0 , ... , 6},

∀y ∈ R, |D(k)
ω (y)| ⩽ Cεωe

−|y|.

Proof. This proof is an adaptation of the proof of Lemma 4 in [20]. We compute D′′
ω = Dω −Dω(Q2

ω +QQω +
Q2) − g(ωQ2

ω)
ω Qω. Defining L0

+ = −∂2
y + 1 − 3Q2, the equation satisfied by Dω can be rewritten as

L0
+Dω = Dω(Q2

ω +QQω − 2Q2) + g(ωQ2
ω)

ω
Qω

= D2
ω(Qω + 2Q) + g(ωQ2

ω)
ω

Qω.

We know (see [3]) that L0
+ has only one negative eigenvalue: −3, associated with the eigenfunction Q2. It is

also known that the kernel of L0
+ is generated by Q′. We recall the following spectral inequality from [22]: there

exists positive constants c1, c2, c3 such that

⟨L0
+Dω , Dω⟩ ⩾ c1||Dω||2H1 − c2|⟨Dω , Q

2⟩|2 − c3|⟨Dω , Q
′⟩|2.

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 5



2.1 Properties of the solitons

Here, Dω is even and Q′ is odd, thus ⟨Dω , Q
′⟩ = 0. In order to estimate the other terms, we recall the following

result from Lemma 2 in [20]: for any δ > 0, for ω > 0 small enough we have |Dω(y)| ⩽ δe−|y|. Let δ ∈ (0 , 1),
to be fixed later. This implies that ||Dω||∞ ⩽ δ and ||Dω||2 ⩽ δ2 ⩽ δ. First,

∣∣⟨(Qω + 2Q)D2
ω , Dω⟩

∣∣ =
∣∣∣∣∫

R
(Qω + 2Q)D3

ω

∣∣∣∣ ⩽ Cδ||Dω||2.

Second, ∣∣∣∣〈g(ωQ2
ω)

ω
Qω , Dω

〉∣∣∣∣ ⩽ Cεω

∫
R
Q2
ωDω ⩽ Cεω||Q2

ω|| ||Dω|| ⩽ Cεω||Dω||.

Hence, |⟨L0
+Dω , Dω⟩| ⩽ C(εω||Dω|| + δ||Dω||2). Now, let us estimate the projection ⟨Dω , Q

2⟩. Using the facts
that L0

+Q
2 = −3Q2 and that L0

+ is self-adjoint, we write that

|⟨Dω , Q
2⟩| = 1

3 |⟨Dω ,−3Q2⟩| = 1
3 |⟨Dω , L

0
+Q

2⟩| = C|⟨L0
+Dω , Q

2⟩|

⩽ C

(∣∣〈(Qω + 2Q)D2
ω , Q

2〉∣∣+
∣∣∣∣〈g(ωQ2

ω)
ω

Qω , Q
2
〉∣∣∣∣)

where ∣∣〈(Qω + 2Q)D2
ω , Q

2〉∣∣ =
∫
R
(Qω + 2Q)Q2D2

ω ⩽ C||Dω||2

and
∣∣∣∣〈g(ωQ2

ω)
ω

Qω , Q
2
〉∣∣∣∣ =

∣∣∣∣∫
R

g(ωQ2
ω)

ω
QωQ

2
∣∣∣∣ ⩽ Cεω.

Thus, |⟨Dω , Q
2⟩|2 ⩽ C(||Dω||2 + εω)2 ⩽ C(ε2

ω + εω||Dω||2 + δ||Dω||2). Using the spectral inequality, we find
that

||Dω||2 ⩽ ||Dω||2H1 ⩽ C
(
|⟨L0

+Dω , Dω⟩| + |⟨Dω , Q
2⟩|
)
⩽ C(εω + δ)||Dω||2 + Cεω||Dω|| + Cε2

ω.

Recalling that all the letters C refer to constant that do not depend on ω, we fix δ ∈ (0 , 1) such that Cδ < 1
4 .

Then we take ω > 0 small enough such that Cεω < 1
4 and |Dω(y)| ⩽ δe−|y|. We get

1
2 ||Dω||2 − Cεω||Dω|| − Cε2

ω ⩽ (1 − Cεω − Cδ) ||Dω||2 − Cεω||Dω|| − Cε2
ω ⩽ 0

thus ||Dω||2 − Cεω||Dω|| − Cε2
ω ⩽ 0.

The only positive root of the polynomial X2 − CεωX − Cε2
ω is Cεω (where C is a different positive constant),

thus we obtain ||Dω|| ⩽ Cεω. This leads to

||Dω||2H1 ⩽ C(εω + δ)||Dω||2 + Cεω||Dω|| + Cε2
ω ⩽ Cε2

ω

and then, using Sobolev’s inequality, ||Dω||∞ ⩽ C||Dω||H1 ⩽ Cεω.

By the variation of the constants, we find the following expressions of Dω and D′
ω: for y > 0,

Dω(y) = e−y

2

(
Dω(0) −

∫ +∞
0 Zω(z)ez dz

)
− ey

2
∫ +∞
y

Zω(z)e−z dz + e−y

2
∫ +∞
y

Zω(z)ez dz

and D′
ω(y) = e−y

2

(∫ +∞
0 Zω(z)ez dz −Dω(0)

)
− ey

2
∫ +∞
y

Zω(z)e−z dz − e−y

2
∫ +∞
y

Zω(z)ez dz,

where Zω := −Dω(Q2
ω + QQω + Q2) − g(ωQ2

ω)
ω Qω. This expression is established as in the proof of Lemma

2 in [20]. Using the estimate |Dω| ⩽ Cεω, we find that |Zω(z)| ⩽ Cεωe
−2z for z > 0, then it leads to

|Dω(y)| + |Dω(y)| ⩽ Cεωe
−y. Using the equation D′′

ω = Dω + Zω and the fact that Dω is even, we conclude
that |D(k)

ω (y)| ⩽ Cεωe
−|y| for any y ∈ R and any k ∈ {0 , ... , 6}.

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 6



2.2 The internal mode

2.2 The internal mode
The spectral problem we study here, whose solutions are called internal modes, is{

L+V1 = λV2
L−V2 = λV1

(7)

with an eigenvalue λ close to 1. Let us observe, as in [16], that an equivalent system is{
M+W1 = λW2
M−W2 = λW1.

(8)

Indeed, if (8) is satisfied by (W1 ,W2), then (7) is satisfied by V1 = (S∗)2W1 and V2 = λ−1L+V1.

We introduce the following notation that will be used throughout the entire article:

Iω = −
∫
R
(a+
ω + a−

ω )(y) dy and ϱω = ε2
ω

Iω
.

The second hypothesis (H2) is equivalent to:
1
ϱω

= Iω
ε2
ω

−→
ω→0

+∞.

Thus, hypothesis (H2) implies in particular that Iω > 0 for ω > 0 small enough. It also implies that ϱω → 0 as
ω → 0. These assumptions are crucial in what follows. We also notice that Iω ⩽ Cεω and thus εω ⩽ Cϱω.

The main technical result that will enable to prove the existence of an internal mode is the following one.

Proposition 2. Assume that hypotheses (H1) and (H2) hold. There exists ω1 > 0, a C 1 function α :
(0 , ω1) → [0 ,+∞) and smooth real-valued ω-dependant functions W1(y) and W2(y) such that the following
properties hold for all ω ∈ (0 , ω1).

• (Expansion of the eigenvalue.) As ω → 0, α(ω) = Iω

4 (1 + O(ϱω)).

• (Solutions to the spectral problem.) The pair of functions (W1 ,W2) solves (8) with λ = 1 −α2 and the
pair of functions (V1 , V2) = ((S∗)2W1 , λ

−1L+V1) solves (7).

• (Expansion of the eigenfunctions.) For j ∈ {1 , 2}, Wj = 1 + Sj + W̃j and

V1 = 1 −Q2 +R1 + Ṽ1, V2 = 1 +R2 + Ṽ2,

where, for all y ∈ R,

|R(k)
j (y)| ⩽ Cεω(1 + |y|) for all k ∈ {0 , ... , 4}, |S(k)

j (y)| ⩽ Cεω(1 + |y|) for all k ∈ N,
|W̃ (k)

j (y)| ⩽ Cε2
ω(1 + y2) for all k ∈ N, |Ṽ (k)

j (y)| ⩽ Cε2
ω(1 + y2) for all k ∈ {0 , ... , 2}.

• (Decay properties of the eigenfunctions.) For j ∈ {1 , 2} and all y ∈ R,

|Wj(y)| ⩽ Ce−α|y| and, for any k ⩾ 1, |W (k)
j (y)| ⩽ C

(
εωI

k−1
ω e−α|y| + εωe

−κ|y|) ,
|Vj(y)| ⩽ Ce−α|y| and, for any k ∈ {1 , 2}, |V (k)

j (y)| ⩽ C
(
εωI

k−1
ω e−α|y| + e−|y|) ,

where κ =
√

2 − α2. Moreover, for any k ⩾ 0 and all y ∈ R,

|(W1 −W2)(k)(y)| ⩽ Cεωe
−κ|y|.

• (Asymptotics of the eigenfunctions.) For j ∈ {1 , 2} and all y ∈ R,

|Wj(y) − e−α|y|| , |V1(y) − (1 −Q2(y))e−α|y|| , |V2(y) − e−α|y|| ⩽ Cϱωe
−α|y|.

Moreover, for all y > 0,
|W ′

j(y) + αe−αy| ⩽ CϱωIωe
−αy + Cεωe

−κy.

Finally, ∣∣∣∣⟨W1 ,W2⟩ − 1
α

∣∣∣∣ , ∣∣∣∣⟨V1 , V2⟩ − 1
α

∣∣∣∣ ⩽ C
ϱω
Iω
.
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• (Derivatives with regards to ω.) First,

|ω α′(ω)| ⩽ Cεω and ω

∣∣∣∣α′(ω) − 1
4∂ωIω

∣∣∣∣ ⩽ Cε2
ω.

Moreover, for j ∈ {1 , 2}, any k ⩾ 1 and all y ∈ R,

|∂ωWj | ⩽ Cεωϱω

ωIω
(1 + |y|)e−α|y| + Cεω

ω (1 + |y|)e−κ|y| ⩽ Cεωϱω

ωIω
(1 + |y|)e−α|y|

and |∂ky∂ωWj | ⩽ Cεk
ω

ω (1 + |y|)e−α|y| + Cεω

ω (1 + |y|)e−κ|y| ⩽ Cεω

ω (1 + |y|)e−α|y|.

Finally, for j ∈ {1 , 2} and all y ∈ R,

|∂ωVj | + |∂y∂ωVj | ⩽
C

ω

(
εωϱω
Iω

+ 1
)

(1 + |y|)e−α|y|.

Proof. We define α > 0 and κ > 0 such that λ = 1 − α2 and κ2 = 1 + λ = 2 − α2. We introduce X1 = W1+W2
2

and X2 = W1−W2
2 . The system (8) on (W1 ,W2) is equivalent to the following system on (X1 , X2):{

−∂2
yX1 + α2X1 + b+

ωX1 + b−
ωX2 = 0

−∂2
yX2 + κ2X2 + b−

ωX1 + b+
ωX2 = 0 (9)

where b±
ω = a+

ω ±a−
ω

2 . We introduce the following matrix notation:

X =
(
X1
X2

)
, Hα =

(
−∂2

y + α2 0
0 −∂2

y + κ2

)
, Pω =

(
b+
ω b−

ω

b−
ω b+

ω

)
.

The system (9) is equivalent to the matrix equation

(Hα + Pω)X = 0. (10)

We use Birman-Schwinger arguments similar to the ones developed in [18] and [16]. To this end, let us introduce

|Pω| 1
2 = 1

2

 √
|a+| +

√
|a−|

√
|a+| −

√
|a−|√

|a+| −
√

|a−|
√

|a+| +
√

|a−|



and P
1
2
ω = 1

2

 a
1
2
+ + a

1
2
− a

1
2
+ − a

1
2
−

a
1
2
+ − a

1
2
− a

1
2
+ + a

1
2
−


where x 1

2 := sgn(x)
√

|x| is a continuous function of x. The important relation satisfied by these two matrices
is that P

1
2
ω |Pω| 1

2 = |Pω| 1
2P

1
2
ω = Pω. Moreover, we recall from the estimates on a±

ω that |Pω| ⩽ CεωQ
2
ω in the

sense that all coefficients of the matrix Pω satisfy this inequality. We define the operator Kα,ω = P
1
2
ω H−1

α |Pω| 1
2

on L2(R) × L2(R), with integral kernel

Kα,ω(y , z) = 1
2P

1
2
ω (y)

(
e−α|y−z|

α 0
0 e−κ|y−z|

κ

)
|Pω| 1

2 (z).

We decompose Kα,ω = Lα,ω +Mα,ω where

Lα,ω(y , z) = 1
2αP

1
2
ω (y)

(
1 0
0 0

)
|Pω| 1

2 (z)

and Mα,ω(y , z) = P
1
2
ω (y)Nα(y , z)|Pω| 1

2 (z) with Nα(y , z) = 1
2

(
e−α|y−z|−1

α 0
0 e−κ|y−z|

κ

)
.
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2.2 The internal mode

We can extend these operators for α = 0, defining

M0,ω(y , z) = P
1
2
ω (y)N0(y , z)|Pω| 1

2 (z) where N0(y , z) = 1
2

(
−|y − z| 0

0 1√
2e

−
√

2|y−z|

)
.

That way, the map α 7→ Mα,ω is well-defined and analytic (in the Hilbert-Schmidt norm) in a neighborhood
of α = 0. Contrary to the proof in [16], we are not sure to be able to extend analytically the operator Mα,ω

for ω = 0. From the estimate |a±
ω (y)| ⩽ CεωQ

2
ω(y) we deduce that Mα,ω converges to 0 as ω → 0. Hence,

(α , ω) 7→ Mα,ω is continuous in ω and analytical in α in a neighborhood of (0 , 0); and we cannot say more a
priori in terms of regularity in ω.

As in [16], we observe that (10) is satisfied by (α ,X) if, and only if, the function Ψ = P
1
2
ω X solves Ψ = −ωKα,ωΨ

i.e. Ψ + (1 + Mα,ω)−1Lα,ωΨ = 0. The existence and the analytic regularity of (1 + Mα,ω)−1 make sense since
||Mα,ω|| < 1 for ω > 0 small enough. Indeed, writing that

∣∣∣ e−α|y−z|−1
α

∣∣∣ ⩽ |y− z| and
∣∣∣ e−κ|y−z|

κ

∣∣∣ ⩽ 1
κ ⩽ C, we see

that |Mα,ω(y , z)| ⩽ CεωQω(y)Qω(z)(1 + |y − z|). This leads to

||Mα,ω|| ⩽ Cεω

(∫
R

∫
R
Q2
ω(y)Q2

ω(z)(1 + |y − z|)2 dy dz
)1/2

⩽ Cεω

(∫
R

∫
R
e−2|y|e−2|z|(1 + |y − z|)2 dy dz

)1/2
⩽ Cεω

which proves that ||Mα,ω|| ⩽ Cεω < 1 for ω > 0 small enough.

Therefore, we aim at finding α > 0 small such that −1 is an eigenvalue of the operator (1 + Mα,ω)−1Lα,ω.
More generally, let us consider the eigenvalue problem

(1 +M−1
α,ω)Lα,ωΨ = µΨ. (11)

By definition, Lα,ω is a rank one operator and, for any φ ∈ L2(R), we have

(Lα,ωφ)(y) = pω(φ)
2α P

1
2
ω (y)e1 where pω(φ) =

∫
R
e1 ·

(
|Pω| 1

2φ
)

and e1 =
(

1
0

)
.

Here, the dot · denotes the usual scalar product in R2. We find that (µ ,Ψ) satisfies (11) if and only if

pω(Ψ)(1 +Mα,ω)−1(P
1
2
ω e1) = 2αµΨ. (12)

We define the function r(α , ω) = pω

(
(1 +Mα,ω)−1(P

1
2
ω e1)

)
. Hence, (µ ,Ψ) solves (11) if, and only if, r(α , ω) =

2αµ. Therefore, −1 is an eigenvalue of the operator (1 +Mα,ω)−1Lα,ω if, and only if, s(α , ω) = 0, where

s(α , ω) = α+ r(α , ω)
2 .

We easily see that ∂s
∂α (0 , 0) = 1. By the implicit function theorem, there exists a continuous function ω 7→ α(ω)

defined in a neighborhood of 0 such that s(a , ω) = 0 if, and only if, a = α(ω). Moreover, since s is C 1 with
regards to ω on (0 , ω∗) for a certain ω∗ > 0, we know from the implicit function theorem that α is C 1 in a
neighborhood of 0, excepted (possibly) at the point 0 precisely. We now expand r(α(ω) , ω) as follows:

r(α(ω) , ω) = r(0 , ω) +
∫ α(ω)

0

∂r

∂α
(α̃ , ω) dα̃.

Let us estimate r(0 , ω) first. We write

r(0 , ω) = e1 ·
[∫

R
|Pω| 1

2 (y)(1 +M0,ω)−1(P
1
2
ω e1)(y)dy

]
= e1 ·

∫
R

|Pω| 1
2 (y)P

1
2
ω (y)e1 dy + IRω = −Iω

2 + IRω

where IRω = e1 ·
[∫

R
|Pω| 1

2 (y)((1 +M0,ω)−1 − 1)(P
1
2
ω e1)(y)dy

]
. We recall that ||M0,ω|| ⩽ Cεω < 1. This shows,

by Neumann expansion, that ||(1 +M0,ω)−1 − 1|| ⩽ 2||M0,ω|| ⩽ Cεω. Then,∣∣∣∣∫
R

|Pω| 1
2 (y)((1 +M0,ω)−1 − 1)(P

1
2
ω e1)(y)dy

∣∣∣∣ ⩽ || |Pω| 1
2 (y)|| ||(1+M−1

0,ω−1)|| ||P
1
2
ω e1|| ⩽ C

√
εω·Cεω·C

√
εω ⩽ Cε2

ω.
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2.2 The internal mode

Thus, we have proven that r(0 , ω) = − Iω

2 + O(ε2
ω).

Now let us take care of the integral involving ∂r
∂α in the Taylor expansion of r(α(ω) , ω). We have

∂r

∂α
(α̃ , ω) = −e1 ·

[∫
R

|Pω| 1
2 (y)

((
∂Mα̃,ω

∂α
(1 +Mα̃,ω)−2

)
(P

1
2
ω e1)

)
(y) dy

]
.

We notice that

∂Nα̃,ω
∂α

(y , z) = 1
2

(
|y − z|2θ(α̃|y − z|) 0

0 − α̃(1+κ|y−z|)
κ3 e−κ|y−z|

)
where θ(w) = 1 − (1 + w)e−w

w2 .

We can show that 0 ⩽ θ(w) ⩽ 1
2 for all w ⩾ 0, and thus

∣∣∣∂Nα̃,ω

∂α (y , z)
∣∣∣ ⩽ C

(
1 + |y − z|2

)
⩽ C(1 + y2 + z2) in

the sense that each coefficient of the matrix satisfied this inequality. Therefore,∣∣∣∣∂Mα̃,ω

∂α
(y , z)

∣∣∣∣ =
∣∣∣∣P 1

2
ω (y)∂Nα̃,ω

∂α
(y , z)|Pω| 1

2 (z)
∣∣∣∣ ⩽ Cεω(1 + y2 + z2)Qω(y)Qω(z).

We recall that ||Mα̃,ω|| ⩽ Cεω < 1 thus ||(1 +Mα̃,ω)−2|| ⩽ C and we have∣∣∣∣ ∂r∂α (α̃ , ω)
∣∣∣∣ ⩽

∫
R
C

√
εωQω(y)

∣∣∣∣∫
R

∂Mα̃,ω

∂α
(y , z)

(
(1 +Mα̃,ω)−2(P

1
2
ω e1)

)
(z) dz

∣∣∣∣
⩽

∫
R
C

√
εωQω(y)

∥∥∥∥∂Mα̃,ω

∂α
(y , ·)

∥∥∥∥ ∥∥(1 +Mα̃,ω)−2∥∥ ∥∥∥P 1
2
ω e2

∥∥∥ dy

⩽
∫
R
C

√
εωQω(y) · Cεω(1 + y2)Qω(y) · C · C

√
εω dy

⩽ Cε2
ω.

Getting back to the Taylor expansion, we get∣∣∣∣∣
∫ α(ω)

0

∂r

∂α
(α̃ , ω) dα̃

∣∣∣∣∣ ⩽ Cε2
ωα(ω) ⩽ Cε2

ω

and then

r(α(ω) , ω) = Iω
2 + O(ε2

ω) thus α(ω) = −1
2r(α(ω) , ω) = Iω

4 + O(ε2
ω) = Iω

4 (1 + O(ϱω))

where we recall that ϱω −→ 0 as ω → 0.

(Expansion of the eigenfunctions.) From now on, α denotes α(ω). We compute the expansion of the eigenfunc-
tionX of (10) corresponding to the eigenfunction Ψ = P

1
2
ω X of (11) chosen with the normalisation pω(Ψ) = −2α.

