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Abstract

In this paper, we obtain a Carleman estimate for the higher order

partial differential operator P 2 ady + 0 (with o € R,n € Z>9). In
the process of establishing this estimate, we developed a new method,
which is called the “back-propagation method” (the BPM, for short).
This method can also be used to build up Carleman estimates for some
other partial differential operators, and might provide assistance with
corresponding numerical analyses. As an application of the above-
mentioned Carleman estimate, we proved the conditional stability of
a Cauchy problem for a time fractional diffusion equation with %—order.
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1 Introduction and main result

In 1939, Carleman [1] showed that a second order elliptic operator in
dimensional two enjoys the unique continuation property. The technique
used there is called “Carleman weight inequality” and has become one of
the major tools in the study of the unique continuation property, control
problems and inverse problems for partial differential equations.

The Carleman estimate can be regarded as a weighted energy inequality,
which can be described as follows:

Let €2 be a connected open set in R”, and let P = P(x, D) be a differential
operator of order n in €. Assume that there is a suitable function ¢(-) €
C>=(;R) satisfying Vé(z) # 0, v € Q. Let § = ¢*. We say that the
Carleman type estimate holds for P if there exists a constant C' > 0 such
that
D e / 6% D™v|%dx < C / 0P (x, D)v|*dz,

Q Q

0<m<n

where v € C§°(2) and A > 0 is a parameter.

Up to now, there are numerous results on Carleman estimates for the sec-
ond order partial differential operators, the corresponding applications are
well understood (for example, see [3] and the references cited therein). For
Carleman estimates of higher order partial differential operators, we refer to
2,4, 5,13, 14, 15] for the fourth order parabolic-type operators and fourth or-
der Schrodinger operators, [11] for the sixth-order parabolic operators. Based
on an identity of Treves (see [9, Lemma 17.2.2]), [6, 7] obtained unique con-
tinuation properties for higher Order parabolic equations and Schrodinger
Equations. Recently [10] established a Carleman estimate for high order
equations of Korteweg-de Vries type with the weight function # = e** in one
dimensional case. Compared to Carleman estimates for second order par-
tial differential operators, the computation of Carleman estimates for higher
order partial differential operators is much more complicated.

In this paper, we aim at establishing a Carleman estimate for the operator

P =ad, + 0y, a € R\{0}, n € Zx,,

with an exponential-type weight function (¢, x) (which will be given later).
More importantly, using P as a carrier, we will introduce the “backpropaga-
tion method” (the BPM, for short) in the building of the Carleman estimate
for P.



Next, we will explain what role the BPM will play in the process of
establishing the Carleman estimate for P. As we know, elementary calculus
can be enough to grasp the main idea of Carleman estimate (See [3, Chapter
1]). To obtain the core, there is an important ingredient which should be
emphasized, i.e., the principal part of our operator §(P6~1). Noting that the
principal part of our operator contains the n-th derivative with respect to the
x variable, hence the decomposition and the computation will cause many
difficulties. For the reader’s convenience, we simply choose the following
weight functions:

Y(t,z) = (. —x0)? — Bt — 1), ((t,x) = M(t,z), 6O(t,z) =D (1.1)

where xo,t0 € R, f € R,.
For v(t,r) € C®°(R xR;R), set w = fv = e‘v with £ given by (1.1). Then

OPv = abdv + 00, v

= awt—aftw+]1(w)+12(w)+[3(w). (12)

Here I;(w),j = 1,2, 3 are chosen in the following manner:
90 v = I(w) + L(w) + I3(w).

Note that the order of A equals to the sum of orders of 3¢, j > 1. Then
we decompose §07v as following:

e The item /;(w) is the sum of all such terms that are the highest order
terms of A with an odd order derivative of x, and the second highest
orders terms of A with an even order derivative of x;

e The item [5(w) is the sum of all such terms that are the highest order
terms of \ with an even order derivative of x, and the second highest
orders terms of A with an odd order derivative of x;

e The item [3(w) is the sum of all other terms in 09} v.

It deserves mentioning that I3(w) consists of only lower order terms, com-
pared with I;(w) and Iy(w).
By (1.2), we have



OPvIy, = qwdy + L Iy + | I)? + I,(Is — alyw). (1.3)
From (1.3), it is easy to see that:

02| Pu|? > 211 15 4 20w Iy — |I3(w) — alyw|?. (1.4)

Comparing I3(w) — alyw with Iy, I, we know |I3(w) — alyw|? contains only
lower order term.
Our keys to establishing the Carleman estimate for P are as follows:

e The decomposition of principal operator 07v (see Proposition 2.2).
e The choice of I;(w)(j = 1,2,3) (see Proposition 2.3).

e The estimates of [ (w)lo(w) and w;lo(w)(see Propositions 3.1 and 4.1).

