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We investigate the problem of effusion of particles initially confined in a finite one-dimensional
box of size L. We study both passive as well active scenarios, involving non-interacting diffusive
particles and run-and-tumble particles, respectively. We derive analytic results for the fluctuations in
the number of particles exiting the boundaries of the finite confining box. The statistical properties
of this quantity crucially depend on how the system is prepared initially. Two common types of
averages employed to understand the impact of initial conditions in stochastic systems are annealed
and quenched averages. It is well known that for an infinitely extended system, these different
initial conditions produce quantitatively different fluctuations, even in the infinite time limit. We
demonstrate explicitly that in finite systems, annealed and quenched fluctuations become equal
beyond a system-size dependent timescale, t ∼ L2. For diffusing particles, the fluctuations exhibit
a
√
t growth at short times and decay as 1/

√
t for time scales, t ≫ L2/D, where D is the diffusion

constant. Meanwhile, for run-and-tumble particles, the fluctuations grow linearly at short times
and then decay as 1/

√
t for time scales, t ≫ L2/Deff, where Deff represents the effective diffusive

constant for run-and-tumble particles. To study the effect of confinement in detail, we also analyze
two different setups (i) with one reflecting boundary and (ii) with both boundaries open.

I. INTRODUCTION

The study of the effect of initial conditions on the
transport properties of stochastic systems has attracted
considerable interest in the past years [1–14]. Notably,
these studies have revealed that the distributions of quan-
tities such as the tracer particle displacement or the in-
tegrated current across a region are different depending
on the initial condition involving the positions of par-
ticles [12–15]. Two ensembles of initial conditions that
are commonly used to study this effect are (i) annealed
setting, which allows for random fluctuations in the ini-
tial condition, and (ii) quenched setting, where the ini-
tial condition is deterministic [10, 11, 16, 17]. To gain
an initial understanding of the relevance of initial con-
ditions, imagine a set of particles initially confined in a
one-dimensional channel, free to diffuse. Several intrigu-
ing questions arise: Does a static disorder in the initial
arrangement of particles influence the dynamic behav-
ior of the system? Furthermore, does this effect persist
over large times, particularly when the channel length is
finite? What happens if there is an asymmetry in the
boundary conditions of this confining channel?

Previous studies have extensively examined the prob-
lem of effusion using model systems that are infinitely
extended. One such model considers a semi-infinite con-
fining channel bounded between x ∈ (−∞, 0], where the
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fluctuations in the number of particles crossing the ori-
gin x = 0 up to time t are investigated [14, 18]. For
the case of diffusive particles, the annealed setting ex-
hibits larger fluctuations by a factor of

√
2 as compared

to the quenched setting [4, 7, 9, 14, 18]. Even for non-
interacting active particles, the annealed setting exhibits
larger fluctuations by a factor of

√
2 at large times, as

the dynamics effectively becomes diffusive [18–20].

In this paper, we focus on the dynamic properties of
the particle flux Q across the boundaries of a finite con-
fining box bounded between x ∈ [−L, 0]. We specifi-
cally investigate the interplay between the initial con-
ditions and the system geometry on the fluctuations of
Q. We consider two setups: (i) with a reflecting bound-
ary condition at −L, and (ii) with both the boundaries
at −L and 0 open. Interestingly, we demonstrate that
in both these cases, annealed and quenched fluctuations
converge and become equal at a timescale determined
by the system size L and the parameters of the model
studied. For diffusing particles, the fluctuations exhibit
a
√
t growth at short times and decay as 1/

√
t for time

scales t ≫ L2/D, where D represents the diffusion con-
stant. Meanwhile, for run-and-tumble particles [21–31],
the fluctuations grow linearly at short times and then de-
cay as 1/

√
t for time scales t ≫ L2/Deff, where Deff de-

notes the effective diffusive constant for run-and-tumble
particles. For diffusive systems, the ratio of the fluctu-
ations due to annealed and quenched initial conditions
changes from a value of

√
2 (which is equal to the ra-

tio observed in an infinite system) at short times to 1 at
large times for both the geometries; for active particles,
it changes from the value of 2 (infinite system) at short
times to 1 at large times in a similar vein. Intriguingly,
we also show that the boundary conditions of the confin-
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FIG. 1. Schematic representation of the trajectories of N = 8 non-interacting particles, initially confined in a box bounded
between [−L, 0]. We are interested in the number of particles present outside this box at time t, denoted as Q(t). The green
trajectories indicate those contributing to a non-zero Q(t), while the red ones do not contribute. We examine two setups: (a) In
the left panel, a reflecting wall is present at x = −L, allowing particles to escape only through the origin x = 0. (b) In the
right panel, both sides are open, enabling particles to exit through either boundary. In the illustrated figure, Q(t) = 3 for the
former case and Q(t) = 5 for the latter.

ing box play a crucial role in determining the dynamic
behavior of Q. The setup with two open boundaries dis-
plays larger fluctuations by a factor of 2 at short times
and smaller fluctuations by a factor of 1/2 at large times
as compared to the setup with one open boundary for
both passive and active cases.

The paper is organized as follows. In Sec. II, we intro-
duce the models that we use to study the fluctuations in
the particle flux Q. In Sec. III and Sec. IV, we present
exact analytical results for the fluctuations in both diffu-
sive and active systems. We present the conclusions from
the study in Sec. V. Finally, we present details related to
some of the calculations in Appendices A and B.

II. THE FORMALISM

In this section, we generalize the formalism developed
in [18] to study the fluctuations in the current of particles
across the boundaries of a finite-sized box. We consider
N non-interacting particles initially distributed with a
uniform density ρ = N/L in a finite one-dimensional box
bounded between [−L, 0]. These particles evolve over
time following their underlying dynamics such as diffu-
sion or run-and-tumble motion. The quantity of inter-
est is the number of particles exiting the boundaries of
the box up to time t, equivalent to the number of par-
ticles present outside the box at time t (see Fig. 1 for
a schematic representation). We denote this quantity as
Q(t), representing the flux or integrated current through
the boundaries of the box up to time t. The number of
particles present outside the box can be expressed using

an indicator function I(t), defined as

Ii(t) =

{
1, if the ith particle is outside [−L, 0] at t,

0, otherwise.

