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Abstract

Let A be a nonempty set of positive integers. The restricted partition function p4(n)
denotes the number of partitions of n with parts in A. When the elements in A are
pairwise relatively prime positive integers, Ehrhart, Sertoz-Ozliik, and Brown-Chou-Shiue
derived three reduction formulas for p4(n) for A with three parameters. We extend their
findings for general A using the Bernoulli-Barnes polynomials.
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1 Introduction

Let A = {aq,as, ..., a;} be a set of positive integers with k£ > 1. Furthermore, let p4(n) denote

the number of nonnegative integer solutions to the equation

a1r1 + aexo + - - + QT = N.

The pa(n) is called the restricted partition function of the set A. Some scholars also refer to

it as Sylvester’s denumerant [14] when ged(A) = 1.

Sylvester [14] and Bell [4] proved that pa(n) is a quasi-polynomial of degree k — 1, and
the period is a common multiple of aj,as,...,a;. Beck, Gessel, and Komatsu [3] found an
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expression for the polynomial part of ps(n). Nathanson [I1] gave an asymptotic formula of
pa(n). Cimpoeas [6] proved that the pa(n) can be reduced to solving a linear congruence
formula. Some relevant references can be found in [I], 2] 10, [16].

For k = 2, Sertoz [12] and Tripathi [I5] independently obtained an explicit formula for
pa(n). For k = 3, Ehrhart [7, 8] and Sert6z and Ogzlitk [I3] gave recursive formulae for p(n).
In this paper, we first extend the results of Ehrhart [7, [§] (the case k = 2,3 in Theorem 1.1))
as follows.

Theorem 1.1. Let A = {aj,as,...,ax}, where aj,as,...,ax are pairwise relatively prime
positive integers. Let n = q - ajas---ap +1r with 0 < r < ajas---ax. Then

k—2 (

pa(n) = pa(r) + (1) (n—r) )

=0

r—n)
G+ D)k—i—2)

Bi_i—o(—1;a1, a9, ..., ak),

where B;(x; a1, as, . .., ax) is the Bernoulli-Barnes polynomials (defined by Equation (2)).

Secondly, we generalize the results of Sertoz and Ozliik [I3] (the case k = 3 in Theorem
as follows.

Theorem 1.2. Let A = {ay,as,...,ax}, where aj,as,...,ax are pairwise relatively prime
positive integers. Let 1 < x < ay+as+---+a, —1. Then

k—2

a1a - a i
pA(a1a2...ak_$) = (—1) ajag -+ Z Z+11 2 5)2)'Bki2(x;a1,a2,...,ak).
=0 ’

Thirdly, we extend the results of Brown, Chou, and Shiue [5] (the case & = 3 and = =
a; + as + ag (and z = a; + ay + az + 1) in Theorem as follows.

Theorem 1.3. Let A = {ay,as,...,ax}, where aj,as, ..., ap are pairwise relatively prime
positive integers. Let ay + as + -+ ap < v < ajas---ag. Then

pA(a1a2 ceeap — :c) + (—1)kpA(x —ay—ag — - — ak)
k—2

_a a/ --.a/ 1/
= (—=D*(ayay - - - ap,) ; i :_ 1;!(2 — i)Q)!BkiZ(x; ai, @z, ..., ax).

This paper is organized as follows. In Section 2, we introduce some necessary notations
and provide the proof of Theorem . In Section 3, we give a recursive formula for p4(n) —
pa(r), where 0 < r < ajas---ag. Sections 4 and 5 give the proofs of Theorems and ,
respectively. Throughout this paper, C, N, and PP denote the set of all complex numbers, all
nonnegative integers, and all positive integers, respectively.

