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Abstract

In this work, two different parametric hysteresis models, the Jiles-Atherton model and the Mel’gui relation, have been
combined to form a more general hysteresis operator, suitable for the description of families of experimental B(H) curves
obtained for low carbon (LC) steel specimens after isothermal annealing at different temperatures and times. As it has
been demonstrated in a number of previous studies, characteristic values of steel hysteresis curves can be used as very
efficient identifiers for the monitoring of the different metallurgical transformations that take place during the annealing,
such as recovery and recrystallisation processes. It is thus important from a practical point to be able to reproduce
the experimental curves obtained under different conditions, as precisely as possible, in order to proceed to the samples
characterisation. Hybridisation of the two aforementioned models demonstrated satisfactory results for the reproduction
of all considered curves obtained under the different considered annealing conditions.
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1. Introduction

Different parametric models have been proposed in the
literature for the modelling of magnetic hysteresis, yet
none of the existing models proves to be, to the authors
knowledge, universal. In fact, a specific model may be
well adapted for the description of a material family but it
can perform poorly for others. This drawback may be ac-
ceptable when one is interested in a given material. They
exist, however, situations where a continuous variation of
the material properties may produce hysteresis loops with
broad range of features that cannot be captured by a single
model.

This situation seems to be the case when we examine
the magnetic hysteresis loops of cold rolled extra low car-
bon steels which are subjected to thermal annealing treat-
ments. It turns out that the hysteresis loops of samples
subjected to isothermal annealing at different tempera-
tures and for different holding times, span a range of loop
shapes, which is consequence of the different microstruc-
tural transformations that take place during the annealing
processes.

Previous works have revealed that certain characteristics
of the hysteresis loops, like the coercive field, the remanent
magnetisation or the hysteresis losses correlate well with
microstructural parameters like the grain size and the dis-
location density and they can thus be used as identifiers
for the evolution monitoring of transformation procedures
such as the recovery and the recrystalisation [1, 2]. The
thereupon presented results justify the need for numerical

hysteresis models able of predicting the basic features of
the hysteresis curves for the whole range of the family.

Numerical experimentation with existing parametric
hysteresis models like the Jiles-Atherton model [3] or the
Mel’gui model [4] revealed that the identification of the two
models using a standard iterative optimisation procedure
yields different results for the ensemble of the experimental
curves obtained via the procedure described in [1, 2]. The
reasons for these discrepancies may be attributed to the
limitations of the models or even to the optimisation pro-
cedure itself, in the sense that regions with non-physical
output for the model may be visited during the exploration
of the input space.

To improve the precision of the representation, a mixing
of the two models is proposed in this work. The main idea
consists in sampling a common input space, consisting of
characteristic hysteresis features like the ones mentioned
above, and apply the best approach for each of the points
of the input space based on a series of criteria concern-
ing the form of the output curves. The sampling points
are then used as training set for a Gaussian process re-
gressor, which replaces the physical model thus becom-
ing a generic hysteresis operator. In this way one can as-
sure smooth variations across the input spaces and avoid
”holes” with non-physical outputs. Although the physical
parametric models considered here are the Jiles-Atherton
and the Mel’gui model, the proposed approach is model
independent making other combinations possible.

The paper is organised as follows. In the first section
the Jiles-Atherton and the Mel’gui model and some rep-
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resentative results of their identification for two different
hysteresis loops are briefly presented. In the second sec-
tion the hysteresis operator is reformulated in a more for-
mal way, and the algorithm for the construction of the
regressor model is presented. A brief presentation of the
mathematical model of the Gaussian process regressor is
given in the next paragraph. Details on the experimen-
tal procedure for the production of the material curves are
provided in a separate section. The results of the approach
for the reproduction of some representative experimental
curves are presented at the last section.