From (12) with µ = −1 we obtain Ψ = (1 +Mα,ω)−1(P
1
2
ω e1). This leads to

X = e1 −NαYω with Yω = |Pω| 1
2 (1 +Aα,ω) (P

1
2
ω e1)

where Aα,ω = (1 +Mα,ω)−1 − 1 =
+∞∑
j=1

(−1)jM j
α,ω. Writing that Yω = Pωe1 + |Pω| 1

2Aα,ω

(
P

1
2
ω e1

)
and using the

expression of N0, we see that
N0Yω =

(
−T1
−T2

)
+N0|Pω| 1

2Aα,ω

(
P

1
2
ω e1

)
where

T1(y) = 1
4

∫
R

|y − z|
(
a+
ω (z) + a−

ω (z)
)

dz and T2(y) = −
√

2
8

∫
R
e−

√
2|y−z| (a+

ω (z) − a−
ω (z)

)
dz.
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2.2 The internal mode

Hence, the expansion of X can be written as

X = e1 +
(
X1
X2

)
+ X̃ where X̃ = −N0|Pω| 1

2Aα,ω

(
P

1
2
ω e1

)
+ (N0 −Nα)Yω.

First, we have |Yω| ⩽ C|Pω| 1
2 |Pω| 1

2 e1 ⩽ C(|a+
ω | + |a−

ω |) ⩽ CεωQ
2
ω. Moreover, from [16] we recall that

∣∣∣e−α|y−z| − 1 + α|y − z|
∣∣∣ ⩽ Cα2 (1 + |y| + |z|)2 and

∣∣∣∣∣e−κ|y−z|

κ
− e−

√
2|y−z|

√
2

∣∣∣∣∣ ⩽ Cα2

thus |N0 −Nα|(y , z) ⩽ Cα (1 + |y| + |z|)2 ⩽ CIω (1 + |y| + |z|)2 ⩽ Cεω(1 + |y| + |z|)2. Henceforth,

|(Nα−N0)Yω(y)| ⩽ Cε2
ω

∫
R
(1+|y|+|z|)2Q2

ω(z) dz ⩽ Cε2
ω

∫
R
(1+|y|+|z|)2e−2|z| dz ⩽ Cε2

ω(1+|y|)2 ⩽ Cε2
ω(1+y2).

Now, let us control the other term. We know that ||Aα,ω|| ⩽ Cεω thus ||Aα,ω(P
1
2
ω e1)|| ⩽ Cε

3/2
ω . We also know

that |N0(y , z)| ⩽ 1 + |y| + |z|. This leads, thanks to Cauchy-Schwarz inequality, to∣∣∣N0|Pω| 1
2Aα,ω

(
P

1
2
ω e1

)
(y)
∣∣∣ ⩽ ∥∥∥N0(y , ·)P

1
2
ω

∥∥∥ ∥∥∥Aα,ω(P
1
2
ω e1)

∥∥∥ ⩽ C
√
εω(1 + |y|) · Cε3/2

ω ⩽ Cε2
ω(1 + y2).

Therefore,
X =

(
1 + T1
T2

)
+ X̃ where |X̃(y)| ⩽ Cε2

ω(1 + y2).

Defining S1 = T1 + T2 and S2 = T1 − T2, and recalling that W1 = X1 +X2 and W2 = X1 −X2, we obtain

W =
(

1 + S1
1 + S2

)
+ W̃ where |W̃ (y)| ⩽ Cε2

ω(1 + y2).

One can notice that the functions Tj and Sj verify the following differential equations: T ′′
1 = a+

ω +a−
ω

2 , T ′′
2 −2T2 =

a+
ω −a−

ω

2 , S′′
1 = a+

ω + 2T2 and S′′
2 = a−

ω − 2T2. Using |a±
ω | ⩽ CεωQ

2
ω, we can also see that

|T1(y)| + |T2(y)| + |S1(y)| + |S2(y)| ⩽ Cεω(1 + |y|).

Using the differential equations satisfied by Tj and Sj , we see that the previous bounds on Tj and Sj still hold
for T (k)

j and S
(k)
j , for any k ⩾ 0.

About the derivatives of X̃, there is no additional difficulty. For example,

∂(N0 −Nα)
∂y

(y , z) = 1
2

(
sgn(y − z)

(
e−α|y−z| − 1

)
0

0 sgn(y − z)
(
e−κ|y−z| − e−

√
2|y−z|

) )

where |e−α|y−z| −1| ⩽ α|y−z| ⩽ α(1+|y|+|z|) and |e−κ|y−z| −e−
√

2|y−z|| ⩽ C|y−z| |κ−
√

2| ⩽ Cα2(1+|y|+|z|).
We could discuss the other derivatives with similar arguments and show that, for all k ⩾ 1,∣∣∣∣∂k(N0 −Nα)

∂αk

∣∣∣∣ (y , z) ⩽ Cα(1 + |y| + |z|) ⩽ Cεω(1 + |y| + |z|)

which leads to ∣∣∣∣ ∂k∂yk ((N0 −Nα)Yω(y))
∣∣∣∣ ⩽ ∫

R
Cεω(1 + |y| + |z|) · εωQ2

ω(z) dz ⩽ Cε2
ω(1 + |y|).

About the other term in X̃, we easily see that
∣∣∣∂kN0
∂yk (y , z)

∣∣∣ ⩽ C for any k ⩾ 1, using the explicit expression of
N0. Using this estimate, we find that∣∣∣∣ ∂k∂yk [N0|Pω| 1

2Aα,ω

(
P

1
2
ω e1

)]∣∣∣∣ =
∣∣∣∣∫

R

∂kN0

∂yk
(y , z)|Pω| 1

2 (z)Aα,ω
(
P

1
2
ω e1

)
(z) dz

∣∣∣∣ ⩽ Cε2
ω(1 + |y|).
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2.2 The internal mode

Finally, for all k ⩾ 1, |X̃(k)(y)| ⩽ Cε2
ω(1 + |y|) and thus |W̃ (k)(y)| ⩽ Cε2

ω(1 + |y|).

Now, let us deduce the expansions of V1 and V2. In what follows, the notation Õp(1) refers to any func-
tion w such that |w(k)(y)| ⩽ Ck(1 + y2) for all k ∈ {0 , ... , p} (here the constants Ck can depend on k but do
not depend on ω). We recall that V1 = (S∗)2W1 = Q′′

ω

Qω
W1 + 2Q

′
ω

Qω
W ′

1 +W ′′
1 . Using the equations (4) and (5), we

compute
V1 = 1 −Q2 + R̃1 + ε2

ωÕ4(1)

where R̃1 = −2QDω + (1 −Q2)S1 + 2Q′

Q
S′

1 − 2G(ωQ2
ω)

ω2Q2
ω

+ 2T2.

Here we recall that Dω = Qω−Q. An elementary Taylor expansion shows that
∣∣∣G(ωQ2

ω)
ω2Q2

ω
− G(ωQ2)

ω2Q2

∣∣∣ = ε2
ωQ Õ4(1).

Thus we can write V1 = 1 −Q2 +R1 + ε2
ωÕ4(1), where

R1 = −2QDω + (1 −Q2)S1 + 2Q′

Q
S′

1 − 2G(ωQ2)
ω2Q2 + 2T2.

We can easily observe that |R(k)
1 (y)| ⩽ Cεω(1 + |y|) for any k ∈ {0 , ... , 5}.

In order to establish the expansion of V2 = λ−1L+V1, we recall that α = O(Iω) = O(εω), thus λ−1 = (1−α2)−1 =
1 + O(ε2

ω). After computations and using the equations (4) and (5), we obtain

V2 = 1 + R̃2 + ε2
ωÕ2(1)

where R̃2 = −R′′
1 +R1 − 3Q2R1 − 6Q(1 −Q2)Dω − (1 −Q2)

(
g(ωQ2)
ω

+ 2Q2g′(ωQ2)
)
.

Here too, elementary Taylor expansions have allowed us to write g(ωQ2) instead of g(ωQ2
ω) and Q2g′(ωQ2)

instead of Q2
ωg

′(ωQ2
ω). The cost is absorbed in the term ε2

ωÕ2(1). Now we compute R′′
1 using the expression

above. We find, after lengthy computations, R̃2 = R2 + ε2
ωÕ2(1), where

R2 = −4(1 −Q2)QDω + 4Q′D′
ω + T1 − 3T2 + 2Q′

Q
T ′

1 − 2Q′

Q
T ′

2 + 2g(ωQ2)
ω

− 4G(ωQ2)
ω2Q2 + 2G(ωQ2)

ω2 .

At last, we have the following expansion of V2: V2 = 1 +R2 + ε2
ωÕ2(1). Moreover, |R(k)

2 (y)| ⩽ Cεω(1 + |y|) for
any k ∈ {0 , ... , 4}.

(Decay properties.) It is clear that |Xj | ⩽ 1+ |Tj |+Cε2
ω(1+y2) ⩽ C(1+y2), thus |PωX| ⩽ CεωQ

2
ω(y)(1+y2) ⩽

Cεωe
−|y|. Recalling (10) and the expression of H−1

α (y , z), we see that

X = −H−1
α (PωX) = −1

2

∫
R

(
e−α|y−z|

α 0
0 e−κ|y−z|

κ

)
Pω(z)X(z) dz

therefore |X1(y)| ⩽ Cεω
α

∫
R
e−α|y−z|e−|z| dz ⩽ Cεω

α
e−α|y| ⩽

Cεω
Iω

e−α|y|.

This does not prove the estimate |X1(y)| ⩽ Ce−α|y| that we claim to be true in Proposition 2, since εω/Iω has
no reason to be bounded: this particular estimate will have to wait a little more. However, the argument above
proves similarly that

|X2(y)| ⩽ Cεω
κ

e−κ|y| ⩽ Cεωe
−κ|y| ⩽ Cεωe

−|y|

since we can assume that ω is small enough so that κ > 1. The argument is the same in order to estimate X(k)
j

for k ⩾ 1. Indeed,

X(k)(y) = −1
2

∫
R

∂k

∂yk

(
e−α|y−z|

α 0
0 e−κ|y−z|

κ

)
Pω(z)X(z) dz.
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Up to constants, differentiating the matrix H−1
α only makes an αk and a κk appear (respectively in the control

of X(k)
1 and in the control of X(k)

2 ). That way, we obtain, for any k ⩾ 1,

|X(k)
1 (y)| ⩽ Ckεωα

k−1e−α|y| ⩽ CkεωI
k−1
ω e−α|y|

and |X(k)
2 (y)| ⩽ Ckκ

kεωe
−κ|y| ⩽ Ckεωe

−|y|

and the bound on X
(k)
2 remains true when k = 0. This proves the decay properties of W (k)

j for any k ⩾ 1, and
it also proves the decay properties of (W1 −W2)(k) for any k ⩾ 0, since W1 −W2 = 2X2.

The similar bounds on the functions Vj do not present additional difficulties, they simply stem from the expres-
sions V1 = (S∗)2W1 and V2 = λ−1L+V1. We need the estimate |Wj(y)| ⩽ Ce−α|y|, which is not proven yet but
which will be proven in the following paragraph.

(Asymptotics of the eigenfunctions.) The equality (10) can be written as
X1(y) = − 1

4α

∫
R
e−α|y−z| [a+

ω (z)(X1(z) +X2(z)) + a−
ω (z)(X1(z) −X2(z))

]
dz

X2(y) = − 1
4κ

∫
R
e−κ|y−z| [a+

ω (z)(X1(z) +X2(z)) − a−
ω (z)(X1(z) −X2(z))

]
dz.

Let us write

|X1(y) − e−α|y|| ⩽

∣∣∣∣− 1
4α

∫
R
e−α|y−z| [a+

ω (z)(X1(z) +X2(z) − 1) + a−
ω (z)(X1(z) −X2(z) − 1)

]
dz
∣∣∣∣

+
∣∣∣∣− 1

4α

∫
R
e−α|y−z| (a+

ω (z) + a−
ω (z)

)
dz + 1

4α e
−α|y|

∫
R

(
a+
ω (z) + a−

ω (z)
)

dz
∣∣∣∣

+
∣∣∣∣− 1

4α e
−α|y|

∫
R

(
a+
ω (z) + a−

ω (z)
)

dz − e−α|y|
∣∣∣∣ .

Let us estimate these three terms separately. For the first one, we recall that |X1(z) − 1| = |T1(z) + X̃1(z)| ⩽
Cεω(1 + z2) and |X2(z)| = |T2(z) + X̃2(z)| ⩽ Cεω(1 + z2). Thus,∣∣∣∣− 1

4α

∫
R
e−α|y−z| [a+

ω (z)(X1(z) +X2(z) − 1) + a−
ω (z)(X1(z) −X2(z) − 1)

]
dz
∣∣∣∣

⩽
C

α

∫
R
e−α|y−z|εωQ

2
ω(z)εω(1 + z2) dz ⩽

Cε2
ω

α

∫
R
e−α|y−z|−2|z|(1 + z2) dz

⩽
Cε2

ω

α
e−α|y| ⩽ Cϱωe

−α|y|.

For the second term, we use the inequalities |e−w − 1| ⩽ |w|e|w| and ||y − z| − |y|| ⩽ |z| that hold for all
w, y, z ∈ R, as well as the monotonicity of w 7→ wew on [0 ,+∞). We find that∣∣∣∣− 1

4α

∫
R
e−α|y−z| (a+

ω (z) + a−
ω (z)

)
dz + 1

4α e
−α|y|

∫
R

(
a+
ω (z) + a−

ω (z)
)

dz
∣∣∣∣

⩽
C

α
e−α|y|

∫
R

∣∣∣e−α(|y−z|−|y|) − 1
∣∣∣ εωQ2

ω(z) dz ⩽
Cεω
α

e−α|y|
∫
R
α||y − z| − |y||eα||y−z|−|y||Q2

ω(z) dz

⩽ Cεωe
−α|y|

∫
R

|z|eα|z|e−2|z| dz ⩽ Cεωe
−α|y|.

At last, the final term is controlled as follows:∣∣∣∣− 1
4α e

−α|y|
∫
R

(
a+
ω (z) + a−

ω (z)
)

dz − e−α|y|
∣∣∣∣ =

∣∣∣∣ Iω4α − 1
∣∣∣∣ e−α|y| ⩽ Cϱωe

−α|y|
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2.2 The internal mode

since we recall that α = Iω

4 (1 + O(ϱω)). Gathering all these estimates, we obtain:

|X1(y) − e−α|y|| ⩽ Cϱωe
−α|y|.

We have already proven previously that |X2(y)| ⩽ Cεωe
−|y| ⩽ Cεωe

−α|y|, therefore we get the desired estimate:

|Wj(y) − e−α|y|| ⩽ Cϱωe
−α|y|.

This bound enables us to prove the decay property of Wj that we have not proven yet. Indeed, taking ω > 0
small enough, we get |Wj(y)| ⩽ e−α|y| + Cϱωe

−α|y| ⩽ Ce−α|y|.

The estimates for V1 and V2 follow from the expressions V1 = (S∗)2W1 and V2 = λ−1L+V1. Let us give a
little more details.

|V1 − (1 −Q2)e−α|y|| ⩽

∣∣∣∣(1 −Q2
ω + g(ωQ2

ω)
ω

)
W1 − (1 −Q2)e−α|y|

∣∣∣∣+
∣∣∣∣2Q′

ω

Qω

∣∣∣∣ |W ′
1| + |W ′′

1 |

⩽ |(1 −Q2
ω)(W1 − e−α|y|)| +

∣∣∣((1 −Q2
ω) − (1 −Q2))e−α|y|

∣∣∣+
∣∣∣∣g(ωQ2

ω)
ω

∣∣∣∣ |W1|

+
∣∣∣∣2Q′

ω

Qω

∣∣∣∣ |W ′
1| + |W ′′

1 |

⩽ C(εω + ϱω)e−α|y|

after analysing each term. To control V2 we first see that

L+(1 −Q2
ω) = 1 + r1

ω where r1
ω = (1 − 3Q2)g(ωQ2

ω)
ω

+ 2(1 −Q2
ω)Q2

ωg
′(ωQ2

ω) − 2G(ωQ2
ω)

ω2Q2
ω

.

In what follows, let us denote gω := g(ωQ2
ω)

ω , Gω := G(ωQ2
ω)

ω2Q2
ω

, dgω := Q2
ωg

′(ωQ2
ω) and ξQ := Q′

ω

Qω
. After computa-

tions, we find that L+V1 = W1 + r2
ω where

r2
ω = r1

ωW1 + 4QωQ′
ωW

′
1 − (1 −Q2

ω)W ′′
1 − g′′

ωW1 − 2g′
ωW

′
1 − gωW

′′
1 + (1 − 3Q2

ω + gω + 2dgω)gωW1

−2ξ′′
QW

′
1 − 4ξ′

QW
′′
1 + 2ξQW ′′′

1 + 2(1 − 3Q2
ω + gω + 2dgω)ξQW ′

1 −W ′′′′
1 + (1 − 3Q2

ω + gω + 2dgω)W ′′
1 .

Using the estimates |W1(y) − e−α|y|| ⩽ Cϱωe
−α|y|, |r2

ω(y)| ⩽ Cεωe
−α|y| and λ−1 = 1 + O(ϱω), we finally obtain

the desired estimate:
|V2(y) − e−α|y|| ⩽ Cϱωe

−α|y|.

The estimates for |⟨W1 ,W2⟩ − α−1| and |⟨V1 , V2⟩ − α−1| follow easily by integration. Let us prove the second
one for example. We use the estimates |V1(y) − (1 −Q2)e−α|y|| ⩽ Cϱωe

−α|y| and |V2(y) − e−α|y|| ⩽ Cϱωe
−α|y|.

From these estimates we see that |V1(y)| + |V2(y)| ⩽ Ce−α|y|. Then,∣∣∣∣⟨V1 , V2⟩ − 1
α

∣∣∣∣ =
∣∣∣∣∫

R

(
V1V2 − e−2α|y|

)
dy
∣∣∣∣

⩽

∣∣∣∣∫
R
V1(V2 − e−α|y|) dy

∣∣∣∣+
∣∣∣∣∫

R
e−α|y|(V1 − (1 −Q2)e−α|y|) dy

∣∣∣∣+
∣∣∣∣∫

R
−e−α|y|Q2(y)e−α|y| dy

∣∣∣∣
⩽ Cϱω

∫
R
e−2α|y| dy + Cϱω

∫
R
e−2α|y| dy + C

⩽ C
ϱω
α

+ C ⩽ C
ϱω
Iω

+ C ⩽ C
ϱω
Iω
,

the last inequality being true because Iω ⩽ Cεω ⩽ Cϱω.
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The last estimate, about W ′
j , is proven similarly to the one on Wj . Take y > 0. We write that |X ′

1(y)+αe−αy| ⩽
T1 + T2 + T3 where

T1 =
∣∣∣∣14
∫
R

sgn(y − z)e−α|y−z| ∣∣a+
ω (X1 +X2 − 1) + a−

ω (X1 −X2 − 1)
]

(z) dz
∣∣∣∣ ,

T2 =
∣∣∣∣14
∫
R

sgn(y − z)e−α|y−z|(a+
ω + a−

ω )(z) − 1
4e

−αy
∫
R
(a+
ω + a−

ω )(z) dz
∣∣∣∣

and T3 =
∣∣∣∣14e−αy

∫
R
(a+
ω + a−

ω )(z) dz + αe−αy
∣∣∣∣ .

As previously, we see that T1 ⩽ Cε2
ωe

−αy = CϱωIωe
−αy, T2 ⩽ CεωIωe

−αy ⩽ CϱωIωe
−αy and T3 ⩽ CϱωIωe

−αy.
Hence,

|X ′
1(y) + αe−αy| ⩽ CϱωIωe

−αy.

Recalling that |X ′
2(y)| ⩽ Cεωe

−κy, we obtain the desired estimate on |W ′
j + αe−αy|. Since W ′

j is odd, a similar
bound holds for |W ′

j − αe−α|y|| for y ⩽ 0.

(Derivatives with regards to ω.) The last estimates in Proposition 2 will require many more calculations.
First, from Lemma 5 in [20], we know that |∂ωQω(y)| ⩽ C

ω (1 + |y|)e−|y|. Therefore,

|∂ωa±
ω | ⩽ Cεω

ω
(1 + |y|)e−2|y|. (13)

From the expression Mα,ω = P
1
2
ω NαPω| 1

2 , we compute Mk
α,ω = P

1
2
ω (NαPω)k−1Nα|Pω| 1

2 for all k ⩾ 1. This leads
to the following expression:

r(α̃ , ω) = e1 ·
∫
R
Pω(1 +Nα̃Pω)−1e1.

Thus,
∂r

∂ω
(α̃ , ω) = e1 ·

(∫
R
(∂ωPω)(1 +NαPω)−1e1 −

∫
R
PωNα(∂ωPω)(1 +NαPω)−2e1

)
.

Wee know from (13) that |∂ωPω| ⩽ Cεω

ω (1 + |y|)e−2|y|. Using the estimates |Nα̃(y , z)| ⩽ C(1 + |y − z|) and
|Pω(z)| ⩽ CεωQ

2
ω(z) ⩽ Cεωe

−2|z|, we easily show by induction that

∀k ∈ N, |(Nα̃Pω)ke1(y)| ⩽ Cεkω(1 + |y|).