(1)
The current Q(t) is then given as

Q(t) =

N∑
i=1

Ii(t). (2)

We are primarily interested in the statistical properties
of the random variable Q. Generally, two sources of ran-
domness are associated with the measurement of Q; the
randomness in the initial positions of the particles and
the randomness due to the inherent stochasticity of the
underlying dynamics of the particles. There are two dis-
tinct methods for averaging over these sources of ran-
domness: (i) the annealed average - which corresponds
to simultaneous averaging over all initial conditions and
noise history (ii) the quenched average - where one first
averages over noise history for a fixed initial realization,
followed by averaging over all possible initial realizations.
The formal definitions of these averages are provided in
the subsequent sections.
Let us denote by {xi} a distinct set of initial positions

of the particles. For the fixed initial positions {xi}, the
probability distribution of Q is given as

P (Q, t, {xi}) =

〈
δ

(
Q−

N∑
i=1

Ii(t)

)〉
{xi}

. (3)

The angular bracket ⟨...⟩{xi} in the above expression de-
notes an average over all trajectories of the particles for
a fixed initial condition {xi}. Moving forward it will be



3

convenient to work with the moment-generating function
of Q defined as

∞∑
Q=0

e−pQP (Q, t, {xi}) = ⟨e−pQ⟩{xi}

=

〈
exp

(
−p

N∑
i=1

Ii(t)

)〉
{xi}

.

(4)

We next use the identity e−pIi(t) = 1−(1−e−p)Ii(t) and
the independent nature of the dynamics of the particles
to obtain

⟨e−pQ⟩{xi} =

N∏
i=1

[
1− (1− e−p)⟨Ii(t)⟩{xi}

]
. (5)

Here ⟨Ii(t)⟩{xi} represents the probability that the ith
particle is present outside the region x ∈ [−L, 0] at time t.
Depending on the underlying dynamics and the geometry
of the system under consideration, this quantity will be
different. We study two different cases where (i) there
is a reflecting boundary at x = −L (see Fig. 1 (a)) and
(ii) when both the boundaries at x = 0 and x = −L are
open (see Fig. 1 (b)). In the first case, particles exit only
through the boundary at x = 0, however, in the latter
case, they exit either through x = 0 or x = −L. Denoting
the expectation ⟨Ii(t)⟩{xi} by U(xi, t), we obtain

U(xi, t) =

∫ ∞

0

G(x, t|xi)dx, (6)

for the case with a reflecting boundary and

U(xi, t) =

∫ −L

−∞
G(x, t|xi)dx+

∫ ∞

0

G(x, t|xi)dx, (7)

when both boundaries are open. Here, G(x, t|xi) is the
Green’s function defined as the probability density to find
a particle at a position x at time t starting from the
position xi at time t = 0. From Eq. (5), we obtain the
expression for the generating function of Q as

⟨e−pQ⟩{xi} =

N∏
i=1

[
1− (1− e−p)U(xi, t)

]
, (8)

where the expressions for the function U for the settings
with reflecting boundary and open boundaries are given
in Eqs. (6) and (7) respectively. The average over the
initial conditions {xi} can now be done in two ways, as
discussed below.

A. Annealed setting

Let us denote by the symbol (...) as an average over the
initial conditions on the positions of the particles. Per-
forming an average over the initial positions in Eq. (8),

we obtain

⟨e−pQ⟩{xi} =

N∏
i=1

[
1− (1− e−p)U(xi, t)

]
. (9)

Since the position of each particle is distributed indepen-
dently according to a uniform distribution in the interval
xi ∈ [−L, 0], this expectation can be further simplified to

⟨e−pQ⟩{xi} =

N∏
i=1

[
1− (1− e−p)

1

L

∫ 0

−L

U(xi, t)dxi

]

=

[
1− (1− e−p)

1

L

∫ 0

−L

U(z, t)dz

]N
, (10)

where we have assigned a general variable z ≡ xi as the
motion of the particles is independent. Defining Pan(Q, t)
as the probability distribution for Q in the annealed set-
ting, we have

∞∑
Q=0

e−pQPan(Q, t) = ⟨e−pQ⟩{xi}. (11)

For finite N, L, a small p expansion of Eq. (10) yields
the expressions for the first few moments from which we
can obtain the expressions for the mean µan(L, t) and the
variance σ2

an(L, t) of Q as

µan(L, t) = ⟨Q⟩ = ⟨Q⟩an , (12)

σ2
an(L, t) = ⟨Q2⟩ − ⟨Q⟩

2

= ⟨Q2⟩an − ⟨Q⟩an2

= µan(L, t)−
1

ρL
µ2
an(L, t). (13)

In the above expression, we have replaced N by ρL. The
quantity µan(L, t) can be computed as

µan(L, t) = ρ

∫ 0

−L

U(z, t)dz, (14)

where the expression for U(z, t) is given in Eq. (6) and
Eq. (7) for the cases with one and two open boundaries
respectively. So far, the majority of studies on the dy-
namic behavior of Q have focused on infinite systems
(L → ∞). For an infinitely extended system with non-
interacting particles, the mean and the variance are the
same in the annealed setting. However, as we observe
from Eqs. (12) and (13), they are not identical when
the system size is finite and furthermore, there is a L
dependent correction term in the variance. In the limit
L → ∞ one recovers the known result, µan(L → ∞, t) =
σ2
an(L → ∞, t) [18].

B. Quenched setting

In the quenched setting, we first perform an average
over the trajectories for a fixed initial condition and then
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average over the initial conditions of the system with a
mean density ρ. The generating function for Q in the
quenched setting can be mathematically computed as

∞∑
Q=0

Pqu(Q, t)e−pQ = exp[ln⟨e−pQ⟩{xi}]. (15)

Taking a logarithm of both sides of Eq. (8), we obtain

ln⟨e−pQ⟩{xi} =

N∑
i=1

ln[1− (1− e−p)U(xi, t)]. (16)

Next performing an average over the initial positions in
the above equation yield

ln⟨e−pQ⟩{xi} =

N∑
i=1

1

L

∫ 0

−L

ln[1− (1− e−p)U(xi, t)]dxi

=
N

L

∫ 0

−L

ln[1− (1− e−p)U(z, t)]dz

= ρ

∫ 0

−L

ln[1− (1− e−p)U(z, t)]dz

= I(p, t), (17)

where

I(p, t) = ρ

∫ 0

−L

ln[1− (1− e−p)U(z, t)]dz. (18)

Finally, we obtain the expression for the generating func-
tion for the distribution of Q in the quenched setting as

∞∑
Q=0

Pqu(Q, t)e−pQ = exp[I(p, t)]. (19)

Performing a small p expansion and collecting the
terms at first and second orders of p, we obtain the ex-
pression for the mean µqu(L, t) and the variance σ2

qu(L, t)
of Q in the quenched setting as

µqu(L, t) = ⟨Q⟩ = ⟨Q⟩qu = µan(L, t), (20)

σ2
qu(L, t) = ⟨Q2⟩ − ⟨Q⟩2

= ⟨Q2⟩qu − ⟨Q⟩qu2

= µqu(L, t)− ρ

∫ 0

−L

dz U2(z, t), (21)

where µqu(L, t) = µan(L, t) is given by Eq. (14). The
mean in the annealed and quenched settings are the same
even when the system size is finite. However, the higher-
order cumulants are different.

