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1. Introduction 

In transient or pulsed eddy-current testing (PECT), the excitation (transmitter) coil is 

driven by a pulsed current and the eddy current response from the inspected testpiece is 

sensed by another pickup (receiver) coil or by magnetic field sensors. Among other 

applications, PECT is used in monitoring pipe wall thinning since the growing field 

experience has demonstrated that PECT is effective for that matter [1], [2]. An important 

feature of the signal is its decay behavior which can be used for the quantitative evaluation of 

pipe wall thinning due to corrosion. The signal from a thinner pipe wall decays faster than 

that of a thicker one. Hence, there is a need for accurate evaluation of the response signal in 

the so called "long time domain" [3], [4]. 

The problem of theoretically analyzing PEC can be treated by first acknowledging 

that with respect to the geometry, testpiece and probe characteristics it is essentially a 

harmonic excitation problem. That is, the problem can be solved in the frequency domain and 

then the transient response can be derived either by Fourier superposition or by just replacing 

the jω term with the Laplace variable s and then apply Laplace inversion techniques. There is 

a tremendous bulk of analytical solutions for the harmonic excitation [5], therefore the focus 

should be on the effective inversion of the obtained Laplace expressions. 

The theoretical study and analysis of PECT as applied to cylindrical structures such as 

insulated pipes is a matter of great interest. It is interesting that such studies are usually of 

numerical nature while analytical and semi-analytical ones limit themselves to the description 

of simplified configurations. The main simplification assumes a pipe diameter that is 

significantly larger than that of the excitation coil in order to model the configuration as a 

planar geometry [3]. When working with such a model it is easy to derive simple time 

constants from the signal decay rate in order to develop a method for thickness measurement 

[6]. 

Nevertheless, more representative axisymmetric models for the case of a multi-layer 

cylindrical system have been obtained in the frequency domain [7], followed by similar 

studies for pulsed excitations [8]-[9]. These use Fourier superposition, but such an approach 

can be time consuming and may suffer from the Gibb's phenomenon. 

In this work, we also study an axisymmetric configuration of a transmitter-receiver 

coil system (otherwise known as reflection system) located in a multi-layer cylindrical 

conductor system. We then calculate the transient response of the voltage induced in the 

receiver coil by focusing on Laplace inversion [11] rather than on Fourier superposition. 

 Various methods can be used for the Laplace inversion depending on the 
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characteristics of the expected time domain signal [12]. The use of Laplace transform 

requires an efficient method for inverting the frequency domain expressions to time domain. 

In the context of eddy current testing, a number of approaches have been used so far [13]-

[16]. 

In addition to the Laplace treatment, we utilize domain truncation [17] and also 

present a novel systematic treatment of the multilayer cylindrical system that avoids possible 

issues with overflows owing to the modified Bessel functions behavior. 

A critical examination of published studies is also presented in Sec.3 together with the 

description of the preferred methods for Laplace inversion. 

 

2. Analysis 

2.1 Induced voltage in the frequency domain 

 The eddy current interaction between a system of coaxial coils (transmitter and 

receiver) with an axisymmetric multilayer cylindrical conductor system, as shown in Fig.1, 

has been studied in [7]. The geometry extends infinitely in the z-direction and the harmonic 

excitation of the transmitter coil has the form Iexp(jωt) where I is the rms value of the 

excitation current and ω=2πf is the angular frequency. The induced voltage in the receiver 

coil, due to the cylindrical coil system, for arbitrary number of conductive layers N is given 

by: 
 

 
Fig. 1. Transmitter and receiver coil system in the presence of a multilayer cylindrical system. 
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and r1, r2 are the coil radii, z1, z2 are the coil bottom and top height, 2 1l z z= −  is the coil 

height, w is the number of coil wire turns  and the T and R subscripts refer to the Transmitter 

and Receiver coil respectively. Note also that the interface radii between the regions are 

denoted by bn and numbering of the cylindrical regions starts from the outer region and 

proceeds to the inner one. The air region where the coil lies is denoted as N+1. A layer 

designated as n has conductivity σn and relative magnetic permeability μrn. 

 

 
 

Fig. 2. Axisymmetric view of the truncated multicylindrical region with the two coils (transmitter and receiver) 
showing also region and interface numbering. 