2 The Proof of Theorem [1.1]

Before obtaining the main results of this section, we need to introduce some definitions and
conclusions. Let f(A) be a rational function in C((\)). The CT,f(\) denotes the constant
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term of the Laurent series expansion of f(\) at A = 0. The Resy—),f(\) denotes the residue
of f(A\) when expanded as a Laurent series at A = \g. More precisely, we have

F:eﬁ Z ci(A—=Xo)' = c_1.

i>io
For the denumerant p4(n) with A = {ay, aq, ..., ax}, we have

)\*TL
= T )\Ila1+$202+"-+zkak7n —COT . .
pA(”) ;:OC)\ C)\ (1_)\a1>(1_)\a2)”,(1_)\ak> ( )

Lemma 2.1 ([9]). Let ¢ be a complex number. Suppose g(s) is holomorphic in a neighborhood
of s = ¢ and suppose f(\) is meromorphic in a neighborhood of A = g(c). If ¢'(c) # 0, then

s f(A) = Res f(g(s))g'(s)-

Lemma 2.2. Let ry,r9,..., 7 €EPand b<ri+ro+---+1r, — 1. Suppose

Zb_l

= ere—ar e

Then
Res flz Z Res f(z

2=§;

Proof. A well-known result in residue computation asserts that
k
Res f(2) + Res f(2) + 25’;@51‘(2) =

The lemma then follows by showing that Res f(z) = 0. Direct computation gives

Res /(2) = Res f(=) - (=)
_Z—b—l _ZTH""‘H“k—b—l

e 2 Y Py g e Y

= Res

. . _pr1te At —b—1 . . .
Since b < ry+--- 41, — 1, the expansion of 26712, 1S @ power series in 2. Therefore,

its residue at z = 0 is 0. This completes the proof. O]

For ay,as,...,ar € P, the Bernoulli-Barnes polynomials B;(x;aq,as, ..., a;) are polyno-
mials in x defined by

i

ZB Tr;ay1,a9,..., ak)s— (2)

7!
>0

Skezs

(ems — 1)(e®2% —1)--- (e™s — 1)




Proof of Theorem[I.1. By Equation (]), we have

AT AT
(1 _ )\al)(l _ )\a2> ... (1 _ /\ak) - C/\T (1 _ /\a1)(1 _ )\a2) .. (1 — )\ak)
B /\fr(/\fqalag---ak _ 1)
o C)\T (1 _ )\al)(l _ )\a2> R (1 _ /\ak).

pa(n) —pa(r) = C}\T

For convenience, let

/\frfl(/\fqalazn-ak . 1)
(1= xa)(1 = Ae2) - (1 — Aaw)

F(A) =
Then
pa(n) = pa(r) = CTAF(\) = Res F(\) = = 3 _Res F(A),  (By Lemma23)
where ¢ ranges over all nonzero poles of F/(A). We claim that Resy_¢F'(\) = 0 unless £ = 1.

Since aq,as, ..., a are pairwise relatively prime positive integers, each £ # 1 appears exactly
once in the denominator, but the numerator also vanishes at these £’s. Therefore, we obtain

pa(n) —pa(r) = — l/\%gls F(A) = —Res F(e)e  (By Lemma[2.1])

s=0
= —CT F(e®)e’s (3)
_ CT e—rs(e—qa1a2~~~aks _ 1)5
s (1 _ eals)(l _ €a23> .. (1 _ eflks)
1 —qaiaz---agpsS __ 1 k,—rs
— (—1)*qmaz -+ ax CT -1 . € -kse
s SFT —qaias - - - agS Hl 1(ea¢s — 1)
— J
— (—1)k k=2 (Zq010 - Bi(—r; =
( ) qaias CLk[S ]; (l+1 Z —r;ay, as, ’ak)j!
7>0
2 (r —mn)
TL—T' ; _2_2) Bk,i,Q(—T;al,ag,...,ak).
This completes the proof. [

Corollary 2.3 ([T, B]). Following the notation in Theorem[1.1 If A= {a1,as}, then

n—r

pa(n) =pa(r) + .

