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Abstract

In this paper, we obtain a Carleman estimate for the higher order

partial differential operator P △
= α∂t + ∂nx (with α ∈ R, n ∈ Z≥2). In

the process of establishing this estimate, we developed a new method,
which is called the “back-propagation method” (the BPM, for short).
This method can also be used to build up Carleman estimates for some
other partial differential operators, and might provide assistance with
corresponding numerical analyses. As an application of the above-
mentioned Carleman estimate, we proved the conditional stability of
a Cauchy problem for a time fractional diffusion equation with 1

3 -order.
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1 Introduction and main result

In 1939, Carleman [1] showed that a second order elliptic operator in
dimensional two enjoys the unique continuation property. The technique
used there is called “Carleman weight inequality” and has become one of
the major tools in the study of the unique continuation property, control
problems and inverse problems for partial differential equations.

The Carleman estimate can be regarded as a weighted energy inequality,
which can be described as follows:

Let Ω be a connected open set in R
n, and let P = P (x,D) be a differential

operator of order n in Ω. Assume that there is a suitable function φ(·) ∈
C∞(Ω;R) satisfying ∇φ(x) 6= 0, x ∈ Ω. Let θ = eλφ. We say that the
Carleman type estimate holds for P if there exists a constant C > 0 such
that ∑

0≤m<n

λ2(n−m)−1

∫

Ω

θ2|Dmv|2dx ≤ C

∫

Ω

|θP (x,D)v|2dx,

where v ∈ C∞
0 (Ω) and λ > 0 is a parameter.

Up to now, there are numerous results on Carleman estimates for the sec-
ond order partial differential operators, the corresponding applications are
well understood (for example, see [3] and the references cited therein). For
Carleman estimates of higher order partial differential operators, we refer to
[2, 4, 5, 13, 14, 15] for the fourth order parabolic-type operators and fourth or-
der Schrödinger operators, [11] for the sixth-order parabolic operators. Based
on an identity of Treves (see [9, Lemma 17.2.2]), [6, 7] obtained unique con-
tinuation properties for higher Order parabolic equations and Schrödinger
Equations. Recently [10] established a Carleman estimate for high order
equations of Korteweg-de Vries type with the weight function θ = eλx in one
dimensional case. Compared to Carleman estimates for second order par-
tial differential operators, the computation of Carleman estimates for higher
order partial differential operators is much more complicated.

In this paper, we aim at establishing a Carleman estimate for the operator

P = α∂t + ∂nx , α ∈ R\{0}, n ∈ Z≥2,

with an exponential-type weight function θ(t, x) (which will be given later).
More importantly, using P as a carrier, we will introduce the “backpropaga-
tion method” (the BPM, for short) in the building of the Carleman estimate
for P.
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Next, we will explain what role the BPM will play in the process of
establishing the Carleman estimate for P. As we know, elementary calculus
can be enough to grasp the main idea of Carleman estimate (See [3, Chapter
1]). To obtain the core, there is an important ingredient which should be
emphasized, i.e., the principal part of our operator θ(Pθ−1). Noting that the
principal part of our operator contains the n-th derivative with respect to the
x variable, hence the decomposition and the computation will cause many
difficulties. For the reader’s convenience, we simply choose the following
weight functions:

ψ(t, x) = (x− x0)
2 − β(t− t0)

2, ℓ(t, x) = λψ(t, x), θ(t, x) = eℓ(t,x) (1.1)

where x0, t0 ∈ R, β ∈ R+.
For v(t, x) ∈ C∞(R×R;R), set w = θv = eℓv with ℓ given by (1.1). Then

θPv = αθ∂tv + θ∂nxv

= αwt − αℓtw + I1(w) + I2(w) + I3(w).
(1.2)

Here Ij(w), j = 1, 2, 3 are chosen in the following manner:

θ∂nxv = I1(w) + I2(w) + I3(w).

Note that the order of λ equals to the sum of orders of ∂jxℓ, j ≥ 1. Then
we decompose θ∂nxv as following:

• The item I1(w) is the sum of all such terms that are the highest order
terms of λ with an odd order derivative of x, and the second highest
orders terms of λ with an even order derivative of x;

• The item I2(w) is the sum of all such terms that are the highest order
terms of λ with an even order derivative of x, and the second highest
orders terms of λ with an odd order derivative of x;

• The item I3(w) is the sum of all other terms in θ∂nxv.

It deserves mentioning that I3(w) consists of only lower order terms, com-
pared with I1(w) and I2(w).

By (1.2), we have
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θPvI2 = αwtI2 + I1I2 + |I2|2 + I2(I3 − αℓtw). (1.3)

From (1.3), it is easy to see that:

θ2|Pv|2 ≥ 2I1I2 + 2αwtI2 − |I3(w)− αℓtw|2. (1.4)

Comparing I3(w)− αℓtw with I1, I2, we know |I3(w)− αℓtw|2 contains only
lower order term.

Our keys to establishing the Carleman estimate for P are as follows:

• The decomposition of principal operator θ∂nxv (see Proposition 2.2).

• The choice of Ij(w)(j = 1, 2, 3) (see Proposition 2.3).

• The estimates of I1(w)I2(w) and wtI2(w)(see Propositions 3.1 and 4.1).

The BPM developed in this paper is used to solve the third key above.
More precisely, it can help us to simply prove that the highest order energy
terms in I1(w)I2(w) have the positive sign, while the “bad” terms yielded
from wtI2(w), such as wtwx and wtxwxx, are indeed lower order terms. Our
BPM is inspired by “back-propagation”, which is widely used in the field of
machine learning, dating back to [12] published in 1986. In machine learning,
it is difficult to calculate derivatives forward, so people adopt a backward
method, which was proposed in the 1970s, to solve differential problems
of nested functions. Now people working on machine learning will draw a
network graph to calculate a derivative backward, which can be viewed as
the embryo of our BPM.

Throughout of this paper, we use Ck
n to denote combinatorial numbers,

vt or ∂tv to represent the derivative of v in the time variable, and vx or ∂xv
to denote the derivative of v in the space variable. In what follows, we will
use C to denote a generic positive constant which may vary from line to line.
For k ∈ Z≥1, we denote by O(λk) a function of order λk for large λ. We use
“(·)” or “etc.” to denote such terms whose concrete forms does not have to
be given.

The main result of this paper is as follows:

Theorem 1.1. Let T > 0, L > 0, α ∈ R\{0}, n ∈ Z≥2. Let ψ = (x −
x0)

2 − β(t− t0)
2 with x0 > L, 0 < t0 < T , β ∈ R+. For any v ∈ C∞

0 ([0, T ]×
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[0, L];R), and w = eλψv, the following inequality holds:

n−1∑

m=0

∫ T

0

∫ L

0

[
n2Cm

n−1λ
2n−2m−1ψ2n−2m−2

x ψxx +O(λ2n−2m−3)
]
|∂mx w|2dxdt

≤
∫ T

0

∫ L

0

e2λψ
∣∣α∂tv + θ∂nxv

∣∣2dxdt.
(1.5)

Remark 1.1. The main innovation of this paper is the BPM. It is not only
applicable to different partial differential operators, but also to different forms
of the weight function ϕ. In addition, it can be used for the estimation of
boundary terms. These will be given in our forthcoming work.