2. Identification of the Jiles-Atherton and the
Mel’gui model

In the Jiles-Atherton model [3] the total magnetisation
of the material M is understood as the combined effect
of two contributions: a reversible Mrev, related to the do-
main walls motion and an irreversible Mirr one, which is
basically the result of the domain bulging. The two com-
ponents are given by the equations

Mrev = c (Man −Mirr) (1)

and
Mirr

dH
=

Man −Mirr

kδ/µ0 + α (Man −Mirr)
(2)

where c is a proportionality coefficient with c ∈ [0, 1], µ0

stands for the magnetic permeability of the free space,
and k and α are material constants related to the domain
wall pinning and the interdomain coupling, respectively.
δ = ±1 is essentially a numerical flag, which distinguishes
between the descending and ascending branches. The Man

term stands for the anhysteretic material curve, calculated
via the implicit relation

Man = MsL

(
H + aMan

a

)
(3)

with L(x) = coth(x) − 1/x being the Langevin function.
Ms gives the magnetisation at saturation, and a is another
material parameter related to the domains density.

In the Mel’gui model, the magnetisation is approxi-
mated by the following closed-form relation

M = χin
H2

cH

H2 +H2
c

+ δ
Ms

π

H2
m

H2
m + bH2

c

×
{
2 arctan

(
Hc + δH

H0

)
−
[
arctan

(
Hc +Hm

H0

)
+ arctan

(
Hc −Hm

H0

)]}
(4)

with the coefficients H0 and b being defined as

H0 =
Hc

tan(πMr/2Ms)
(5)

and

b =
Ms

π

arctan(2Hc/H0)

Mc − χinHc/2
. (6)

In the above equations, Hc, Ms, Mr stand for the coercive
field, the magnetisation at the saturation and the rema-
nent magnetisation respectively, χin is the initial suscep-
tibility (susceptibility of the demagnetised state) and Mc

the point of the first magnetisation curve at field intensity
equal to the the coercive field.

The basic difference of the two models consists in the
fact that whereas the magnetisation in the Jiles-Atherton
model is obtained via the solution of an ordinary differ-
ential equation, in the Mel’gui model it is evaluated di-
rectly via a closed form relation, which makes the latter
much faster. The domain of application is not the same
either. Thus, the Jiles-Atherton model can theoretically
be applied for an arbitrary excitation cycle (although the
accuracy of the model for the description of minor loops
is questionable), whereas the Mel’gui relation is only ap-
plicable to symmetrical periodic excitations. The input
domain of the two models is also very different with four
of the five parameters of the Jiles-Atherton model being
internal tuning parameters that need to be determined via
the so-called model identification procedure. The Mel’gui
model, on the contrary, is parametrised via characteris-
tic values of the major loop and the initial magnetisation
curve, which makes the model directly applicable. Never-
theless, numerical experimentation reveals that the param-
eter estimation via identification (that is via the solution
of an optimisation problem) yields better results for this
model as well.

Figure 1: Hysteresis curves calculated using the Jiles-Atherton and
Mel’gui model after identification with different experimental data.
The experimental curves used for the identification are given for com-
parison.

An example of the two models identification using two
different experimental curves with different coercivity is
shown in Fig. 1. The models have been identified using
a standard optimisation approach, where the L2 norm of
the residual between the theoretical and the experimen-
tal curve is minimized. It turns out that for the given
minimisation procedure the Jiles-Atherton model performs
slightly better than the Mel’gui model for the first curve
(corresponding to a harder material) whereas the tendency
is inverted for the second curve. As far as the second
result is concerned, a possible explanation for the poor
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performance of the Jiles-Atherton model could be that
the utilised optimisation algorithm by trying to adapt the
curve to the very steep slope around the coercive field does
not succeed to fulfil all the rest of the form constrains at
the same time. One must also not exclude the fact that
regions with non-physical model solutions may be visited
during the exploration of the input space, which desta-
bilises the procedure and may lead to sub-optimal results.