If A={ai,as,a3}, then

gin+r+a; +ax+az)
5 .

pa(n) =pa(r) +

Proof. By

2_,—rs 1

se +ofs)
= o(s
(ems —1)(e®* — 1)  ajay
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and

s3e™ s 1 2r+a; +as + as 9
= - s+ o(s?),
(ems — 1)(e®2s — 1)(e®s — 1)  ajazas 2a1a00a3
the corollary follows from Theorem [I.1] O

Corollary 2.4. Following the notation in Theorem . If A={a1,a9,a3,a4}, then

pa(n) =pa(r) + %(3(71 +7r)(ay + ag + az + ag) + 2(n 4+ 1)? — 2nr + (a1 + ag + as + ay)?

+ ajas + ajasz + ajay + asasz + asay + Cl3(l4>.

If A={ai1,as,a3,a4,as}, then

pa(n) =pa(r) + i ((n +7)(n? + %) + (2n® + 2nr + 2r2)<§:ai> + (n+ r)(z_: a?)

5
+Z“?<Zaa >+3n—|—r) Z a;a; + 3 Z %ﬁéﬂ%)

i=1 j=1 1<i<j<5 1<i<j<5

The proof of Corollary [2.4] is analogous to that of Corollary [2.3] and is left to the reader.

3 A Recursive Formula for p4(n) — pa(r)

Readers familiar with symmetric functions may find that the formulas in Corollary are
related to the power sum symmetric function. This does not occur occasionally. We will
describe this connection in general. We will also give a recursive formula for ps(n) — pa(r)
when n — r = qa; - - - a, as in Section 2.

We need the following definitions. The m-th power sum symmetric function is

Pm I17$2,... E ZL‘

1>1

We only use the symmetric functions on a finite number of variables, say x1,...,x;. One can
treat x; = 0 for i > k. We have p,,(x1, 29, ..., x1) = Zle x™. The Bernoulli numbers B; are
defined by

i —1—85—}—28— l—ls—kis 2 L st +

es—1 R~ 277127 720

Then

In :—Z :——s—i2+—1 st

—1 i’ 24 2880



By the proof of Theorem we have
k

1 e qaia2 aks_l a;S
- — (-1)FqCT —— - e : Z
pa(n) —pa(r) = (=1 s k=2 ‘ —qaiag - - - ags H '

e — 1’
=1

We consider the following formula. The technique for taking logarithms below comes from

7.

k
e_qala2'“aks — 1 a;S
h — 1 -rs . . (2
(s)=1n (e —qaias - - - aps H e%is — 1)

i=1
qa,a aps\ k a;S
_ —qaiag - - - Qg i
= —rs+In (eqalaQ'“akS — 1) + ;ln e
R D R S
i>1 j21
=—rs+ Z ﬂ((r —n)" —pi(ar,as,. .., a))s".
gl - q
>1
Then
1 — S
pa(n) = pa(r) = (=1)*q CT = - ") = (=1)"q[s" )",

Let f(s) = eM®) = > iz fis'. By
f’(s) — h(e) . h’(s) = f(s)- h'(5)7

we have ' .
Sifis = ST (ish) - S (Hs),
i>0 i>0 i>0

that is

fO Z fz -7 J 1 Z > 1)

Therefore, we have
pa(n) —pa(r) = (=1)fq - fr_o.
We summarize the above discussion as follows.

Theorem 3.1. Let A = {aj,as,...,ax}, where aj,as, ..., ax are pairwise relatively prime
positive integers. Let n = q - a1a2 ceeap +r with 0 <r < ajas---ag. Suppose

(r —n)" —pilay,ag, ..., a;))s",  H(s) :Zh;si.

i>1 ! i>0

Then
pa(n) =pa(r) + (=1)*q - fi s,
where f; can be recursively obtained by

fo=1, Zfzjjl’ (i>1).



4 The Proof of Theorem 1.2

Proof of Theorem[1.3. By Equation (), we have

Afalag---akJr:E

palman - =) = Ol ey (1 )

The rational function \e

(1= Ao )(1 =A%) (1 — %)
is a proper rational function since 1 < x < aj;+as+---+ ax — 1. Obviously, its constant term
is 0. We have

)\—a1a2~--ak+x — )\ )\CU()\_GIGQ"'ak _ 1)
oo —_ = CT = CT .
palaras - -ap — ) AT A ) (1= hem) - (L — o) N (T — @) (1 — Aez)- .- (1 — \ew)

The remainder of the argument is analogous to that in Theorem[I.I]and is left to the reader. O

Similar to Corollaries [2.3] and [2.4] we can obtain the following three corollaries. We omit
the proofs.