 

Another approach to the solution of the problem is the truncation of the solution domain from 

z=0 to h , as shown in Fig.2 and imposition of appropriate boundary conditions. In the 

examined configuration this involves Dirichlet conditions for the magnetic vector potential A, 
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which in turn means magnetic insulation at the two boundaries. Following [17], the induced 

voltage in the receiver coil can be computed by an expression that involves a summation 

rather than the integration in (1) 

0
6
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4 ( ) ( ) ( )R T i
T i R i

i i

j R qV I Y q Y q
h q
ωµ π ∞

=

= ∑                                                                                    (2) 
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( ) , cos cosi i i i i
wY q q r q r q z q z

r r z z
ψ  = − − −

                                                 (3) 

with the discrete eigenvalue iq
h
π

= . 

 In both (1) and (2), the multilayer cylindrical system characteristics are described 

through the R(q) term. These mathematical expressions are derived by applying the method 

of separation of variables in the Helmholtz equation for the magnetic vector potential. This 

potential is expressed in each cylindrical sub-region as a combination of sinusoidal and 

modified Bessel functions together with unknown coefficients. The latter are calculated by 

applying boundary conditions on the interfaces between the cylindrical sub-regions. 

Following [7], the R(q) term can be calculated as follows: 

 

 
 

Fig. 3. Cross-section of the configuration for applying interface conditions between two cylindrical layers. 

 

2.2 The older approach 

 For the arbitrary cylindrical layer n the radial dependence of the magnetic vector 

potential is written as: 

( ) ( )1 1( )n n n n nA r C I a r D K a r= +                                                                                                (4) 
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where 

2
0n rn na q jωµ µ σ= + .                                                                                                            (5) 

In the coil region, numbered N+1, the radial dependence of the magnetic vector potential is 

written as: 

( ) ( )1 1 1 1 1 1 1( )N N N N NA r C I a r D K a r+ + + + += +                                                                                 (6) 

where DN+1 describes the effect of the coil in air and CN+1 stands for the eddy current part 

from the cylindrical multilayer conductors. The relation between these terms can be written 

as 1 1( )N NC R q D+ +=  where R(q) is a reflection term, the same with the one showing up in (1). 

The procedure of calculating R(q) starts by writing the coefficients of region n+1 in terms of 

the coefficients of region n and for that matter, the interface conditions are applied on the 

boundary bn. In terms of the radial dependence of the magnetic vector potential, these result 

in: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1 0 0

n n n n n n n n n n n n

n n n n n n n n n n n n n n n n

C I a b D K a b C I a b D K a b

C I a b D K a b C I a b D K a bβ β β β
+ + + +

+ + + + + +

+ = +

− = −
                               (7) 

and in matrix form they can be written as: 
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Starting from the outermost region (n=1) and proceeding towards the innermost ones 
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the final expression for the reflection term is derived. 

 

2.3 The novel approach 

 In most cases, the analysis in Sec.2.2 works fine, but for a large number of layers or 

for extreme cases of material characteristics and/or frequency values may present overflow 

problems due to the behavior of Bessel functions for large arguments. With the approach 
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described next, we avoid such problems. What we essentially do is to normalize each Bessel 

function with an argument at a radial distance r in layer n with the same Bessel function with 

an argument at either bn or bn-1. For I-Bessel function we use bn+1 while for K-Bessel 

functions we use bn so that the resulting ratio is always smaller than 1. Hence, in each region, 

the radial dependence of the magnetic vector potential is written as: 
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and especially for the inner region N+1 (where the coil belongs) bN+1=bN. For the region n+1, 

the radial dependence of the magnetic vector potential is written as: 
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Referring to Fig.3, imposition of interface conditions results in: 
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If we then use the following abbreviations for the Bessel function ratios: 
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the system of coefficients is written as: 
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By solving (15) in terms of Cn+1 and Dn+1, the coefficients of region n+1 are written in terms 

of the coefficients of region n as follows: 
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Now the new transfer matrix between the two regions is written as: 
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and due to the normalization the final expression for the reflection term is modified to: 
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The procedure just described avoids all overflows of the expressions that may occur for a 

large number of cylindrical layers and for combinations of parameters that result in large 