Using Neumann expansion, we obtain that |(1 +Nα̃Pω)−1e1(y)| ⩽ C(1 + |y|) and then∣∣∣∣∫
R
(∂ωPω)(y)

(
(1 +Nα̃Pω)−1e1

)
(y) dy

∣∣∣∣ ⩽ Cεω
ω

.

The second term in ∂ωr is treated similarly: we see that |(1 +Nα̃Pω)−2e1(y)| ⩽ C(1 + |y|) and then∣∣∣∣∫
R
PωNα̃(∂ωPω)(1 +Nα̃Pω)−2e1

∣∣∣∣ ⩽ Cε2
ω

ω
.

Combining these estimates, we obtain |∂ωr(α̃ , ω)| ⩽ Cεω/ω. Note that here α̃ does not depend on ω; this
estimate is proven regardless of α̃. Now we deduce the control of α′(ω). Indeed, we recall that α(ω) =
− 1

2r (α(ω) , ω). Thus,

|α′(ω)| =
∣∣∣∣ −∂ωr(α(ω) , ω)
2 + ∂αr(α(ω) , ω)

∣∣∣∣ = |∂ωr(α(ω) , ω)|
|2 + O(ε2

ω)| ⩽ |∂ωr(α(ω) , ω)| ⩽ Cεω
ω

,

which is the first result announced. Now, to control the difference α′(ω) − 1
4∂ωIω, let us write that

α′(ω) − 1
4∂ωIω = −1/2

1 + 1
2∂αr(α(ω) , ω)

(
∂ωr(α(ω) , ω) + 1

2∂ωIω
)

+ ∂ωIω
4

(
1

1 + 1
2∂αr(α(ω) , ω)

− 1
)
.
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2.2 The internal mode

Since ∂αr(α(ω) ,ω)
2 = O(εω),

∣∣∣1 + ∂αr(α(ω) ,ω)
2

∣∣∣−1
⩽ C. Now, we recall that

∂ωr(α(ω) , ω) = e1 ·
∫
R
(∂ωPω)(1 +NαPω)−1e1 − e1 ·

∫
R
PωNα(∂ωPω)(1 +NαPω)−2e1

where we have already proven that∣∣∣∣e1 ·
∫
R
PωNα(∂ωPω)(1 +NαPω)−2e1

∣∣∣∣ ⩽ Cε2
ω

ω
.

On the other hand,∣∣∣∣e1 · (∂ωPω)(1 +NαPω)−1e1 + ∂ωIω
2

∣∣∣∣ =
∣∣∣∣e1 ·

∫
R
∂ωPω((1 +NαPω)−1 − 1)e1

∣∣∣∣ ⩽ Cε2
ω

ω

thanks to the estimate |((1 +NαPω)−1 − 1)e1(y)| ⩽ Cεω(1 + |y|), established as previously thanks to Neumann
expansion. Gathering these estimates, we obtain∣∣∣∣∂ωr(α(ω) , ω) + 1

2∂ωIω
∣∣∣∣ ⩽ Cε2

ω

ω
.

We conclude by noticing that |∂ωIω| ⩽ Cεω

ω and
∣∣∣ 1

1+ 1
2∂αr(α(ω) ,ω) − 1

∣∣∣ ⩽ Cεω. This leads to the desired estimate:∣∣∣∣α′(ω) − ∂ωIω
4

∣∣∣∣ ⩽ Cε2
ω

ω
.

Now, we control the terms Xj . To do so, we have to control first the terms X̃j . In what follows, α denotes
α(ω). We recall that X̃ = (N0 −Nα)Yω −N0Pω((1 +NαPω)−1 − 1)e1 where Yω = Pω(1 +NαPω)−1e1. Thus,

∂ωX̃ = −α′(ω)(∂αNα)Yω + (N0 −Nα)∂ωYω −N0(∂ωPω)
(
(1 +NαPω)−1 − 1

)
e1

+N0Pω (α′(ω)(∂αNα)Pω +Nα∂ωPω) (1 +NαPω)−2e1.

We recall that |∂αNα| ⩽ C(1 + y2 + z2). We also recall that |(1 + NαPω)−1e1(y)| ⩽ C(1 + |y|), which implies
that |Yω(y)| ⩽ Cεω(1 + |y|)Q2

ω(y). Using all the previous bounds, we find successively that

|α′(ω)(∂αNα)Yω| ⩽ Cε2
ω

ω (1 + y2),∣∣N0Pωα
′(ω)(∂αNα)Pω(1 +NαPω)−2e1

∣∣ ⩽ Cε3
ω

ω (1 + |y|),∣∣N0PωNα(∂ωPω)(1 +NαPω)−2e1
∣∣ ⩽ Cε2

ω

ω (1 + |y|)

and
∣∣N0(∂ωPω)

(
(1 +NαPω)−1 − 1

)
e1
∣∣ ⩽ Cε2

ω

ω (1 + |y|).

To establish the last estimate, we have used the fact that
∣∣((1 +NαPω)−1 − 1

)
e1(z)

∣∣ ⩽ Cεω(1 + |z|), which is
shown by Neumann expansion (as previously). The remaining term to be estimated is ∂ωYω. We have

∂ωYω = (∂ωPω)(1 +NαPω)−1e1 − Pω(α′(ω)(∂αNα)Pω +Nα(∂ωPω))(1 +NαPω)−2e1.

Controlling each one of these terms as we did previously, we obtain the following estimate:

|∂ωYω| ⩽ Cεω
ω

(1 + y2)Q2
ω(y).

Recalling that |(N0 −Nα)(y , z)| ⩽ CIω(1 + y2 + z2), these estimates lead to

|(N0 −Nα)∂ωYω| ⩽ CεωIω
ω

(1 + y2).
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Gathering all these estimates, we have proven that

|∂ωX̃(y)| ⩽ Cε2
ω

ω
(1 + y2).

In order to estimate ∂ωX, we recall that X1 = 1+T1 +X̃1 and X2 = T2 +X̃2. Thanks to the explicit expressions
of T1 and T2, and using (13), we see that |∂ωT1| ⩽ Cεω

ω (1 + |y|) and |∂ωT2| ⩽ Cεω

ω . This leads to

|∂ωX(y)| ⩽ Cεω
ω

(1 + y2).

Now, the proof resembles the one of the asymptotics of the eigenfunctions. We write that −X1 = e1 ·
H−1
α (PωX) = T1 + T2 + T3 where

T1 = 1
2α

∫
R
e−α|y−z|(b+

ω (X1 − 1) + b−
ωX2)(z) dz,

T2 = 1
2α

∫
R
(e−α|y−z| − e−α|y|)b+

ω (z) dz

and T3 = e−α|y|

2α

∫
R
b+
ω (z) dz = − Iω

4α e
−α|y|.

Using the estimate on |4α′(ω) − ∂ωIω|, we establish that
∣∣∂ω ( Iω

4α
)∣∣ ⩽ Cεωϱω

ωα . This leads to

|∂ωT3| ⩽ Cεωϱω
ωα

(1 + |y|)e−α|y|.

Now, we write ∂ωT1 = T1A + T1B + T1C , where

T1A = −α′(ω)
2α2

∫
R
(1 + α|y − z|)e−α|y−z| (b+

ω (X1 − 1) + b−
ωX2

)
(z) dz,

T1B =
∫
R

e−α|y−z|

2α
(
(∂ωb+

ω )(X1 − 1) + (∂ωb−
ω )X2

)
(z) dz

and T3 =
∫
R

e−α|y−z|

2α
(
b+
ω ∂ωX1 + b−

ω ∂ωX2
)

(z) dz.

Using the previous known estimates, including |X1 − 1| ⩽ Cεω(1 + z2), |X2| ⩽ Cεω(1 + z2) and |∂ωXj | ⩽
Cεω

ω (1 + z2), we find that

|T1A| ⩽ Cεωϱω
ωα

(1 + |y|)e−α|y|, |T1B | ⩽ Cε2
ω

ωα
e−α|y| and |T1C | ⩽ Cϱω

ω
e−α|y|.

This leads to:
|∂ωT1| ⩽ Cεωϱω

ωα
(1 + |y|)e−α|y|.

Finally, we write ∂ωT2 = T2A + T2B , where

T2A = α′(ω)
2

∫
R
∂α

(
e−α|y−z| − e−α|y|

α

)
b+
ω (z) dz and T2B =

∫
R

e−α|y−z| − e−α|y|

2α ∂ωb
+
ω (z) dz.

Recalling that |e−α(|y−z|−|y|) − 1| ⩽ α|z|eα|z|, we see that

|T2B | ⩽ Cεω
ω

e−α|y|.

For the term T2A, we see that

∂α

(
e−α|y−z| − e−α|y|

α

)
= 1
α2

[
e−α|y| − e−α|y−z| + α

(
|y|e−α|y| − |y − z|e−α|y−z|

)]
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2.2 The internal mode

where

|e−α|y| − e−α|y−z|| ⩽ α(1 + |y|)e−α|y||z|eα|z|

and
∣∣ |y|e−α|y| − |y − z|e−α|y−z|

∣∣ ⩽ |y| |e−α|y| − e−α|y−z|| + | |y| − |y − z| |e−α|y−z| ⩽ (1 + α|y|)e−α|y||z|eα|z|.

Gathering these estimates, we evidently find that

|T2A| ⩽ Cϱω
ω

(1 + |y|)e−α|y|.

Putting all the pieces together, we obtain:

|∂ωX1| ⩽ Cεωϱω
ωα

(1 + |y|)e−α|y|.

Estimating ∂ky∂ωX1 requires the same proof, with minor adjustments. We differentiate the expression X1 =
−e1 ·H−1

α (PωX) with regards to y. For example, we shall write:

−∂yX1 = −1
2

∫
R

sgn(y − z)e−α|y−z|(b+
ω (X1 − 1) + b−

ωX2)(z) dz

−1
2

∫
R
(e−α|y−z| − e−α|y|)sgn(y − z)b+

ω (z) dz

−e−α|y|

2

∫
R

sgn(y − z)b+
ω (z) dz.

Controlling as previously, we find that

|∂y∂ωX1| ⩽ Cεω
ω

(1 + |y|)e−α|y|.

More generally, a similar proof would show that, for any k ⩾ 1,

|∂ky∂ωX1| ⩽ Cεkω
ω

(1 + |y|)e−α|y|.

As for X2, the general idea is the same but the calculations are easier and we see that, for any k ⩾ 0,

|∂ky∂ωX2| ⩽ Cεω
ω

(1 + |y|)e−κ|y|.

It follows that, for any j ∈ {1 , 2} and any k ⩾ 1,

|∂ωWj | ⩽ Cεωϱω

ωIω
(1 + |y|)e−α|y| + Cεω

ω (1 + |y|)e−κ|y| ⩽ Cεωϱω

ωIω
(1 + |y|)e−α|y|

and |∂ky∂ωWj | ⩽ Cεk
ω

ω (1 + |y|)e−α|y| + Cεω

ω (1 + |y|)e−κ|y| ⩽ Cεω

ω (1 + |y|)e−α|y|.

One can notice that εω

ω ⩽ Cεωϱω

ωIω
. Now, differentiating the expressions V1 = (S∗)2W1 and V2 = λ−1L+V1 with

regards to ω and using previous estimates (including |∂ωQω| ⩽ C
ω (1 + |y|)e−|y| and |α′(ω)| ⩽ Cεω

ω ), we evidently
find that,

|∂ωV1| + |∂ωV2| + |∂y∂ωV1| + |∂y∂ωV2| ⩽ C

ω

(
εωϱω
Iω

+ 1
)

(1 + |y|)e−α|y|,

which concludes the proof. Note that we are not able to compare εωϱω

Iω
to 1.

Now we set U = ∂y − W ′
2

W2
.
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2.2 The internal mode

Lemma 2. For ω > 0 small enough, the following factorisation holds:

UM+M− = KU,

where K = ∂4
y − 2∂2

y +K2∂
2
y +K1∂y +K0 + 1, with

K2 = 1 − λ
W1

W2
+ 3W

′′
2

W2
− 4(W ′

2)2

W 2
2

− a+
ω ,

K1 = −3λW
′
1

W2
+ 3λW1W

′
2

W 2
2

+ 3W
′′′
2

W2
− 11W

′
2W

′′
2

W 2
2

+ 8(W ′
2)3

W 3
2

− (a+
ω )′,

K0 = −2λW
′′
1

W2
+ 5λW

′
1W

′
2

W 2
2

+ 2(W ′
2)2

W 2
2

− 3λW1(W ′
2)2

W 3
2

+ λ
W1W

′′
2

W 3
2

− W ′′
2

W2
+ W ′′′′

2
W2

− 5W
′
2W

′′′
2

W 2
2

−3(W ′′
2 )2

W 2
2

+ 15W
′′
2 (W ′

2)2

W 3
2

− 8(W ′
2)4

W 4
2

− (a+
ω )′W

′
2

W2
− a+

ω

W ′′
2

W2
+ 2a+

ω

(W ′
2)2

W 2
2

+ λ2 − 1.

Proof. The proof is entirely identical to the proof of Lemma 3 in [16]. The only difference is the start: in our
case,

M+Mh − λ2h = −2λW ′
1g

′ − λW1g
′′ + 2W ′′′

2 g′ + 4W ′′
2 g

′′ + 2W ′
2g

′′′ +W ′′
2 g

′′

+2W ′
2g

′′′ +W2g
′′′′ − 2W ′

2g
′ −W2g

′′ − 2a+
ωW

′
2g

′ − a+
ωW2g

′′,

where h is any smooth function and g = h/W2 (here exceptionally, in order to fit the notation of [16], g does
not denote the function g that appear in the Schrödinger equation we study). Note that the potential a−

ω does
not appear, since the only time we actually use the operator M− is in the equality M−W2 = W1. Starting from
the relation above, the rest of the proof is entirely identical.

Lemma 3. For ω > 0 small enough, for any j ∈ {0 , 1 , 2} and k ∈ {0 , j + 1}, on R,

|K(k)
j | ⩽ Cεωe

−(κ−α)|y|.

Proof. We follow the proof in [16]. First, taking ω small enough, since |W1(y) − e−α|y|| ⩽ Cϱωe
−α|y|, we have

W2(y) ⩾ 1
2e

−α|y| > 0. Exploiting Proposition 2, we see that∣∣∣∣W1

W2
− 1
∣∣∣∣+
∣∣∣∣∣
(
W1

W2

)(k)
∣∣∣∣∣ ⩽ Ckεωe

−(κ−α)|y|

for any k ⩾ 1. Now, we rewrite the identity M−W2 = λW1 as W ′′
2 = α2W2 −w0W2 where w0 = λ W1−W2

W2
− a−

ω .
Using the estimates on W1 − W2 and on W2, as well as |λ| ⩽ 1 and |a−

ω | ⩽ Cεωe
−2|y| ⩽ Cεωe

−(κ−α)|y|, we see
that |w(k)

0 | ⩽ Ckεωe
−(κ−α)|y| for any k ∈ {0 , ... , 3}. This means that∣∣∣∣W ′′

2
W2

− α2
∣∣∣∣+
∣∣∣∣∣
(
W ′′

2
W2

)(k)
∣∣∣∣∣ ⩽ Ckεωe

−(κ−α)|y|

for any k ∈ {1 , ... , 3}. Now, take y ⩾ 0. Multiplying the identity W ′′
2 = α2W2 − w0W2 by W ′

2 and integrating
on [y ,+∞), we get

(W ′
2)2(y) = α2W 2

2 (y) + 2
∫ +∞

y

w0W
′
2W2.

Using the estimates on w0, W ′
2 and W2, we find that∣∣∣∣ (W ′

2)2

W 2
2

− α2
∣∣∣∣ ⩽ CεωIωe

−(κ−α)y + Cε2
ωe

−2(κ−α)y.
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2.2 The internal mode

For y > 1
κ−α ln

(
Cεω

Iω

)
=: yω with an appropriate constant C, we have both CεωIωe

−(κ−α)y < α2 and
ε2
ωe

−2(κ−α)y ⩽ CεωIωe
−(κ−α)y. Therefore, for y > yω,∣∣∣∣ (W ′

2)2

W 2
2

− α2
∣∣∣∣ ⩽ CεωIωe

−(κ−α)y < α2,

thus W ′
2(y) ̸= 0. Since W ′

2(y) ∼ −αe−αy when y → +∞, we see that W ′
2 < 0 for y > yω. For such y,∣∣∣W ′

2
W2

− α
∣∣∣ = −W ′

2
W2

+ α ⩾ α > 0 and then

∣∣∣∣W ′
2

W2
+ α

∣∣∣∣ =

∣∣∣ (W ′
2)2

W 2
2

− α2
∣∣∣∣∣∣W ′

2
W2

− α
∣∣∣ ⩽

CεωIωe
−(κ−α)y

α
⩽ Cεωe

−(κ−α)|y|.

Now, for 0 ⩽ y ⩽ yω, recall from Proposition 2 that |W ′
2(y) + αe−αy| ⩽ CϱωIωe

−αy + Cεωe
−κy and |W2(y) −

e−αy| ⩽ Cϱωe
−αy. Also recalling that W2 ⩾ 1

2e
−αy, this leads to∣∣∣∣W ′

2
W2

+ α

∣∣∣∣ = 1
W2

∣∣W ′
2(y) + αe−αy − α(e−αy −W2(y))

∣∣ ⩽ CϱωIω + Cεωe
−(κ−α)y.

For y ⩽ yω we easily see that ϱωIω ⩽ Cεωe
−(κ−α)y. Indeed, εωe−(κ−α)y ⩾ εωCIω/εω = CIω ⩾ CIωϱω. This

proves that, for all y ⩾ 0, ∣∣∣∣W ′
2

W2
+ α

∣∣∣∣ ⩽ Cεωe
−(κ−α)y.

Then, using the relation W
(k+2)
2 = α2W

(k)
2 − (w0W2)(k), we deduce that∣∣∣∣∣W (k)

2
W2

− (−α)k
∣∣∣∣∣ ⩽ Cεωe

−(κ−α)y

for all k ∈ {1 , ... , 5} and all y ⩾ 0. For y ⩽ 0, the result must be adapted by taking into account the parity of
k, since W2 is an even function. By similar considerations we can show that∣∣∣∣∣W (k)

1
W2

− (−α)k
∣∣∣∣∣ ⩽ Cεωe

−(κ−α)y

for all k ∈ {1 , ... , 5} and all y ⩾ 0. Now, we can establish the estimates on K0, K1 and K2. First, for y ⩾ 0,

|K2| = |K2 − (1 − λ+ 3α2 − 4α2)|

⩽ |1 − 1| +
∣∣∣∣−λ(W1

W2
− 1
)∣∣∣∣+ 3

∣∣∣∣W ′′
2

W2
− α2

∣∣∣∣+ 4
∣∣∣∣ (W ′

2)2

W 2
2

− α2
∣∣∣∣+ |a+

ω |

⩽ Cεωe
−(κ−α)y.

the proofs are identical for K1 and K0: we respectively use the identities 3λα − 3λα − 3α3 + 11α3 − 8α3 = 0
and −2λα2 + 5λα2 + 2α2 − 3λα2 + λα2 − α2 + α4 − 5α4 − 3α4 + 14α4 − 8α4 + λ2 − 1 = 0. The result for y ⩽ 0
holds by parity, and the generalisation for k ⩾ 1 does not present additional difficulties.

Lemma 4. It holds formally∫
R
(2yh′ + h)Kh = 4

∫
R
(h′′)2 + 4

∫
R
(h′)2 +

∫
R
Y1(h′)2 +

∫
R
Y0h

2

where the functions Y1 = −2K2 − yK ′
2 + 2yK1 and Y0 = 1

2 (K ′′
2 −K ′

1 − 2yK ′
0) satisfy, |Y (k)

1 | ⩽ Ckεωe
−|y| for

all k ∈ {0 , ... , 2} and |Y0| ⩽ Cεωe
−|y| on R.

Proof. Identical to the proof of Lemma 4 in [16].
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2.2 The internal mode

Lemma 5. For ω > 0 small,
∫
R Y0 = Iω (1 + O(ϱω)).

Proof. We begin by writing K0 = −2
(
W ′′

1
W2

− α2
)

+
(
W ′′′′

2
W2

− α4
)

+ K̃0 where

K̃0 = 2α2W
′′
1

W2
+ 5λW

′
1W

′
2

W 2
2

+ 2(W ′
2)2

W 2
2

− 3λW1(W ′
2)2

W 3
2

+ λ

(
W1

W2
− 1
)
W ′′

2
W2

−α2W
′′
2

W2
− 5W

′
2

W2

W ′′′
2

W2
− 3(W ′′

2 )2

W 2
2

+ 15W
′′
2

W2

(W ′
2)2

W 2
2

− 8(W ′
2)4

W 4
2

−(a+
ω )′W

′
2

W2
− a+

ω

W ′′
2

W2
+ 2a+

ω

(W ′
2)2

W 2
2

+ (λ2 − 1) − 2α2 + α4.