In what follows, we study two specific examples of a
system of diffusive particles and active run-and-tumble
particles.

t → 0 t → ∞

Diffusion reflecting boundary
ρ
√
Dt√
π

ρL2
√
π
√
Dt

σdiff
an (L, t)2

1√
2

ρ
√
Dt√
π

ρL2
√
π
√
Dt

σdiff
qu (L, t)2

Diffusion finite interval
2 ρ

√
Dt√
π

1
2

ρL2
√
π
√
Dt

σdiff
an (L, t)2

√
2 ρ

√
Dt√
π

1
2

ρL2
√
π
√
Dt

σdiff
qu (L, t)2

TABLE I. Asymptotic behavior of current fluctuations for
diffusive motion in the annealed and quenched settings.

III. DIFFUSIVE PARTICLES

In this section, we consider a set of diffusive parti-
cles initially confined in a finite one-dimensional box
bounded between [−L, 0]. We also consider two distinct
set-ups; one in the presence of a reflecting boundary and
the other with both boundaries open. We summarize
the asymptotic behaviors of current fluctuations for both
these cases in Table I.

We first focus on the case with a reflecting wall at
x = −L.

A. One reflecting wall

In this section, we study the scenario where the bound-
ary at x = −L is a reflecting wall. The Green’s function
for a single diffusive Brownian particle in this case can
be derived as [32]

G(x, t|xi) =
1√
4πDt

(
e−

(2L+x+xi)
2

4Dt + e−
(x−xi)

2

4Dt

)
, (22)

which can be substituted in Eq. (6) to obtain

U(xi, t) =
1

2

(
1 + erf

(
xi

2
√
Dt

)
+ erfc

(
2L+ xi

2
√
Dt

))
,

(23)

where erf(z) and erfc(z) are the error function and com-
plementary error function, respectively. Having obtained
the expression for U(xi, t), we can now compute the ex-
pressions for the mean and the variance of Q for both
annealed and quenched settings as detailed below.

1. Annealed setting

Substituting Eq. (23) in Eq. (14), we obtain the expres-
sion for the mean of Q for a system of diffusing particles
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FIG. 2. Behavior of the (a) mean and the (b) variance of current through the origin in the presence of a reflecting wall at
x = −L for N diffusive Brownian particles. The mean in the annealed and quenched settings are the same. The variance in
the quenched setting (solid curves) differs from the annealed (dashed curves) by a factor of

√
2 at times t ≪ L2/D, however,

they become equal at times t ≫ L2/D. The parameter values used are ρ = 1, D = 1. The stars and circles represent the results
obtained through numerical simulations of the microscopic model for the quenched and annealed settings respectively.

in the annealed setting as

µdiff
an (L, t)

=
ρ
√
Dt√
π︸ ︷︷ ︸

infinite size limit

+ ρL

(
erfc

(
L√
Dt

)
−

√
Dt√
πL

e−
L2

Dt

)
︸ ︷︷ ︸

finite size correction

.

(24)

The first term in the mean does not have any explicit
dependence on the system size L. This is the result one
expects in the case of an infinite system size limit (L →
∞). The second term in the parentheses contains the
finite size corrections which vanishes in the limit L → ∞.
The expression for the variance follows from Eq. (13) as

σdiff
an (L, t)

2
= µdiff

an (L, t)− 1

ρL
µdiff
an (L, t)

2
, (25)

with µdiff
an (L, t) given by Eq. (24). Since the exact expres-

sion for the variance is quite lengthy, we do not pro-
vide it here. Fig. 2 shows the behavior of the mean
and the variance as a function of time obtained from
Eqs. (24) and (25) for different system sizes keeping the
density ρ = 1 fixed.
Both the mean and variance increase monotonically

with time for t ≪ L2/D. Taking this limit in
Eqs. (24) and (25), we obtain

µdiff
an (L, t ≪ L2/D) ≈ ρ

√
Dt√
π

, (26)

σdiff
an (L, t ≪ L2/D)

2 ≈ ρ
√
Dt√
π

. (27)

At very short time scales, the mean and the variance in
the annealed setting are the same and also correspond to
the infinite system results. However, at larger time scales

FIG. 3. The ratio of the variance of Q in the annealed and
quenched settings plotted against rescaled time t/(L2/D) for
two different set-ups: (a) in the presence of a reflecting wall
(the solid line) and (b) when both sides are open (the dashed
line). The variance in the annealed setting is given by Eq. (13)
and the variance in the quenched setting has been numerically
evaluated using Eq. (21), for L = 10, 102, 103 and D = 1.
When t ≪ L2/D, the ratio is

√
2, and when t ≫ L2/D,

the variances in the annealed and quenched settings become
exactly equal and the ratio becomes unity.

t ≫ L2/D, the mean saturates to the value N and the
variance goes to zero as

µdiff
an (L, t ≫ L2/D) ≈ N − ρL2

√
π
√
Dt

, (28)

σdiff
an (L, t ≫ L2/D)

2 ≈ ρL2

√
π
√
Dt

. (29)
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In deriving the asymptotic time limits we have used the
following properties of the complementary error function

erfc(z) ≈

{
1− 2z√

π
, when z → 0,

e−z2

√
πz

, when z → ∞.
(30)

At very short times, particles that are close to the
boundary at x = 0 can only get out of the region [−L, 0].
Meanwhile, particles that are situated near the boundary
at x = −L do not get sufficient time to escape through
the origin. In effect, the finite size of the system does not
come into the picture at very short times. Consequently,
the results obtained match with those obtained for the
case of an infinite system. Conversely, as time progresses,
particles in the bulk or near the reflecting wall at x = −L
have sufficient time to exit the box through the origin.
It is expected that eventually, all N particles will exit
this region, resulting in a mean current of N . At these
large time scales, with all particles leaving the box, the
variance tends to approach zero.

2. Quenched setting

From Eq. (20) we see that the mean in the quenched
setting is the same as the annealed setting. Therefore we
obtain

µdiff
qu (L, t) = µdiff

an (L, t), (31)

with the limiting behaviors given in Eq. (26) and
Eq. (28).