Remark 1.2. The inequality (1.5), with α = −1 and n = 4, was built up in
[13] by a different way from ours. Based on it, one can obtain the conditional
stability in a Cauchy problem for a half-order fractional diffusion equation.

Remark 1.3. The reason why we do not convert the function w on the left
side of (1.5) into v is as follows: This way not only gives us the explicit
coefficients of all energy terms, but also simplifies the computation. In fact,
this transformation can be easily implemented in the following way: Since
w = eλψv, we can find a constant C1 > 0 such that

n−1∑

m=0

∫ T

0

∫ L

0

λ2n−2m−1e2λψ|∂mx v|2dxdt

=

n−1∑

m=0

∫ T

0

∫ L

0

λ2n−2m−1e2λψ|∂mx (e−λψw)|2dxdt

≤ C1

n−1∑

m=0

∫ T

0

∫ L

0

λ2n−2m−1|∂mx w|2dxdt.

(1.6)

Then, the combination of (1.5) and (1.6) yields that there exists a λ0 > 0,
such that for any λ > λ0, we have

n−1∑

m=0

∫ T

0

∫ L

0

λ2n−2m−1e2λψ|∂mx v|2dxdt ≤ C

∫ T

0

∫ L

0

e2λψ|Pv|2dxdt (1.7)

for some C > 0.
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The rest of this paper is organized as follows. In section 2, we give some
preliminaries. The estimations of I1I2 and wtI2 are given in sections 3 and
4, respectively. In section 5, we give our proof of Theorem 1.1. As its
application, we consider an inverse problem for a time-fractional diffusion
equation in section 6.

2 Some Preliminaries

This section presents preliminaries. We start with introducing notation.
For m1, m2 ∈ R, denote

m2∑

j=m1

aj
△
=

∑

j∈[m1,m2]∩Z

aj,

m2∏

j=m1

aj
△
=

∏

j∈[m1,mm2
]∩Z

aj ,

with the convention that
∑

j∈∅

aj
△
= 0 and

∏

j∈∅

aj
△
= 1.

For j, k ∈ Z, denote

Ck
j

△
=





j!

k!(j − k)!
, if 0 ≤ k ≤ j,

0, else .

2.1 An Identity about Combinatorial Numbers

Proposition 2.1. For (n,m) ∈ {Z2|n ≥ 2, 0 ≤ m ≤ n− 1}, define

Kn,m
△
= −C2

nC
m
n C

m
n−2 − C2

n

m∑

k=1

(−1)k(Cm+k
n Cm−k

n−2 + Cm−k
n Cm+k

n−2 )

+
2n− 2m− 1

2

m∑

k=0

(−1)k(1 + 2k)(Cm+1+k
n Cm−k

n ).

(2.1)

Then

Kn,m =
n2

2
Cm
n−1. (2.2)

Remark 2.1. In (2.1), the form of Kn,m is the highest order coefficients
of energy terms involved in the estimation of I1I2. We set this Proposition
because it is not an obvious result.
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Proof of Proposition 2.1. For (n,m) ∈ {Z2|n ≥ 2, 0 ≤ m ≤ n− 1}, we
simply write

Kn,m = C2
nH1 +

2n− 2m− 1

2
H2, (2.3)

where




H1 = −Cm
n C

m
n−2 −

m∑

k=1

(−1)k(Cm+k
n Cm−k

n−2 + Cm−k
n Cm+k

n−2 ),

H2 =

m∑

k=0

(−1)k(1 + 2k)(Cm+1+k
n Cm−k

n ).

(2.4)

We first calculate H1. By replacing the index of summation, one can get:

H1 = −Cm
n C

m
n−2 −

m∑

k=1

(−1)k(Cm+k
n Cm−k

n−2 + Cm−k
n Cm+k

n−2 )

= (−1)m+1

m∑

q=m

(−1)qCq
nC

2m−q
n−2 + (−1)m+1

2m∑

q=m+1

(−1)qCq
nC

2m−q
n−2

+(−1)m+1
m−1∑

q=0

(−1)qCq
nC

2m−q
n−2

= (−1)m+1

2m∑

q=0

(−1)qCq
nC

2m−q
n−2 .

(2.5)

Meanwhile, we have the identity:

(1− x)n(1 + x)n−2 = (1− x2)n−2(x2 − 2x+ 1), x ∈ lR, n ∈ lN. (2.6)

Comparing the coefficients of x2m (with m ∈ lN) on the both sides of (2.6),
we find

2m∑

q=0

(−1)qCq
nC

2m−q
n−2 = Cm

n−2(−1)m + Cm−1
n−2 (−1)m−1, m ∈ lN. (2.7)

Combining (2.5) and (2.7), we have

H1 = Cm−1
n−2 − Cm

n−2. (2.8)
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Next, let us calculate H2. By a similar way dealing with H1, we can
obtain

H2 =
m∑

k=0

(−1)k(1 + 2k)(Cm+1+k
n Cm−k

n )

=

m∑

k=0

[
(−1)k(m+ 1 + k) + (−1)k+1(m− k)

]
Cm+1+k
n Cm−k

n

=

2m+1∑

q=m+1

(−1)q−m−1qCq
nC

2m+1−q
n +

m∑

q=0

(−1)m−q−1qC2m+1−q
n Cq

n

= (−1)m+1
2m+1∑

q=1

(−1)qqCq
nC

2m+1−q
n .

(2.9)

At the same time, we have the identity:

(1 + x)n
d

dx
(1− x)n = −n(1 + x)(1− x2)n−1, x ∈ lR, n ∈ lN. (2.10)

Comparing the coefficient of x2m (with m ∈ lN) on the both sides of (2.10),
we find:

2m∑

k=0

C2m−k
n (−1)k+1(k + 1)Ck+1

n =
2m+1∑

q=1

(−1)qqCq
nC

2m+1−q
n = −n(−1)mCm

n−1.

(2.11)
Combining (2.9) and (2.11), we have

H2 = nCm
n−1. (2.12)

Finally, it follows from (2.3), (2.8) and (2.12) that

Kn,m = C2
n(C

m−1
n−2 − Cm

n−2) +
n(2n− 2m− 1)

2
Cm
n−1

=
n2

2
Cm
n−1.

(2.13)

This completes the proof of Proposition 2.1.
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2.2 Decomposition of θ∂nxv

In this subsection, we introduce a decomposition of θ∂nxv, which will play
an important role in the proof of our main result.

Proposition 2.2. Let θ be given by (1.1). Set w = θv. Then

θ∂nxv =
∑

r+2s+m=n

[
(−1)s

1

s!
(

s−1∏

l=0

C2
n−2l)ℓ

s
xx

][
(−1)rCm

r+mℓ
r
x∂

m
x v

]
, (2.14)

where r, s,m ∈ Z≥0.