Bessel arguments. This is possible because programming languages and mathematical 

packages provide computations for isolating the exponential behaviour of Bessel functions, 

for example in Matlab besseli(v,z,1) computes Re{ }z
vI e−  and besselk(v,z,1) computes 

z
vK e  which means that the expressions ,n nI K  in (14) can be computed by: 

besseli(1,an*bn,1)/ besseli(1,an*bn-1,1)*exp(real(an)*(bn-bn-1)) 

besselk(1,an*bn,1)/ besselk(1,an*bn-1,1)*exp(-an*(bn-bn-1)) 

and the ratios in the expressions ,n nI K′ ′  can be computed by: 

besseli(0,an*bn,1)/ besseli(1,an*bn,1) 

besselk(0,an*bn,1)/ besselk(1,an*bn,1). 

Such methods for cancelling the exponential behaviour are especially useful in 3D 

configurations where ratios for multiple higher orders of Bessel functions are required. 

 

3. Time response and Laplace inversion 

 As already stated, a universal method for the computation of the time response is 

Fourier superposition. However, too many frequencies are required for an accurate result. For 

example in [8] it is stated that a large number of 1500 distinct frequencies is required for a 

reliable computation. In order to reduce computational time, interpolation is used in the 

frequency spectrum and the number of frequencies is dictated by a logarithmic rule. In [9] 

such an interpolation is also utilized combined with an interpolation on the integration 

variable q since the integral expression (1) is used rather than the summation one (2). The 

latter interpolation is justified in that paper due to the very large number of 1500 summation 

terms, referring to [8]. This is, however, a misconception since the number 1500 refers to the 
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frequency values and not to the axial terms, thus making the use of tedious integral 

expression unnecessary. 

 In this paper, we focus on the inversion of the Laplace expressions. Having calculated 

R(qi), we return to (2) for the truncated domain, which describes also the induced EMF in the 

receiver coil, in the Laplace domain, when the excitation current is pulsed. This is done by 

replacing jω with the Laplace variable s. 

0
6

1

4 ( , )( ) ( ) ( ) ( )R T i
T i R i

i i

sR q sV s I s Y q Y q
h q
µ π ∞

=

= ∑


                                                                         (19) 

For a step current 0( ) ( )I t I u t= , the Laplace transform is 0( ) /I s I s= , so the problem now is 

the computation of the inverse Laplace transform of ( , )iR q s , with discrete eigenvalues qi. 

The inverse Laplace of (19) is written as 

0
0 6

1

4 ( , )( ) ( ) ( )R i
T i R i

i i

R q tV t I Y q Y q
h q
µ π ∞

=

= ∑                                                                               (20) 

where ( , )iR q t  is the inverse Laplace transform of ( , )iR q s . 

 

3.1 The numerical method 

 A universal approach can be based on the numerical inversion of the Laplace 

transform (NILT), methods for which rank among ones which are widely used for time-

domain simulations. From many developed methods, those based on FFT and ε-algorithm for 

the acceleration of series convergence seem to be convenient from the point of view of both 

desired speed and accuracy [18]. The publicly available Matlab code in [18] has been used 

for fast computation. The algorithm requires only a number of sampling points and the time 

interval in which the transient signal is to be computed (starting from t=0). The specific code 

is very efficient since it utilizes the advantageous feature of Matlab language to run in 

parallel on multidimensional arrays without necessity to use outer loop structures. This means 

that time response calculations can be performed simultaneously for all eigenvalues qi and 

leads to essential savings in CPU time.  

 

3.2 The Stefhest method 

 Apart from universal numerical approaches, there are many other algorithms to invert 

the Laplace transform, each of them having specific advantages and disadvantages depending 

on the form of the function to be inverted. For the short time transient signal that has the form 

of exponential damping (as in our case) we can utilize the Stehfest algorithm which involves 
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specific time instances. The time response is computed by a sum that involves weighted 

values of the Laplace function: 

1

ln 2 ln 2( )
n

i
i

f t V F i
t t=

 ≈  
 

∑                                                                                                      (21) 

where the weights Vi are determined by: 

min ,
2 21

2

1
2

(2 )!( 1)
! !( 1)!( )!(2 )!

