Three Simple Reduction Formulas for the Denumerant Functions

Feihu Liu ${ }^{1}$, Guoce Xin ${ }^{2, *}$, and Chen Zhang ${ }^{3}$
${ }^{1,2,3}$ School of Mathematical Sciences, Capital Normal University, Beijing, 100048, P.R. China
${ }^{1}$ Email address: liufeihu7476@163.com
${ }^{2}$ Email address: guoce_xin@163.com
${ }^{3}$ Email address: ch_enz@163.com

April 22, 2024

Abstract

Let A be a nonempty set of positive integers. The restricted partition function $p_{A}(n)$ denotes the number of partitions of n with parts in A. When the elements in A are pairwise relatively prime positive integers, Ehrhart, Sertöz-Özlük, and Brown-Chou-Shiue derived three reduction formulas for $p_{A}(n)$ for A with three parameters. We extend their findings for general A using the Bernoulli-Barnes polynomials.

Mathematic subject classification: Primary 05A17; Secondary 05A15, 11P81.
Keywords: Denumerant; Restricted partition function; Bernoulli-Barnes polynomial.

1 Introduction

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a set of positive integers with $k \geq 1$. Furthermore, let $p_{A}(n)$ denote the number of nonnegative integer solutions to the equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n .
$$

The $p_{A}(n)$ is called the restricted partition function of the set A. Some scholars also refer to it as Sylvester's denumerant [14] when $\operatorname{gcd}(A)=1$.

Sylvester [14] and Bell [4] proved that $p_{A}(n)$ is a quasi-polynomial of degree $k-1$, and the period is a common multiple of $a_{1}, a_{2}, \ldots, a_{k}$. Beck, Gessel, and Komatsu [3] found an

[^0]expression for the polynomial part of $p_{A}(n)$. Nathanson [11] gave an asymptotic formula of $p_{A}(n)$. Cimpoeas [6] proved that the $p_{A}(n)$ can be reduced to solving a linear congruence formula. Some relevant references can be found in [1, 2, 10, 16].

For $k=2$, Sertöz [12] and Tripathi [15] independently obtained an explicit formula for $p_{A}(n)$. For $k=3$, Ehrhart [7, 8] and Sertöz and Özlük [13] gave recursive formulae for $p_{A}(n)$. In this paper, we first extend the results of Ehrhart [7, 8] (the case $k=2,3$ in Theorem 1.1) as follows.

Theorem 1.1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{1}, a_{2}, \ldots, a_{k}$ are pairwise relatively prime positive integers. Let $n=q \cdot a_{1} a_{2} \cdots a_{k}+r$ with $0 \leq r<a_{1} a_{2} \cdots a_{k}$. Then

$$
p_{A}(n)=p_{A}(r)+(-1)^{k}(n-r) \sum_{i=0}^{k-2} \frac{(r-n)^{i}}{(i+1)!(k-i-2)!} \mathcal{B}_{k-i-2}\left(-r ; a_{1}, a_{2}, \ldots, a_{k}\right),
$$

where $\mathcal{B}_{i}\left(x ; a_{1}, a_{2}, \ldots, a_{k}\right)$ is the Bernoulli-Barnes polynomials (defined by Equation (2)).
Secondly, we generalize the results of Sertöz and Özlük [13] (the case $k=3$ in Theorem 1.2) as follows.

Theorem 1.2. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{1}, a_{2}, \ldots, a_{k}$ are pairwise relatively prime positive integers. Let $1 \leq x \leq a_{1}+a_{2}+\cdots+a_{k}-1$. Then

$$
p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=(-1)^{k}\left(a_{1} a_{2} \cdots a_{k}\right) \sum_{i=0}^{k-2} \frac{\left(-a_{1} a_{2} \cdots a_{k}\right)^{i}}{(i+1)!(k-i-2)!} \mathcal{B}_{k-i-2}\left(x ; a_{1}, a_{2}, \ldots, a_{k}\right) .
$$

Thirdly, we extend the results of Brown, Chou, and Shiue [5] (the case $k=3$ and $x=$ $a_{1}+a_{2}+a_{3}\left(\right.$ and $\left.x=a_{1}+a_{2}+a_{3}+1\right)$ in Theorem 1.3) as follows.