3. Construction of the regressor model

3.1. Hysteresis description in different input spaces

The magnetisation for a scalar hysteretic magnetic ma-
terial admits the general expression

M = M(H;H0, H−1, . . .) (7)

where H is the applied magnetic field at time t, and
H−r, r = 0, 1, . . . stand for the field reversal points (i.e.
the points where the time derivative of H changes sign) at
previous instances t−r < t. The value of the magnetic field
H together with the ensemble of reversal points H−r fully
determine the state of the material taking full account of
the excitation history.

Let us consider the hysteresis relation (7) along an ob-
servation window t ∈ [0, T ], which is sampled using a ho-
mogeneous temporal grid ti = iT/N , with i = 0, ..., N . As-
suming that the magnetic field values at the sample points
of the observation window are known, the magnetic field
vector Hi = H(ti) fully determines the magnetisation by
application of (7) since Hi contains all the information of
the field history (i.e. the reversal points H−r).
We seek to establish the following mapping H → M

with
M = M(H) . (8)

Notice that H = [H0, . . . ,HN ]T and M = [M0, . . . ,MN ]T

stand here for column vectors comprising the values of the
discretised magnetic field and magnetisation samples in-
side the observation window, which should not be confused
with the vector counterparts of the two field variables.

We assume that a parametric model is used for the
numerical evaluation of (8), which means that each pair
(H,M) is associated to a set of parameters used for the
tuning of the model of choice. Let p be the vector contain-
ing the values of the model parameters. One can formally
write

M = MH(p) , (9)

where the index H is used to denote that the above map-
ping is valid for a given magnetic field discretisation H.
For the sake of notational simplicity, the model depen-
dence on the H vector will be implied in the rest of the
paper.

Our objective is to combine two (or more) different para-
metric models Ma and Mb into a common hysteresis op-
erator, by either switching between the two models, inter-
polate between points calculated with the two models or

by performing a weighted sum of their outputs. The three
operations can be expressed in terms of a weighted sum

M = wa(pa)Ma(pa) + wb(pb)Mb(pb) , (10)

where wa(pa) and wb(pb) stand for the corresponding
weighting coefficients, whose value vary between 0 and 1
depending on the given parameter combination. In or-
der to build that operator, the input vectors of the two
consisting models pa and pb must be expressed in a new
parametric space, meaningful for both models.

The most straight-forward choice for this new space is to
pick a number of hysteresis characteristic points or slopes,
which are common features of all hysteresis curves and
independent of the model details. A possible input set
(among others) is the pc = (Ms, Hc,Mr,Wh, χr), where
Ms is the magnetisation at saturation, Hc the coercive
field, Mr the remanent magnetisation, Wh the hysteresis
losses and χr the susceptibility at the remanence. We can
rewrite then (10) formally in the following way

M = wa[pa(pc)]Ma[pa(pc)] + wb[pb(pc)]Mb[pb(pc)] .
(11)

In order to proceed to the numerical evaluation of the
scheme, one has to calculate the weighting coefficients
wa(pc) and wb(pc) as functions of the new coordinates
and to carry out the coordinate transformations pa(pc)
and pb(pc). The algorithm of the regressor model is sum-
marized in form of pseudo-code in the following table.

Algorithm 1 Regressor model

Off-line phase:

1: Define the domains Pa, Pb, with pa ∈ Pa, pb ∈ Pb

2: Random sampling of pa and pb: get pa,i and pb,i

3: for i = 1 . . . Ns do
4: Evaluate Ma(pa,i), Mb(pb,i)
5: if Ma(pa,i), Mb(pb,i) non-physical then
6: Discard i
7: else
8: Evaluate the new coefficients pc,i = pc(pai

,pbi)

9: Train the regressor M(pc,i) = wa(pa,i)Ma(pa,i) +
wb(pb,i)Mb(pb,i) = Mi, ∀i

On-line phase:

1: Evaluate M(pc), with pc ∈ Pc

For the case of the Jiles-Atherton and the Mel’gui
model, which are the models of the choice in this work
the two input vectors are pa ≡ pJA = (Ms, k, a, α, c)
and pb ≡ pMel = (Ms, Hc,Mr,Mc, χin). A representa-
tive sampling of a pc subspace is shown in Fig. 2, where
the corresponding mapping from the Jiles-Atherton native
parameter space pJA 7→ pc is also illustrated .