Calculating the variance in the quenched setting is
challenging because the integral in Eq. (21) cannot be
explicitly computed. However, we can determine the
asymptotic behaviors of the variance of Q using simple
arguments. At short times (t ≪ L2/D), the system does
not experience the effects of finite size and the results ob-
tained are similar to those obtained for infinite systems
(as also seen for the annealed case). We thus take the
limit L → ∞ in Eq. (23) to obtain

U(xi, t) −−−−→
L→∞

1

2

(
1 + erf

(
xi

2
√
Dt

))
. (32)

Using this result, the integration in Eq. (21) can be easily
performed to obtain

σdiff
qu (L, t ≪ L2/D)

2 ≈ ρ
√
Dt√
2π

. (33)

Similarly, at very large times t ≫ L2/D, one can take
the limit L → 0 to obtain

U(xi, t) −−−→
L→0

1− Le−
x2
i

4Dt

√
π
√
Dt

. (34)

We next compute the integral in Eq. (21) in this limit
yielding

σdiff
qu (L, t ≫ L2/D)

2 ≈ ρL2

√
π
√
Dt

. (35)

Note that, at time scales where finite size effects are not
present (t ≪ L2/D), the variance for the quenched set-

ting given in Eq. (33) is suppressed by a factor of
√
2 com-

pared to the annealed setting provided in Eq. (27). How-
ever at time scales t ≫ L2/D, the finite size effects are
dominant and the variance in the quenched and annealed
settings become exactly equal to each other. Fig. 2 shows
the behavior of the mean and the variance as a function of
time for both annealed and quenched settings. The mean
is given by Eq. (24) for both annealed and quenched set-
tings. The variance is given by Eq. (13) in the annealed
setting and by Eq. (21) in the quenched setting. Fig. 3
displays the plot of the ratio of the variance in the an-
nealed and quenched settings as a function of the rescaled
time t/(L2/D) for different system sizes L = 10, 102 and
103. All the curves for different system sizes collapse into
a single curve. At time scales t ≪ L2/D, finite size effects

can be neglected and the ratio is close to
√
2. However

at large time scales t ≫ L2/D, the finite size effects be-
come prominent. Consequently, the annealed and the
quenched averages become the same, and the ratio be-
comes one.

B. Finite size interval

We next focus on the case where there is no reflecting
wall in the system so that particles can escape through ei-
ther of the boundaries at x = 0 or x = −L. The diffusion
propagator in this case is given by

G(x, t|xi) =
1√
4πDt

e−
(x−xi)

2

4Dt . (36)

Substituting this expression in Eq. (7), we obtain

U(xi, t) =
1

2

(
1 + erf

(
xi

2
√
Dt

)
+ erfc

(
L+ xi

2
√
Dt

))
.

(37)

We next focus on annealed and quenched settings sepa-
rately.

1. Annealed setting

We substitute Eq. (37) in the expression for mean pro-
vided in Eq. (14). This yields the exact expression for
the mean in the annealed setting as

µdiff
an (L, t)

=
2ρ

√
Dt√
π︸ ︷︷ ︸

infinite size limit

+ ρL

(
erfc

(
L

2
√
Dt

)
− 2

√
Dt√
πL

e−
L2

4Dt

)
︸ ︷︷ ︸

finite size correction

.

(38)
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FIG. 4. Behavior of the (a) mean and the (b) variance of Q as a function of time when both the boundaries at x = 0,−L
are open for a diffusive system. The mean in the annealed and quenched settings are the same. The variance in the quenched
setting (solid curves) differs from the annealed (dashed curves) by a factor of

√
2 at times t ≪ L2/D, however, they become

equal at times t ≫ L2/D. The parameter values used are ρ = 1, D = 1. The stars and circles represent the results obtained
through numerical simulations of the microscopic model for the quenched and annealed settings respectively.

In the asymptotic limit, we obtain the simplified expres-
sions

µdiff
an (L, t) ≈


2ρ

√
Dt√
π

, t ≪ L2/D,

N − ρL2

2
√
π
√
Dt

, t ≫ L2/D.
(39)

The expression for the variance of Q can now be ex-
actly computed using Eq. (38) and Eq. (25). Since this
expression is quite long, we do not quote it here. Fig. 4
shows the behavior of the mean and the variance as a
function of time obtained from Eqs. (38) and (25) for
different system sizes keeping the density ρ = 1 fixed. In
the asymptotic limits, we obtain the simple expressions,

σdiff
an (L, t)2 ≈


2ρ

√
Dt√
π

, t ≪ L2/D,
ρL2

2
√
π
√
Dt

, t ≫ L2/D.
(40)

At short times, the variance is larger by a factor of 2 as
compared to the case with a single reflecting boundary
in the annealed setting. However, at large times, the
variance is lesser by a factor of 2 as compared to the
previous case.

2. Quenched setting

The expression for the mean in the quenched setting is
the same as the annealed setting and is given in Eq. (38).
It is difficult to compute the exact closed-form expression
for the variance in the quenched setting using the expres-
sion for U(xi, t) provided in Eq. (37). Nevertheless, it is
possible to perform a careful asymptotic analysis in the

Laplace space (details given Appendix A) which yields

σdiff
qu (L, t)2 ≈


√
2ρ

√
Dt√

π
, t ≪ L2

D ,
ρL2

2
√
π
√
Dt

, t ≫ L2

D .
(41)

Similar to the case with a reflecting wall, the variance in
the annealed and quenched settings are distinct at short
times (t ≪ L2/D) and become exactly equal to each
other at times t ≫ L2/D. Fig. 4 shows the behavior of
the mean and the variance as a function of time for both
annealed and quenched settings. The mean is given by
Eq. (38) for both annealed and quenched settings. The
variance is given by Eq. (13) in the annealed setting and
by Eq. (21) in the quenched setting. In Fig. 3, we display
a plot of the exact ratio of the annealed to quenched vari-
ance. As before, even in the quenched setting, the vari-
ance of Q is larger by a factor of 2 compared to the case
with a single reflecting boundary at short times. How-
ever, at large times, the variance is lower by a factor of
2. This demonstrates how boundary conditions can influ-
ence the transport properties of stochastic systems over
time.