Theorem 1.3. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{1}, a_{2}, \ldots, a_{k}$ are pairwise relatively prime positive integers. Let $a_{1}+a_{2}+\cdots+a_{k} \leq x \leq a_{1} a_{2} \cdots a_{k}$. Then

$$
\begin{aligned}
p_{A}\left(a_{1} a_{2} \cdots a_{k}\right. & -x)+(-1)^{k} p_{A}\left(x-a_{1}-a_{2}-\cdots-a_{k}\right) \\
& =(-1)^{k}\left(a_{1} a_{2} \cdots a_{k}\right) \sum_{i=0}^{k-2} \frac{\left(-a_{1} a_{2} \cdots a_{k}\right)^{i}}{(i+1)!(k-i-2)!} \mathcal{B}_{k-i-2}\left(x ; a_{1}, a_{2}, \ldots, a_{k}\right) .
\end{aligned}
$$

This paper is organized as follows. In Section 2, we introduce some necessary notations and provide the proof of Theorem 1.1. In Section 3, we give a recursive formula for $p_{A}(n)-$ $p_{A}(r)$, where $0 \leq r<a_{1} a_{2} \cdots a_{k}$. Sections 4 and 5 give the proofs of Theorems 1.2 and 1.3 , respectively. Throughout this paper, \mathbb{C}, \mathbb{N}, and \mathbb{P} denote the set of all complex numbers, all nonnegative integers, and all positive integers, respectively.

2 The Proof of Theorem 1.1

Before obtaining the main results of this section, we need to introduce some definitions and conclusions. Let $f(\lambda)$ be a rational function in $\mathbb{C}((\lambda))$. The $\mathrm{CT}_{\lambda} f(\lambda)$ denotes the constant
term of the Laurent series expansion of $f(\lambda)$ at $\lambda=0$. The $\operatorname{Res}_{\lambda=\lambda_{0}} f(\lambda)$ denotes the residue of $f(\lambda)$ when expanded as a Laurent series at $\lambda=\lambda_{0}$. More precisely, we have

$$
\operatorname{Res}_{\lambda=\lambda_{0}} \sum_{i \geq i_{0}} c_{i}\left(\lambda-\lambda_{0}\right)^{i}=c_{-1} .
$$

For the denumerant $p_{A}(n)$ with $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, we have

$$
\begin{equation*}
p_{A}(n)=\sum_{x_{i} \geq 0} \mathrm{CT}_{\lambda} \lambda^{x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{k} a_{k}-n}=\mathrm{CT}_{\lambda} \frac{\lambda^{-n}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} . \tag{1}
\end{equation*}
$$

Lemma 2.1 ([9]). Let c be a complex number. Suppose $g(s)$ is holomorphic in a neighborhood of $s=c$ and suppose $f(\lambda)$ is meromorphic in a neighborhood of $\lambda=g(c)$. If $g^{\prime}(c) \neq 0$, then

$$
\underset{\lambda=g(c)}{\operatorname{Res} f(\lambda)=\operatorname{Res}_{s=c} f(g(s)) g^{\prime}(s) . . . ~ . ~}
$$

Lemma 2.2. Let $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{P}$ and $b \leq r_{1}+r_{2}+\cdots+r_{k}-1$. Suppose

$$
f(z)=\frac{z^{b-1}}{\left(z-\xi_{1}\right)^{r_{1}}\left(z-\xi_{2}\right)^{r_{2}} \cdots\left(z-\xi_{k}\right)^{r_{k}}} .
$$

Then

$$
\operatorname{Res}_{z=0} f(z)=-\sum_{i=1}^{k} \operatorname{Res}_{z=\xi_{i}} f(z) .
$$

Proof. A well-known result in residue computation asserts that

$$
\operatorname{Res}_{z=\infty} f(z)+\operatorname{Res}_{z=0} f(z)+\sum_{i=1}^{k} \operatorname{Res}_{z=\xi_{i}} f(z)=0 .
$$