3.2. Hysteresis model based on Gaussian process regres-
sion

In the previous paragraph, a strategy of replacing the
physical hysteresis model by a metamodel (regressor in this
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(a) (b)

Figure 2: Coordinate transformation. (a) Random sampling of the
(a, k) subspace of the Jiles-Atherton native parameter space. (b)
Sampling of the characteristics subspace Hc − Mr. With blue dots
are marked the sampling points of the Jiles-Atherton model, given
on the left figure, as they are transformed to the Hc −Mr subspace.
The orange points correspond to the sampling points of the Mel’gui
model. Notice that the given subspace is a native subspace of the
Mel’gui model (both Hc and Mr belong to its inputs).

case) built upon a number of pre-calculated data sets was
presented. Very recently, different regression approaches
based on metamodels have been studied in the literature of
non destructive testing showing good accuracy in approx-
imating unseen experimental data [5, 6]. Here we shall
examine the case of the Gaussian process regression as it
applies for the representation of hysteresis data.

Let us consider the hysteresis model sampled over a set
of P = [p1, ...,pN ]

T
parameters along with the respective

–for sake of simplicity– scalar outputs M (p1) , ...,M (pN ).
Where the i-th entry pi ∈ R1×P . Let us now con-
sider the aforementioned outputs as a stochastic process
where each entry is given by a random vector defined as
M = (M (p1) , ...,M (pN )), where M stands for a ran-
dom vector realisation. One can express the correlation
between random variables as an exponential function with
power equal to 2 which corresponds to the so-called Gaus-
sian kernel function. Therefore, the correlation function
calculated on the hysteresis model turns into

ϕ (pi, pj) = exp

(
−

P∑
p=1

θj |pi − pj |2
)
, (12)

where θj is a hyper-parameter to be estimated via max-
imum likelihood estimation or cross validation methods.
Starting from the definition of the correlation function
between two random variables, one can show that the
covariance matrix between these variables is given as
Cov (M ,M ) = σ2

MΦ (M ) [7] where Φ being the N × N
correlation matrix and σM is the standard deviation of M .
That is, the stochastic model considers the correlation be-
tween sampled data that can be accounted via a specific
correlation model described by Φ. Therefore, the model
depends on the distances between the considered sampled

points. The Ordinary Kriging (OK) prediction (M̂ (·)) on

a new entry pN+1 is obtained by

M̂ (pN+1) =

P∑
p=1

λiM (pi) ,

where λi are the kriging coefficients to be estimated [8].
Thus, accounting the unbiasedness of the predictions (i.e.,

M̂ (pi) = M (pi)) leads to the following condition

P∑
p=1

λi = 1,

which translates into the best linear unbiased prediction
obtained by the minimisation of the mean square predic-
tion error (i.e., the squared expectation) as [8]

min
λi

E

([
M̂ (pN+1)−

P∑
p=1

λiM (pi)

])2

s.t.

P∑
i=1

λi = 1.

(13)
The kriging coefficients in (13) can be obtained by apply-
ing the method of Lagrange multipliers. The optimisation
boils down to the following matrix system of equations[

Φ U
UT 0

] [
λ
µ

]
=

[
ϕ
u

]
, (14)

where in (14), Φ = [ϕ (xi,xj)] ∀i, j ∈ 1, ..., N and ϕ =
[ϕ (x1,xN+1) , ϕ (x2,xN+1) , ..., ϕ (xN ,xN+1)] is defined as

provided in (12). Moreover, U =
[
u (p1)

T
, ...,u (pN )

T
]T

with u (pi) being a lower-order monomials (typically it
does not exceed the degree of two), 0 is a zeros matrix and
µ represents the vector of l < N the Lagrange multipliers.