Remark 2.2. For any fixed n, the decomposition of θ∂nxw can be obtained
by virtue of an iteration. Indeed, it is clear that

θ∂0xv = w, θ∂1xv = θ∂1x(θ
−1w) = ∂xw − ℓxw.

Assuming f = θ∂nxv, noting that θx = θℓx, we have

θ∂n+1
x v = θ∂x

(f
θ

)
= θ

(fxθ − θxf

θ2

)
= ∂xf − ℓxf

= ∂x(θ∂
n
xv)− ℓx(θ∂

n
xv).

(2.15)

As we explained before, the order of λ equals to the sum of orders of ∂jxℓ,
j ≥ 1. In fact, we only care about terms with s = 0, 1 in θ∂nxv. The terms
involved in (2.14) with s ≥ 2 only yield lower order terms. Truncating θ∂nxv
at s = 0, 1, we have

θ∂nxv =
∑

r+m=n

(−1)rCm
n ℓ

r
x∂

m
x w −

∑

r+m=n−2

(−1)rC2
nC

m
n−2ℓ

r
xℓxx∂

m
x w + · · · .

=

n∑

m=0

(−1)n−mCm
n ℓ

n−m
x ∂mx w

−C2
nℓxx

n−2∑

m=0

(−1)n−2−mCm
n−2ℓ

n−2−m
x ∂mx w + · · · .

(2.16)

Proposition 2.3. Under the assumption of Proposition 2.2, we have

θ∂nxv = I1(w) + I2(w) + I3(w), (2.17)
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where





I1(w) =
∑

odd j∈[0,n]

Cj
n(−1)n−jℓn−jx ∂jxw

−C2
nℓxx

∑

even k∈[0,n−2]

Ck
n−2(−1)n−2−kℓn−2−k

x ∂kxw,

I2(w) =
∑

even k∈[0,n]

Ck
n(−1)n−kℓn−kx ∂kxw

−C2
nℓxx

∑

odd j∈[0,n−2]

Cj
n−2(−1)n−2−jℓn−2−j

x ∂jxw,

I3(w)
△
= θ∂nxv − I1(w)− I2(w).

(2.18)

For concrete n, by Proposition 2.3, we can obtain the decomposition of
θ∂nxw immediately.

Example 2.1. In the case that n = 4, we have

{
I1 = −4ℓx∂

3
xw − 4ℓ3x∂xw − 6ℓxx∂

2
xw − 6ℓ2xℓxxw,

I2 = ∂4xw + 6ℓ2x∂
2
xw + ℓ4xw + 12ℓxℓxx∂xw.

(2.19)

Example 2.2. In the case that n = 5, we have

{
I1 = ∂5xw + 10ℓ2x∂

3
xw + 5ℓ4x∂xw + 30ℓxℓxx∂

2
xw + 10ℓ3xℓxxw,

I2 = −5ℓx∂
4
xw − 10ℓ3x∂

2
xw − ℓ5xw − 10ℓxx∂

3
xw − 30ℓ2xℓxx∂xw.

Our proof of Proposition 2.2 is based on the iteration (2.15). The follow-
ing example will help us to understand our idea.

Example 2.3. If we have already known that θ∂4xv = 12ℓxℓxx∂xw−4ℓ3x∂xw−
6ℓ2xℓxxw+ · · · (see Example 2.1), we can find all the coefficients in ℓrxℓ

s
xx∂

m
x w

with r + 2s + m = 5 in θ∂5xv. Let us see how to obtain the coefficient of
ℓ2xℓxx∂xw in θ∂5xv.

By (2.15), one knows that θ∂5xv = ∂x(θ∂
4
xv)−ℓx(θ∂4xv). So one only needs

to find all terms A in θ∂4xv such that

∂xA = c · ℓ2xℓxx∂xw + · · · , or − ℓxA = c · ℓ2xℓxx∂xw + · · · ,
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where c ∈ R is the coefficient. There are 3 terms one can find, which are




−ℓx · (12ℓxℓxx∂xw) = −12ℓ2xℓxx∂xw,

∂x(−4ℓ3x∂xw) = −12ℓ2xℓxx∂xw + · · · ,
∂x(−6ℓ2xℓxxw) = −6ℓ2xℓxx∂xw + · · · .

(2.20)

Adding them up leads to the coefficient −30. This matches what we got in
Example 2.2.

Proof of Proposition 2.2. It is easy to check that

θ∂xv = wx − ℓxw,

θ∂2xv = wxx − 2ℓxwx + ℓ2xw − ℓxxw

satisfy (2.14). We inductively assume that (2.14) holds for some n ≥ 2. We
will prove that (2.14) holds for n + 1.

By (2.15), we know that θ∂n+1
x v = ∂x(θ∂

n
xv) − ℓx(θ∂

n
xv). Considering

a general term ℓrxℓ
s
xx∂

m
x w in θ∂n+1

x v with r + 2s + m = n + 1, proceeding
exactly the same analysis of (2.20), we know that there are 3 terms in θ∂nxv
contributing to ℓrxℓ

s
xx∂

m
x :





(−ℓx) · c1ℓr−1
x ℓsxx∂

m
x w = −c1ℓrxℓsxx∂mx w,

∂x(c2ℓ
r+1
x ℓs−1

xx ∂
m
x w) = (r + 1)c2ℓ

r
xℓ
s
xx∂

m
x w + · · · ,

∂x(c3ℓ
r
xℓ
s
xx∂

m−1
x w) = c3ℓ

r
xℓ
s
xx∂

m
x w + · · · ,

(2.21)

where 



c1 = (−1)r−1+s 1

s!

( s−1∏

l=0

C2
n−2l

)
Cm
r−1+m,

c2 = (−1)r+1+s−1 1

(s− 1)!

( (s−1)−1∏

l=0

C2
n−2l

)
Cm
r+1+m,

c3 = (−1)r+s
1

s!

( s−1∏

l=0

C2
n−2l

)
Cm−1
r+m−1.

Adding 3 formulas in (2.21) up, noting that r + 2s+m = n + 1, we can get
the coefficient of ℓrxℓ

s
xx∂

m
x w in θ∂n+1

x v. Considering whether r, s,m equal(s)
zero, we discuss the following 7 cases:
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1. r 6= 0, s 6= 0, m 6= 0 :

d = −c1 + (r + 1)c2 + c3

= (−1)r+s
1

s!

( s−1∏

l=0

C2
n−2l

)[
Cm
r−1+m +

(r + 1)s

C2
n−2(s−1)

Cm
r+1+m + Cm−1

r+m−1

]

= (−1)r+s
1

s!
(
s−1∏

l=0

C2
n−2l)

[
Cm
r−1+m +

(r + 1)s

C2
r+m+1

Cm
r+1+m + Cm−1

r+m−1

]

= (−1)r+s
1

s!
(
s−1∏

l=0

C2
n−2l)

r + 2s+m

r +m
Cm
r+m

= (−1)r+s
1

s!
(

s−1∏

l=0

C2
n−2l)

n+ 1

n+ 1− 2s
Cm
r+m

= (−1)r+s
1

s!
(

s−1∏

l=0

C2
n+1−2l)C

m
r+m.