The lemma then follows by showing that $\underset{z=\infty}{\operatorname{Res}} f(z)=0$. Direct computation gives

$$
\begin{aligned}
\operatorname{Res}_{z=\infty} f(z) & =\operatorname{Res}_{z=0} f\left(z^{-1}\right) \cdot\left(-z^{-2}\right) \\
& =\operatorname{Res}_{z=0} \frac{-z^{-b-1}}{\left(z^{-1}-\xi_{1}\right)^{r_{1}} \cdots\left(z^{-1}-\xi_{k}\right)^{r_{k}}}=\operatorname{Res}_{z=0} \frac{-z^{r_{1}+\cdots+r_{k}-b-1}}{\left(1-z \xi_{1}\right)^{r_{1}} \cdots\left(1-z \xi_{k}\right)^{r_{k}}} .
\end{aligned}
$$

Since $b \leq r_{1}+\cdots+r_{k}-1$, the expansion of $\frac{-z^{r_{1}+\cdots+r_{k}-b-1}}{\left(1-z \xi_{1}\right)^{r_{1}}{ }^{\cdots\left(1-z \xi_{k}\right)^{r} k}}$ is a power series in z. Therefore, its residue at $z=0$ is 0 . This completes the proof.

For $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{P}$, the Bernoulli-Barnes polynomials $\mathcal{B}_{i}\left(x ; a_{1}, a_{2}, \ldots, a_{k}\right)$ are polynomials in x defined by

$$
\begin{equation*}
\frac{s^{k} e^{x s}}{\left(e^{a_{1} s}-1\right)\left(e^{a_{2} s}-1\right) \cdots\left(e^{a_{k} s}-1\right)}=\sum_{i \geq 0} \mathcal{B}_{i}\left(x ; a_{1}, a_{2}, \ldots, a_{k}\right) \frac{s^{i}}{i!} . \tag{2}
\end{equation*}
$$

Proof of Theorem 1.1. By Equation (1), we have

$$
\begin{aligned}
p_{A}(n)-p_{A}(r) & =\mathrm{CT}_{\lambda} \frac{\lambda^{-n}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}-\mathrm{CT}_{\lambda} \frac{\lambda^{-r}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} \\
& =\mathrm{CT}_{\lambda} \frac{\lambda^{-r}\left(\lambda^{-q a_{1} a_{2} \cdots a_{k}}-1\right)}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} .
\end{aligned}
$$

For convenience, let

$$
F(\lambda)=\frac{\lambda^{-r-1}\left(\lambda^{-q a_{1} a_{2} \cdots a_{k}}-1\right)}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} .
$$

Then

$$
p_{A}(n)-p_{A}(r)=\underset{\lambda}{\operatorname{CT}} \lambda F(\lambda)=\operatorname{Res}_{\lambda=0}^{\operatorname{Res}} F(\lambda)=-\sum_{\xi} \operatorname{Res}_{\lambda=\xi}^{\operatorname{Res}} F(\lambda), \quad(\text { By Lemma 2.2, })
$$

where ξ ranges over all nonzero poles of $F(\lambda)$. We claim that $\operatorname{Res}_{\lambda=\xi} F(\lambda)=0$ unless $\xi=1$. Since $a_{1}, a_{2}, \ldots, a_{k}$ are pairwise relatively prime positive integers, each $\xi \neq 1$ appears exactly once in the denominator, but the numerator also vanishes at these ξ 's. Therefore, we obtain