2

n nin

i
ik

k kV
n k k k i k k i

 
 
 +

+
=

= −
 − − − − 
 

∑                                                               (22) 

 An optimal choice for the number of terms n in the summation of (21) is 10 14n≤ ≤ , 

here we are using 14. Note that (22) is incorrectly written in [10], which can attributed to the 

fact that the same expression is also incorrectly written in [12] from which it was taken. The 

Stehfest algorithm gives very good results in the short time domain. In Sec.4 we will study its 

reliable use by comparing its results with the universal numerical method. 

 

3.3 Pole extraction 

The residue theorem is an alternative method for Laplace inversion and involves the 

computation of poles of the function to be inverted. The method is ideal for the so called 

"long time" calculation since in this case only a few poles need to be found for the accurate 

description of the transient signal. The diffusive nature of the eddy current phenomenon 

implies that all poles are real, leading thus to distinct decay modes for the acquired signal. 

Suitable methods are utilized for bracketing the poles prior to their exact calculation, 

following in part the method developed in [15]. A similar approach has been adopted also in 

[14] for a coil encircling a conductive rod. 

 The problem now is the computation of the inverse Laplace transform of the 

reflection term ( , )iR q s  which can be written as: 

1

2

( , )( , )
( , )

i
i

i

R q sR q s
R q s

=                                                                                                                 (23) 

For each eigenvalue qi  we seek the poles sk of (23), then by invoking the Heaviside 

expansion theorem the time dependent term is written as: 

1

2

( , )( , )
( , )

ks ti k
i

k i k

R q sR q t e
R q s

=
′∑                                                                                                      (24) 
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Since the poles sk have to be real negative a search routine that starts from s=0 and 

proceeding to the real negative axis can be easily implemented. Such routines are found in 

every mathematical package. 

 An important feature of the pole extraction method is that only a limited number of 

poles needs to be used. Especially the long time response may be computed with just one 

pole! This feature is studied in [15] and is also utilized in [19] in order to describe the 

behavior of the eddy current system by just one pole that corresponds to the dominant mode 

of the decay rate of the transient signal. The feature could also be used in [16] instead of 

using a large constant number of poles. 

 

4. Results and Discussion 

The examined system comprises two concentric tubes, each one 10mm thick, with an 

air gap between them. This creates a multilayer cylindrical system with N=4 layers where 

layers numbered 1 and 3 are air. The tubes are assumed to be of the same material and are 

either carbon steel (ferromagnetic) or stainless steel (non ferromagnetic). The cylindrical 

system and coil data are given in Table I: 

 

Table I. Coils and tubes characteristics 

 Transmitter Receiver Layers radii Tubes material: steel 

r1 [mm] 20 20 b1 [mm] 70 σ [MS/m] 3 

r2 [mm] 30 30 b2 [mm] 60 μr 100 (carbon) 

l [mm] 40 10 b3 [mm] 50   

wt 1600 10000 b4 [mm] 40 σ [MS/m] 3 

Lair [mH] 83.24 5738.5   μr 1 (stainless) 

 

Given that the axial gap between the coils is set to g=10mm, the required coil distances in 

Fig.2 are calculated from: 

1 2 1 2 1 2, , ,
2 2T T T T R R R R
h hz z z l z g z z l= = + = − = −  

 Results are provided for the induced voltage in the receiver coil when the transmitter 

coil is excited by a step current of 1A. The transient responses are shown in Fig.4 for the 

three inversion methods described in Sec.3. The logarithmic scale in the voltage axis depicts 

better the long time behaviour of the transient signal. Adopting as reference the NILT method 

we can easily observe that the pole extraction behaves very well in the long time domain 
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while the Stehfest method behaves well for the short time domain and starts to deviate from a 

certain point in time. 

(a) (b)

 
Fig. 4. Long time comparison of Stehfest and pole extraction methods to NILT for (a) Carbon and (b) Stainless 

Steel. Only the first pole is used for each qi eigenvalue. 

 

 It seems then that these two methods, Stehfest and pole extraction, are complementary 

and can be used in the short and long time domain, respectively. The point of transition that 

we have established empirically, after many simulations, for a system of tubes of the same 

material is the time defined by 2
0m rt bµ µ σ= , where b stands for the total thickness of the 

tubes. 
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 From Fig.4, it is evident that the logarithmic signal curve is steep in the case of the 

stainless steel due to its smaller relative magnetic permeability and hence to the weaker eddy 

currents induced in the tube wall. This is exactly the expected behaviour [3], [6], [19]. 