IV. RUN-AND-TUMBLE PARTICLES

In this section, we focus on a system of non-interacting
run-and-tumble particles in one dimension. We ana-
lyze the statistics of the integrated current Q in a one-
dimensional system of non-interacting run-and-tumble
particles (RTPs). The dynamics of an RTP consist of run
and tumble phases. During the run phase, the particle
moves with a constant velocity v and during the tumble
phase, the particle instantaneously changes its direction
of velocity. The Langevin equation governing the motion
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FIG. 5. Behavior of the (a) mean and the (b) variance in both annealed and quenched settings for RTP in the presence of
a reflecting wall at x = −L. The mean in the annealed and quenched settings are the same. The variance in the quenched
setting (solid curves) differs from the annealed (dashed curves) by a factor of 2 at times t ≪ L2/Deff, however, they become
equal at times t ≫ L2/Deff. The parameter values used are v =

√
0.2, γ = 0.1 to have Deff = v2/2γ = 1. The circles with

crosses represent the results obtained through numerical simulations of the microscopic model and the dashed curves represent
the results obtained through numerical Laplace inversion of Eq. (46) along with Eq. (13) for the annealed setting. The variance
in quenched setting (solid curves) has been obtained through microscopic simulations.

t → 0 t → ∞

RTP reflecting boundary
1
2
ρvt ρL2

√
π
√

Defft
σrtp
an (L, t)2

1
4
ρvt ρL2

√
π
√

Defft
σrtp
qu (L, t)2

RTP finite interval
ρvt 1

2
ρL2

√
π
√

Defft
σrtp
an (L, t)2

1
2
ρvt 1

2
ρL2

√
π
√

Defft
σrtp
qu (L, t)2

TABLE II. Asymptotic behavior of current fluctuations for
run and tumble particle motion in the annealed and quenched
settings.

of an RTP can be written as

dx

dt
= vσ(t), (42)

where σ(t) = ±1 is a dichotomous noise and it switches
between the two values after a random time τ which
is distributed according to an exponential distribution
p(τ) = γe−γτ . The asymptotic behaviors of current fluc-
tuations for non-interacting RTPs in various settings are
summarized in Table II.

As for the diffusive case, we first focus on the situation
with a reflecting wall at x = −L.

A. One reflecting wall

The boundary conditions for an RTP in the presence of
a reflecting wall have to be defined carefully. After a re-
flection from the wall, each particle has two possibilities

for its orientation, (i) it continues to move in the same
direction i.e. towards the wall or (ii) it changes the ori-
entation after reflection and starts moving away from the
wall. In this paper, we consider the latter case where ve-
locity is reversed after each reflection. This prevents the
accumulation of particles near the wall [33]. The Green’s
function for RTP has a simple form in the Laplace space.
The Laplace transform of a function f(t) is defined as

f̃(s) =
∫ t

0
dtf(t)e−st. The propagator of RTP can be

computed using the image method as [32]

G̃(x, s|xi)

=

√
s(s+ 2γ)

2vs

(
e−

√
s(s+2γ)

v |x−xi| + e−
√

s(s+2γ)

v |x+2L+xi|
)
.

(43)

Using Eq. (6), we next compute the Laplace transform
of U(xi, t) as,

Ũ(xi, s) =
e

xi

√
s(2γ+s)

v

2s
+

e−
(2L+xi)

√
s(2γ+s)

v

2s
. (44)

In the subsequent sections, we focus on the annealed and
quenched settings separately.

1. Annealed setting

We take a Laplace transform of the expression for the
mean provided in Eq. (14) to obtain

µ̃an(L, s) = ρ

∫ 0

−L

Ũ(z, s)dz. (45)
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Substituting Eq. (44) in the above equation, we obtain
the expression for the mean of Q in Laplace space as

µ̃rtp
an (L, s) =

ρv

2s
√
s(2γ + s)︸ ︷︷ ︸

infinite size limit

− ρve−
2L

√
s(2γ+s)

v

2s
√
s(2γ + s)︸ ︷︷ ︸

finite size correction

. (46)

The first term in the above expression represents the in-
finite size (L → ∞) limit while the second term is a finite
size correction. Since the exact inversion of the above ex-
pression is difficult, we focus on the asymptotic behaviors
taking different limits of s as explained below.
For RTPs, there are two important time scales, (i) one

timescale is associated with the mean run time t = 1/γ
between consecutive tumbles and (ii) the other timescale
is associated with the finite size of the system t = L2/Deff

where Deff = v2/2γ is the effective diffusion constant for
an RTP in one dimension. At very large times, t ≫ 1/γ
the statistical properties of an RTP become similar to
that of a Brownian particle with an effective diffusion
constant Deff. In this paper, we consider the case where
L2/Deff ≫ 1/γ. Thus the limit s → ∞ corresponds to
timescales t ≪ L2/Deff. In this limit, we observe that
the second term in Eq. (46) is exponentially suppressed
as compared to the first term and we obtain

µ̃rtp
an (L, s) −−−→

s→∞

ρv

2s
√
s(2γ + s)

, (47)

which upon inversion yields

µrtp
an (L, t ≪ L2/Deff) =

ρvt

2
e−γt(I0(tγ) + I1(tγ)), (48)

where I0(z) and I1(z) are the modified Bessel functions of
the first kind. The asymptotic behaviors of the modified
Bessel function of the first kind (and order ν) are given
as

Iν(z) ≈

{
zν
(

2−ν

Γ(ν+1) +
2−ν−2z2

(ν+1)Γ(ν+1)

)
, when z → 0,

ez√
2π

√
z
, when z → ∞.

(49)

Substituting these expressions in Eq. (48), one obtains
the limiting behaviors of the mean of Q as

µrtp
an (L, t) ≈

{
1
2ρvt, t ≪ 1/γ,
ρ
√
Defft√
π

, 1
γ ≪ t ≪ L2

Deff
.

(50)

To obtain the large time (t ≫ L2/Deff) behavior, we take
the s → 0 limit of the expression provided in Eq. (46)
yielding

µ̃rtp
an (L, s) −−−→

s→0

N

s
− ρL2

√
Deff

√
s
, (51)

which upon inversion yields

µrtp
an (L, t ≫ L2/Deff) = N − ρL2

√
π
√
Defft

. (52)

FIG. 6. Ratio of the variances of Q in the annealed and
quenched settings for RTPs in the presence of a reflecting
wall. For small timescales (t ≪ 1/γ), the ratio is 2. With
time it starts decreasing and at intermediate time scales
1/γ ≪ t ≪ L2/Deff, the ratio saturates to the value

√
2.

This saturation is more evident for system size L = 103

as the intermediate region is broad here. At time scale
t ≫ L2/Deff all the curves merge and eventually saturate to
unity. While computing the ratio, the numerator has been ob-
tained through numerical Laplace inversion of Eq. (46) along
with Eq. (13) while the denominator has been estimated us-
ing microscopic simulations.