$$
\begin{align*}
p_{A}(n)-p_{A}(r) & =-\operatorname{Res}_{\lambda=1} F(\lambda)=-\operatorname{Res}_{s=0} F\left(e^{s}\right) e^{s} \quad \text { (By Lemma 2.1.) } \\
& =-\operatorname{CT}_{s} F\left(e^{s}\right) e^{s} s \tag{3}\\
& =-\operatorname{CT}_{s} \frac{e^{-r s}\left(e^{-q a_{1} a_{2} \cdots a_{k} s}-1\right) s}{\left(1-e^{a_{1} s}\right)\left(1-e^{a_{2} s}\right) \cdots\left(1-e^{a_{k} s}\right)} \\
& =(-1)^{k} q a_{1} a_{2} \cdots a_{k} \operatorname{CT}_{s} \frac{1}{s^{k-2}} \cdot \frac{e^{-q a_{1} a_{2} \cdots a_{k} s}-1}{-q a_{1} a_{2} \cdots a_{k} s} \cdot \frac{s^{k} e^{-r s}}{\prod_{i=1}^{k}\left(e^{a_{i} s}-1\right)} \\
& =(-1)^{k} q a_{1} a_{2} \cdots a_{k}\left[s^{k-2}\right] \sum_{i \geq 0} \frac{\left(-q a_{1} a_{2} \cdots a_{k}\right)^{i}}{(i+1)!} s^{i} \cdot \sum_{j \geq 0} \mathcal{B}_{j}\left(-r ; a_{1}, a_{2}, \ldots, a_{k}\right) \frac{s^{j}}{j!} \\
& =(-1)^{k}(n-r) \sum_{i=0}^{k-2} \frac{(r-n)^{i}}{(i+1)!(k-i-2)!} \mathcal{B}_{k-i-2}\left(-r ; a_{1}, a_{2}, \ldots, a_{k}\right) .
\end{align*}
$$

This completes the proof.
Corollary 2.3 ([7, 8]). Following the notation in Theorem 1.1. If $A=\left\{a_{1}, a_{2}\right\}$, then

$$
p_{A}(n)=p_{A}(r)+\frac{n-r}{a_{1} a_{2}} .
$$

If $A=\left\{a_{1}, a_{2}, a_{3}\right\}$, then

$$
p_{A}(n)=p_{A}(r)+\frac{q\left(n+r+a_{1}+a_{2}+a_{3}\right)}{2}
$$

Proof. By

$$
\frac{s^{2} e^{-r s}}{\left(e^{a_{1} s}-1\right)\left(e^{a_{2} s}-1\right)}=\frac{1}{a_{1} a_{2}}+o(s)
$$

and

$$
\frac{s^{3} e^{-r s}}{\left(e^{a_{1} s}-1\right)\left(e^{a_{2} s}-1\right)\left(e^{a_{3} s}-1\right)}=\frac{1}{a_{1} a_{2} a_{3}}-\frac{2 r+a_{1}+a_{2}+a_{3}}{2 a_{1} a_{2} a_{3}} s+o\left(s^{2}\right),
$$

the corollary follows from Theorem 1.1.
Corollary 2.4. Following the notation in Theorem 1.1. If $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, then

$$
\begin{gathered}
p_{A}(n)=p_{A}(r)+\frac{q}{12}\left(3(n+r)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)+2(n+r)^{2}-2 n r+\left(a_{1}+a_{2}+a_{3}+a_{4}\right)^{2}\right. \\
\left.+a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right) .
\end{gathered}
$$

If $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$, then

$$
\begin{aligned}
p_{A}(n)= & p_{A}(r)+\frac{q}{24}\left((n+r)\left(n^{2}+r^{2}\right)+\left(2 n^{2}+2 n r+2 r^{2}\right)\left(\sum_{i=1}^{5} a_{i}\right)+(n+r)\left(\sum_{i=1}^{5} a_{i}^{2}\right)\right. \\
& \left.+\sum_{i=1}^{5} a_{i}^{2}\left(\sum_{j=1}^{5} a_{j}-a_{i}\right)+3(n+r) \sum_{1 \leq i<j \leq 5} a_{i} a_{j}+3 \sum_{1 \leq i<j \leq 5} \frac{a_{1} a_{2} a_{3} a_{4} a_{5}}{a_{i} a_{j}}\right) .
\end{aligned}
$$

The proof of Corollary 2.4 is analogous to that of Corollary 2.3 and is left to the reader.

$3 \quad$ A Recursive Formula for $p_{A}(n)-p_{A}(r)$

Readers familiar with symmetric functions may find that the formulas in Corollary 2.4 are related to the power sum symmetric function. This does not occur occasionally. We will describe this connection in general. We will also give a recursive formula for $p_{A}(n)-p_{A}(r)$ when $n-r=q a_{1} \cdots a_{k}$ as in Section 2.