Corollary 4.1 ([12]). Let A ={ay,as} with ged(A) =1. Let 1 <z < ay+ay— 1. Then
palaras — ) = 1.

Corollary 4.2 ([13]). Let A = {ay,as,as}, where ay,ay, a3 are pairwise relatively prime posi-
tive integers. Let 1 < x < aj; +as +az— 1. Then

a1a903 + a1 + a9 + as
palarazas — x) = 5 —x

Corollary 4.3. Following the notation in Theorem|[1.9 If A = {a1,as,a3,as}, then

1

palarasazay — ) = D (3(n —x)(a1 + ay +asz + ag) +2(n — 2)? 4+ 2nx + (a1 + ay + as + ay)?

+ ai1as + aias + a1Qy4 + o203 + Aoy + (136L4),

where n = ajasa3a4 — T.
If A={ay,as,a3,a4,a5}, then

5 5

— 1 2 2 2 9 )
palaraza3asa5 — ) = ﬂ((n —xz)(n°+2%) + (2n° — 2nzx + 2x )(;w) +(n— x)(;a,)
5 5 a1a2a3a40
—G-Za?(Zaj—ai)—i-?)(n—x) Z a;a; + 3 Z M)’
=1 =1 1<i<j<5 1<icg<s %

where n = a1a2a3Q405 — X.



5 The Proof of Theorem 1.3

Proof of Theorem[I.3. By Equation (), we have

)\—a1a2~~-ak+z

pA(a1a2 s — ZL’) = C/\T (1 _ )\a1)<1 — )\02) e (1 — )\ak).

Since a1 +as + -+ ar < x < ajas---ag, we have

T anaz ;w) e
We have
—arararte _ o o(\—arazak _
palaaz---ay =) = Gl 7= ch)u ) -?1 BTl Oy T Aiﬁ ey (11)— )’
Let . )\m—l(}\—alag---ak _ 1)
() = (T—Aw)(1 = Ao2) - (1 =A%)’
Then
palaias -+ ap —x) = C/\T AG(A) = l/\%:eg, G\ =— I/\{:egs G(\) — )l\{:%% G(N),

where £ ranges over all nonzero poles of G(\). Similar to the proof of Theorem , we have
palaiag---ap —x) = — 1}_618 G(\) — F_es G(N).

By ai+as+ -+ a, <z < ajas---ag, we obtain

)\x—l—alagv--ak
pu— . 4
T =) (=) @

The proof of Equation is similar to Lemma . Let
_)\xfl

A) = :
A T U RS R Ty
Then
-1
s s -1
palaras---ap —x) = —l/\{:elsG(/\) - }{:%EGl(/\) = _ljf()SG(e ) e’ — 1/\%5056?1()\ ) - vl
1
=—-CTG(e) e s+ C}\T Gi(Ah) - X
(_1)k+1)\a1+a2+-~-+akfx
=—-CTG(e) - e - T
] G(e’) -e 3+C/\ =) (1= xe) (1= )
=—CTG(e*) e s+ (—D)"pa(z —ay —ay — - — ag).
The remainder of the argument is analogous to Equation and is left to the reader. O]
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Corollary 5.1. Let A = {aj,as,a3}, where ay,as, a3 are pairwise relatively prime positive
integers. Let a; + as + ag < x < ajagaz. Then
ajasas + a; + as + as

When x = a; + as + a3 (and = = a; + az + a3z + 1) in Corollary , we obtain the results
of Brown, Chou, and Shiue [5] as follows:

aiasa3 — a; — Az — as
2

pA(a1&2a3 —ap — Gz — @3) = + 1,

and
A10903 — A1 — Gy — @
Palarasas — ay —a — ay — 1) = pa(1) + DEBZUZ@ Dy

Note: pa(1) =0 when ay, as, ag > 2.
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