(2.22)
2. r = 0, s 6= 0, m 6= 0 : c1 = 0,

d = (r + 1)c2 + c3

= (−1)s
1

s!

( s−1∏

l=0

C2
n−2l

)[ s

C2
n−2(s−1)

Cm
1+m + Cm−1

m−1

]

= (−1)s
1

s!
(

s−1∏

l=0

C2
n+1−2l)

n + 1− 2s

n+ 1

[2s
m

+ 1
]

= (−1)s
1

s!
(

s−1∏

l=0

C2
n+1−2l)

n + 1− 2s

n+ 1

2s+m

m

= (−1)s
1

s!
(
s−1∏

l=0

C2
n+1−2l).

3. r 6= 0, s = 0, m 6= 0 : c2 = 0,

d = −c1 + c3 = Cm
r−1+m + Cm−1

r+m−1 = Cm
r+m.
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4. r 6= 0, s 6= 0, m = 0 : c3 = 0,

d = −c1 + (r + 1)c2

= (−1)s
1

s!

( s−1∏

l=0

C2
n−2l

)[
C0
r−1+0 +

(r + 1)s

C2
n−2(s−1)

C0
r+1+0

]

= (−1)s
1

s!

( s−1∏

l=0

C2
n−2l

)[
1 +

(r + 1)s

C2
n−2(s−1)

]

= (−1)s
1

s!

( s−1∏

l=0

C2
n+1−2l

)n+ 1− 2s

n+ 1

[
1 +

2(r + 1)s

(n− 2s+ 2)(n− 2s+ 1)

]

= (−1)s
1

s!

( s−1∏

l=0

C2
n+1−2l

) r

n+ 1

[
1 +

(r + 1)(n+ 1− r)

(r + 1)r

]

= (−1)s
1

s!

( s−1∏

l=0

C2
n+1−2l

)
.

5, r = 0, s = 0, m 6= 0 : c1 = c2 = 0,

d = c3 = Cm−1
m−1 = 1.

6. r = 0, s 6= 0, m = 0 : c1 = c3 = 0,

d = (r + 1)c2

= (−1)s
1

(s− 1)!

( s−2∏

l=0

C2
n−2l

)
C0

1

= (−1)s
1

s!

n + 1

2

n(n− 1)

2

(n− 2)(n− 3)

2
...
3× 2

2

= (−1)s
1

s!

(n + 1)n

2
...
4× 3

2

= (−1)s
1

s!
(

s−1∏

l=0

C2
n+1−2l).

7. r 6= 0, m = 0, s = 0 : c2 = c3 = 0,

d = −c1 = (−1)r
1

s!

( s−1∏

l=0

C2
n−2l

)
C0
r−1 = (−1)r

1

s!

( s−1∏

l=0

C2
n−2l

)
.

We note that the results of cases 2-7 are consistent with those of case 1.
Then we complete the proof of Proposition 2.2.
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2.3 Introduction of Back-Propagation Method

In this subsection, we will show how the back-propagation method works
in this paper.

Let (A,B) ∈ Z≥0 × Z≥0 be a pair of positional parameters (which can
be replaced), and F (A,B) be a given term located at position (A,B). For
(X, Y ) ∈ Z× Z, we define

F (X, Y ) =

{
0, X /∈ [0, A] or Y /∈ [0, B],

rXY F (X − 1, Y ) + sXY F (X, Y − 1), else,
(2.23)

where rXY , sXY ∈ R are known.
The relationship given in (2.23) can be represented by the following prop-

agation graph:

Graph 2.1.

F (0, 0) F (0, 1) ... F (0, B)

F (1, 0) F (1, 1) ... F (1, B)

... ... ... ...

F (A, 0) F (A, 1) ... F (A,B)

s01 s02 s0B

s11 s12 s1B

s·1 s·2 s·B

sA1 sA2 sAB

r10 r11 r1· r1B

r20 r21 r2· r2B

rA1 rA2 rA· rAB

Once we desire to know F (A,B) = (?)F (0, 0) + etc., this graph will be
helpful.

The number next to an arrow is called a “weight”, meaning the factor
provided by the previous term to the next term. A propagation occurs only
along the arrow.

We define the “weight” from F (A,B) to F (0, 0) in the following manner:

(i) When F (A,B) = F (0, 0), we define the weight to be 1.

(ii) When there is no viable path from F (A,B) to F (0, 0) and F (A,B) 6=
F (0, 0), we define the weight to be 0.

(iii) When there are not the same and there exists at least one viable path
from F (A,B) to F (0, 0), we first find all such paths, then for every

14



such path, multiply all weights along it to get a weight (which is called
the path weight for this path), and finally, add up path weights for all
paths mentioned above to get a new weight, which is the weight from
F (A,B) to F (0, 0).

Based on Graph 2.1, in this paper we will introduce some back-propagation
graphs (BPG(s) for short), in the sense of integration by parts, to give the
proof of Carleman estimate. Through a BPG, one can easily analyse the
weight relationship, allowing one obtains the results of integration by parts
without any practical calculation.

3 BPM for the estimation of I1I2

We arbitrarily fix an integer n ≥ 2. For any integerm with 0 ≤ m ≤ n−1,
we hope to find the coefficient of the final term ℓ2n−2m−2

x ℓxx|∂mx w|2 in I1I2.
Set

p
△
= 2n− 2m− 1.

We introduce the following back-propagation graph:

Graph 3.1.

ℓp−1
x ℓxx∂

m
x w∂

m
x w ℓp−1

x ℓxx∂
m+1
x w∂m−1

x w ... ℓp−1
x ℓxx∂

2m
x w∂0xw

ℓpx∂
m+1
x w∂mx w ℓpx∂

m+2
x w∂m−1

x w ... ℓpx∂
2m+1
x w∂0xw

−1 −1 −1

−1 −1 −1
−p/2 −p −p

The reason that the above graph is called the “back-propagation graph”
is that we start drawing this graph from the goal term which is asked for, and
the rest part of the graph is drawn against the direction of the propagation.

Let A and B be two terms in two adjacent positions. An arrow from A
to B with the number k means that A = kB+ etc., through one step of inte-

gration by parts. For example, “ℓp−1
x ℓxx∂

m+1
x w∂m−1

x w
−1−→ ℓp−1

x ℓxx∂
m
x w∂

m
x w”

means

ℓp−1
x ℓxx∂

m+1
x w∂m−1

x w

= (ℓp−1
x ℓxx∂

m
x w∂

m
x w)x − ℓp−1

x ℓxx∂
m
x w∂

m
x w − (p− 1)ℓp−2

x ℓ2xx∂
m
x w∂

m−1
x w

= (−1) · ℓp−1
x ℓxx∂

m
x w∂

m
x w + etc..