The asymptotic behavior of the variance can be found
by substituting the asymptotic expressions for the mean
provided in Eqs. (48) and (52) directly in Eq. (13). This
yields

σrtp
an (L, t)2 ≈


1
2ρvt, t ≪ 1/γ,
ρ
√
Defft√
π

, 1
γ ≪ t ≪ L2

Deff
,

ρL2

√
π
√
Defft

t ≫ L2/Deff.

(53)

At time scales t ≫ 1/γ, the mean and the variance be-
have similar to that of the diffusive case as in Eq. (26)-
(29) with the diffusion constant D replaced by Deff.
Fig. 5 shows the behavior of the mean and the variance as
a function of time obtained through numerical inversion
of Eq. (46) and using these results in Eq. (13).

2. Quenched setting

Similar to the case of diffusion, the mean in the
quenched setting is the same as that in the annealed set-
ting. That is,

µrtp
qu (L, t) = µrtp

an (L, t). (54)

The exact asymptotic behaviors of the mean are provided
in Eqs. (48) and (52). The asymptotic limits for the
variance can be computed using similar arguments we
applied for the diffusive case. At very short times t ≪
L2/Deff, we take the limit L → ∞ in Eq. (44) and follow
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a similar calculation as we did for the diffusive case to
obtain

σrtp
qu (L, t ≪ L2/Deff)

2 =
ρv

8
te−2γt

[
(4 + πL0(2γt))I1(2γt)

+ (2− πL1(2γt))I0(2γt)
]
, (55)

where L0(z), L1(z) are the modified Struve functions.
Further depending on the time scale 1/γ, we obtain the
limiting behaviors for the variance of Q

σrtp
qu (L, t)2 ≈

{
1
4ρvt, t ≪ 1/γ,
ρ
√
Defft√
2π

, 1
γ ≪ t ≪ L2

Deff
.

(56)

Here, we have used the following asymptotic behaviors
of the Struve functions

Lν(z) ≈

 zν
(

2−νz√
πΓ(ν+ 3

2 )
+ 2−ν−1z3

3
√
πΓ(ν+ 5

2 )

)
, when z → 0,

ez√
2π

√
z
, when z → ∞.

(57)

The large-time asymptotic behavior of the variance can
be computed by taking the limit L → ∞ in Eq. (44) and
performing a similar calculation as for the diffusive case,
or it can be derived directly from the fact that at this
timescale, the statistical properties of an RTP is similar
to that of a Brownian particle with a modified diffusion
constant D = Deff. We thus obtain

σrtp
qu (t ≫ L2/Deff)

2 =
ρL2

√
π
√
Defft

, (58)

which is the same as the large time behavior of the vari-
ance in the annealed setting given in Eq. (53). Fig. 5
displays the behavior of the mean and the variance as a
function of time for both annealed and quenched settings.
The mean is given by numerical inversion of Eq. (46) for
both annealed and quenched settings. The variance is
given by Eq. (13) in the annealed setting and by Eq. (21)
in the quenched setting. Fig. 6 displays the plot of the
ratio of the variance in the annealed and quenched set-
tings as a function of the rescaled time t/(L2/Deff) for
different system sizes L = 10, 102 and 103. Unlike the dif-
fusive case, the curves do not collapse into a single curve
as RTPs have different timescales involved in addition to
the diffusion timescale. At time scales t ≪ 1/γ, finite size
effects can be neglected and the ratio is close to 2. We
see that at intermediate time scales 1/γ ≪ t ≪ L2/Deff,

the ratio saturates close to the value
√
2. However at

large time scales t ≫ L2/Deff, the finite size effects be-
come prominent. Consequently, the annealed and the
quenched averages become the same, and the ratio be-
comes one.

B. Finite size interval

We next focus on the case where the particles can es-
cape either through the boundary at x = 0 or x = −L.

The propagator for an RTP in the Laplace space is given
as [18]

G̃(x, s|xi) =

√
s(s+ 2γ)

2vs
e−

√
s(s+2γ)

v |x−xi|. (59)

Substituting this expression in Eq. (7), we obtain

Ũ(xi, s) =
e

xi

√
s(2γ+s)

v

s
+

e
−(L+xi)

√
s(2γ+s)

v

s
. (60)

We next focus on the cases of annealed and quenched
averages separately.

1. Annealed setting

We first focus on the annealed setting where the po-
sitions of the particles are allowed to fluctuate initially.
Substituting Eq. (60) in Eq. (45) we obtain the expres-
sion for the mean in Laplace space as

µ̃rtp
an (L, s) =

ρv

s
√
s(2γ + s)︸ ︷︷ ︸

infinite size limit

− ρve−
L
√

s(2γ+s)

v

s
√
s(2γ + s)︸ ︷︷ ︸

finite size correction

. (61)

Using this expression, the asymptotic behaviors of the
mean and the variance in real-time can be computed as
before. For the mean, we obtain

µrtp
an (L, t) ≈


ρvt, t ≪ 1/γ,
2ρ

√
Defft√
π

, 1
γ ≪ t ≪ L2

Deff
,

N − ρL2

2
√
π
√
Defft

t ≫ L2/Deff.

(62)

and for the variance, we obtain

σrtp
an (L, t)2 ≈


ρvt, t ≪ 1/γ,
2ρ

√
Defft√
π

, 1
γ ≪ t ≪ L2

Deff
,

ρL2

2
√
π
√
Defft

t ≫ L2/Deff.

(63)

2. Quenched setting

The mean in the quenched setting is the same as the
mean in the annealed setting and is given in Eq. (61).
Since it is difficult to find the exact expression of the
variance in the quenched setting in closed form, we focus
on the asymptotic behaviors. A careful asymptotic anal-
ysis in the Laplace space (details given in Appendix B)
yields

σrtp
qu (L, t)2 ≈

{
1
2ρvt, t ≪ 1

γ ,
ρL2

2
√
πDefft

, t ≫ L2

Deff
.

(64)

Fig. 7 displays the behavior of the mean and the
variance as a function of time for both annealed and
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FIG. 7. Behavior of the (a) mean and the (b) variance in both annealed and quenched settings for run-and-tumble particles
when both sides at x = 0,−L are open. The mean in the annealed and quenched settings are the same. The variance in the
quenched setting (solid curves) differs from the annealed (dashed curves) by a factor of 2 at times t ≪ L2/Deff, however, they
become equal at times t ≫ L2/Deff. The parameter values used are v =

√
0.2, γ = 0.1 so that Deff = v2/2γ = 1. The stars

represent the results obtained through numerical simulations of the microscopic model and the dashed curves represent the
results obtained through numerical Laplace inversion of Eq. (61) along with Eq. (13) for the annealed setting. The variance in
quenched setting (solid curves) has been entirely obtained through microscopic simulations.