We begin to control the terms in K̃0 as we did in the proof of Lemma 3. For example,∣∣∣∣2α2W
′′
1

W2
− 2α4

∣∣∣∣ = 2α2
∣∣∣∣W ′′

1
W2

− α2
∣∣∣∣ ⩽ Cα2εωe

−(κ−α)y

and ∣∣∣∣5λW ′
1W

′
2

W 2
2

− 5λα2
∣∣∣∣ ⩽ 5λ

(∣∣∣∣W ′
1

W2

(
W ′

2
W2

+ α

)∣∣∣∣+
∣∣∣∣−α(W ′

1
W2

+ α

)∣∣∣∣) ⩽ Cε2
ωe

−(κ−α)|y|.

Proceeding similarly for the other terms, we obtain

|K̃0| ⩽ Cε2
ωe

−(κ−α)|y|.

Now, we analyse the remaining terms. First,∫
R

(
W ′′

1
W2

− α2
)

dy =
∫
R

(
W ′

1
W2

)′

dy +
∫
R

(
W ′

1W
′
2

W 2
2

− α2
)
.

Since
∣∣∣W ′

1
W2

+ α
∣∣∣ ⩽ Cεωe

−(κ−α)y −→ 0 as y → +∞, we have W ′
1

W2
−→ −α as y → +∞. Hence, recalling that

W ′
1/W2 is odd, ∫

R

(
W ′

1
W2

)′

dy =
[
W ′

1
W2

]+∞

−∞
= −2α.

Besides,
∣∣∣W ′

1W
′
2

W 2
2

− α2
∣∣∣ ⩽ Cε2

ωe
−(κ−α)|y|. Now, the last term can be written as follows:

∫
R

(
W ′′′′

2
W2

− α4
)

dy = 2
∫ +∞

0

((
W ′′′

2
W2

)′

+ W ′
2

W2

(
W ′′′

2
W2

+ α3
)

− α3
(
W ′

2
W2

+ α

))
.

We have
∫ +∞

0

(
W ′′′

2
W2

)′
= −α3,

∣∣∣W ′
2

W2

(
W ′′′

2
W2

+ α3
)∣∣∣ ⩽ Cε2

ωe
−(κ−α)y and

∣∣∣W ′
2

W2
+ α

∣∣∣ ⩽ Cεωe
−(κ−α)y. Gathering all

these estimates, we find that∫
R
Y0 =

∫
R
K0 = 4α+ O(ε2

ω) = Iω(1 + O(ϱω)) + O(Iωϱω) = Iω (1 + O(ϱω))

which is the desired result.

Lemma 6. Assume hypotheses (H1) and (H2) hold. For ω > 0 small, if (µ ,Z) ∈ R × H4(R) satisfied
KZ = µZ then Z = 0.

Proof. Let (µ ,Z) ∈ R ×H4(R) be a solution of KZ = µZ. Since
∫
R(2yZ ′ + Z)Z = 0, we deduce from Lemma

4 that
0 = 4

∫
R
(Z ′′)2 + 4

∫
R
(Z ′)2 +

∫
R
Y1(Z ′)2 +

∫
R
Y0Z

2.
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First, from Lemma 4 we know that |Y1| ⩽ Cεω thus
∣∣∫

R Y1(Z ′)2
∣∣ ⩽ Cεω

∫
R(Z ′)2. Now we use Lemma 5 from

[16] with Y = Y0
Cεω

, c = 1 and h = Z. It is correct since, for ω > 0 small,
∫
R

Y0
Cεω

∼ Iω

Cεω
> 0. This lemma gives

us
0 ⩽

(∫
R
Y0

)∫
R
e−|y|Z2 dy ⩽ C

∫
R
Y0Z

2 + Cε2
ω∫

R Y0

∫
R
(Z ′)2 ⩽ C

∫
R
Y0Z

2 + Cε2
ω

Iω

∫
R
(Z ′)2.

Hence,

−
∫
R
Y0Z

2 ⩽
Cε2

ω

Iω

∫
R
(Z ′)2 = Cϱω

∫
R
(Z ′)2.

Putting these estimates together, we obtain

0 = 4
∫
R
(Z ′′)2 + 4

∫
R
(Z ′)2 +

∫
R
Y1(Z ′)2 +

∫
R
Y0Z

2 ⩾ 4
∫
R
(Z ′′)2 + (4 − Cεω − Cϱω)

∫
R
(Z ′)2.

Now, taking ω > 0 small enough so that Cεω + Cϱω < 1, we have

0 ⩾
∫
R
(Z ′′)2 +

∫
R
(Z ′)2

which leads to Z = 0.

Lemma 7. Assume hypotheses (H1) and (H2) hold. For ω > 0 small, the only solutions (λ̃ , Ṽ1 , Ṽ2) ∈
[0 ,+∞) ×H2(R) ×H2(R) of the eigenvalue problem (7) are

• (µ , 0 , 0) for any µ ⩾ 0,

• (0 , aQ′
ω , bQω) for any a, b ∈ R,

• (λ , cV1 , cV2) for any c ∈ R, where (λ , V1 , V2) is the internal mode constructed in Proposition 2.

Proof. Identical to the proof of Lemma 8 in [16].

Gathering Proposition 2 and Lemma 7, we obtain Theorem 1 (in its rescaled version).

3 Rescaled decomposition
The two crucial points of this paper, in order to establish the asymptotic stability property, are the good un-
derstanding of the internal mode (existence, uniqueness, properties, estimates) and the Fermi golden rule. The
rest of this paper relies on [16]: the proofs are, in majority, identical here. Henceforth, we shall state lemmas
and propositions which are analogous to propositions in [16] and refer to [16] for the details of the proofs. The
notable differences that our case generates will be clearly identified and proven, in order to explain without any
doubt why the result of asymptotic stability presented in [16] still holds in our case and how the same proof
works without complication.

We introduce Λ := 1
2 (1 + y∂y), Λ∗ = −y

2∂y, Λω := Λ + ω∂ω and R2
+ := R × (0 ,+∞). For φ ∈ H1(R)

and Π = (γ , ω) ∈ R2
+, we define the function ζ[φ ,Π] : R → C by

ζ[φ ,Π](y) = e−iγ
√
ω
φ

(
y√
ω

)
.

Lemma 8. For any ω0 > 0 small and any ϵ > 0, there exists δ > 0 such that, for all even function
φ ∈ H1(R) with ||φ−ϕω0 ||H1(R) < δ, there exists a unique Π = (γ , ω) ∈ R2

+ such that |γ| + |ω−ω0| < ϵ and
u := ζ[φ ,Π] −Qω satisfies

||u||H1(R) < ϵ and ⟨u , iΛωQω⟩ = ⟨u ,Qω⟩ = 0.
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Proof. Identical to the proof of Lemma 9 in [16]. We need to know that
√
ω0
2 ∂ω

(
||ϕω||2

)
ω=ω0

is positive for
ω0 > 0 small enough. This is proven in Lemma 5 in [20].

We now have to prove a technical lemma that takes a different form here, compared to [16].

Lemma 9. We set fω(ψ) := |ψ|2ψ + g(ω|ψ|2)
ω ψ. Let

q1 = Re [fω(Qω + u) − fω(Qω) − f ′
ω(Qω)u]

and q2 = Im
[
fω(Qω + u) − fω(Qω)

Qω
u
]
.

We have, for u = u1 + iu2 with |u| < 1,∣∣q1 −
[
Qω(3 + 3g′(ωQ2

ω) + 2ωQ2
ωg

′′(ωQ2
ω))u2

1 +Qω(1 + g′(ωQ2
ω))u2

2
]∣∣ ⩽ C|u|7/3

and
∣∣q2 − 2Qω(1 + g′(ωQ2

ω))u1u2
∣∣ ⩽ C|u|3.

Proof. Let us begin with q1. First, consider the case |u| ⩽ 1
100Q

3/2
ω . We use Taylor’s expansion and write that

q1 −
[
Qω(3 + 3g′(ωQ2

ω) + 2ωQ2
ωg

′′(ωQ2
ω))u2

1 +Qω(1 + g′(ωQ2
ω))u2

2
]

= |u|2u1 + 2u1|u|2Q2
ωωg

′′(ωQ2
ω) + u1|u|2g′(ωQ2

ω) + 2u3
1Q

2
ωωg

′′(ωQ2
ω)

+|u|4ωQω g
′′(ωQ2

ω)
2 + 2u2

1|u|2Qωωg′′(ωQ2
ω) + |u|4u1ω

g′′(ωQ2
ω)

2 + (Qω + u1) IR
ω

(14)

where

IR :=
∫ ω(Q2

ω+2u1Qω+|u|2)

ωQ2
ω

(ω(Qω + 2u1Qω + |u|2) − s)2

2 g′′′(s) ds.

For ω > 0 small enough and any s ∈ [ωQ2
ω , ω(Q2

ω + 2u1Qω + |u|2)], we have |g′′′(s)| ⩽ εωs
−2 and |(ω(Qω +

2u1Qω + |u|2) − s)2| ⩽ Cω2(|u|Qω + |u|2). Using these bounds, we find that∣∣∣∣ IRω
∣∣∣∣ ⩽ Cεω(|u|Qω + |u|2)3 1

Q4
ω

(
1 + 2u1

Qω
+ |u|2

Q2
ω

)−1

.

The hypothesis |u| ⩽ 1
100Q

3/2
ω implies that 1 + 2u1

Qω
+ |u|2

Q2
ω

⩾ 1 − Q1/2
ω

50 ⩾ 1
2 . It also implies that 1

Qω
⩽ C

|u|2/3 . This
leads to ∣∣∣∣ IRω

∣∣∣∣ ⩽ Cεω

(
|u|3

Qω
+ |u|6

Q4
ω

)
⩽ Cεω|u|7/3.

Using the hypotheses on g, it is easy to check that the other terms in (14) are also smaller (in module) than
C|u|7/3 (they are even controlled by C|u|3). Consequently, in this first case,∣∣q1 −

[
Qω(3 + 3g′(ωQ2

ω) + 2ωQ2
ωg

′′(ωQ2
ω))u2

1 +Qω(1 + g′(ωQ2
ω))u2

2
]∣∣ ⩽ C|u|7/3.

Let us now consider the second case where |u| ⩾ 1
100Q

3/2
ω . This case is easier, as we simply estimate every term

by triangular inequality. Using the hypotheses on g and the bound Qω ⩽ C|u|2/3, we see that∣∣Qω(3 + 3g′(ωQ2
ω) + 2ωQ2

ωg
′′(ωQ2

ω))u2
1 +Qω(1 + g′(ωQ2

ω))u2
2
∣∣ ⩽ C|u|2Qω ⩽ C|u|8/3.

As for the control of q1, we write that, by definition of fω,

q1 = |u|2Qω + |u|2u1 + 2u2
1Qω − 2u1Q

2
ωg

′(ωQ2
ω) + Qω + u1

ω

(
g(ωQ2

ω + 2ωu1Qω + ω|u|2) − g(ωQ2
ω)
)

where |g(ωQ2
ω + 2ωu1Qω + ω|u|2) − g(ωQ2

ω)| ⩽ Cω|2u1Qω + |u|2| since |g′(s)| ⩽ C. We find that

|q1| ⩽ C
(
|u|2Qω + |u|3 + |u|Q2

ω

)
⩽ C|u|7/3.
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Therefore, whatever case we are in, the following bound holds:∣∣q1 −
[
Qω(3 + 3g′(ωQ2

ω) + 2ωQ2
ωg

′′(ωQ2
ω))u2

1 +Qω(1 + g′(ωQ2
ω))u2

2
]∣∣ ⩽ C|u|7/3.

Now, let us deal with q2, which requires two cases but this time it is slightly easier. First, consider the case
|u| ⩽ 1

100Qω. We use Taylor’s expansion and write that

q2 − 2Qω(1 + g′(ωQ2
ω))u1u2 = |u|2u2(1 + g′(ωQ2

ω)) + 2u2
1u2ωQ

2
ωg

′′(ωQ2
ω)2u1u2|u|2ωQωg′′(ωQ2

ω)

+ 1
2 |u|4u2ωg

′′(ωQ2
ω) + u2

IR
ω ,

where IR is the same integral as above. Here the estimates are better, since we have u in front of IR, and not
(Qω + u). We find, reasoning as previously, that |q2 − 2Qω(1 + g′(ωQ2

ω))u1u2| ⩽ C|u|3. The case |u| ⩾ 1
100Qω

does not present additional difficulty, and we find that the above estimate still holds.

Without additional hypotheses on g, 7/3 is the best exponant that we can get. This remark has an impor-
tant consequence on the fact that ω(s) does not converge as s → +∞ (see the remark 6 at the end of section 10).

For the rest of the paper, we introduce the functions ν(y) = sech
(
y
10
)

and ρ(y) = sech
(
α(ω0)

10 y
)

. We give
the following global decomposition result. Here, for a function u depending on s, we denote u̇ := ∂su.

Lemma 10. For any ω0 > 0 small and any ϵ > 0, there exists δ > 0 such that, for all even function
ψ0 ∈ H1(R) with ||ψ0 − ϕω0 ||H1(R) < δ, there exists a unique C 1 function Π : [0 ,+∞) 7→ (γ , ω) ∈ R2

+ such
that, if ψ is the solution of (1), denoting

u(s) := ζ[ψ(τ(s)) ,Π(s)] −Qω(s) where τ(s) :=
∫ s

0

ds′

ω(s′) ,

then the following properties hold, for all s ∈ [0 ,+∞),

• (Stability.) |ω − ω0| + ||u||H1(R) ⩽ ϵ.

• (Orthogonality relations.) ⟨u , iΛωQω⟩ = ⟨u ,Qω⟩ = 0.

• (Equation.) u = u1 + iu2 satisfies{
u̇1 = L−u2 + µ2 + p2 − q2
u̇2 = −L+u1 − µ1 − p1 + q1

(15)

where mγ := γ̇ − 1, mω := ω̇/ω, µ1 = mγQω, µ2 = −mωΛωQω, p1 = mγu1 + mωΛu2 and p2 =
mγu2 −mωΛu1.

• (Control of the parameters.) |mγ | + |mω| ⩽ C||νu||2.

Proof. Identical to the proof of Lemma 11 in [16].

In what follows, we will need the following remark. We recall that

|α′(ω)| ⩽ Cεω
ω

⩽
Cε3ω0/2

ω0

thanks to the definition of εω and the bounds ω0
2 ⩽ ω ⩽ 3ω0

2 . Thus, using Lemma 10 just above,

|α(ω) − α(ω0)| ⩽
Cε3ω0/2

ω0
|ω − ω0| ⩽

Cε3ω0/2

ω0
ϵ ⩽

1
10α(ω0)

if we take ϵ > 0 small enough (depending on ω0). Thus we can put ourselves in the case where α(ω) ⩽ Cα(ω0)
and α(ω)−1 ⩽ Cα(ω0)−1, and that is what we will do from now on. Recall from Proposition 2 that ⟨V1 , V2⟩ ∼
α−1 > 0. We introduce the notation

h⊤ := h− ⟨h , V1⟩
⟨V1 , V2⟩

V2 and h⊥ := h− ⟨h , V2⟩
⟨V1 , V2⟩

V1.
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Lemma 11. Under the assumptions of Lemma 10, possibly taking a smaller δ, there exists a unique C 1

function b = b1 + ib2 : [0 ,+∞) → C such that v = v1 + iv2, defined by

u1 = v1 + b1V1 and u2 = v2 + b2V2,

satisfies, for all s ∈ [0 ,+∞), the five following properties.

• (Stability.) ||v||H1 + |b| ⩽ ϵ.

• (Orthogonality relations.) ⟨v , iΛωQω⟩ = ⟨v ,Qω⟩ = ⟨v , iV1⟩ = ⟨v , V2⟩ = 0.

• (Control of the parameters.)
|mγ | + |mω| ⩽ C

(
||νv||2 + |b|2

)
. (16)

• (Equation of v.) Setting r1 := −mωb2ω∂ωV2 and r2 := mωb1ω∂ωV1,{
v̇1 = L−v2 + µ2 + p⊥

2 − q⊥
2 − r⊥

2
v̇2 = −L+v1 − µ1 − p⊤

1 + q⊤
1 + r⊤

1 .
(17)

• (Equation of b.) Setting Bj := ⟨pj−qj−rj ,Vj⟩
⟨V1 ,V2⟩ for j ∈ {1 , 2},{

ḃ1 = λb2 +B2
ḃ2 = −λb1 −B1

(18)

and
|B1| + |B2| ⩽ Cα(ω0)(|b|2 + ||ρ4v||2). (19)

Proof. The proof is analogous to the proof of Lemma 12 in [16]. We define b1 = ⟨u1 ,V2⟩
⟨V1 ,V2⟩ and b2 = ⟨u2 ,V1⟩

⟨V1 ,V2⟩ . The
rest of the proof is globally unchanged. Two minor differences are to be noted. First, in [16], α(ω) ∼ 8

9ω and
ρ(y) = sech

(
ω0y
10
)
, which leads to more comfortable calculations. Thus, some occurrences of ω0 (typically in

this proof) must be replaced by α(ω0) in our case. The arguments remain unchanged. The results have been
adapted in consequence.

The other difference is in the development of q1 at the second order, since we know from Lemma 9 that
the queue term is not of order 3 but only of order 7/3. This does not change the conclusion whatsoever. We
have∣∣q1 −

[(
Qω(3 + 3g′(ωQ2

ω) + 2ωQ2
ωg

′′(ωQ2
ω)
)
u2

1 +Qω(1 + g′(ωQ2
ω))u2

2
]∣∣ ⩽ C|v|7/3+C|b|7/3+Cν2|v|2+Cν2|b| |v|.

Setting d̃1(ω) := 1
⟨V1 ,V2⟩

∫
RQω(3+3g′(ωQ2

ω)+2ωQ2
ωg

′′(ωQ2
ω))V 3

1 and d̃2(ω) := 1
⟨V1 ,V2⟩

∫
RQω(1+g′(ωQ2

ω))V1V
2

2 ,
this leads to ∣∣∣∣

∫
R q1V1

⟨V1 , V2⟩
− d̃1(ω)b2

1 − d̃2(ω)b2
2

∣∣∣∣ ⩽ Cα(ω0)(||ρ4v||2 + |b| ||νv||) + C|b|7/3.

The end of the proof works without further complication, since |b|7/3 ⩽ ϵ1/3|b|2 ⩽ Cα(ω0)|b|2 for ϵ > 0 chosen
small enough (depending on ω0). We will find later other proofs where, similarly, the order of the development
is restrained in our case: we end up with ϵ1/3 instead of ϵ in the case of [16], but this change does not affect the
proof.

Lemma 12. For all k ∈ {0 , ... , 2}, |(h⊥)(k)| + |(h⊤)(k)| ⩽ C|h(k)| + C
√
α(ω0)||ρ4h||ρ8. In particular,

||ρh⊥|| + ||ρh⊤|| ⩽ C||ρh||.

Proof. Identical to the proof of Lemma 13 in [16].

Lemma 13. We define M := |b|4 + ||ρv||2. For all s ⩾ 0,

| ˙M | ⩽ C
(
|b|4 + ||ρ∂yv||2 + ||ρv||2

)
. (20)
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Proof. The proof is identical to the proof of Lemma 16 in [16]. The only notable difference is that the estimates
on ∂ky∂ωVj are more natural in [16] and lead to easier calculations. In our case, recalling that ω0

2 ⩽ ω ⩽ 3ω0
2 ,

we know that, for j ∈ {1 , 2},

|ω∂ωVj | + |ω∂y∂ωVj | ⩽ CV(ω0)(1 + |y|)e−α|y| (21)

where V(ω0) := ε3ω0/2
α(ω0) . Therefore, here, |ω∂ωV1| + |ω∂ωV1| ⩽ Cα(ω0)−1V(ω0). Using the definition of r1 and

r2, as well as (16), we find

||ρr1|| + ||ρr2|| ⩽ C|mω| |b|α(ω0)−1V(ω0) ⩽ C(|b|2 + ||νv||2)ϵα(ω0)−1V(ω0) ⩽ C(|b|2 + ||νv||2)

as long as we take ϵ > 0 small enough (depending on ω0). The rest of the proof is unchanged and gives the
desired result.

4 Estimate at large scale
We will use virial arguments, which require suitable functions that will be denoted as follows. The arguments
and notation used here originate from [13], [15], [17], [16]. We fix a smooth even function χ : R → R such
χ = 1 on [0 , 1], χ = 0 on [2 ,+∞) and χ′ ⩽ 0 on [0 ,+∞). Let 1 ≪ B ≪ A be large constants to be fixed later.
We define

χA(y) := χ
(
y
A

)
, ηA(y) := sech

( 2y
A

)
ζA(y) := exp

(
− |y|
A (1 − χ(y))

)
, ΦA(y) :=

∫ y
0 ζ

2
A.

Note that 0 < Φ′
A = ζ2

A ⩽ 1, |ΦA| ⩽ |y| and |ΦA| ⩽ CA on R. We define the function ΨA,B := χ2
AΦB and the

virial operators as follows:

ΘA := 2ΦA∂y + Φ′
A and ΞA,B := 2ΨA,B∂y + Ψ′

A,B .

The first virial estimate is given below.