We need the following definitions. The m-th power sum symmetric function is

$$
p_{m}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \geq 1} x_{i}^{m}
$$

We only use the symmetric functions on a finite number of variables, say x_{1}, \ldots, x_{k}. One can treat $x_{i}=0$ for $i>k$. We have $p_{m}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i}^{m}$. The Bernoulli numbers \mathcal{B}_{i} are defined by

$$
\frac{s}{e^{s}-1}=1-\mathcal{B}_{1} s+\sum_{i \geq 2} \mathcal{B}_{i} \frac{s^{i}}{i!}=1-\frac{1}{2} s+\frac{1}{12} s^{2}-\frac{1}{720} s^{4}+\cdots
$$

Then

$$
\ln \frac{s}{e^{s}-1}=-\sum_{i \geq 1} \frac{\mathcal{B}_{i}}{i!\cdot i} s^{i}=-\frac{1}{2} s-\frac{1}{24} s^{2}+\frac{1}{2880} s^{4}+\cdots
$$

By the proof of Theorem 1.1, we have

$$
p_{A}(n)-p_{A}(r)=(-1)^{k} q \mathrm{CT}_{s} \frac{1}{s^{k-2}} \cdot e^{-r s} \cdot \frac{e^{-q a_{1} a_{2} \cdots a_{k} s}-1}{-q a_{1} a_{2} \cdots a_{k} s} \cdot \prod_{i=1}^{k} \frac{a_{i} s}{e^{a_{i} s}-1}
$$

We consider the following formula. The technique for taking logarithms below comes from [17].

$$
\begin{aligned}
h(s) & =\ln \left(e^{-r s} \cdot \frac{e^{-q a_{1} a_{2} \cdots a_{k} s}-1}{-q a_{1} a_{2} \cdots a_{k} s} \cdot \prod_{i=1}^{k} \frac{a_{i} s}{e^{a_{i} s}-1}\right) \\
& =-r s+\ln \left(\frac{-q a_{1} a_{2} \cdots a_{k} s}{e^{-q a_{1} a_{2} \cdots a_{k} s}-1}\right)^{-1}+\sum_{i=1}^{k} \ln \frac{a_{i} s}{e^{a_{i} s}-1} \\
& =-r s+\sum_{i \geq 1} \frac{\mathcal{B}_{i}}{i!\cdot i}\left(-q a_{1} a_{2} \cdots a_{k}\right)^{i} s^{i}+\sum_{j \geq 1} \frac{-\mathcal{B}_{j} p_{j}\left(a_{1}, a_{2}, \ldots, a_{k}\right)}{j!\cdot j} s^{j} \\
& =-r s+\sum_{i \geq 1} \frac{\mathcal{B}_{i}}{i!\cdot i}\left((r-n)^{i}-p_{i}\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right) s^{i} .
\end{aligned}
$$

Then

$$
p_{A}(n)-p_{A}(r)=(-1)^{k} q \mathrm{CT}_{s} \frac{1}{s^{k-2}} \cdot e^{h(s)}=(-1)^{k} q\left[s^{k-2}\right] e^{h(s)} .
$$

Let $f(s)=e^{h(s)}=\sum_{i \geq 0} f_{i} s^{i}$. By

$$
f^{\prime}(s)=e^{h(s)} \cdot h^{\prime}(s)=f(s) \cdot h^{\prime}(s),
$$

we have

$$
\sum_{i \geq 0} i f_{i} s^{i-1}=\sum_{i \geq 0}\left(f_{i} s^{i}\right) \cdot \sum_{i \geq 0}\left(h_{i}^{\prime} s^{i}\right),
$$

that is

$$
f_{0}=1, \quad f_{i}=\frac{1}{i} \cdot \sum_{j=1}^{i} f_{i-j} h_{j-1}^{\prime}, \quad(i \geq 1)
$$