FIG. 8. Ratio of the variance of Q in the annealed and
quenched settings for RTPs in a finite-sized interval with open
boundaries. The variance in the annealed setting has been ob-
tained through numerical Laplace inversion of Eq. (61) along
with Eq. (13). The variance in the quenched setting has been
obtained through numerical simulations of the microscopic
model. Unlike the Brownian case, the curves for different
system sizes L do not collapse into a single curve at short
and intermediate times. However, when t ≫ L2/Deff, all the
curves merge and saturate to the value 1.

quenched settings. The mean is given by numerical inver-
sion of Eq. (61) for both annealed and quenched settings.
The variance is given by Eq. (13) in the annealed setting
and by Eq. (21) in the quenched setting. In Fig. 8, we
display a plot of the ratio of the variance in the annealed
and quenched settings as a function of the rescaled time
t/(L2/Deff) for different system sizes L = 10, 102 and
103. Similar to the set-up with a reflecting wall, the

curves do not collapse into a single curve as RTPs have
different timescales involved in addition to the diffusion
timescale. At time scales t ≪ 1/γ, the ratio is close to 2.
At intermediate time scales 1/γ ≪ t ≪ L2/Deff, the ra-

tio is close to the value
√
2. However at large time scales

t ≫ L2/Deff, the finite size effects become prominent
and the ratio saturates to 1. Compared to the reflect-
ing case, the variance is larger by a factor of 2 at times
t ≪ L2/Deff. However, at large times, the variance gets
suppressed by a factor of 2 as compared to the reflecting
case. This is exactly the same behavior we observed for
the system of diffusing particles. This demonstrates how
boundary conditions can influence the transport proper-
ties of stochastic systems over time. A more intricate
understanding of these various factors would require a
detailed study of current fluctuations in different system
geometries across various spatial dimensions.

V. DISCUSSION AND OUTLOOK

In this paper, we have studied the fluctuations in the
number of particles exiting the boundaries of a finite-
sized one-dimensional box. We investigated specific ex-
amples of passive as well as active systems; namely non-
interacting diffusive and run-and-tumble particles respec-
tively. We demonstrated how various initial conditions,
system geometry, and boundary conditions affect the
transport properties of these systems over time.

For the system of diffusive particles, we showed that
the ratio of fluctuations in the annealed and quenched
settings changes from a value of

√
2 at short times (t ≪

L2/D) to 1 at large times (t ≫ L2/D). While for run-
and-tumble particles, this ratio changes from a value of 2
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at short times (t ≪ 1/γ) to 1 at large times (t ≫ L2/Deff)
through an intermediate saturation regime where the ra-
tio takes up the value

√
2. This intermediate saturation

regime corresponds to the time scale 1/γ ≪ t ≪ L2/Deff

at which the dynamics of run-and-tumble particles be-
comes effectively diffusive. The timescale at which the
ratio saturates to 1 is the diffusive timescale which goes
as t ≈ L2/D for diffusive systems and t ≈ L2/Deff for ac-
tive systems, where Deff is the effective diffusion constant
for run-and-tumble particles in one dimension.

Interestingly, we demonstrated that the boundary con-
ditions also play a crucial role in determining the dy-
namic behavior of current fluctuations. The setup with
two open boundaries displays larger fluctuations by a
factor of 2 at short times compared to the setup with
only one open boundary. However, the former setup ex-
hibits lesser fluctuations by the same factor of 2 at large
times. This can be qualitatively understood as follows:
At short times, the particles in the setup with two open
boundaries have two escape routes, thereby increasing
the fluctuations by a factor of 2. However, at large times,
the fluctuations are predominantly determined by single-
particle events, and the probability that an unbiased sin-
gle particle escapes through one of the boundaries is 1/2.
Consequently, this reduces the fluctuations by a factor of
2.

Our exact analytical results reveal how slight varia-
tions in the initial conditions and system geometry can
affect the dynamic behavior of current fluctuations in
stochastic systems. Our study is a first step towards un-
derstanding the effusion of particles through finite-sized
regions across different spatial dimensions, which can be
investigated using similar methods discussed in this pa-
per. The study of particle effusion has applications in
designing membranes and porous materials, where con-
trolled diffusion or leakage plays a pivotal role, as well as
in the transportation of ions or molecules across cellular
membranes [34–36]. Naturally, a careful analytical anal-
ysis of the problem of effusion through different confining
volumes in higher dimensions will help to understand the
underlying factors governing current fluctuations.

It would be intriguing to investigate whether a univer-
sal behavior of current fluctuations exists, one that de-
pends on the system’s geometry, determined by factors
such as the number of reflecting boundaries and avail-
able escape routes. Testing the results of this paper using
coarse-grained field theories such as macroscopic fluctu-
ation theory (MFT) [37–43] is also a worthwhile future
investigation. Finally, it would also be interesting to ex-
tend the computations presented in this paper to inter-
acting systems such as the symmetric simple exclusion
process (SSEP) [3, 44–47] and the ABC model [48, 49].
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APPENDICES

Appendix A: Current fluctuations for Brownian
particles confined in a finite interval - quenched

setting

For a Brownian particle confined in a finite interval,
the function U(xi, t) can be computed as in Eq. (37). In
Laplace space, this expression becomes

Ũ(xi, s) =
e−

√
s
D (L+xi)

(
1 + e

√
s
D (L+2xi)

)
2s

. (A1)

The variance in the quenched setting can be computed by
taking a Laplace transform of the expression in Eq. (21).
This yields

σ̃qu(L, s)
2 = µ̃qu(L, s)− ρ

∫ L

0

dz L(s)[U2(z, t)]. (A2)

The expression for µ̃diff
qu (L, s) for Brownian motion can

be computed as

µ̃diff
qu (L, s) = ρ

∫ L

0

Ũ(z, s)dz = ρ
(
1− e−L

√
s
D

)√D

s3
.

(A3)
The integral in the second term of Eq. (A2) can be com-
puted using the identity

∫ L

0

dz L(s)[U2(z, t)]

=
1

2π

∫ ∞

−∞
dk

∫ L

0

dz Ũ(z, s/2− ik)Ũ(z, s/2 + ik).