Proposition 3. For all s > 0,∫ s

0

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)

⩽ Cϵ+ C

∫ s

0

(
||ρ4v||2 + |b|4

)
.

Proof. The proof is identical to the proof of Lemma 18 in [16]. By (17), we see that d
ds
∫
R(ΘAv2)v1 =

5∑
j=1

ij

where
i1 = −

∫
R(ΘAv1)∂2

yv1 −
∫
R(ΘAv2)∂2

yv2,

i2 =
∫
R(ΘAv1)µ1 +

∫
R(ΘAv2)µ2,

i3 =
∫
R(ΘAv1)p⊤

1 +
∫
R(ΘAv2)p⊥

2 ,

i4 = −
∫
R(ΘAv1)r⊤

1 −
∫
R(ΘAv2)r⊥

2

and i5 = −
∫
R(ΘAv1)(f ′

ω(Qω)v1 + q⊤
1 ) −

∫
R(ΘAv2)

(
fω(Qω)
Qω

v2 + q⊥
2

)
.

As in [16],
|i1| ⩾ 2||∂y ṽ||2 − C||νv||2 and |i2| ⩽ C(||νv||2 + |b|4),

where ṽ := ζAv. As for i3, the proof is also identical, based on the fact that the inequality (y2 + 1)|V ′′
j | + (|y| +

1)|V ′
j | + |Vj | ⩽ Cρ8 remains true in our case since α ⩾ 4

5α(ω0). We find:∣∣∣∣i3 +mω

∫
R
(ΘAv2)v1

∣∣∣∣ ⩽ 1
2 ||∂y ṽ||2 + C||ρ4v||2 + C|b|4.
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Now, as for i4, we recall (21). Following the proof of [16], this leads to

|ΘAω∂ωVj | ⩽ CV(ω0)(1 + y2)e−α|y| ⩽ CV(ω0)ρ8(y)

then ∣∣∣∣∫
R
(ΘAv1)r⊤

1

∣∣∣∣ ⩽ C
V(ω0)
α(ω0) |b| |mω| ||ρ4v|| ⩽ C

V(ω0)
α(ω0) ϵ(||νv||2 + |b|2)||ρ4v||2 ⩽ C(||ρ4v||2 + |b|4)

choosing ϵ > 0 small enough (depending on ω0). The same proof holds for the term containing r2 and we end
up with

|i4| ⩽ C
(
||ρ4v||2 + |b|4

)
.

Finally, as for i5, the proof is analogous: we consider

q̃1 = Re [fω(Qω + v) − fω(Qω)] ,

q̃2 = Im [fω(Qω + v) − fω(Qω)] ,

q̌1 = Re [fω(Qω + u) − fω(Qω + v) − f ′
ω(Qω)(u1 − v1)]

and q̌2 = Im
[
fω(Qω + u) − fω(Qω + v) − i fω(Qω)

Qω
(u2 − v2)

]
.

We recall that fω(ψ) = |ψ|2ψ + g(ω|ψ|2)
ω and we introduce Fω(ψ) := |ψ|4

4 + G(ω|ψ|2)
2ω2 . Integrating by parts, we

find that ∫
R
(ΘAv1)q̃1 +

∫
R
(ΘAv2)q̃2 = i5,1 + i5,2 + i5,3

where
i5,1 = −2Re

∫
R Φ′

A(Fω(Qω + v) − Fω(Qω) − fω(Qω)v),

i5,2 = −2Re
∫
R ΦAQ′

ω(fω(Qω + v) − fω(Qω) − f ′
ω(Qω)v)

and i5,3 = Re
∫
R Φ′

Av(fω(Qω + v) − fω(Qω)).

Estimating these integrals follow the same steps as in the proof of Proposition 3 in [20] (the equivalent integrals
are I1, I2 and I3). It leads to

|i5,1| + |i5,3| ⩽ C

∫
R

Φ′
A(|v|4 +Q2

ω|v|2) ⩽ C||ζAv2||2 + C||νv||2

and |i5,2| ⩽ C

∫
R

ΦA|Q′
ω|(Qω|v|2 + |v|3) ⩽ C||νv||2.

Therefore, |i5,1|+ |i5,2|+ |i5,3| ⩽ C
(
||νv||2 + ||ζAv2||2

)
⩽ C||νv||2 +CAϵ||∂y ṽ|| thus, choosing ϵ > 0 small enough

(depending on A), ∣∣∣∣∫
R
(ΘAv1)q̃1

∣∣∣∣+
∣∣∣∣∫

R
(ΘAv2)q̃2

∣∣∣∣ ⩽ 1
2 ||∂y ṽ||2 + C||ρ4v||2.

Now, let us deal with the terms q̌1 and q̌2. We start with q̌1 and we will need three different cases. First,
suppose that |u| ⩽ Qω

4 and |v| ⩽ Qω

4 . Using Taylor expansions, we see that

q̌1 = Re(k1,ω(u)−k1,ω(v))+|u|2u1−|v|2v1+Qω(|u|2−|v|2)+2Qω(u2
1−v2

1)+ 1
ω

[(Qω + v1)(IRu − IRv) + (u1 − v1)IRu]

where
IRu =

∫ ω|Qω+u|2

ωQ2
ω

(ω|Qω + u|2 − t)g′′(t) dt,

IRv =
∫ ω|Qω+v|2

ωQ2
ω

(ω|Qω + v|2 − t)g′′(t) dt

and k1,ω(u) = |Qω + u|2(Qω + u) −Q3
ω − 3Q2

ωu1 − iQ2
ωu2.

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 27



The notation k1,ω is taken from the proof of Lemma 18 in [16]. It is shown that |k1,ω(u) − k1,ω(v)| ⩽ C|u −
v|(Qω(|u| + |v|) + |u|2 + |v|2). Now, we decompose IRu − IRv as follows and we use the bound |g′′(t)| ⩽ C/t:

|IRu − IRv| ⩽

∣∣∣∣∣
∫ ω|Qω+u|2

ω|Qω+v|2
(ω|Qω + v|2 − t)g′′(t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ ω|Qω+u|2

ωQ2
ω

(2ωQω(u1 − v2) + ω(|u|2 − |v|2))g′′(t) dt
∣∣∣∣∣

⩽ ω
∣∣ |Qω + u|2 − |Qω + v|2

∣∣ ∣∣∣∣∣
∫ ω|Qω+u|2

ω|Qω+v|2

C dt
t

∣∣∣∣∣+ Cω
(
Qω|u1 − v1| + ||u|2 − |v|2|

) ∣∣∣∣∣
∫ ω|Qω+u|2

ωQ2
ω

C dt
t

∣∣∣∣∣ .
We have

∣∣∣∫ ω|Qω+u|2

ω|Qω+v|2
C dt
t

∣∣∣ ⩽ C

∣∣∣∣ln ∣∣∣1 + u
Qω

∣∣∣2 − ln
∣∣∣1 + v

Qω

∣∣∣2∣∣∣∣ where
∣∣∣1 + u

Qω

∣∣∣2 = 1+ 2u1
Qω

+ |u|2

Q2
ω

, with 2u1
Qω

+ |u|2

Q2
ω

⩾ − 1
2

thanks to the hypothesis. Since ln(1 + ·) is C-Lipschitz on
[
− 1

2 ,+∞
)
, we have∣∣∣∣∣ln

∣∣∣∣1 + u

Qω

∣∣∣∣2 − ln
∣∣∣∣1 + v

Qω

∣∣∣∣2
∣∣∣∣∣ ⩽ C

(
|u1 − v1|
Qω

+ ||u|2 − |v|2|
Q2
ω

)
.

Moreover, we see that ||u|2 − |v|2| ⩽ |u− v|(|u| + |v|) ⩽ Qω|u− v|, ||Qω + u|2 − |Qω + v|2| ⩽ Qω|u− v| + |u−
v|(|u| + |v|) ⩽ CQω|u− v| and∣∣∣∣∣

∫ ω|Qω+u|2

ωQ2
ω

C dt
t

∣∣∣∣∣ ⩽ C

∣∣∣∣∣ln
∣∣∣∣1 + u

Qω

∣∣∣∣2 − ln 1
∣∣∣∣∣ ⩽ C|u|

Qω
.

Gathering all the previous estimates, we find

|IRu − IRv| ⩽ Cω|u− v|(|u| + |v|).

Moreover,

|IRu| ⩽

∣∣∣∣∣
∫ ω|Qω+u|2

ωQ2
ω

(ω|Qω + u|2 − t)g′′(t) dt
∣∣∣∣∣ ⩽ ω||Qω+u|2−Q2

ω|

∣∣∣∣∣
∫ ω|Qω+u|2

ωQ2
ω

C dt
t

∣∣∣∣∣ ⩽ Cω·Qω|u|·C|u|
Qω

⩽ Cω|u|2.

Getting back to q̌1, we evidently find that

|q̌1| ⩽ C|u− v|
(
Qω(|u| + |v|) + |u|2 + |v|2

)
.

Now, let us consider the case |u| ⩾ Qω

4 . The situation is easier. We write

q̌1 = Re(k1,ω(u) − k1,ω(v)) + Qω + v1

ω

(
g(ω|Qω + u|2) − g(ω|Qω + v|2)

)
+ u1 − v1

ω
g(ω|Qω + u|2)

−(u1 − v1)
(

2Q2
ωg

′(ωQ2
ω) + g(ωQ2

ω)
ω

)
.

Since |g′| is bounded, we have |g(ω|Qω+u|2)−g(ω|Qω+v|2)| ⩽ Cω||Qω+u|2−|Qω+v|2| ⩽ Cω|u−v|(Qω+|u|+|v|).
We also have, thanks to the hypothesis, |Qω + v1| ⩽ C|v|, |g(ω|Qω + u|2)| ⩽ Cω|Qω + u|2 ⩽ Cω|u|2 and∣∣∣∣(u1 − v1)

(
2Q2

ωg
′(ωQ2

ω) + g(ωQ2
ω)

ω

)∣∣∣∣ ⩽ |u− v|(CQ2
ω + CQ2

ω) ⩽ C|u− v| |u|2.

Therefore, gathering these estimates, we obtain:

|q̌1| ⩽ C|u− v|
(
Qω(|u| + |v|) + |u|2 + |v|2

)
.

The last case, namely |v| ⩾ Qω

4 , is treated analogously. The estimate above holds in any case.

Now, as for q̌2, we see that

q̌2 = Im(k1,ω(u) − k1,ω(v)) + Qω + u2

ω
g(ω|Qω + u|2) − Qω + v2

ω
g(ω|Qω + v|2) − u2 − v2

ω
g(ωQ2

ω)
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where we already know that |Im(k1,ω(u) − k1,ω(v))| ⩽ C|u− v|
(
Qω(|u| + |v|) + |u|2 + |v|2

)
. For the remaining

term, in the case |u| ⩾ Qω

4 or |v| ⩾ Qω

4 , the proof is just as we did for q̌1:
∣∣u2−v2

ω g(ωQ2
ω)
∣∣ ⩽ CQ2

ω|u − v| ⩽
C|u|2|u−v| and

∣∣∣Qω+u2
ω g(ω|Qω + u|2) − Qω+v2

ω g(ω|Qω + v|2)
∣∣∣ ⩽ C|u−v|(|u|2 + |v|2). Therefore, in these cases,

|q̌2| ⩽ C|u− v|
(
Qω(|u| + |v|) + |u|2 + |v|2

)
.

Let us consider the remaining case: |u| ⩽ Qω

4 and |v| ⩽ Qω

4 . Then, using Taylor expansions, we see that

Qω + u2

ω
g(ω|Qω + u|2) − Qω + v2

ω
g(ω|Qω + v|2) − u2 − v2

ω
g(ωQ2

ω)

= g′(ωQ2
ω) Im (k1,ω(u) − k1,ω(v)) + (Qω + u2) IRu

ω
− (Qω + v2) IRv

ω

where IRu and IRv are the same integrals as before. We recall that |g′| is bounded and we deal with the rest
of the expression above as we did for q̌1: the conclusion is the same and we have

|q̌2| ⩽ C|u− v|
(
Qω(|u| + |v|) + |u|2 + |v|2

)
in this last case too. Therefore, we have achieved to establish the estimate

|q̌1| + |q̌2| ⩽ C|u− v|
(
Qω(|u| + |v|) + |u|2 + |v|2

)
which is needed to complete the rest of the proof. The end of the proof is identical to [16] (except for the
occurrences of ω0 which are replaced by α(ω0)). We end up showing that

|i5| ⩽ ||∂y ṽ||2 + C||ρ4v||2 + C|b|4.

The end of the proof is entirely identical: we write that, setting I := ω
∫
R(ΘAv2)v1, we have, on one hand,

dI
ds ⩾ ω0

(
1
2 ||∂y ṽ||2 − C||ρ4v||2 − C|b|4

)
and, on the other hand, |I(s)| ⩽ ω0A||v||2H1(R) ⩽ ω0Aϵ

2. The end of the proof is identical and leads to the
desired result: ∫ s

0

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)

⩽ Cϵ+ C

∫ s

0
(||ρ4v||2 + |b|4).

5 The Fermi golden rule
For the Fermi golden rule, we need to construct a non trivial bounded solution (g1 , g2) of{

L+g1 = 2λg2
L−g2 = 2λg1.

(22)

We proceed as in [16]: if h1 satisfies M−M+h1 = 4λ2h1, then, setting g1 = (S∗)2h1 and g2 = 1
2λL+g1, (g1 , g2)

satisfies (22) thanks to the relation S2L+L− = M+M−S
2.

Lemma 14. Let τ :=
√

2λ− 1. For ω > 0 small enough, there exist smooth even functions h1 and h2
(depending on ω) that satisfy {

M+h1 = 2λh2
M−h2 = 2λh1

(23)

and, for all k ∈ N,

|∂ky (h1 + cos(τy))| + |∂ky (h2 + cos(τy))| ⩽ Cεω and |∂ky∂ωh1| + |∂ky∂ωh2| ⩽ Cεω
ω

(1 + |y|)
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on R. Setting g1 = (S∗)2h1 and g2 = 1
2λL+g1, the pair (g1 , g2) satisfies (22) and, for all k ∈ {0 , ... , 2},∣∣∣∂ky (g1 −

(
2Q′

Q sin(τy) +Q2 cos(τy)
))∣∣∣+

∣∣∣∂ky (g2 − 2Q′

Q sin(τy)
)∣∣∣ ⩽ Cεω

and |∂ωg1 + |∂ωg2| + |∂y∂ωg1| + |∂y∂ωg2| ⩽ C
ω (1 + |y|)

on R. Moreover, the following orthogonality relations hold:

⟨g1 , Qω⟩ = ⟨g2 ,ΛωQω⟩ = ⟨g1 , V2⟩ = ⟨g2 , V1⟩ = 0. (24)

Proof. The proof is analogous to the proof of Lemma 19 in [16]. Setting ℓ1 := h1+h2
2 and ℓ2 := h1−h2

2 , we look
for (ℓ1 , ℓ2) satisfying {

−ℓ′′
1 − (2λ− 1) + b+

ω ℓ1 + b−
ω ℓ2 = 0

−ℓ′′
2 + (2λ+ 1)ℓ2 + b−

ω ℓ1 + b+
ω ℓ2 = 0.

Let ℓ̌1 := ℓ1 + cos(τy) and ℓ̌2 := ℓ2. We look for (ℓ̌1 , ℓ̌2) satisfying{
−ℓ̌′′

1 − τ2ℓ̌1 = −b+
ω ℓ̌1 − b−

ω ℓ̌2 + b+
ω cos(τy)

−ℓ̌′′
2 + (2 + τ2)ℓ̌2 = −b−

ω ℓ̌1 − b+
ω ℓ̌2 + b−

ω cos(τy). (25)

We define a bounded linear map Υ̌ : (Cb(R))2 → (Cb(R))2, where Cb(R) is the space of bounded continuous
functions on R equipped with the supremum norm || · ||∞, by setting

Υ̌
(
ℓ̌1
ℓ̌2

)
=

 − 1
τ

∫ y
0 sin(τ(y − y′))(−b+

ω ℓ̌1 − b−
ω ℓ̌2)(y′) dy′

1
2

√
2+τ2

∫
R e

−
√

2+τ2|y−y′|(−b−
ω ℓ̌1 − b+

ω ℓ̌2)(y′) dy′

 .

We also define
f̌1 := − 1

τ

∫ y

0
sin(τ(y − y′))b+

ω (y′) cos(τy′) dy′

and f̌2 := − 1
2
√

2 + τ2

∫
R
e−

√
2+τ2|y−y′|b−

ω (y′) cos(τy′) dy′.

That way, the integral formulation of the system (25) (for even functions satisfying ℓ̌1(0) = 0 by convention) is(
ℓ̌1
ℓ̌2

)
= Υ̌

(
ℓ̌1
ℓ̌2

)
+
(
f̌1
f̌2

)
. (26)

We easily see that ||f̌1||∞ + ||f̌2||∞ + |||Υ̌||| ⩽ Cεω. Thus, the operator Id − Υ̌ is invertible pour ω > 0 small
enough, and (26) becomes (

ℓ̌1
ℓ̌2

)
= (Id − Υ̌)−1

(
f̌1
f̌2

)
=

+∞∑
j=0

(
f̌ j1
f̌ j2

)
,

where
(
f̌ j1
f̌ j2

)
:= Υ̌j

(
f̌1
f̌2

)
. This proves the existence of a solution (ℓ̌1 , ℓ̌2) of (26). Using the estimates

|∂ωτ | ⩽ Cαεω

ω and (13), we also find that |∂ω f̌1| + |∂ω f̌2| ⩽ Cεω

ω (1 + |y|). From there, reasoning by induction,
we show that, for all j ∈ N,

|f̌ j1 | + |f̌ j2 | ⩽ Cεj+1
ω and |∂ω f̌ j1 | + |∂ω f̌ j2 | ⩽ C

εj+1
ω

ω
(1 + |y|).

Differentiating with regards to y only differentiates the term sin(τ(y−y′)) or e−
√

2+τ2|y−y′| in the integral. This
does not change the estimates obtained previously, therefore, for all j ∈ N and all k ∈ N,

|∂ky f̌
j
1 | + |∂ky f̌

j
2 | ⩽ Cεj+1

ω and |∂ky∂ω f̌
j
1 | + |∂ky∂ω f̌

j
2 | ⩽ C

εj+1
ω

ω
(1 + |y|).
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Getting back to the Neumann expansion, we get that, for all k ∈ N,

|∂ky ℓ̌1| + |∂ky ℓ̌2| ⩽ Cεω and |∂ky∂ω ℓ̌1| + |∂ky∂ω ℓ̌2| ⩽ Cεω
ω

(1 + |y|).

Until the end of this proof, Õp(εω) denotes any function ℓ such that |∂ky ℓ| ⩽ Ckεω for all k ∈ {0 , ... , p}. We define
h1 = − cos(τy) + (ℓ̌1 + ℓ̌2), h2 = − cos(τy) + (ℓ̌1 + ℓ̌2), g1 = (S∗)2h1 and g2 = 1

2λL+g1. We check that (h1 , h2)
satisfies (23), (g1 , g2) satisfies (22), and we have h1 = − cos(τy)+ Õ∞(εω) and h2 = − cos(τy)+ Õ∞(εω). Using
the bounds

∣∣∣Q′
ω

Qω
− Q′

Q

∣∣∣ = Õ5(εω),
∣∣∣ g(ωQ2

ω)
ω

∣∣∣ = Õ4(εω), |Q2
ω − Q2| = Õ6(εω), |τ2 − 1| ⩽ Cε2

ω and |τ − 1| ⩽ Cε2
ω,

we compute:
g1 = Q′′

ω

Qω
h1 + 2Q′

ω

Qω
h′

1 + h′′
1

= (1 −Q2)h1 + 2Q′

Q h′
1 + h′′

1 + Õ4(εω)

= Q2 cos(τy) + 2Q′

Q sin(τy) + Õ4(εω).

Then, using |λ−1 − 1| ⩽ Cε2
ω and estimates like the ones above, we compute:

g2 = 1
2
(
−g′′

1 + g1 − 3Q2g1
)

+ Õ4(εω) = 2Q′

Q
sin(τy) + Õ2(εω).

Differentiating with regards to ω the formulas g1 = (S∗)2h1 and g2 = 1
2λL+g1 and using estimates found in

Proposition 2 (such as |∂ωQω| ⩽ C
ω or |α′(ω)| ⩽ Cεω

ω ), we ultimately find that

|∂ky∂ωg1| + |∂ky∂ωg2| ⩽ C

ω
(1 + |y|)

for any k ∈ {0 , 1} and all y ∈ R. Finally, the orthogonality relations are proven as in [16], using L+ΛωQω =
−Qω, L−Qω = 0 and the equations of (V1 , V2) and (g1 , g2).

We now define

G := V 2
1 Qω(3 + 3g′(ωQ2

ω) + 2ωQ2
ωg

′′(ωQ2
ω)), H := V 2

2 Qω(1 + g′(ωQ2
ω)),

G1 = G−H, G2 = 2V1V2Qω(1 + g′(ωQ2
ω)),

G⊤
1 = G1 − ⟨G1 ,V1⟩

⟨V1 ,V2⟩ V2, G⊥
2 = G2 − ⟨G2 ,V2⟩

⟨V1 ,V2⟩ V1.