4. Application to microstructure monitoring dur-
ing annealing treatment

4.1. Sample preparation and hysteresis measurements

Experimental magnetic measurements on cold rolled
samples that had been annealed at low temperatures
(300-500 ◦C) in order to promote recovery without in-
teraction with recrystallisation and at 600 ◦C to in-
duce recrystallisation were used in this study [1, 2].
The original samples were from extra low carbon steel,
with composition 0.03%C-0.19%Mn-0.13%Al-0.0035%N-
0.012%P-0.01%Si, that had been industrially produced
and cold rolled to a final thickness of 0.3 mm through
a reduction of 84% [1]. Near saturation major magnetic
B-H hysteresis loop determination was made using a sin-
gle sheet tester system available at CEIT [9] at 1 Hz, with
maximum magnetic field strengths applied of about 4100
A/m. The schematic diagram of the B-H measurement
system is shown in Fig. 3.

The external magnetic field was produced by a mag-
netic yoke composed of a 200-turn coil wound around a
U-shaped magnetic laminated core. The excitation signal
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Figure 3: Experimental setup for the acquisition of the B-H curves.

was generated by a sinusoidal magnetizing current pro-
duced by a programmable function generator connected to
a power amplifier. The induced electromotive force in an
encircling coil wound around the samples and the tangen-
tial magnetic field strength measured using a Hall probe
placed at the surface of the samples, were acquired using
a NI data acquisition system.

Four major hysteresis loops were recorded for each mea-
surement applying a sinusoidal magnetic field strength
of about 4.1 kA/m at 1 Hz, which was sufficiently high
to reach near saturation state of the measured samples.
These were demagnetized prior to each test. The sampling
frequency used was 5 kHz.

Recovery involves both the annihilation of dislocations
and their rearrangement into low energy configurations.
Recrystallisation leads to the suppression of dislocations
by the nucleation of defect free volumes and by the mi-
gration through the material of the recrystallisation front,
resulting in a new grain structure with a low dislocation
density. Previous studies [1] showed that coercive field
measurements can be satisfactorily employed to monitor
recovery during low temperature annealing, during which
the grain structure remains constant and microstructural
changes only occur in the cold rolling dislocation substruc-
ture inside the grains. During recrystallisation both the
effect of the reduction of the dislocation density and the
change in the grain size have to be taken into account.

4.2. Identification of the regressor model using experimen-
tal data for different annealing conditions

The proposed approach has been applied for the re-
production of the experimental curves obtained from a
cold-rolled (CR) low carbon (LC) steel sheets annealed at
four different temperatures and for different holding times.
Four temperatures are considered, namely 300 ◦C, 400 ◦C,
500 ◦C, and 600 ◦C. The annealing times for the four tem-
peratures are given in Table 1. The predicted simulation
curves are compared with the experimental ones for the
four annealing temperatures in Fig. 4. It should be noticed
at this point that a classical iterative Jiles-Atherton model
identifications works very well for the curves of the lowest
two temperatures, but it does not succeed to reproduce
correctly the steeper ones obtained at 500 ◦C and 600 ◦C.
This tendency is inverted in the case of the Mel’gui model,

Temperature Annealing time
300 ◦C 51 s, 4 min, 12 min, 36 min, 1.2 h
400 ◦C 11 s, 51 s, 4 min, 12 min, 36 min, 1.2 h
500 ◦C 51 s, 4 min, 12 min, 36 min
600 ◦C 51 s

Table 1: Annealing conditions for the cold rolled steel samples.

which performs better for the steeper curves obtained at
higher temperatures. A typical set of hysteresis character-
istic features obtained for a selected set of four curves, one
for each annealing temperature is given in Table 2.