(A4)
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We provide a short derivation of this identity below.∫ L

0

dz L(s)[U2(z, t)]

=

∫ L

0

dz

∫ ∞

0

dte−st/2U(z, t)×∫ ∞

0

dt′δ(t− t′)e−st′/2U(z, t′)

=

∫ L

0

dz

∫ ∞

0

dte−st/2U(z, t)×∫ ∞

0

dt′
(

1

2π

∫ ∞

−∞
dkeik(t−t′)

)
e−st′/2U(z, t′)

=
1

2π

∫ ∞

−∞
dk

∫ L

0

dz

∫ ∞

0

dte−st/2eiktU(z, t)×∫ ∞

0

dt′e−st′/2e−ikt′U(z, t′)

=
1

2π

∫ ∞

−∞
dk

∫ L

0

dz Ũ(z, s/2− ik)Ũ(z, s/2 + ik).

(A5)

The integral over z in Eq. (A4) can be done explicitly.
Since the resultant expression is quite long, we do not
quote it here. However, this expression admits scaling
forms in the limits, s −→ 0 and s −→ ∞. Let us denote

F̃ (k, s) =

∫ L

0

dz Ũ(z, s/2− ik)Ũ(z, s/2 + ik). (A6)

Using the substitution u = k/s, we obtain the following

scaling forms for the function F̃ (k, s),

F̃ (k, s) −−−→
s→0

C1(s)G1(u), (A7)

F̃ (k, s) −−−→
s→∞

C2(s)G2(u), (A8)

where

C1(s) =
L

s2
− L2

√
Ds3/2

, (A9)

and

C2(s) =

√
D

s5/2
. (A10)

The expression in Eq. (A4) can now be written as∫ L

0

dz L(s)[U2(z, t)] =
1

2π

∫ ∞

−∞
dk F̃ (k, s)

−−−→
s→0

s C1(s)

2π

∫ ∞

−∞
du G1(u).

−−−→
s→∞

s C2(s)

2π

∫ ∞

−∞
du G2(u).

(A11)

It can be shown that the values of the integrals∫∞
−∞ du G1(u) and

∫∞
−∞ du G2(u) appearing in the above

expressions are exactly equal to 2π and π(2−
√
2) respec-

tively. Finally, we obtain∫ L

0

dz L(s)[U2(z, t)] −−−→
s→0

s C1(s)

=
L

s
− L2

√
sD

, (A12)

and ∫ L

0

dz L(s)[U2(z, t)] −−−→
s→0

s

√
2− 1

2
C2(s)

=
2−

√
2

2

√
D

s3/2
. (A13)

Using Eq. (A3), it can also be shown that

µ̃diff
qu (L, s) −−−→

s→0
ρ

(
L

s
− L2

2
√
sD

)
, (A14)

µ̃diff
qu (L, s) −−−→

s→∞

ρ
√
D

s3/2
. (A15)

Combining results from Eq. (A12)-(A14) in Eq. (A2), we
obtain

σ̃diff
qu (L, s)2 −−−→

s→0
ρ

(
L

s
− L2

2
√
sD

)
− ρ

(
L

s
− L2

√
sD

)
=

ρL2

2
√
sD

, (A16)

and

σ̃diff
qu (L, s)2 −−−→

s→∞
ρ

√
D

s3/2
− ρ

2−
√
2

2

√
D

s3/2

=
ρ
√
D√

2s3/2
, (A17)

which on inversion yield

σdiff
qu (L, t)2 −−−→

t→∞

ρL2

2
√
πDt

, (A18)

and

σdiff
qu (L, t)2 −−−→

t→0

√
2
ρ
√
Dt√
π

. (A19)

The expression in Eq. (A18) is exactly equal to the large
time asymptotic expression for the variance in the an-
nealed setting we obtained previously in Eq. (40).
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Appendix B: Current fluctuations for run and
tumble particles confined in a finite interval -

quenched setting

For a run-and-tumble particle confined in a finite inter-

val, the function Ũ(xi, s) can be computed as in Eq. (60).
Similar to the case for Brownian motion, the variance in
the quenched setting can be computed using the expres-
sion in Eq. (A2). The exact expression for the mean
in Laplace space µ̃rtp

qu (L, s), is given in Eq. (61). As for
the Brownian case, the integral in the second term in
Eq. (A2) can be computed using the identity given in
Eq. (A4). After performing the integral over z, we obtain
scaling forms of the resultant expression in the asymp-
totic limits, s −→ 0 and s −→ ∞. Using the substitution
u = k/s, we obtain the following scaling forms for the

function F̃ (k, s) defined in Eq. (A6),

F̃ (k, s) −−−→
s→0

C1(s)G1(u), (B1)

F̃ (k, s) −−−→
s→∞

C2(s)G2(u), (B2)

where

C1(s) =
L

s2
− L2

√
Deffs3/2

, (B3)

and

C2(s) =
v

s3
. (B4)

Thus we obtain∫ L

0

dz L(s)[U2(z, t)] =
1

2π

∫ ∞

−∞
dk F̃ (k, s)

−−−→
s→0

s C1(s)

2π

∫ ∞

−∞
du G1(u).

−−−→
s→∞

s C2(s)

2π

∫ ∞

−∞
du G2(u).

(B5)

It can be shown that the values of the integrals∫∞
−∞ du G1(u) and

∫∞
−∞ du G2(u) appearing in the above

expressions are exactly equal to 2π and π respectively.
Finally, we obtain∫ L

0

dz L(s)[U2(z, t)] −−−→
s→0

s C1(s)

=
L

s
− L2

√
sDeff

, (B6)

and ∫ L

0

dz L(s)[U2(z, t)] −−−→
s→∞

s

4
C2(s)

=
v

2s2
. (B7)

Using Eq. (61), it can also be shown that

µ̃rtp
qu (L, s) −−−→

s→0
ρ

(
L

s
− L2

2
√
sDeff

)
, (B8)

µ̃rtp
qu (L, s) −−−→

s→∞

ρv

s2
. (B9)

Combining results from Eq. (B6)-(B8) in Eq. (A2), we
obtain

σ̃rtp
qu (L, s)2 −−−→

s→0
ρ

(
L

s
− L2

2
√
sDeff

)
− ρ

(
L

s
− L2

√
sDeff

)
=

ρL2

2
√
sDeff

, (B10)

and

σ̃rtp
qu (L, s)2 −−−→

s→∞
ρ
v

s2
− ρ

v

2s2

=
ρv

2s2
, (B11)

which on inversion yield

σrtp
qu (L, t)2 −−−→

t→∞

ρL2

2
√
πDefft

, (B12)

and

σrtp
qu (L, t)2 −−−→

t→0

ρvt

2
. (B13)

The expression in Eq. (B12) is exactly equal to the large
time asymptotic expression for the variance in the an-
nealed setting we obtained previously in Eq. (63).
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