Therefore, we have

$$
p_{A}(n)-p_{A}(r)=(-1)^{k} q \cdot f_{k-2}
$$

We summarize the above discussion as follows.
Theorem 3.1. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{1}, a_{2}, \ldots, a_{k}$ are pairwise relatively prime positive integers. Let $n=q \cdot a_{1} a_{2} \cdots a_{k}+r$ with $0 \leq r<a_{1} a_{2} \cdots a_{k}$. Suppose

$$
h(s)=-r s+\sum_{i \geq 1} \frac{\mathcal{B}_{i}}{i!\cdot i}\left((r-n)^{i}-p_{i}\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right) s^{i}, \quad h^{\prime}(s)=\sum_{i \geq 0} h_{i}^{\prime} s^{i}
$$

Then

$$
p_{A}(n)=p_{A}(r)+(-1)^{k} q \cdot f_{k-2}
$$

where f_{i} can be recursively obtained by

$$
f_{0}=1, \quad f_{i}=\frac{1}{i} \cdot \sum_{j=1}^{i} f_{i-j} h_{j-1}^{\prime}, \quad(i \geq 1)
$$

4 The Proof of Theorem 1.2

Proof of Theorem 1.2. By Equation (1), we have

$$
p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=\mathrm{CT}_{\lambda} \frac{\lambda^{-a_{1} a_{2} \cdots a_{k}+x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} .
$$

The rational function

$$
\frac{\lambda^{x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}
$$

is a proper rational function since $1 \leq x \leq a_{1}+a_{2}+\cdots+a_{k}-1$. Obviously, its constant term is 0 . We have
$p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=\mathrm{CT}_{\lambda} \frac{\lambda^{-a_{1} a_{2} \cdots a_{k}+x}-\lambda^{x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}=\mathrm{CT}_{\lambda} \frac{\lambda^{x}\left(\lambda^{-a_{1} a_{2} \cdots a_{k}}-1\right)}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}$.
The remainder of the argument is analogous to that in Theorem 1.1 and is left to the reader.
Similar to Corollaries 2.3 and 2.4, we can obtain the following three corollaries. We omit the proofs.

Corollary 4.1 ([12]). Let $A=\left\{a_{1}, a_{2}\right\}$ with $\operatorname{gcd}(A)=1$. Let $1 \leq x \leq a_{1}+a_{2}-1$. Then

$$
p_{A}\left(a_{1} a_{2}-x\right)=1 .
$$

Corollary 4.2 ([13]). Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$, where a_{1}, a_{2}, a_{3} are pairwise relatively prime positive integers. Let $1 \leq x \leq a_{1}+a_{2}+a_{3}-1$. Then

$$
p_{A}\left(a_{1} a_{2} a_{3}-x\right)=\frac{a_{1} a_{2} a_{3}+a_{1}+a_{2}+a_{3}}{2}-x .
$$

Corollary 4.3. Following the notation in Theorem 1.2. If $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, then

$$
\begin{gathered}
p_{A}\left(a_{1} a_{2} a_{3} a_{4}-x\right)=\frac{1}{12}\left(3(n-x)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)+2(n-x)^{2}+2 n x+\left(a_{1}+a_{2}+a_{3}+a_{4}\right)^{2}\right. \\
\left.+a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right)
\end{gathered}
$$

where $n=a_{1} a_{2} a_{3} a_{4}-x$.

$$
\text { If } A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}, \text { then }
$$

$$
\begin{gathered}
p_{A}\left(a_{1} a_{2} a_{3} a_{4} a_{5}-x\right)=\frac{1}{24}\left((n-x)\left(n^{2}+x^{2}\right)+\left(2 n^{2}-2 n x+2 x^{2}\right)\left(\sum_{i=1}^{5} a_{i}\right)+(n-x)\left(\sum_{i=1}^{5} a_{i}^{2}\right)\right. \\
\left.+\sum_{i=1}^{5} a_{i}^{2}\left(\sum_{j=1}^{5} a_{j}-a_{i}\right)+3(n-x) \sum_{1 \leq i<j \leq 5} a_{i} a_{j}+3 \sum_{1 \leq i<j \leq 5} \frac{a_{1} a_{2} a_{3} a_{4} a_{5}}{a_{i} a_{j}}\right),
\end{gathered}
$$

where $n=a_{1} a_{2} a_{3} a_{4} a_{5}-x$.