Based on Graph 3.1, we have the following result.
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Proposition 3.1. Under the assumption of Proposition 2.3, we have

I1I2 = (·)x +
n−1∑

m=0

[n2

2
Cm
n−1ℓ

2n−2m−2
x ℓxx +O(λ2n−2m−3)

]
|∂mx w|2.

Remark 3.1. Based on the selection of I1, I2, one knows that I1I2 does not
contain such terms ℓ2n−2m−1−s

x ℓsxx|∂mx w|2 with s even, after integration by
parts.

Before giving the proof of Proposition 3.1, we first give an example to
show how the BPG works for calculating the coefficient of some term in I1I2
through integration by parts.

Example 3.1. For n = 4, find the coefficient of ℓ2xℓxx∂
2
xw∂

2
xw in I1I2 after

integration by parts. By choosing p = 3, m = 2 in Graph 3.1, we have the
following BPG:

Graph 3.2.

ℓ2
x
ℓ
xx
∂2

x
w∂2

x
w ℓ2

x
ℓ
xx
∂3

x
w∂1

x
w ℓ2

x
ℓ
xx
∂4

x
w∂0

x
w

ℓ3
x
∂3

x
w∂2

x
w ℓ3

x
∂4

x
w∂1

x
w ℓ3

x
∂5

x
w∂0

x
w

−1 −1

−1 −1
−3/2 −3 −3

Then fill the coefficients in I1I2 from Example 2.1, we have

Graph 3.3.

(−6× 6)ℓ2
x
ℓ
xx
∂2

x
w∂2

x
w (−4×12)ℓ2

x
ℓ
xx
∂3

x
w∂1

x
w (−6× 1)ℓ2

x
ℓ
xx
∂4

x
w∂0

x
w

(−4 × 6)ℓ3
x
∂3

x
w∂2

x
w (−4 × 1)ℓ3

x
∂4

x
w∂1

x
w 0 · ℓ3

x
∂5

x
w∂0

x
w

−1 −1

−1 −1
−3/2 −3 −3

Though there are many terms in I1I2, only at most 6 terms contributing
to ℓ2xℓxx∂

2
xw∂

2
xw. Thus we only need to see how these 6 terms contribute

coefficients to ℓ2xℓxx∂
2
xw∂

2
xw.
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We write d(r, s, a, b) =
∑

D

h(r, s, a, b)g(r, s, a, b) by the coefficient of ℓrxℓ
s
xx∂

a
xw∂

b
xw,

where D = {(r, s, a, b) ∈ Z
4
≥0|r+2s+ a+ b = 8, s = 0, 1, a ≥ b}, h(r, s, a, b)

is the coefficient of each term, and g(r, s, a, b) is the weight from each term
to the goal term. One can know g(r, s, a, b) from the BPG and h(r, s, a, b)
from I1, I2 in (2.19).

Here, we try to compute d(2, 1, 2, 2), i.e., the final coefficient of ℓ2xℓxx∂
2
xw∂

2
xw

in I1I2. By the BPG, we know that

D = {(r, s, a, b)} =
{
(2, 1, 2, 2), (2, 1, 3, 1), (2, 1, 4, 0),

(3, 0, 3, 2), (3, 0, 4, 1), (3, 0, 5, 0)
}
,

{
h(2, 1, 2, 2) = −6× 6, h(2, 1, 3, 1) = −4× 12, h(2, 1, 4, 0) = −6× 1,

h(3, 0, 3, 2) = −4× 6, h(3, 0, 4, 1) = −4× 1, h(3, 0, 5, 0) = 0,

and 




g(2, 1, 2, 2) = 1,

g(2, 1, 3, 1) = (−1)1,

g(2, 1, 4, 0) = (−1)2,

g(3, 0, 3, 2) = (−1)13/2,

g(3, 0, 4, 1) = (−1)2(3/2 + 3),

g(3, 0, 5, 0) = (−1)3(3/2 + 3 + 3).

Then:

d(2, 1, 2, 2) = (−36) · 1 + (−48)(−1)1 + (−6)(−1)2

+(−24)(3/2)(−1)1 + (−4)(3/2 + 3)(−1)2 + 0 · (3/2 + 3 + 3)(−1)3

= 24,

which means

−6× 6 ℓ2xℓxx∂
2
xw∂

2
xw = −36 ℓ2xℓxx|∂2xw|2 + etc.,

−4 × 12 ℓ2xℓxx∂
3
xw∂

1
xw = 48 ℓ2xℓxx|∂2xw|2 + etc.,

−6× 1 ℓ2xℓxx∂
4
xw∂

0
xw = −6 ℓ2xℓxx|∂2xw|2 + etc.,

−4× 6 ℓ3x∂
3
xw∂

2
xw = 36 ℓ2xℓxx|∂2xw|2 + etc.,

−4× 1 ℓ3x∂
4
xw∂

1
xw = −18 ℓ2xℓxx|∂2xw|2 + etc.,

0 ℓ3x∂
5
xw∂

0
xw = 0 ℓ2xℓxx|∂2xw|2 + etc.,

⇒ Total = 24 ℓ2xℓxx|∂2xw|2 + etc..
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Proof of Proposition 3.1. Example 3.1 (when n = 4) has explained our
main idea. Here we give the detailed proof for an arbitrarily fixed n. We
write dm (with 0 ≤ m ≤ n− 1) for the coefficient of the term ℓp−1

x ℓxx|∂mx w|2
for 0 ≤ m ≤ n− 1. Then we have

dm =
∑

D

h(r, s, a, b)g(r, s, a, b), (3.1)

where D = {(r, s, a, b) ∈ Z
4
≥0|r+2s+a+b = 2n, s = 0, 1, a ≥ b}, h(r, s, a, b)

is the coefficient of ℓrxℓ
s
xx∂

a
xw∂

b
xw in I1I2 before integration by parts, and

g(r, s, a, b) is the weight from ℓrxℓ
s
xx∂

a
xw∂

b
xw to ℓp−1

x ℓxx|∂mx w|2 in Graph 3.1.
On the one hand, by (2.18), comparing the terms in I1I2 to find their

coefficients, one can get

h(r, s, a, b) =






(−1)a+b(−C2
nC

m
n C

m
n−2), s = 1, a = b = m,

(−1)a+b[−C2
n(C

a
nC

b
n−2 + Cb

nC
a
n−2)],

s = 1, m+ 1 ≤ a ≤ 2m, b = 2m− a;

(−1)a+b(Ca
nC

b
n),

s = 0, m+ 1 ≤ a ≤ 2m+ 1, b = 2m+ 1− a.

(3.2)

On the other hand, from the BPG one can obtain the weight:

g(r, s, a, b) =





(−1)a−m, s = 1, m ≤ a ≤ 2m,

(−1)a−m
p

2
[2(a−m)− 1],

s = 0, m+ 1 ≤ a ≤ 2m+ 1.