 In the summation of (2) we have used 50 terms, and for the Laplace inversion we only 

use 1 pole per eigenvalue (hence 50 poles). The boundary of the truncated domain is set to 

h=100r2T for carbon and h=20r2T for stainless steel. The fact that we use only 1 pole for each 

eigenvalue is a crude computation that nevertheless gives good results for the long time. For 

the long time domain, the number of eigenvalues and thus the number of poles can be 

decreased further. We have run a parametric study regarding the number of poles that can be 

used to reliably compute the induced voltage. Fig.5 shows results that compare pole 

extraction method (with decreasing number of poles) to the exact NILT solution. It is clear 

that the limiting case of using just 1 pole can also be used for a reliable representation in the 

long time region. 
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(a) (b)

 
Fig. 5. Long time comparison of NILT to pole extraction method with different number of poles for (a) Carbon 

and (b) Stainless Steel. 

 

In this case, the induced voltage is computed by only the first term of (20), which for the 

cases of the carbon (CS) and stainless steel (SS) tubes and the data in Table reduces to: 
23.87

10
619.5

10

( ) 0.0032 log ( ) 2.49 10.4

( ) 14.717 log ( ) 1.17 269

R t R
CS CS
R t R

SS SS

V t e V t t

V t e V t t

−

−

= ⇒ = − −

= ⇒ = −
                                                            (25) 

These essentially define the dominant decay modes of the induced voltage signal. 

 Fig. 6 shows the signals for wall thinning of 50% on each side of the two carbon steel 

tubes together with the signal in the case of the absence of a tube. Obviously the decay rate 

(curve inclination) changes with the amount of wall thinning and its specific location, i.e. in 

which tube it happens and if it happens in the ID or OD of the specific tube. Not all cases can 
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be resolved in the long time domain. For example, the case of the absence of one tube cannot 

be easily distinguished (which  tube is absent) since the total remaining thickness is the same. 

In this case we refer to the short time behaviour, shown in Fig.6b where the voltage is plotted 

in linear scale. These transient signals are computed with the Stehfest method. 

(a) (b)  

Fig. 6. Signals of wall thickness loss and for each tube for carbon steel for (a) long time and (b) short time. 

 

Hence, the thickness and location of the wall loss can be derived from the combination of 

amplitude in the short time domain and decay rate (curve inclination) in the long time 

domain. 

 From the depicted results it is easily derived that the pole extraction can be used for 

calibration of instruments that utilize PEC for thickness measurements. The fact that the 

presented model describes the exact cylindrical configuration improves the method accuracy 

since no planar geometry simplification is utilized. 

 Nevertheless, as shown in experiments by Ulapane et al in [4] and [6], if we consider 

the typical PEC waveform the noise "destroys" the response when the signal is a few orders 

of magnitude smaller than the initial value. From this perspective, high accuracy for long 

time may be useless especially when the transition point (from using Stehfest to using pole 

extraction) lies in the time area affected by noise. In this case, only the use of Stehfest 

method, which is better for short time response, is enough. 

 

4. Conclusions 

We have presented a number of improvements on existing models for the transient 

response of a coil system inside a cylindrical conductive configuration. The truncation of the 
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solution domain offers certain computational advantages since it simplifies the induced 

voltage calculation. Normalization by using Bessel function ratios enables an efficient 

solution when the number of cylindrical layers increases, it may also improve the 

computations for a 3D configuration when higher order Bessel functions are required. Finally 

it was shown that regarding the transient signal computation: For the short time, the Stehfest 

method is very efficient while for the long time the residue theorem can give a quick and 

exact computation with a minimum number of poles. In any case numerical methods based 

on Fourier method together combined with series acceleration algorithm provides a universal 

and reliable alternative. For long time computations it was shown that even one (1) pole is 

adequate for the whole computation since it represents the dominant decay mode and can be 

used for tube wall thickness evaluations. 

Possible extensions of the presented improvements include the 2D axisymmetric 

geometry with encircling coil around a multilayer cylindrical conductor system. Furthermore, 

the 3D geometries can be treated in a similar manner since relevant solutions exist in the 

frequency domain for both ID and OD coils as well as for eccentrically placed tubes. 
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