The quantity G above must not be confused with the function G. We keep the notation G in order to fit the
notation of [16]. As we will mostly have to deal with G1 and G2 (rather than G itself), there should be no
confusion. Lastly, we define

Γ(ω) =
∫
R
(G⊤

1 g1 +G⊥
2 g2).

The hypothesis (H3) presented in the introduction can be reformulated as follows:

(H3) : there exists a positive quantity Γ(ω0) depending only on ω0 such that,

|ω − ω0| ⩽ ω0
2 =⇒ Γ(ω) ⩾ Γ(ω0) > 0.

(27)

This hypothesis appears to be hard to verify, but [16] proves that it holds in the case g(s) = s2. We shall
investigate the case g(s) = sσ for σ > 1 a little further. For now, let us operate a simplification of Γ(ω) as it is
done in [16].

Lemma 15. For ω > 0 small enough, we have

Γ(ω) =
∫
R

(
Q2∆4 cos y + 2Q′

Q
(∆4 + 2∆2) sin y

)
dy + O(ε2

ω),
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where

∆4 = 6Q(1 −Q2)R1 + (1 −Q2)2 (3Dω +Q(3g′(ωQ2) + 2ωQ2g′′(ωQ2))
)

− 2QR2 − 3Dω −Qg′(ωQ2)

−
(
g(ωQ2)
ω + 2Q2g′(ωQ2) + 6QDω

)
Q(1 −Q2)

and ∆2 = QR1 +Q(1 −Q2)R2 + (1 −Q2)(Dω +Qg′(ωQ2)).

Proof. The proof is identical to the proof of Lemma 20 in [16], in which a similar result is obtained. In what
follows, Õp(ε2

ω) denotes any function ℓ such that |∂ky ℓ| ⩽ Ckε
2
ω(1 + y2) for all k ∈ {0 , ... , p}. We first establish

the following expansions, using Proposition 2:

G = 3Q(1 −Q2)2 + 6Q(1 −Q2)R1 + 3Dω(1 −Q2)2 + (3g′(ωQ2) + 2ωQ2g′′(ωQ2))Q(1 −Q2)2 +Q Õ2(ε2
ω),

H = Q+Dω +Qg′(ωQ2) + 2QR2 +Q Õ2(ε2
ω),

G1 = 3Q(1 −Q2)2 −Q+ ∆1 +Q Õ(ε2
ω),

G2 = 2Q(1 −Q2) + 2∆2 +Q Õ(ε2
ω),

where

∆1 := 6Q(1 −Q2)R1 − 2QR2 −Dω −Qg′(ωQ2) +Q(1 −Q2)2 (3Dω + (3g′(ωQ2) + 2ωQ2g′′(ωQ2)
)

and ∆2 has the expression announced in the lemma. Then, recalling that λ = 1 + O(ε2
ω) and following the

calculations in [16], we compute

G1 + 1
2λL+G2 = G1 + 1

2

[
−G′′

2 +G2 − 3Q2G2 −G2

(
g(ωQ2)
ω

+ 2Q2g′(ωQ2) + 6QDω

)
+ Õ0(ε2

ω)
]

= 2Q+ ∆3 +Q Õ0(ε2
ω),

where
∆3 := ∆1 − ∆′′

2 + ∆2 − 3Q2∆2 −
(
g(ωQ2)
ω + 2Q2g′(ωQ2) + 6QDω

)
Q(1 −Q2)

= 2Dω + (−∆′′
2 + ∆2 − 3Q2∆2) + ∆4

where ∆4 turns out to be the quantity presented in the lemma. Using the arguments of [16], we find that

Γ(ω) =
∫
R
g1(∆3 − 2Dω) + O(ε2

ω) =
∫
R
g1∆4 + 2

∫
R
g2∆2 + O(ε2

ω).

We now use the expansions of g1 and g2 proven in Lemma 14. Noticing that | cos(τy) − cos(y)| ⩽ |y| |τ − 1| ⩽
Cε2

ω|y| and that a similar estimate holds for sin, we see that∫
R
Q2 cos(τy)∆4 =

∫
R
Q2 cos(y)∆4 + O(ε2

ω)

for example. Combining these developments, we find the wanted formula:

Γ(ω) =
∫
R

(
Q2∆4 cos y + 2Q′

Q
(∆4 + 2∆2) sin y

)
dy + O(ε2

ω).

It is not possible to go quite further from here in the general case of a function g we know nothing special about.
But we can go further by taking the interesting and useful case g(s) = sσ where σ > 1.
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Lemma 16. Here, we take g(s) = asσ with σ > 1 and a > 0. For ω > 0 small enough, we have

Γ(ω) = aΓ0(σ)ωσ−1 + O
(
ω2(σ−1)

)
where

Γ0(σ) :=
∫
R

(
Q2∆0

4 cos y + 2Q′

Q
∆0

5 sin y
)

dy

with

∆0
4 := (13Q2 − 16)Q2D0 − 8Q′Q(D0)′ + 2Q(3(1 −Q2)2 − 1)T 0

1

+6Q(2 −Q2)2T 0
2 + 4(2 − 3Q2)Q′(T 0

1 )′ + 4(4 − 3Q2)Q′(T 0
2 )′

+2σ2Q2σ−1 −
(

4(σ+2)
σ+1 + (2σ + 1)2

)
Q2σ+1 +

(
8

σ+1 + (σ + 1)(2σ + 1)
)
Q2σ+3,

∆0
5 := (2 − 30Q2 + 29Q4 − 8Q6)D0 − 8Q3Q′(D0)′ + 2Q(2 −Q2)(2 − 3Q2)T 0

1

+2Q(3Q4 − 10Q2 + 12)T 0
2 + 16(1 −Q2)Q′(T 0

1 )′ + 8(2 −Q2)Q′(T 0
2 )′

+2σ(σ + 1)Q2σ−1 −
(

16
σ+1 + 2σ + (2σ + 1)2

)
Q2σ+1 +

(
4(4−σ)
σ+1 + (σ + 1)(2σ + 1)

)
Q2σ+3 − 4

σ+1Q
2σ+5,

T 0
1 (y) := − (σ−1)2

2(σ+1)
∫
R |y − z|Q2σ(z) dz,

T 0
2 (y) := −

√
2σ(σ−1)
4(σ+1)

∫
R e

−
√

2|y−z|Q2σ(z) dz,

D0(y) := −Q′(y)
∫ y

0 AQ
2σ+1 +A(y)Q(y)2σ+2

2σ+2

and A(y) :=
√

2
4 cosh(y)

(
3y tanh(y) + sinh2(y) − 2

)
.

Proof. We start with the following relation:

L0
+Dω = aωσ−1Q2σ+1 + Zω

where Zω := D2
ω(Qω + 2Q) +aωσ−1(Q2σ+1

ω −Q2σ+1). We check that |Zω| ⩽ Cσω
2(σ−1)e−3|y|. Besides, we know

how to invert the operator L0
+ = −∂2

y + 1 − 3Q2, it is similar to the operator I+ in [17]. We have

(L0
+)−1[W ](y) =

∣∣∣∣∣∣∣
−Q′(y)

∫ y
0 AW −A(y)

∫ +∞
y

Q′W if y ⩾ 0

Q′(y)
∫ 0
y
AW +A(y)

∫ y
−∞ Q′W if y < 0

where A denotes the even solution of L0
+A = 0 such that Q′′A−Q′A′ = 1 on R. This solution is not bounded

and verifies |A(k)| ⩽ Cke
|y| on R. Actually, we can compute A explicitly:

A(y) =
√

2
4 cosh(y)

(
3y tanh(y) + sinh2(y) − 2

)
.

This leads, for y > 0, to
Dω(y) = aωσ−1D0(y) + D̃ω(y),

where
D0(y) = −Q′(y)

∫ y
0 AQ

2σ+1 −A(y)
∫ +∞
y

Q′Q2σ+1

= −Q′(y)
∫ y

0 AQ
2σ+1 +A(y)Q(y)2σ+2

2σ+2

and D̃ω(y) = −Q′(y)
∫ y

0 AZω −A(y)
∫ +∞
y

Q′Zω.
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Using the bounds on Zω, Q′ and A, we see that |D̃ω(y)| ⩽ Cσω
2(σ−1)e−|y|. Similar estimates hold for y < 0

(and anyway Dω is even).

The expressions of R1 and R2 involve T1 and T2, which involve Qω. As we did before with many other
expressions, we can replace these Qω par Q, at a cost of ε2

ω. We have:

T1(y) = 1
2

∫
R

|y − z|
(

3g(ωQ2)
ω

− 4G(ωQ2)
ω2Q2 −Q2g′(ωQ2)

)
dz + Õ1(ε2

ω),

T2(y) = −
√

2
4

∫
R
e−

√
2|y−z|

(
−2g(ωQ2)

ω
+ 2G(ωQ2)

ω2Q2 +Q2g′(ωQ2)
)

dz + Õ1(ε2
ω),

and similar expansions for T ′
1 and T ′

2. In the lines above, Õp(ε2
ω) denotes any function ℓ such that |∂ky ℓ| ⩽

Cε2
ω(1 + |y|) for all k ∈ {0 , ... , p}. Let us finally notice that εω = Cσω

σ−1. We eventually find that R1 =
aωσ−1R0

1 + Õ0(ω2(σ−1)) and R2 = aωσ−1R0
2 + Õ0(ω2(σ−1)), where

R0
1 = −2QD0 + (1 −Q2)T 0

1 + (3 −Q2)T 0
2 + 2Q′

Q (T 0
1 )′ + 2Q′

Q (T 0
2 )′ − 2Q2σ

σ+1

and R0
2 = −4(1 −Q2)QD0 + 4Q′(D0)′ + T 0

1 − 3T 0
2 + 2Q′

Q ((T 0
1 )′ − (T 0

2 )′) + 2(σ−1)
σ+1 Q2σ + 2Q2σ+2

σ+1 ,

with
T 0

1 (y) = − (σ − 1)2

2(σ + 1)

∫
R

|y − z|Q2σ(z) dz

and T 0
2 (y) = −

√
2σ(σ − 1)
4(σ + 1)

∫
R
e−

√
2|y−z|Q2σ(z) dz.

This leads to ∆1 = aωσ−1∆0
1 + Õ0(ω2(σ−1)), ∆2 = aωσ−1∆0

2 + Õ0(ω2(σ−1)) and ∆4 = aωσ−1∆0
4 + Õ0(ω2(σ−1)),

where:
∆0

1 = 6Q(1 −Q2)R0
1 − 2QR0

2 + (3(1 −Q2)2 − 1)D0 + σ
(
(2σ + 1)(1 −Q2)2 − 1

)
Q2σ−1,

∆0
2 = QR0

1 +Q(1 −Q2)R0
2 + (1 −Q2)D0 + σ(1 −Q2)Q2σ−1

and ∆0
4 = ∆0

1 − (2σ + 1)(1 −Q2)Q2σ+1 + 2(3Q2(1 −Q2) + 1)D0.

This leads to the desired expression:

Γ(ω) = aΓ0(σ)ωσ−1 + O
(
ω2(σ−1)

)
where Γ0(σ) =

∫
R

(
Q2∆0

4 cos y + 2Q′

Q ∆0
5 sin y

)
dy and ∆0

5 := ∆0
4 +2∆0

2. Expanding ∆0
1, ∆0

2, ∆0
4 and ∆0

5, we find
the expressions announced in the lemma.

This expression is entirely explicit, and (H3) will be true if and only if Γ0(σ) > 0. The curves below show the
function Γ0(σ). They have been obtained with python, and the error is ≃ 10−4. For σ = 2, we find the value
Γ0(2) = 32π

√
2

3cosh(π/2) ≃ 18.8870 that has been computed in [16].

Numerical check. For all σ > 1, we have Γ0(σ) > 0 and thus hypothesis (H3) holds.

This cannot be stated as a proposition, as no proof of the positivity of Γ0(σ) for all σ > 1 will be presented in
this paper. However, it is not a conjecture: one can take whatever value of σ > 1 and use the explicit expression
from Lemma 16 to check numerically that indeed Γ0(σ) > 0, and thus hypothesis (H3) holds. The following
lemma gives us the total understanding of Γ0(σ) for σ ≃ 1+.

Lemma 17. We have the following asymptotics:

Γ0(σ) ∼
σ→1+

2π
√

2
cosh(π/2)(σ − 1).
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Figure 1: Function Γ0(σ) for σ ∈ [1 , 8] (first figure) and σ ∈ [1 , 1.2] (second figure).

Proof. Until now, the function Γ0 has been defined for σ > 1 only, since this is the PDE frame we work in since
the beginning of this paper. However, the expression of Γ0(σ) given in Lemma 16 still holds for σ > 0 and is
continuous, and even C 1, with regards to σ. We begin by checking that Γ0(1) = 0. Let us take σ = 1 for the
moment. First, we can integrate explicitly and find that D0 = −Q

2 . This leads to R0
1 = R0

2 = 0, then to

∆0
1 = Q− 3Q3 + 3Q5

2 , ∆0
2 = Q

2 − Q3

2 ,

∆0
4 = 2Q− 3Q3 + 3Q5

2 , ∆0
4 + 2∆0

2 = 3Q− 4Q3 + 3Q5

2 .

Setting pk :=
∫
RQ

k cos y dy, we find that

Γ0(1) = −6p1 + 14
3 p3 − 18

5 p5 + 3
2p7.

We recall from [16] (see Lemma 20) the relation pk+2 = 2(k2+1)
k(k+1) pk. This leads to Γ0(1) = 0.

Now, let us differentiate Γ0 with regards to σ. Let us start with D0. We have

∂σD
0 = −2Q′

∫ y

0
AQ2σ+1 lnQ+A

(
Q2σ+2 lnQ
σ + 1 − Q2σ+2

2(σ + 1)2

)
.

Taking σ = 1, we find that we can integrate explicitly the expression above and, after lengthy computations,
we ultimately find that (

∂σD
0)
σ=1 = Q

4 −Q lnQ+ yQ′.

On the other hand, we see that (∂σT 0
1 )σ=1 = 0 and

(∂σT 0
2 )σ=1 = −

√
2

8

∫
R
e−

√
2|y−z|Q2(z) dz =: t2.
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Differentiating ∆0
4 and ∆0

5 with regards to σ, lengthy computations lead to

(∂σ∆0
4)σ=1 = 37

4 Q
5 − 17Q3 + 4Q+ 3Q5 lnQ− 6Q3 lnQ+ 4Q lnQ

+21yQ′Q4 − 24yQ′Q2 + (6Q5 − 24Q3 + 24Q)t2 + 4(4 − 3Q2)Q′t′2

and
(∂σ∆0

5)σ=1 = 29
4 Q

5 − 35
2 Q

3 + 13
2 Q+ 3Q5 lnQ− 8Q3 lnQ+ 6Q lnQ

+21yQ′Q4 − 30yQ′Q2 + 2yQ′ + (6Q5 − 20Q3 + 24Q)t2 + (16 − 8Q2)Q′t′2.

Setting qk :=
∫
RQ

k lnQ cos y dy, rk :=
∫
R t2Q

k cos y dy, sk :=
∫
R t2Q

′Qk−1 sin y dy and mk :=
∫
R yQ

k sin y dy,
integrating by parts we get∫

RQ
2(∂σ∆0

4)σ=1 cos y dy = 37
4 p7 − 17p5 + 4p3 + 3q7 − 6q5 + 4q3 + 24r3 − 24r5 + 6r7 + 16(2r5 − 3r3 + s3)
−12(3r7 − 5r5 + s5) + 21

(
− 1

7p7 + 1
7m7

)
− 24

(
− 1

5p5 + 1
5m5

)
and ∫

R
2Q′

Q (∂σ∆0
5)σ=1 sin y dy = − 29

10p5 + 35
3 p3 − 13p1 + 6

( 1
25p5 − 1

5q5
)

− 16
( 1

9p3 − 1
3q3
)

+ 12(p1 − q1)
+4m1 − 62m3 + 72m5 − 21m7 + 12s5 − 40s3 + 48s1 + 32(−s1 − r1)
+32(3s3 + r3) + 8(−5s5 − r5).

We recall from [16] the relation qk+2 = 2(k2+1)
k(k+1) qk + 2(k2−2k−1)

k2(k+1)2 pk. From the differential relation t′′2 = 2t2 + Q2

2
and integrating by parts, we also see that

rk+2 = 2
k(k+1)

(
(k2 − 3)rk − 2ksk − pk+2

2
)

and sk+2 = 2
(k+1)(k+2)

[
(k2 − 3)sk + 2krk − (k + 1)rk+2 + 1

2(k+2)pk+2

]
.

Integrating by parts one last time, we obtain the relation

mk+2 = 2
k(k + 1)

[
(k2 + 1)mk − 2pk

]
.

Using these relations, we can express Γ′
0(1) only as a linear combination of p1, q1, r1, s1 and m1. As in [16], all

the occurrences of q1, r1, s1 and m1 disappear, and we evidently find that

Γ′
0(1) = 2p1 = 2π

√
2

cosh(π/2) ,

which gives us the asymptotic result we desired.

6 Estimate of the internal mode component
Proposition 4. Assume hypothesis (H3) holds. For any s > 0,∫ s

0
|b|4 ⩽ Cϵ+ C

Aα(ω0)Γ(ω0)

∫ s

0
||ρ4v||2.

Proof. The proof is identical to the proof of Lemma 21 in [16]. We must be careful with the use of the Fermi
golden rule, this is the reason why we require hypothesis (H3). We introduce d1 = b2

1 −b2
2 and d2 = 2b1b2, which

verify the equations ḋ1 = 2λd2 +D2 and ḋ2 = −2λd1 +D1, where D2 := 2b1B2 +2b2B1 and D1 = 2b2B2 −2b1B1.
Let

Γ1 := 1
2

∫
R
(G⊥ +H⊥)g1 = 1

2

∫
R
(G+H)g1 and Γ2 := 1

4

∫
R
(G⊥

1 g1 −G⊥
2 g2) = 1

4

∫
R
(G1g1 −G2g2).

The equalities above come from the orthogonality relations ⟨V1 , g2⟩ = ⟨V2 , g1⟩ = 0. We also define

J := d1

∫
R
v2g1χA − d2

∫
R
v1g2χA + Γ1

d2

2λ |b|2 + Γ2
d1d2

2λ .
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Computations identical to [16] show that J̇ =
6∑
j=1

Jj , where

J1 = d2
∫
R q

⊥
2 g2χA + d1

∫
R q

⊥
1 g1χA − Γ1d1|b|2 − Γ2(d2

1 − d2
2),

J2 = d2
∫
R v2g2χ

′′
A + 2d2

∫
R(∂yv2)g2χ

′
A + d1

∫
R v1g1χ

′′
A + 2d1

∫
R(∂yv1)g1χ

′
A,

J3 = −d2
∫
R(µ2 + p⊥

2 − r⊥
2 )g2χA − d1

∫
R(µ1 + p⊤

1 − r⊤
1 )g1χA,

J4 = D2
∫
R v2g1χA −D1

∫
R v1g2χA,

J5 = Γ1
λ

(
b1(b1 + b2)2B2 + b2(b1 − b2)2B1

)
+ Γ2

λ

(
b1|b|2B1 + b2(3b2

1 − b2
2)B2

)
and J6 = d1

∫
R v2ġ1χA − d2

∫
R v1ġ2χA + Γ̇1

d2
2λ |b|2 + Γ̇2

d1d2
2λ − λ̇Γ1

d2
2λ2 |b|2 − λ̇Γ2

d1d2
2λ2 .

The proofs of the estimates on Jj for j ∈ {2 , 3 , 4 , 5} do not differ from [16]. We have

|J2| ⩽ C|b|2
√
A

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)1/2

,

|J3| ⩽ C
(
e−A + ϵA3/2) |b|2(|b|2 + ||νv||2),

|J4| ⩽ Cα(ω0)|b|
(
|b|2 + ||ρ4v||2

)√
A||ηAv||

and |J5| ⩽ Cα(ω0)|b|3
(
|b|2 + ||ρ4v||2

)
.

About J1, we decompose as it is done in [16]: J1 = J1,1 + J1,2 + J1,3, with

J1,1 = d1
(
b2

1
∫
RG

⊤g1 + b2
2
∫
RH

⊤g1 − Γ1|b|2
)

+ d2b1b2
∫
RG

⊥
2 g2 − Γ2(d2

1 − d2
2) = Γ

4 |b|4,

J1,2 = d2
∫
R(q⊥

2 χA − b1b2G
⊥
2 )g2

and J1,3 = d1
∫
R(q⊤

1 χA − b2
1G

⊤ − b2
2H

⊤)g1.