(3.3)

Combining (3.1)-(3.3), one has

dm = (−1)m−m(−1)m+m(−C2
nC

m
n C

m
n−2)

+

2m∑

a=m+1

(−1)a−m(−1)a+2m−a[−C2
n(C

a
nC

2m−a
n−2 + C2m−a

n Ca
n−2)]

+
2m+1∑

a=m+1

(−1)a−m
p

2
[2(a−m)− 1](−1)a+2m+1−a(Ca

nC
2m+1−a
n )

= −C2
nC

m
n C

m
n−2 − C2

n

m∑

k=1

(−1)k(Cm+k
n Cm−k

n−2 + Cm−k
n Cm+k

n−2 )

+
p

2

m∑

k=0

(−1)k(1 + 2k)Cm+1+k
n Cm−k

n .

(3.4)
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Then, by Proposition 2.1, we are led to that dm = Kn,m =
n2

2
Cm
n−1.

4 BPM for the estimation of wtI2

First, by (2.18) and through integration by parts, we have

wtI2 = (·)t + (·)x +
∑

r+2s+2m=n

(·)(ℓrxℓsxx)t|∂mx w|2

+
∑

D

dC(r, s,m)ℓrxℓ
s
xx∂

m
x ∂tw∂

m+1
x w,

(4.1)

where
D = {(r, s,m) ∈ Z

3
≥0|r + 2s+ 2m+ 1 = n}. (4.2)

Since ℓtx = 0, we have (ℓrxℓ
s
xx)t = 0. Therefore, we only need to calculate the

coefficient dC .
To calculate dC , we introduce the following BPG:

Graph 4.1.

ℓ
r
xℓ

s
xx∂

m
x ∂tw∂

m+1
x w ℓ

r
xℓ

s
xx∂

m−1
x ∂tw∂

m+2
x w ... ℓ

r
xℓ

s
xx∂tw∂

2m+1
x w

ℓ
r+1
x ℓ

s−1
xx ∂

m
x ∂tw∂

m+2
x w ℓ

r+1
x ℓ

s−1
xx ∂

m−1
x ∂tw∂

m+3
x w ... ℓ

r+1
x ℓ

s−1
xx ∂tw∂

2m+2
x w

... ... ... ...

ℓ
r+s−1
x ℓ

1
xx∂

m
x ∂tw∂

m+s
x w ℓ

r+s−1
x ℓ

1
xx∂

m−1
x ∂tw∂

m+s+1
x w ... ℓ

r+s−1
x ℓ

1
xx∂tw∂

2m+s
x w

ℓ
r+s
x ∂

m
x ∂tw∂

m+s+1
x w ℓ

r+s
x ∂

m−1
x ∂tw∂

m+s+2
x w ... ℓ

r+s
x ∂tw∂

2m+s+1
x w

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−(r + 1) −(r + 1) −(r + 1) −(r + 1)

−(r + 2) −(r + 2) −(r + 2) −(r + 2)

−(r + s− 1) −(r + s− 1) −(r + s− 1) −(r + s− 1)

−(r + s) −(r + s) −(r + s) −(r + s)

Based on Graph 4.1, we have the following result.

Proposition 4.1. Under the assumption of Proposition 2.3,

wtI2(w) = (·)t + (·)x +
∑

DC

dC(r, s,m)ℓrxℓ
s
xx∂

m
x ∂tw∂

m+1
x w, (4.3)
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where DC
△
= {(r, s,m) ∈ Z

3
≥0|r + 2s+ 2m+ 1 = n, s ≥ 3, (−1)s = −1} and

dC
△
= (−1)n+m

(s− 1)(2m+ s)(n− 2m− s− 1)

2(m+ s)
C2m+s+1
n Cs

m+s

s−1∏

j=1

(r + j).

Remark 4.1. In the case that n ≤ 6, we know that DC = ∅. In the case
that n = 7, we know that DC = {(0, 3, 0)} and wtI2(w) = (·)t + (·)x −
210ℓ3xx∂tw∂xw.

Proof of Proposition 4.1. Similar to what we did in the proof of Propo-
sition 3.1, we write

dC =
∑

D′

h(r, s, a, b)g(r, s, a, b),

where the domain D′ is the set of all parameters sets (r, s, a, b) by terms
ℓrxℓ

s
xx∂

a
x∂tw∂

b
xw in Graph 4.1, and h(r, s, a, b) and g(r, s, a, b) denote the coef-

ficients and weights of term ℓrxℓ
s
xx∂

a
x∂tw∂

b
xw, respectively. Recall that I2(w)

has the following form:

I2(w) =
∑

even k∈[0,n]

Ck
n(−1)n−kℓn−kx ∂kxw

−C2
nℓxx

∑

odd j∈[0,n−2]

Cj
n−2(−1)n−2−jℓn−2−j

x ∂jxw.

Hence, we can find at most two terms ℓr+s−1
x ℓ1xx∂tw∂

2m+s
x w and ℓr+sx ∂tw∂

2m+s+1
x w,

with possible non-zero coefficients, in the bottom right corner of Graph 4.1.
Then we see that

dC(r, s,m) = h(r + s− 1, 1, 0, 2m+ s)g(r + s− 1, 1, 0, 2m+ s)

+h(r + s, 0, 0, 2m+ s+ 1)g(r + s, 0, 0, 2m+ s+ 1).

If s is even, from I2 and the BPG we know

h(r + s− 1, 1, 0, 2m+ s) = h(r + s, 0, 0, 2m+ s+ 1) = 0. (4.4)

20



If s is odd, we can find





h(r + s− 1, 1, 0, 2m+ s) = (−1)nC2
nC

2m+s
n−2 ,

g(r + s− 1, 1, 0, 2m+ s) = (−1)m+(s−1)Cm
m+(s−1)

s−1∏

j=1

(r + j),

h(r + s, 0, 0, 2m+ s+ 1) = (−1)nC2m+s+1
n ,

g(r + s, 0, 0, 2m+ s+ 1) = (−1)m+sCm
m+s

s∏

j=1

(r + j),

(4.5)

therefore

dC(r, s,m)

= (−1)n+m[Cs−1
s+m−1C

2
nC

2m+s
n−2 − Cs

s+m(r + s)C2m+s+1
n ]

s−1∏

j=1

(r + j)

= (−1)n+m
(s− 1)(2m+ s)(n− 2m− s− 1)

2(m+ s)
C2m+s+1
n Cs

m+s

s−1∏

j=1

(r + j).

(4.6)
In the last equation, we used the fact that r = n−2s−2m−1, which follows

from (r, s,m) ∈ D defined in (4.2). Set DC
△
= D ∩ {s ≥ 3, (−1)s = −1}. By

(4.4) and (4.6), we know that

∑

D

dC(r, s,m)ℓrxℓ
s
xx∂

m
x ∂tw∂

m+1
x w =

∑

DC

dC(r, s,m)ℓrxℓ
s
xx∂

m
x ∂tw∂

m+1
x w.

This, along with (4.1), implies (4.3).

5 Proof of Theorem 1.1

This section proves Theorem 1.1.