5 The Proof of Theorem 1.3

Proof of Theorem 1.3. By Equation (1), we have

$$
p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=\mathrm{CT}_{\lambda} \frac{\lambda^{-a_{1} a_{2} \cdots a_{k}+x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} .
$$

Since $a_{1}+a_{2}+\cdots+a_{k} \leq x \leq a_{1} a_{2} \cdots a_{k}$, we have

$$
\mathrm{CT}_{\lambda} \frac{\lambda^{x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}=0 .
$$

We have
$p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=\mathrm{CT}_{\lambda} \frac{\lambda^{-a_{1} a_{2} \cdots a_{k}+x}-\lambda^{x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}=\mathrm{CT}_{\lambda} \frac{\lambda^{x}\left(\lambda^{-a_{1} a_{2} \cdots a_{k}}-1\right)}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}$.
Let

$$
G(\lambda)=\frac{\lambda^{x-1}\left(\lambda^{-a_{1} a_{2} \cdots a_{k}}-1\right)}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} .
$$

Then

$$
p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=\operatorname{CT}_{\lambda} \lambda G(\lambda)=\operatorname{Res}_{\lambda=0}^{\operatorname{Res}} G(\lambda)=-\sum_{\xi} \underset{\lambda=\xi}{\operatorname{Res}} G(\lambda)-\underset{\lambda=\infty}{\operatorname{Res}} G(\lambda),
$$

where ξ ranges over all nonzero poles of $G(\lambda)$. Similar to the proof of Theorem 1.1, we have

$$
p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right)=-\operatorname{Res}_{\lambda=1} G(\lambda)-\operatorname{Res}_{\lambda=\infty} G(\lambda)
$$

By $a_{1}+a_{2}+\cdots+a_{k} \leq x \leq a_{1} a_{2} \cdots a_{k}$, we obtain

$$
\begin{equation*}
\operatorname{Res}_{\lambda=\infty} \frac{\lambda^{x-1-a_{1} a_{2} \cdots a_{k}}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}=0 \tag{4}
\end{equation*}
$$

The proof of Equation (4) is similar to Lemma 2.2. Let

$$
G_{1}(\lambda)=\frac{-\lambda^{x-1}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)}
$$

Then

$$
\begin{aligned}
p_{A}\left(a_{1} a_{2} \cdots a_{k}-x\right) & =-\operatorname{Res}_{\lambda=1} G(\lambda)-\underset{\lambda=\infty}{\operatorname{Res}} G_{1}(\lambda)=-\operatorname{Res}_{s=0} G\left(e^{s}\right) \cdot e^{s}-\underset{\lambda=0}{\operatorname{Res}} G_{1}\left(\lambda^{-1}\right) \cdot \frac{-1}{\lambda^{2}} \\
& =-\operatorname{CT}_{s} G\left(e^{s}\right) \cdot e^{s} \cdot s+\operatorname{CT}_{\lambda} G_{1}\left(\lambda^{-1}\right) \cdot \frac{1}{\lambda} \\
& =-\operatorname{CT}_{s} G\left(e^{s}\right) \cdot e^{s} \cdot s+\operatorname{CT}_{\lambda} \frac{(-1)^{k+1} \lambda^{a_{1}+a_{2}+\cdots+a_{k}-x}}{\left(1-\lambda^{a_{1}}\right)\left(1-\lambda^{a_{2}}\right) \cdots\left(1-\lambda^{a_{k}}\right)} \\
& =-\operatorname{CT}_{s} G\left(e^{s}\right) \cdot e^{s} \cdot s+(-1)^{k+1} p_{A}\left(x-a_{1}-a_{2}-\cdots-a_{k}\right) .
\end{aligned}
$$

The remainder of the argument is analogous to Equation (3) and is left to the reader.