The estimate of J1,2 and J1,3 relies on the same proof as in [16]: the difference is that, in our case,

q1 = b2
1G+ b2

2H +Qω(3 + 3g′(ωQ2
ω) + 2ωQ2

ωg
′′(ωQ2

ω))(2b1V1v1 + v2
1) +Qω(1 + ωg′(ωQ2

ω))(2b2V2v2 + v2
2) +N1

and q2 = b1b2G2 + 2Qω(1 + g′(ωQ2
ω))(b1V1v2 + b2V2v1 + v1v2) +N2

where |N2| ⩽ C|u|3 but only |N1| ⩽ C|u|7/3. Hence, we only have |N1| + |N2| ⩽ C|v|7/3 + C|b|7/3ρ16 in our
case. This does not change the proof but the result is slightly adapted. It becomes:

|J1,2| + |J1,3| ⩽ C

(
e− α(ω0)A

2 + ϵ1/3

α(ω0) + ϵA3/2
)

|b|4 + C(1 + ϵA3/2)|b|2||ρ4v||2 + Cϵ1/3|b|2||ηAv||2 + C|b|3||νv||.

About J6, we know from Lemma 14 that |∂ωg1| + |∂ωg2| ⩽ Cω−1
0 (1 + |y|). Thus, |ġ1| + |ġ2| ⩽ Cω−1

0 |ω̇|(1 + |y|),
which is different from [16]. The idea of the proof remains the same: we get∣∣∣∣d1

∫
R
v2ġ1χA − d2

∫
R
v1ġ2χA

∣∣∣∣ ⩽ CA3/2|b|2
(
||νv||2 + |b|2

)
||ηAv||.

Then we have to estimate |∂ωΓ1| and |∂ωΓ2|. To do so, we have to estimate ∂ωG1, ∂ωG2, ∂ωG and ∂ωH. Taking
the last one for instance, we compute

∂ωH = 2V2∂ωV2Qω(1 + g′(ωQ2
ω)) + V 2

2
(
∂ωQω(1 + g′(ωQ2

ω)) +Qω(Q2
ω + 2ωQω∂ωQω)g′′(ωQ2

ω)
)
.

We recall that |V | ⩽ Ce−α|y| ⩽ C, |∂ωQω| ⩽ C
ω (1 + |y|)e−|y| and (21). This leads to

|∂ωH| ⩽ C
(
V(ω0) + ω−1

0
)

(1 + |y|)e−|y|.
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We check similarly that

|∂ωG1| + |∂ωG2| + |∂ωG| ⩽ C
(
V(ω0) + ω−1

0
)

(1 + |y|)e−|y|.

We also know that |G| + |H| + |G1| + |G2| ⩽ Ce−|y|. Combining these identities, we get

|Γ̇1| ⩽ C
(
V(ω0) + ω−1

0
)
ω̇.

Besides, from λ = 1 − α2 we get |λ̇| ⩽
Cε3ω0/2α(ω0)

ω0
|ω̇|. Finally, we know from (16) that |ω̇| = ω|mω| ⩽

C(||νv||2 + |b|2). Gathering these estimates, we find that there exists a quantity E(ω0) depending only on ω0
such that ∣∣Γ̇1

d2
λ |b|2 + Γ̇2

d1d2
2λ − λ̇Γ1

d2
2λ2 |b|2 − λ̇ Γ2

2λ2 d1d2
∣∣

⩽ CE(ω0)A3/2|b|2(||νv||2 + |b|2)||ηAv|| + CE(ω0)(||νv||2 + |b|2)|b|4

⩽ CE(ω0)A3/2ϵ(||νv||2 + |b|2)||ηAv|| + CE(ω0)(||νv||2 + |b|2)ϵ|b|3.

Now that all the terms constituting J̇ are estimated, we can gather these bounds. Taking A > 0 large enough
(depending on ω0) and ϵ > 0 small enough (depending on A and ω0), we find that∣∣J̇ − Γ

4 |b|4
∣∣ = |J̇ − J1,1| ⩽ C

(
e− α(ω0)A

2 + ϵ1/3

α(ω0) + ϵA3/2
)

|b|4 + C(1 + ϵA3/2)|b|2||ρ4v||2 + Cϵ1/3|b|2||ηAv||2

+C|b|3||νv|| + C|b|2
√
A

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)1/2 + C

√
Aα(ω0)|b|

(
|b|2 + ||ρ4v||2

)
||ηAv||.

We now use hypothesis (H3): since ω0
2 ⩽ ω ⩽ 3ω0

2 , we have Γ(ω) ⩾ Γ(ω0) > 0. This leads to

|b|4 ⩽
C

Γ(ω0) J̇ + C

Aα(ω0)Γ(ω0)

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)
.

The end of the proof follow the steps in [16]: we integrate the inequality above on [0 , s], we recall that |J| ⩽
C

√
Aϵ3 and we use the first virial result (Proposition 3). Thus we get∫ s

0
|b|4 ⩽

C

Γ(ω0) (|J(s)| + |J(0)|) + C

Aα(ω0)Γ(ω0)

∫ s

0

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)

⩽
C

√
Aϵ3

Γ(ω0) + C

Aα(ω0)Γ(ω0)

(
ϵ+

∫ s

0
(||ρ4v||2 + |b|4)

)
,

from which we deduce that(
1 − C

Aα(ω0)Γ(ω0)

)∫ s

0
|b|4 ⩽ C

(√
Aϵ2

Γ(ω0) + 1
Aα(ω0)Γ(ω0)

)
ϵ+ C

Aα(ω0)Γ(ω0)

∫ s

0
||ρ4v||2.

We now first choose A > 0 large enough and then ϵ > 0 small enough such that 1 − C
Aα(ω0)Γ(ω0) ⩾ 1

2 and
√
Aϵ2

Γ(ω0) + 1
Aα(ω0)Γ(ω0) ⩽ C. Consequently, we obtain the desired estimate:∫ s

0
|b|4 ⩽ Cϵ+ C

Aα(ω0)Γ(ω0)

∫ s

0
||ρ4v||2.

7 The transformed problem
For θ > 0 small to be fixed later, we set Xθ = (1 − θ∂2

y)−1. We define w1 = X2
θM−S

2v2, w2 = −X2
θS

2L+v1
and w = w1 + iw2. This constitutes the first transformed problem. Setting ξQ := Q′

ω/Qω, computations that
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can be found in [20] show that S2 = ∂2
y − 2ξQ∂y + 1 + g(ωQ2

ω)
ω − 2G(ωQ2

ω)
ω2Q2

ω
,

M−S
2 = −∂4

y + 2∂2
y · ξQ · ∂y + ∂y ·

(
−2Q2

ωg
′(ωQ2

ω) + 4 g(ωQ2
ω)

ω − 4 G(ωQ2
ω)

ω2Q2
ω

)
· ∂y

+
(

−4QωQ′
ωg

′(ωQ2
ω) + 6 ξQ g(ωQ2

ω)
ω + 4ωQ′

ωQ
3
ωg

′′(ωQ2
ω) − 4ξQG(ωQ2

ω)
ω2Q2

ω
− 2ξQ

)
· ∂y

+ 1 + 2
(

− g(ωQ2
ω)

ω +Q2
ωg

′(ωQ2
ω) − 2ωQ4

ωg
′′(ωQ2

ω)
)

− 2 g
′(ωQ2

ω)G(ωQ2
ω)

ω2 −Q4
ωg

′(ωQ2
ω) + 2ωQ6

ωg
′′(ωQ2

ω) + 4Q2
ω
G(ωQ2

ω)g′′(ωQ2
ω)

ω2

+ 2Q2
ω
g(ωQ2

ω)
ω − 2G(ωQ2

ω)
ω2 + g(ωQ2

ω)2

ω2

and

S2L+ = −∂4
y + 2∂2

y · ξQ · ∂y + ∂y ·
(

−Q2
ω + 2 g(ωQ2

ω)
ω − 2 G(ωQ2

ω)
ω2Q2

ω
− 2Q2

ωg
′(ωQ2

ω)
)

· ∂y

+
(

−2QωQ′
ω − 4QωQ′

ωg
′(ωQ2

ω) + 2ξQ g(ωQ2
ω)

ω − 4ωQ′
ωQ

3
ωg

′′(ωQ2
ω) − 2ξQ

)
· ∂y

+ 1 +
(

−3Q2
ω − 20ωQ4

ωg
′′(ωQ2

ω) − 8ω2Q6
ωg

′′′(ωQ2
ω) − 2Q2

ωg
′(ωQ2

ω) − 2 G(ωQ2
ω)

ω2Q2
ω

)
+ 3Q4

ω + 3Q2
ω
g(ωQ2

ω)
ω + 3Q4

ωg
′(ωQ2

ω) + 4Q2
ω
g(ωQ2

ω)g′(ωQ2
ω)

ω − 2 g
′(ωQ2

ω)G(ωQ2
ω)

ω2

+ 12ωQ6
ωg

′′(ωQ2
ω) + 16Q2

ω
G(ωQ2

ω)g′′(ωQ2
ω)

ω + 4Q4
ωg(ωQ2

ω)g′′(ωQ2
ω) − 4ω2Q8

ωg
′′′(ωQ2

ω)

+ 8Q4
ωG(ωQ2

ω)g′′′(ωQ2
ω) − g(ωQ2

ω)2

ω2 + 2 g(ωQ2
ω)G(ωQ2

ω)
ω3Q2

ω
.

We introduce the operators Q− and Q+, obtained respectively from M−S
2 and S2L+ by differentiation with

respect to ω and then multiplication by ω. Their exact expressions are given below.

Q− = 2∂2
y · ∂ωξQ · ∂y + ∂y · ∂ω

(
−2Q2

ωg
′(ωQ2

ω) + 4 g(ωQ2
ω)

ω − 4 G(ωQ2
ω)

ω2Q2
ω

)
· ∂y

+∂ω
(

−4QωQ′
ωg

′(ωQ2
ω) + 6 ξQ g(ωQ2

ω)
ω + 4ωQ′

ωQ
3
ωg

′′(ωQ2
ω) − 4ξQG(ωQ2

ω)
ω2Q2

ω
− 2ξQ

)
· ∂y

+∂ω
[
2
(

− g(ωQ2
ω)

ω +Q2
ωg

′(ωQ2
ω) − 2ωQ4

ωg
′′(ωQ2

ω)
)

− 2 g
′(ωQ2

ω)G(ωQ2
ω)

ω2 −Q4
ωg

′(ωQ2
ω) + 2ωQ6

ωg
′′(ωQ2

ω) + 4Q2
ω
G(ωQ2

ω)g′′(ωQ2
ω)

ω2

+ 2Q2
ω
g(ωQ2

ω)
ω − 2G(ωQ2

ω)
ω2 + g(ωQ2

ω)2

ω2

]

Asymptotic stability of solitons for near-cubic NLS equation with an internal mode 39



and

Q+ = 2∂2
y · ∂ωξQ · ∂y + ∂y · ∂ω

(
−Q2

ω + 2 g(ωQ2
ω)

ω − 2 G(ωQ2
ω)

ω2Q2
ω

− 2Q2
ωg

′(ωQ2
ω)
)

· ∂y

+∂ω
(

−2QωQ′
ω − 4QωQ′

ωg
′(ωQ2

ω) + 2ξQ g(ωQ2
ω)

ω − 4ωQ′
ωQ

3
ωg

′′(ωQ2
ω) − 2ξQ

)
· ∂y

+∂ω
[(

−3Q2
ω − 20ωQ4

ωg
′′(ωQ2

ω) − 8ω2Q6
ωg

′′′(ωQ2
ω) − 2Q2

ωg
′(ωQ2

ω) − 2 G(ωQ2
ω)

ω2Q2
ω

)
+ 3Q4

ω + 3Q2
ω
g(ωQ2

ω)
ω + 3Q4

ωg
′(ωQ2

ω) + 4Q2
ω
g(ωQ2

ω)g′(ωQ2
ω)

ω − 2 g
′(ωQ2

ω)G(ωQ2
ω)

ω2

+ 12ωQ6
ωg

′′(ωQ2
ω) + 16Q2

ω
G(ωQ2

ω)g′′(ωQ2
ω)

ω + 4Q4
ωg(ωQ2

ω)g′′(ωQ2
ω) − 4ω2Q8

ωg
′′′(ωQ2

ω)

+ 8Q4
ωG(ωQ2

ω)g′′′(ωQ2
ω) − g(ωQ2

ω)2

ω2 + 2 g(ωQ2
ω)G(ωQ2

ω)
ω3Q2

ω

]
.

The fully developed versions of the operators Q− and Q+ (not rescaled) can be found at the beginning of section
3.3 in [20].

From (17) and the identity S2L+L− = M+M−S
2 (which is proven in [20], see Lemma 6), the function w

satisfies the system 
ẇ1 = M−w2 +

[
X2
θ ,

a−
ω

ω

]
S2L+v1 +X2

θn2

ẇ2 = −M+w1 −
[
X2
θ ,

a+
ω

ω

]
M−S

2v2 −X2
θn1

(28)

where [X2
θ , a] = X2

θa− aX2
θ , n1 = −S2L+p

⊥
2 +S2L+q

⊥
2 +S2L+r

⊥
2 + ω̇Q+v1 and n2 = −M−S

2p⊤
1 +M−S

2q⊤
1 +

M−S
2r⊤

1 + ω̇Q−v2.

Now we set the second transformed problem, whose goal is to suppress the internal mode: for ϑ > θ small
to be chosen (later we will eventually choose ϑ = θ1/4), we define z1 = XϑUw2, z2 = −XϑUM+w1 and
z = z1 + iz2. We denote ξW := W ′

2/W2, which implies that U = ∂y − ξW and

UM+ = −∂3
y + ∂y · ξW · ∂y + ∂y − ξ′

W∂y + a+
ω ∂y − ξW − ξWa

+
ω + (a+

ω )′.

From (28) and the identity UM+M− = KU (see Lemma 2), the function z satisfies the system
ż1 = z2 −XϑU

[
X2
θ ,

a+
ω

ω

]
M−S

2v2 −XϑUX
2
θn1 + ω̇XϑP+w2

ż2 = −Kz1 − [Xϑ ,K]Uw2 −XϑUM+

[
X2
θ ,

a−
ω

ω

]
S2L+v1 −XϑUM+X

2
θn2 − ω̇XϑP−w1

(29)

where P+ = −∂ωξW and

P− = ∂y · ∂ωξW · ∂y − (∂ωξ′
W )∂y + (∂ωa+

ω )∂y + ∂ω
(
−ξW − a+

ω ξW + (a+
ω )′) .

Before going further, we will need the following technical lemma in order to estimate ξW and its derivatives.

Lemma 18. We have the following bounds on ξW :

• for any k ∈ N, |∂ky ξW | ⩽ Cεω on R;

• for any k ∈ {0 , ... , 3}, there exists a quantity ζ
k
(ω0) depending only on k and ω0 such that |∂ky∂ωξW | ⩽

Cζ
k
(ω0) on R.

Proof. The first point is obtained easily thanks to the estimates |W (k)
2 (y)| ⩽ Cεωe

−α|y| and W2(y) ⩾ 1
2e

−α|y|.
For the second point, we take y > 0 and recall the following identity established in the proof of Lemma 3:

ξW (y) = −

√
α2 + 2

W 2
2 (y)

∫ +∞

y

w0W ′
2W2,
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where we recall that w0 = λW1−W2
W2

− a−
ω . Thus,

∂ωξW = − 1
2ξW

(
2αα′(ω) − 4∂ωW2

W 3
2

∫ +∞

y

w0W
′
2W2 + 2

W 2
2

∫ +∞

y

(∂ωw0W
′
2W2 + w0∂ωW

′
2W2 + w0W

′
2∂ωW2)

)
.

We recall the following estimates from Proposition 2 and the proof of Lemma 3: |α′(ω)| ⩽ Cεω

ω , |∂ωWj | ⩽
Cεωϱω

ωα (1 + |y|)e−α|y|, |∂ωW ′
2| ⩽ Cεω

ω (1 + |y|)e−α|y|, |W2| ⩽ Ce−α|y|, |W ′
2| ⩽ Cεωe

−α|y|, |w0| ⩽ Cεωe
−|y|,

|∂ωλ| ⩽ Cεωα
ω , |∂ωa−

ω | ⩽ Cεω

ω (1 + |y|)e−2|y|, |W1 − W2| ⩽ Cεωe
−κ|y| and |∂ω(W1 − W2)| ⩽ Cεω

ω (1 + |y|)e−κ|y|.
For this last one, one has to check the proof of Proposition 2 and recall that W1 − W2 = 2X2. Gathering all
these estimates, we find that

|∂ωξW | ⩽ Cϱ2
ω

ω|ξW |
.

Now, we also find, thanks to the same estimates, that
∣∣∣ 2
W 2

2

∫ +∞
y

w0W
′
2W2

∣∣∣ ⩽ Cε2
ωe

−|y|. Thus, for y ⩾ y1
ω :=

ln
(

2Cε2
ω

α2

)
, we have

∣∣∣ 2
W 2

2

∫ +∞
y

w0W
′
2W2

∣∣∣ ⩽ α2

2 and thus |ξW | ⩾ α2/2. For such y, we have

|∂ωξW | ⩽ Cϱ2
ω

ωα2 ⩽
Cε4

ω

ωα4 ⩽
Cε4

3ω/2

ω0α(ω0)4 .

Now, take 0 < y < y1
ω. Recalling that |∂ωW2| ⩽ Cεωϱω

ωα (1 + |y|)e−α|y|, |∂ωW ′
2| ⩽ Cεω

ω (1 + |y|)e−α|y|, |W2| ⩽
Ce−α|y|, |W ′

2| ⩽ Cεωe
−α|y|, |w0| ⩽ Cεωe

−|y| and W2 ⩾ 1
2e

−α|y|, an elementary calculation of ∂ωξW shows that

|∂ωξW | ⩽ Cϱω
ω

(1 + |y|) ⩽ Cϱω
ω

(1 + y1
ω) ⩽

Cε2
3ω0/2

ω0α(ω0)

(
1 + ln

(
2Cε2

3ω0/2

α(ω0)2

))
.

Similar considerations hold for y < 0. Setting ζ0(ω0) := max
(

Cε4
3ω/2

ω0α(ω0)4 ,
Cε2

3ω0/2
ω0α(ω0)

(
1 + ln

(
2Cε2

3ω0/2
α(ω0)2

)))
, we get

the desired result for k = 0. The result for larger values of k is obtained similarly. It does not matter, for later
proofs, that the quantities ζ

k
(ω0) do not vanish as ω0 → 0.

Now we follow [16] (see Lemmas 22 to 27) to give useful technical lemmas about the operators Xθ. The proofs are
globally unchanged (while [16] uses the fact that ω0 ⩽ 1, we use here the facts that α(ω0) ⩽ 1 and ε3ω0/2 ⩽ 1).

Lemma 19. For θ > 0 small enough and all h ∈ L2(R),

||Xθh|| ⩽ C||h||, ||∂yX1/2
θ h|| ⩽ Cθ−1/2||h||, ||ρXθh|| ⩽ C||Xθ(ρh)||,

||η−1
A Xθ(ηAh)|| ⩽ C||Xθh||, ||ηAXθh|| ⩽ C||Xθ(ηAh)||, ||ηAXθ∂yh|| ⩽ Cθ−1/2||ηAh||,

||ηAXθ∂
2
yh|| ⩽ Cθ−1||ηAh||, ||ρ−1Xθ(ρh)|| ⩽ C||Xθh||, ||ρ−1Xθ∂y(ρh)|| ⩽ Cθ−1/2||h||,

||ρ−1Xθ∂
2
y(ρh)|| ⩽ Cθ−1||h||.

Lemma 20. For θ > 0 small enough and all h ∈ H1(R),

||ηAX2
θM−S

2h|| + ||ηAX2
θS

2L+h|| ⩽ Cθ−2||ηAh||,

||ηAX2
θM−S

2h|| + ||ηAX2
θS

2L+h|| ⩽ Cθ−3/2||ηA∂yh|| + C||ηAh||

||ηA∂yX2
θM−S

2h|| + ||ηA∂yX2
θS

2L+h|| ⩽ Cθ−2||ηA∂yh|| + C||ηAh||,

||ηA∂2
yXθUh|| + ||ηA∂yXθUh|| + ||ηAXθUh|| ⩽ Cθ−1||ηA∂yh|| + C||ηAh||,

||ηAXθM+h|| ⩽ Cθ−1||ηAh||,

||ηAXθUM+h|| ⩽ Cθ−1||ηA∂yh|| + ||ηAh||.
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Proof. The first three points are analogous to Lemma 23 in [16]. The last three points are analogous to Lemma
24 in [16]: the proof is identical and requires the bound |ξW | ⩽ C, which is proven in Lemma 18 here.

Applying the estimates above to the definitions of v and w, we find the following result.

Lemma 21. For 0 < θ < ϑ2 small enough, and for all s ⩾ 0,

||ηA∂yw|| + ||ηAw|| ⩽ Cθ−2||ηA∂yv|| + C||ηAv||,

||ηA∂2
yz1|| + ||ηA∂yz1|| + ||ηAz1|| ⩽ Cϑ−1||ηA∂yw2|| + C||ηAw2||,

||ηAz2|| ⩽ Cϑ−1||ηA∂yw1|| + ||ηAw1||.

In [20] (see Lemma 11) one can find the proof of the following lemma (it is the same result, here rescaled).

Lemma 22. For θ > 0 small engouh and any h ∈ H1(R),

||ηAX2
θQ−h|| + ||ηAX2

θQ+h|| ⩽ Cθ−1||ηA∂yh|| + C||ηAh||.