(a) (b)

(c) (d)

Figure 4: Experimental vs. simulated curves for the annealing condi-
tions of Table 1. (a) 300 ◦C, (b) 400 ◦C, (c) 500 ◦C and (d) 600 ◦C.
The experimental curves are drawn with dotted curves whereas the
solid curves are the calculated hysteresis loops.

The two datasets used for the construction of the regres-
sor, i.e. the datasets for the Jiles-Atherton and the Mel’gui
model, contained 1803 and 1886 curves respectively. Each
curve has been sampled using 600 points, which results
in the storage of two databases of approximately 20 MB
each. The construction of the regressor, which consists the
most time consuming step, was carried out in 178 s. Once
the regressor had been constructed, the identification of
the four curves demonstrated in Fig. 4 was carried out in
3.18 s. The identification was based on five-parameters
optimisation using the numpy python library implementa-
tion of the differential evolution algorithm. The average
number of cost function evaluations needed to achieve the
optimum was 2628, which results in an overhead per evalu-
ation of circa 0.001 s. For the sake of comparison, it can be
stressed out that the time demanded for a five-parameters
optimisation using direct evaluation of the Jiles-Atherton
model was of the order of 130 s. Both calculations were
carried out in a standard DELL Precision T1700 worksta-
tion with an Intel Xeon CPU E3-1241 v3 and 16 Gbytes
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RAM. This drastic reduction of the computational time
can be attributed to the very fast evaluation of each can-
didate curve via the regression approach (in fact we inter-
polate in a set of pre-calculated curves), and constitutes
one of the major advantages of the proposed approach.

The Hc vs. Mr and Hc vs. Wh correlation plots deliver
important information about the metalurgical transforma-
tion, which makes them a further test for the performance
of the regressor. The correlation plots for the calculated
curves are shown in Fig. 5. It is important to notice that
both pairs demonstrate a linear correlation for the first
three temperatures, which is the trend observed using the
experimental data [1, 2]. A slight deviation from the strict
linear law is observed at the Hc–Wh plot for the last three
points (longer annealing) of the third temperature. The
point corresponding to the 600 ◦C curve does clearly fall
apart, which is explained by the fact that at this point
the recrystallisation is activated, when additionally to the
effect of the reduction of the dislocation density, an addi-
tional effect of the variation of the grain size takes place
[2, 10].

Figure 5: Correlation of the remanent magnetisation and the hys-
teresis losses with the coercive field. a) Hc vs. Mr , (b) Hc vs. Wh.

Conclusions

A regressor-based hybridisation of two parametric mod-
els has been proposed in order to describe sets of experi-
mental curves with a broad range of features. The present
work follows a procedure, where the physical hysteresis
model is replaced by a generic meta-model, a similar idea
to the one previously exploited in [11].

The use of the regressor presents a number of advan-
tages, when a pragmatic approach is sought in order to
reproduce experimental data with a reasonable accuracy.
The computationally expensive model identification (i.e.
the calculation of the model parameters via fitting to the
experimental curve), is significantly accelerated since each
call to the physical model is replaced by a regressor evalua-
tion, which is carried out in nearly real time. This acceler-
ation, also discussed in [11], is particularly interesting with
models like the Jiles-Atherton model, where the evaluation
of a curve signifies the solution of a differential equation.
Furthermore, the above adopted approach stabilises the
identification procedure. This can be understood by point-
ing the fact that the minimisation algorithm (which can be
either a deterministic conjugate-gradient-based algorithm
or a stochastic approach like evolutionary or genetic algo-
rithms) may enter in domains where the physical model
yields unphysical solutions. This problem is avoided by
the selection taking place in the off-line phase of the re-
gressor construction. Finally, the fact that the approach
is not depending on model-specific variables (the regressor
is trained using input-output pairs) allows the mixing of
more than one physical models, and the extension of the
domain of validity of each one of them.

Although two particular physical models have been con-
sidered in this work, namely the Jiles-Atherton and the
Mel’gui model, the approach is general and can be applied
with an arbitrary combination of models.
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