Proof. By the definitions of I1 and I2 (see (2.18)), using Propositions
3.1, 4.1, integrating (1.4) over (0, T ) × (0, L), we obtain that when v ∈
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C∞
0 ([0, T ]× [0, L]) and w = θv,

∫ T

0

∫ L

0

θ2|Pv|2dxdt

≥
∫ T

0

∫ L

0

[ n−1∑

m=0

n2Cm
n−1ℓ

2n−2m−2
x ℓxx +O(λ2n−2m−3)

]
|∂mx w|2dxdt

+2

∫ T

0

∫ L

0

α
∑

DC

dC(r, s,m)ℓrxℓ
s
xx∂

m
x ∂tw∂

m+1
x wdxdt,

(5.1)

where the last term
∑

DC

dC(r, s,m)ℓrxℓ
s
xx∂

m
x ∂tw∂

m+1
x w is defined in Proposition

4.1. Noting that

ℓrxℓ
s
xx∂

a
x∂tw∂

m+1
x w = (ℓrxℓ

s
xx∂

a−1
x ∂tw∂

m+1
x w)x − (ℓrxℓ

s
xx)x∂

a−1
x ∂tw∂

m+1
x w

−ℓrxℓsxx∂a−1
x ∂tw∂

m+2
x w,

(5.2)

with (r, s, a,m) ∈ D1
△
= {(r, s, a,m) ∈ Z

4
≥0|1 ≤ a ≤ m, r + 2s+ a+m+ 1 =

n, s ≥ 3}, where a decreases to 1 during the iteration, one knows

ℓrxℓ
s
xx∂

a
x∂tw∂

m+1
x w = (·)x + ∂tw

∑

D2

(·)ℓrxℓsxx∂mx w,

where D2
△
= {(r, s,m) ∈ Z

3
≥0|r + 2s+m = n, s ≥ 3}. Therefore,

∑

DC

(·)ℓrxℓsxx∂mx ∂tw∂m+1
x w = (·)x +

∑

D1

(·)ℓrxℓsxx∂ax∂tw∂m+1
x w

= (·)x + ∂tw
∑

D2

(·)ℓrxℓsxx∂mx w.
(5.3)

For convenience, we set Φ
△
=

∑

D2

(·)ℓrxℓsxx∂mx w in (5.3). Then by (1.2), we

find
2αwtΦ = 2Φ

[
θPv + αℓtw − I1 − I2 − I3

]

≥ −θ2|Pv|2 − |Φ|2 + 2Φ
[
αℓtw − I1 − I2 − I3

]
.

(5.4)

In the case that s ≥ 3, Φ is a lower order term compared with I1 or I2.
Comparing the order of ℓxx, we can obtain

Φ(αℓtw + I1 + I2 + I3) = O(λ2n−2m−3)|∂mx w|2. (5.5)
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Now, it follows from (5.1) and (5.5) that

∫ T

0

∫ L

0

θ2|Pv|2dxdt

≥
∫ T

0

∫ L

0

[ n−1∑

m=0

n2Cm
n−1ℓ

2n−2m−2
x ℓxx +O(λ2n−2m−3)

]
|∂mx w|2dxdt.

This completes the proof of Theorem 1.1.

6 Application

In this section, we will prove the conditional stability in a Cauchy problem
for a time fractional diffusion equation with 1

3
-order with the help of Theorem

1.1. First, we transfer the original equation to an usual p.d.e. with its
principal part ∂t− ∂6x, with the aid of the Caputo derivative. Then we apply
our Theorem 1.1 to obtain a Carleman-type inequality for the new equation.
Finally, we use the similar way to that used in [13] to obtain the desired
conditional stability.

Given T > 0, L > 0, we consider the following fractional diffusion equa-
tion:





∂
1/3
t u(t, x)− ∂2xu(t, x) = f(t, x), (t, x) ∈ (0, T )× (0, L),

u(0, x) = 0, x ∈ (0, L),

∂jxu(t, x)|x=0 = hj(t)(j = 0, 1), t ∈ (0, T ),

(6.1)

where f(x) and hj(t) (j = 0, 1) are given, ∂
1/3
t is the fractional order deriva-

tive in the Caputo sense which is defined by

∂γt y(t)
△
=

1

Γ(1− γ)

∫ t

0

∂sy(s)

(t− s)γ
ds, γ ∈ (0, 1),

and Γ(x) =

∫ +∞

0

sx−1e−sds is the Gamma Function.

Before the main result, we introduce some notation. Given 0 < δ0 < T/2,
we let

Q
△
= {(t, x)|δ0 < t < T, 0 < x < L}, Ω △

= (0, L).
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Given 0 < ε < min{L2, 1} and L < x0 < L+
√
ε/2, we define

Qε
△
= {(t, x) ∈ Q|ψ(t, x) > ε},

where
ψ

△
= (x− x0)

2 − β(t− T/2)2

with β > x20/(δ0−T/2)2. One can easily see that Qε is a nonempty subset of
Q when ε is small. By (6.1), one can easily check that if u ∈ C1,6(Q), then






∂2xu(t, 0) = ∂
1/3
t h0(t)− f(t, 0)

△
= h2(t),

∂3xu(t, 0) = ∂
1/3
t h1(t)− ∂xf(t, 0)

△
= h3(t),

∂4xu(t, 0) = ∂
1/3
t ∂

1/3
t h0(t)− ∂

1/3
t f(t, 0)− ∂2xf(t, 0)

△
= h4(t),

∂5xu(t, 0) = ∂
1/3
t ∂

1/3
t h1(t)− ∂

1/3
t ∂xf(t, 0)− ∂3xf(t, 0)

△
= h5(t).

(6.2)

Theorem 6.1. Assume that u ∈ C1,6(Q) satisfies (6.1), and f ∈ C1([0, T ];L2(Ω))∩
L2(0, T ;H4(Ω)). Let ψ(t, x) be given chosen such that Qε/4 ⊂ Q and hj(j =
2, 3, 4, 5) be given by (6.2). Then there exist C > 0 and τ ∈ (0, 1) such that

5∑

j=0

||∂jxu||L2(Qε) ≤ C(F +M1−τF τ ), (6.3)

where M
△
=

5∑

j=0

||∂jxu||L2(Q) and

F = ||(∂4x + ∂
1/3
t ∂2x + ∂

1/3
t ∂

1/3
t )f(t, x)||L2(Q) + ||f(0, ·)||L2(0,L)

+||(∂2x + ∂
1/3
t )f(0, x)||L2(0,L) +

5∑

j=0

||hj(t)||H1(0,T ).
(6.4)

Corollary 6.1. u ∈ C1,6(Q) satisfies (6.1) with f = 0 and h1 = h2 = 0 in
Q. Then u = 0 in Q.