The last technical lemma is the following, which differs a little bit from its analogous form in [16].

Lemma 23. There exists a quantity P(ω0) depending only on ω0 such that, for θ > 0 small enough and any
h ∈ H1(R),

||ηAXθP−h|| ⩽ CP(ω0)
(
θ−1/2||ηA∂yh|| + ||ηAh||

)
and ||ηAP+h|| ⩽ CP(ω0)||ηAh||.

Proof. The proof is identical to the proof of Lemma 27 in [16]: the difference comes from the fact that, here, we
do not have |∂ky∂ωξW | ⩽ C but simply |∂ky∂ωξW | ⩽ Cζ

k
(ω0). This implies the presence of the factor P(ω0) in

the estimates above. We will ultimately find that this factor, depending only on ω0, does not hinder the proofs
to come.

Lemma 24. Let z̃ := χAζBz. For all s ⩾ 0,

||ρ∂2
yz1|| + ||ρ∂yz1|| + ||ρz1|| ⩽ C

(
||∂2

y z̃1|| + ||∂y z̃1|| + ||ρ1/2z̃1|| +A−2θ−5/2(||ηA∂yv|| + ||ηAv||)
)
.

Proof. The proof is entirely identical to the proof of Lemma 28 in [16], except that the occurrences of ω0 must
be replaced by α(ω0) in the last part of the proof.

8 Coercivity of the transformed problem
The goal of this section is to control w thanks to z, in other words to go back from z to w. Here again, we rely
on the corresponding proofs in [16].

Lemma 25. For all s ⩾ 0,

||ρ2∂yw2|| + ||ρ2w2|| ⩽ C
(
ϑ||ρ∂2

yz1|| + ϑ||ρ∂yz1|| + α(ω0)−1||ρz1||
)

and ||ρ2∂yw1|| + ||ρ2w1|| ⩽ Cα(ω0)−3/2||ρz2||.

Proof. We first begin by checking that |⟨w1 ,W2⟩| ⩽ Cθε3ω0/2||ρ2w1|| and |⟨w2 ,W1⟩| ⩽ Cθε3ω0/2||ρ2w2||. This
is proven as in [16], Lemma 29. The rest of the proof is also the same, adapted to our case (some ω0 need to be
transformed into ε3ω0/2, some others need to be transformed into α(ω0)). We show that

w2 = aW2 − ϑ∂yz1 − ϑ
W ′

2
W2

z1 +W2

∫ y

0

m2z1

W2
(30)
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with |⟨z1 ,W
′
1⟩| ⩽ C

√
α(ω0)||ρz1||,

∣∣∣〈z1 ,
W ′

2W1
W2

〉∣∣∣ ⩽ C
√
α(ω0)||ρz1||,∣∣∣∣∫ y

0

m2z1

W2

∣∣∣∣ ⩽ C||ρz1||√
α(ω0)

ρ−1eα|y| and
∣∣∣∣〈W2

∫ y

0

z1m2

W2
,W1

〉∣∣∣∣ ⩽ C||ρz1||
α(ω0)3/2 .

This leads to the estimate |a| ⩽ C
(
θα(ω0)ε3ω0/2||ρ2w2|| + α(ω0)−1/2||ρz1||

)
. Then we multiply (30) by ρ2 and

we control the terms as in [16] we find

(1 − Cθ
√
α(ω0)ε3ω0/2)||ρ2w2|| ⩽ C

α(ω0) ||ρz1|| + Cϑ||ρ2∂yz1||,

which gives the result by taking θ > 0 small enough (depending on ω0). We differentiate (30) with regards to y
in order to get the similar estimate for ∂yw2. The proof for w1 and ∂yw1 is similar but requires the introduction
of H1 and H2, solutions to M+H = 0 that satisfy H ′

1H2 −H1H
′
2 = 1, |H(k)

1 (y)| ⩽ Ce−y and |H(k)
2 (y)| ⩽ Cey on

R. The existence of these two functions is established in [20] (see Lemma 3). The rest of the proof is identical
to [16] and does not present any complication in our case.

Lemma 26. For all s ⩾ 0,

||ρ4v1|| ⩽ C||ρ2w2|| ⩽ C
(
ϑ||ρ∂2

yz1|| + ϑ||∂yz1|| + α(ω0)−1||ρz1||
)

and ||ρ4v2|| ⩽ C||ρ2w1|| ⩽ Cα(ω0)−3/2||ρz2||.

Proof. The analogous result in [16] (Lemma 30) is established by adapting the proof of Proposition 19 in
[17]. We follow the same idea, adapting instead the proof of Proposition 5 in [20]. It does not present any
complication.

9 Estimate on the transformed problem
We here give the last virial argument that we will use, the one concerning the transformed problem (29). It
relies on the repulsive nature of the potential of the operator K.

Proposition 5. Assume hypotheses (H1), (H2) and (H3) hold. For all s ⩾ 0,∫ s

0

(
||ρ∂2

yz1||2 + ||ρ∂yz1||2 + ||ρz1||2 + ||ρz2||2
)
⩽ C

√
ϵ+ C√

A

∫ s

0
||ρ4v||2.

Proof. We follow the proof of Lemma 31 in [16]. The parameters will be chosen in the following order, in order
to complete the proof: first ω0 > 0 small enough, then B > 0 large enough (depending on ω0), then θ > 0 small
enough (depending on ω0 and B), then ϑ = θ1/4 > 0, then A > 0 large enough (depending on all the previous
parameters), and finally ϵ > 0 small enough (depending on all the previous parameters). In short:

ω0 −→ B −→ θ −→ ϑ −→ A −→ ϵ.

Now, let
K := −

∫
R
(ΞA,Bz1)z2 and L :=

∫
R
ρ2z1z2.

We have, as in [16], |K| + |L| ⩽ Cϵ, by taking ϵ > 0 small enough (depending on B, θ and ϑ). Then we follow
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computations from [16]: K̇ =
5∑
j=1

Kj , L̇ =
5∑
j=1

Lj and K1 = P +
9∑
j=1

Rj , where

K1 =
∫
R(ΞA,Bz1)Kz1,

K2 =
∫
R(ΞA,Bz1)[Xϑ ,K]Uw2,

K3 = −
∫
R(ΞA,Bz2)XϑU

[
X2
θ ,

a+
ω

ω

]
M−S

2v2 +
∫
R(ΞA,Bz1)XϑUM+

[
X2
θ ,

a−
ω

ω

]
S2L+v1,

K4 = −
∫
R(ΞA,Bz2)XϑUX

2
θn1 +

∫
R(ΞA,Bz1)XϑUM+X

2
θn2,

K5 = ω̇
∫
R(ΞA,Bz2)XϑP+w2 + ω̇

∫
R(ΞA,Bz1)XϑP−w1,

L1 =
∫
R ρ

2(z2
2 − z1Kz1),

L2 = −
∫
R ρ

2z1[Xϑ ,K]Uw2,

L3 = −
∫
R ρ

2z2XϑU
[
X2
θ ,

a+
ω

ω

]
M−S

2v2 −
∫
R ρ

2z1XϑUM+

[
X2
θ ,

a−
ω

ω

]
S2L+v1,

L4 = −
∫
R ρ

2z2XϑUX
2
θn1 −

∫
R ρ

2z1XϑUM+X
2
θn2,

L5 = ω̇
∫
R ρ

2z2XϑP+w2 − ω̇
∫
R ρ

2z1XϑP−w1,

P =
∫
R
(
4(∂2

y z̃1)2 + (4 + ξB)(∂y z̃1)2 + Y0z̃
2
1
)
,

R1 = 4
∫
R(χ′

A)2ΦB(∂2
yz1)2 − 4

∫
R((χAζB)′′′′ − χAζ

′′′′
B )χAζBz2

1

+8
∫
R
(
2((χAζB)′′ − χAζ

′′
B)χAζB − (((χAζB)′)2 − χ2

A(ζ ′
B)2)

)
(∂yz1)2,

R2 = −3
∫
R
(
3(χ2

A)′(ζ2
B)′ + 3(χ2

A)′′ζ2
B + (χ2

A)′′′ΦB
)

(∂yz1)2,

R3 = 1
2
∫
R(Ψ′′′′′

A,B − χ2
A(ζ2

B)′′′′)z2
1 ,

R4 = 4
∫
R(χ′

A)2ΦB(∂yz1)2 − 2
∫
R(χ2

A)′ΦBK2(∂yz1)2,

R5 = −
∫
R(Ψ′′′

A,B − χ2
A(ζ2

B)′′)z2
1 + 1

2
∫
R(Ψ′′′

A,B − χ2
A(ζ2

B)′′)K2z
2
1

+
∫
R
(
2(χ′

A)2ζ2
B + (χ2

A)′′ΦB
)
K2z

2
1 + 1

2
∫
R(χ2

A)′ΦBK ′′
2 z

2
1 ,

R6 = − 1
2
∫
R
(
2(χ′

A)2ζ2
B + (χ2

A)′′ΦB
)
K1z

2
1 − 1

2
∫
R(χ2

A)′ΦBK2
1z

2
1 ,

R7 = 4
∫
R χaζB(χ′′

AβB + 2χ′
Aζ

′
B)z2

1 +
∫
R χAζB(χ′′

AζBξB + 2χ′
Aζ

′
BξB + χ′

AζBξ
′
B)z2

1 ,

R8 =
∫
R χ

2
A(yζ2

B − ΦB)K ′
0z

2
1 + 1

2
∫
R χ

2
A

(
(ζ2
B)′′K2 + (ζ ′

B)2(2K ′
2 −K1)

)
z2

1 ,

R9 =
∫
R χ

2
A

(
2ζ ′′
BζB − 2(ζ ′

B)2 − 3ζ ′′′′
B ζB + 4ζ ′′′

B ζB + 3(ζ ′′
B)2 + ζBζ

′′
BξB + ζBζ

′
Bξ

′
B

)
z2

1 ,

with ξB = 10 ζ
′′
B

ζB
− 14 (ζ′

B)2

ζ2
B

− 2K2 − ΦB

ζ2
B

K ′
2 + 2 ΦB

ζ2
B

K1.

As in [16], we begin by applying Lemma 5 from [16] with c = 1 and Y = Y0/Cε3ω0/2, then with c = α(ω0)/10
and Y = e−|y|. Recalling the crucial fact that

∫
R Y0 ⩾ Iω

2 ⩾ Cα(ω0) > 0 (from Lemma 5), we obtain

α(ω0)2
∫
R
ρh2 ⩽ α(ω0)2

∫
R
e− α(ω0)

10 |y|h2 ⩽ Cα(ω0)
∫
R
e−|y|h2 + C

∫
R
(h′)2 ⩽ C

∫
R
Y0h

2 +
∫
R
(h′)2

for any h ∈ H1(R). This leads, as in [16], to
P ⩾ C

(
||∂2

y z̃1||2 + ||∂y z̃1||2 + α(ω0)2||√ρ z̃1||2
)
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and then, using Lemma 24,

α(ω0)2 (||ρ∂2
yz1||2 + ||ρ∂yz1||2 + ||ρz1||2

)
⩽ CP + CA−4θ−5 (||ηA∂yv||2 + ||ηAv||2

)
.

The estimates of the terms Rj for 1 ⩽ j ⩽ 9 do not differ here from their versions in [16]:

7∑
k=1

|Rj | ⩽
CB

Aθ5

(
||ηA∂yv||2 + B2

A2 ||ηAv||2
)
, and |R8| + |R9| ⩽ C

B
||νz1||2.

We ultimately find that

C1α(ω0)2 (||ρ∂2
yz1||2 + ||ρ∂yz1||2 + ||ρz1||2

)
⩽ K1 + CB

Aθ5

(
||ηA∂yv||2 + B2

A2 ||ηAv||2
)
.

The estimate for L1 is the same as in [16]: L1 ⩾ ||ρz2||2 − C
(
||ρ∂2

yz1||2 + ||ρ∂yz1||2 + ||ρz1||2
)
. Setting Z :=

||ρ∂2
yz1||2 + ||ρ∂yz1||2 + ||ρz1||2 + ||ρz2||2, we get that

α(ω0)2Z ⩽ C

[
K1 + α(ω0)2L1 + B

Aθ5

(
||ηA∂yv||2 + B2

A2 ||ηAv||2
)]

.

Now, let us control the other Kj and Lj . For K2 and L2, it is identical to [16]: taking ϑ = θ1/4, we have
|K2| ⩽ CBθ1/8Z and |L2| ⩽ Cθ1/8Z.

As for K3 and L3, the proof is also identical to [16] but we have to adapt it, since here |ξW | ⩽ Cε3ω0/2

and
∣∣∣a+

ω

ω

∣∣∣ ⩽ Cε3ω0/2
ω0

e−2|y|. We find that

|K3| ⩽ CBθ1/4
(

1 + ε3ω0/2
ω0

)
α(ω0)−3/2Z ⩽ Cθ1/8Z

and |L3| ⩽ Cθ1/4
(

1 + ε3ω0/2
ω0

)
α(ω0)−3/2Z ⩽ Cθ1/8Z,

taking θ > 0 small enough (depending on B and ω0). It is for these estimates that we need the entire hypothesis
(H1): here g must be differentiated 5 times, and the assumption that s4g(5)(s) is bounded is enough. As in [16],
this leads to

α(ω0)2Z ⩽ C

[
K1 + K2 + K3 + α(ω0)2(L1 + L2 + L3) + B

Aθ5

(
||ηA∂yv||2 + B2

A2 ||ηAv||2
)]

. (31)

Now, as for K4 and L4, the proof from [16] holds with minor adjustments. We write q1 = q1,1 + q1,2 and
q2 = q2,1 + q2,2 where q1,1 = b2

1G+ b2
2H, q2,1 = b1b2G2,

q1,2 = Qω(3 + 3g′(ωQ2
ω) + 2ωQ2

ωg
′′(ωQ2

ω))(2b1V1v1 + v2
1) +Qω(1 + g′(ωQ2

ω))(2b2V2v2 + v2
2) +N1

and q2,2 = 2Qω(1 + g′(ωQ2
ω))(2b1V1v2 + 2b2V2v1 + v1v2) +N2,

with |N1| + |N2| ⩽ C|u|7/3 ⩽ C|b|7/3ρ16 + C|v|7/3. We define n1,1 = S2L+q
⊥
2,1, n2,1 = M−S

2q⊤
1,1, n1,2 =

−S2L+p
⊥
2 + S2L+q

⊥
2,2 + S2L+r

⊥
2 + ω̇Q+v1 and n2,2 = −M−S

2p⊤
1 +M−S

2q⊤
1,2 +M−S

2r⊤
1 + ω̇Q−v2.

Following the proof in [16], we successively prove that |n(k)
1,1| + |n(k)

2,1| ⩽ C(ν +
√
α(ω0) ρ8),∣∣∣∣∫

R
(ΞA,Bz2)XϑUX

2
θn1,1

∣∣∣∣ ⩽ CB|b|2||ρz2|| and
∣∣∣∣∫

R
(ΞA,Bz1)XϑUM+X

2
θn2,1

∣∣∣∣ ⩽ CB|b|2||ρz1||.

Taking A large enough (depending on ω0) and still following [16], we have ||ηAp⊥
2 || ⩽ CAα(ω0)−1/2ϵ(||νv||2 +

|b|2) ⩽ CA2ϵ(||νv||2 + |b|2) and ||ηAq⊥
2,2|| ⩽ Cα(ω0)−1/2ϵ1/3(||ηAv|| + |b|2) ⩽ CAϵ1/3(||ηAv|| + |b|2). Moreover,

using (21), we have

||ηAr⊥
2 || ⩽ CV(ω0)α(ω0)−1/2ϵ(||νv||2 + |b|2) ⩽ CAϵ(||νv||2 + |b|2),
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taking A large enough (depending on ω0). The rest of the proof is unchanged and we eventually find that

|K4| ⩽ CB|b|2||ρz|| + CA2Bθ−9/4ϵ1/3 (||ηA∂2
yz1|| + ||ηA∂yz1|| + ||ηAz1|| + ||ηAz2||

) (
||ηAv|| + |b|2

)
and |L4| ⩽ C|b|2||ρz|| + CA2θ−9/4ϵ1/3 (||ηA∂2

yz1|| + ||ηA∂yz1|| + ||ηAz1|| + ||ηAz2||
) (

||ηAv|| + |b|2
)
.

Note that we only have ϵ1/3 instead of ϵ in [16], but that is enough for what we seek.

As for K5 and L5, the proof is identical but the formulation is a little bit different, since it relies on Lemma 22
(which is different in our case from [16]). We find that

|K5| ⩽ CBθ−9/4P(ω0)ϵ(||νv||2 + |b|2)
(
||ηA∂2

yz1|| + ||ηA∂yz1|| + ||ηAz1|| + ||ηAz2||
)

and |L5| ⩽ Cθ−9/4P(ω0)ϵ(||νv||2 + |b|2)
(
||ηA∂2

yz1|| + ||ηA∂yz1|| + ||ηAz1|| + ||ηAz2||
)
.

Gathering these last estimates and using Lemma 20, we have

|K4| + |K5| + |L4| + |L5| ⩽ CB|b|2Z1/2 + CA2Bθ−9/4ϵ1/3(1 + P(ω0))(||ηAv|| + |b|2)(||ηA∂yv|| + ||ηAv||). (32)

Combining (31) and (32), and taking ϵ > 0 small enough (depending on θ and A), we obtain:

α(ω0)2Z ⩽ CK̇ + Cα(ω0)2L̇ + CB

Aθ5

(
||ηA∂yv||2 + B2

A2 ||ηAv||2
)

+ CB2

α(ω0)2 |b|4.

We integrate this inequality on [0 , s] and recall that |K| + |L| ⩽ Cϵ. Using Proposition 3 and Proposition 4, it
leads to:∫ s

0
Z ⩽

C

α(ω0)2

(
ϵ+ B3

Aθ5

∫ s

0

(
||ηA∂yv||2 + 1

A2 ||ηAv||2
)

+ B2

α(ω0)2

∫ s

0
|b|4
)

⩽ C

(
1

α(ω0)2 + B3

Aθ5α(ω0)2 + B2

α(ω0)4

)
ϵ+ C

A

(
B3

α(ω0)2θ5 + B2

α(ω0)5Γ(ω0) + B3

Aα(ω0)3θ5Γ(ω0)

)∫ s

0
||ρ4v||2.

Taking A > 0 large enough (depending on ω0, B and θ) in order to control the second term, then ϵ > 0 small
enough (depending on ω0, B, θ and A) in order to control the first term, we obtain∫ s

0
Z ⩽ C

√
ϵ+ C√

A

∫ s

0
||ρ4v||2,

which is the announced result.

10 Final estimates
We finish the proof of Theorem 1 as in [16]. We combine Lemma 26 and Proposition 5 to get that, for all s ⩾ 0,

α(ω0)3
∫ s

0
||ρ4v||2 ⩽ C

∫ s

0

(
||ρ∂2

yz1||2 + ||ρ∂yz1||2 + ||ρz1||2 + ||ρz2||2
)
⩽ C

√
ϵ+ C√

A

∫ s

0
||ρ4v||2.

Taking A large enough (depending on ω0) and then ϵ > 0 small enough (depending on ω0), we obtain∫ s

0
||ρ4v||2 ⩽ Cα(ω0)−3√

ϵ ⩽ ϵ1/4 ⩽ 1.

Passing to the limit s → +∞ in Propositions 2 and 3 and taking A > 0 large enough (depending on ω0), we
have successively

∫ +∞
0 |b|4 ⩽ C and∫ +∞

0

(
|b|4 + ||ρ∂yv||2 + ||ρv||2

)
⩽ C

(
ϵ+ 1

Aα(ω0)Γ(ω0)

∫ +∞

0
||ρ4v||2

)
+ CA2

(
ϵ+

∫ +∞

0
||ρ4v||2 +

∫ +∞

0
|b|4
)

⩽ C + CA2 ⩽ CA2.
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In particular, there exists a sequence sn → +∞ such that

|b(sn)|4 + ||ρ∂yv(sn)||2 + ||ρv(sn)||2 −→
n→+∞

0.

Recall that, setting M = |b|4 + ||ρv||2, Lemma 13 states that | ˙M | ⩽ C
(
|b|4 + ||ρ∂yv||2 + ||ρv||2

)
. For s > 0

and n such that sn > s, we integrate on (s , sn) to find that

M (s) ⩽ M (sn) +
∫ sn

s

| ˙M | ⩽ M (sn) + C

∫ sn

s

(
|b|4 + ||ρ∂yv||2 + ||ρv||2

)
.

Passing to the limit n → +∞, we find M (s) ⩽ C

∫ +∞

s

(
|b|4 + ||ρ∂yv||2 + ||ρv||2

)
. Therefore,

M (s) −→
s→+∞

0,

which concludes the proof.

Remark 6. Contrary to [16], we do not establish that ω(s) converges to a certain ω+ as s → +∞. Indeed,
this result, in [16], requires to develop q1 and q2 at order 3, with a rest of order 4, and we cannot meet this
requirement with our only hypotheses here. However, it would be possible to show such a result in the case
g(s) = sp with p ∈ N, p ⩾ 2. Indeed, in such cases, Taylor expansions behave as in [16].
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