Corollary 5.1. Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$, where a_{1}, a_{2}, a_{3} are pairwise relatively prime positive integers. Let $a_{1}+a_{2}+a_{3} \leq x \leq a_{1} a_{2} a_{3}$. Then

$$
p_{A}\left(a_{1} a_{2} a_{3}-x\right)-p_{A}\left(x-a_{1}-a_{2}-a_{3}\right)=\frac{a_{1} a_{2} a_{3}+a_{1}+a_{2}+a_{3}}{2}-x .
$$

When $x=a_{1}+a_{2}+a_{3}$ (and $x=a_{1}+a_{2}+a_{3}+1$) in Corollary 5.1, we obtain the results of Brown, Chou, and Shiue [5] as follows:

$$
p_{A}\left(a_{1} a_{2} a_{3}-a_{1}-a_{2}-a_{3}\right)=\frac{a_{1} a_{2} a_{3}-a_{1}-a_{2}-a_{3}}{2}+1
$$

and

$$
p_{A}\left(a_{1} a_{2} a_{3}-a_{1}-a_{2}-a_{3}-1\right)=p_{A}(1)+\frac{a_{1} a_{2} a_{3}-a_{1}-a_{2}-a_{3}}{2}-1 .
$$

Note: $p_{A}(1)=0$ when $a_{1}, a_{2}, a_{3} \geq 2$.
Acknowledgements: This work is partially supported by the National Natural Science Foundation of China [12071311].

References

[1] F. Aguiló-Gost and P. A. García-Sánchez, Factoring in embedding dimension three numerical semigroups, Electron. J. Combin. 17 (2010), \#R138.
[2] A. Bayad and M. Beck, Relations for Bernoulli-Barnes numbers and Barnes zeta functions, Int. J. Number Theory. 10 (2014), 1321-1335.
[3] M. Beck, I. M. Gessel, and T. Komatsu, The polynomial part of a restricted partition related to the Frobenius problem, Electron. J. Combin. 8(1) (2001), \#7.
[4] E. T. Bell, Interpolated denumerants and Lambert series, Am. J. Math. 65 (1943), 382-386.
[5] T. C. Brown, W. S. Chou, and P. J. Shiue, On the partition function of a finite set, Australas. J. Combin. 27 (2003), 193-204.
[6] M. Cimpoeas and F. Nicolae, On the restricted partition function, Ramanujan J. 47 (2018), 565-588.
[7] E. Ehrhart, Sur un probléme de géométrie diophantienne linéaire. I. polyédreset réseaux, J. Reine Angew. Math. 226 (1965), 1-29.
[8] E. Ehrhart, Sur un probléme de géométrie diophantienne linéaire. II. systémes diophantiens linéaires, J. Reine Angew. Math. 227 (1966), 30-54.
[9] C. G. J. Jacobi, De resolutione aequationum per series infinitas, J. Reine Angew. Math. 6 (1830), 257-286.
[10] T. Komatsu, On the number of solutions of the Diophantine equation of Frobenius-general case, Math. Commun. 28 (2003), 195-206.
[11] M. B. Nathanson, Partition with parts in a finite set, Proc. Amer. Math. Soc. 128 (2000), 12691273.
[12] S. Sertöz, On the number of solutions of a diophantine equation of Frobenius, Discrete Math. Appl. 8 (1998), 153-162.
[13] S. Sertöz and A. E. Özlük, On the number of representations of an integer by a linear form, Istanbul Tek. Üniv. Fen Fak. Mat. Derg. 50 (1991), 67-77.
[14] J. J. Sylvester, On the partition of numbers, Quart.J. Pure Appl. Math. 1 (1857), 141-152.
[15] A. Tripathi, The number of solutions to $a x+b y=n$, Fibonacci Quart. 38 (2000), 290-293.
[16] G. Xin and C. Zhang, An algebraic combinatorial approach to Sylvester's denumerant, arXiv:2312.01569v1. (2023).
[17] G. Xin, Y. Zhang, and Z. Zhang, Fast evaluation of generalized Todd polynomials: applications to MacMahon's partition analysis and integer programming, arXiv: 2304.13323v2. (2024).

[^0]: *This work is partially supported by the National Natural Science Foundation of China (No.12071311).