We recall the following known result:

Lemma 6.1. ([13, Lemma 2.2]) If z ∈ AC([0, T ]) and z(0) = ∂γ1t z(0) = 0,
then

∂γ2t ∂
γ1
t z = ∂γ1+γ2t z in (0, T ), 0 < γ1 + γ2 ≤ 1, γ1, γ2 > 0.
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Proof of Theorem 6.1. We divide the proof into several steps.
Step 1. Set

û(t, x) = u(t, x)− 3

Γ(1/3)
t1/3f(0, x)− 3/2

Γ(2/3)
t2/3f1(x) (6.5)

where
f1(x)

△
= (∂2x + ∂

1/3
t )f(0, x). (6.6)

For γ1, γ2 ∈ (0, 1), we know that

∂γ1t t
γ2 =

Γ(1 + γ2)

Γ(1 + γ2 − γ1)
tγ2−γ1 .

Hence, by (6.1) and (6.5), it is easy to see that

û(0, x) = 0, ∂
1/3
t û(0, x) = 0. (6.7)

Further, by (6.7) and (6.6), we have

∂
2/3
t û(0, x) = ∂

1/3
t [∂

1/3
t û(t, x)]

∣∣
t=0

= ∂
1/3
t

[
∂2xu(t, x) + f(t, x)− f(0, x)− 3

Γ(1/3)
t1/3f1(x)

]∣∣∣
t=0

= ∂2x

[
∂2xu(t, x) + f(t, x)

]∣∣∣
t=0

+ ∂
1/3
t f(0, x)− f1(x)

= (∂2x + ∂
1/3
t )f(0, x)− f1(x) = 0.

(6.8)

Next, by (6.7)–(6.8), we have

∂tû(t, x) = ∂
1/3
t [∂

2/3
t û(t, x)]

= ∂
1/3
t

[
∂4xu(t, x) + ∂2xf(t, x) + ∂

1/3
t f(t, x)− f1(x)

]

= ∂4x[∂
2
xu(t, x) + f(t, x)] + ∂

1/3
t (∂2x + ∂

1/3
t )f(t, x)

= ∂6xu(t, x) + (∂4x + ∂
1/3
t ∂2x + ∂

1/3
t ∂

1/3
t )f(t, x).

(6.9)

Combining (6.5) and (6.9), we end up with

∂tu− ∂6xu = f̃(t, x), (6.10)
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where

f̃(t, x) =
1

Γ(1/3)
t−2/3f(0, x) +

3/2

Γ(2/3)
t−1/3f1

+(∂4x + ∂
1/3
t ∂2x + ∂

1/3
t ∂

1/3
t )f.

(6.11)

By (6.2) and (6.10), we have

{
∂tu− ∂6xu = f̃(t, x), (t, x) ∈ Q,

∂jxu(t, x)|x=0 = hj(t), j = 0, 1, ..., 5, t ∈ (δ0, T ).
(6.12)

Step 2. Let χ(t, x) ∈ C∞(Q; [0, 1]) satisfy

χ(t, x) =

{
1, (t, x) ∈ Qε/2,

0, (t, x) ∈ Q\Qε/3.
(6.13)

Then we set

ũ = χ
[
u−

5∑

j=0

xj

j!
hj(t)

]
△
= χu− χh̃(t, x). (6.14)

The boundary of Qε/4 consists of two line segments: one is a subset of
{(t, x)|δ0 < t < T, x = 0}, while another one is in Q\Qε/3. One can
easily check that ∂tũ(t, x) = ∂jxũ(t, x) = 0, j = 0, 1, ..., 5 on ∂Qε/4, hence

ũ ∈ H1,6
0 (Qε/4). Moreover

∂tũ+ ∂6xũ

= χf̃ + (∂tχ)u+

5∑

j=0

Cj
6(∂

6−j
x χ)∂jxu− (∂tχ+ ∂6xχ)h̃− χ∂th̃.

(6.15)

Applying the Carleman estimate in Theorem 1.1 with v = ũ, w = eλψũ ,
we conclude that there is a large λ > λ0 > 0 on Qε/4, such that

5∑

j=0

||eλψ∂jxũ||2L2(Qε/4)
≤ C||eλψ(∂t + ∂6x)ũ||2L2(Qε/4)

≤ C||eλψχf̃ ||2L2(Qε/4)
+ C||eλψ(∂tχ)u||2L2(Qε/4)

+C

5∑

j=0

||eλψ(∂6−jx χ)∂jxu||2L2(Qε/4)
+ C

5∑

j=0

||hj||2H1(δ0,T )
.

(6.16)
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By the definition of χ(t, x) in (6.14), one knows that ∂tχ, ∂xχ, ..., ∂
5
xχ are

supported on {x|ψ ≤ ε/2}. Recall that M =
5∑

j=0

||∂jxu||L2(Q). Thus, we have

||eλψ(∂tχ)u||2L2(Qε/4)
+

5∑

j=0

||eλψ(∂6−jx χ)∂jxu||2L2(Qε/4)
≤ CeελM2. (6.17)

Therefore

5∑

j=0

||eλψ∂jxũ||2L2(Qε/4)
≤ CeCλ(||f̃ ||2L2(Q)+

5∑

j=0

||hj||2H1(δ0,T )
)+CeελM2. (6.18)

Since u = ũ+ h̃, (6.18) yields

5∑

j=0

||eλψ∂jxu||2L2(Qε)

≤ C
5∑

j=0

||eλψ∂jxũ||2L2(Qε)
+ C||eλψh̃||2L2(Qε)

≤ C

5∑

j=0

||eλψ∂jxũ||2L2(Qε/4)
+ Ce2ελ

5∑

j=0

||hj||2L2(δ0,T )

≤ CeCλ
[
||f̃ ||2L2(Q) +

5∑

j=0

||hj||2H1(δ0,T )

]
+ CeελM2.

(6.19)

Meanwhile, it follows from (6.14) and (6.4) that

||f̃ ||2L2(Q) +

5∑

j=0

||hj||2H1(δ0,T )
≤ CF 2.

Since ψ > ε in Qε, the above, along with (6.19), implies

5∑

j=0

||∂jxu||2L2(Qε)
≤ e−2ελ

5∑

j=0

||eλψ∂jxu||2L2(Qε)
≤ CeCλF 2 + Ce−ελM2, (6.20)
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for all λ > λ1, where λ1 is a sufficiently large number. Replacing the constant

C by CeCλ1 , setting λ̃
△
= λ− λ1 > 0, we have

5∑

j=0

||∂jxu||2L2(Qε)
≤ CeCλ1

[
CeCλ̃F 2 + Ce−ελ−Cλ1M2

]

≤ CeCλ̃F 2 + Ce−ελ̃M2.

(6.21)

Step 3. In the case that F < M , we put λ̃ =
2

ε+ C
ln
M

F
> 0. Then we

have
5∑

j=0

||∂jxu||2L2(Qε)
≤ CM

2C
ε+CF

2ε
ε+C , with τ

△
=

2ε

ε+ C
. (6.22)

In the case that F ≥M , it follows from (6.21) that

5∑

j=0

||∂jxu||2L2(Qε)
≤ C(eCλ̃ + e−ελ̃)F 2 ≤ CF 2. (6.23)

Combining (6.22) and (6.23), we get the desired result.
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