The BPM developed in this paper is used to solve the third key above.
More precisely, it can help us to simply prove that the highest order energy
terms in [;(w)Iy(w) have the positive sign, while the “bad” terms yielded
from w;Iy(w), such as wyw, and ww,,, are indeed lower order terms. Our
BPM is inspired by “back-propagation”, which is widely used in the field of
machine learning, dating back to [12] published in 1986. In machine learning,
it is difficult to calculate derivatives forward, so people adopt a backward
method, which was proposed in the 1970s, to solve differential problems
of nested functions. Now people working on machine learning will draw a
network graph to calculate a derivative backward, which can be viewed as
the embryo of our BPM.

Throughout of this paper, we use C* to denote combinatorial numbers,
v or Oyv to represent the derivative of v in the time variable, and v, or 0,v
to denote the derivative of v in the space variable. In what follows, we will
use C' to denote a generic positive constant which may vary from line to line.
For k € Z>1, we denote by O(A\¥) a function of order A\* for large A\. We use
“(+)” or “etc.” to denote such terms whose concrete forms does not have to
be given.

The main result of this paper is as follows:

Theorem 1.1. Let ' > 0, L > 0, o € R\{0}, n € Z>y. Let v = (z —
10)% — B(t —to)? withaxg > L, 0 <ty <T, 8 €R,. For anyv € C([0,T] x



0, L];R), and w = e v, the following inequality holds:

n—1 T L
Z/ / |:n2CTTLn_1)\2n—2m—1w§n—2m—2wxx+O()\2n—2m—3) |0;nw|2dxdt
m=0 0 0

T L
< / / e | adv + HOZU}Qd:)Jdt.
0o Jo
(1.5)
Remark 1.1. The main innovation of this paper is the BPM. It is not only
applicable to different partial differential operators, but also to different forms

of the weight function . In addition, it can be used for the estimation of
boundary terms. These will be given in our forthcoming work.

Remark 1.2. The inequality (1.5), with « = —1 and n = 4, was built up in
[13] by a different way from ours. Based on it, one can obtain the conditional
stability in a Cauchy problem for a half-order fractional diffusion equation.

Remark 1.3. The reason why we do not convert the function w on the left
side of (1.5) into v is as follows: This way not only gives us the explicit
coefficients of all energy terms, but also simplifies the computation. In fact,
this transformation can be easily implemented in the following way: Since
w = eMv, we can find a constant Cy > 0 such that

n—1 T L

> / / NP2l 2 oy 2 vt

m=0"0 0
n—1 T L

=) / / AZn=2m=L o200 gm (=M 2 dadt (1.6)
m=0"0 0

n—1 T L
<Gy / / AZn=2m= gma 2 ddt.
m=0"0 0

Then, the combination of (1.5) and (1.6) yields that there exists a Ao > 0,
such that for any A > Xy, we have

n-l .7 .L T pL
Z/ / N\Zn=2m=1 200 gma, 12 dgdt < C’/ / M| PulPdedt  (1.7)
—Jo Jo o Jo

for some C' > 0.



The rest of this paper is organized as follows. In section 2, we give some
preliminaries. The estimations of I11; and w5 are given in sections 3 and
4, respectively. In section 5, we give our proof of Theorem 1.1. As its
application, we consider an inverse problem for a time-fractional diffusion
equation in section 6.

2 Some Preliminaries

This section presents preliminaries. We start with introducing notation.
For my, my € R, denote

mo ma2
A A
S SR | R |
Jj=m1 je[ml,mQ}ﬁZ Jj=m1 je[m1,mm2]ﬂZ
. . A A
with the convention that Z a; = 0 and H a; = 1.
JjED JjED
For 5, k € Z, denote
J' if0<k<j
k A . ) 1 — — ]?
Cj = kl(j — k)!
0, else .

2.1 An Identity about Combinatorial Numbers

Proposition 2.1. For (n,m) € {Z*|n >2, 0 < m < n — 1}, define

Kam = =CLO7 Gy = CLY_(-DNGIH O + Cren)
m 2.1)
% D (1R 2k)(CpTRCT ).
k=0
Then )
ICn,m - %Cg’—l' (22)

Remark 2.1. In (2.1), the form of K, is the highest order coefficients
of energy terms involved in the estimation of I11s. We set this Proposition
because it is not an obvious result.



Proof of Proposition 2.1. For (n,m) € {Z*n>2, 0 <m <n— 1}, we

simply write ) ) .
n—2m —

’Cn,m = Cy%Hl + 9 H2> (23)
where
Hi= —CrCiy = Y (D (Cptems + crhons),
i k=1 (2.4)
My = (=ML + 2k)(CprHrCrr).
k=0

We first calculate H;. By replacing the index of summation, one can get:

i =—Crem, =Y (—DF(Crrhemt + opromy)
k=1
m 2m
= (1) (1)CIC 4 (=) Y (=)t
q=m g=m+1
1 (2.5)
H(=1)mN T (—1)r0ecEr,
q=0
2m
= ()™ (—1)rcaciry e
q=0

Meanwhile, we have the identity:
(1—2)"1+2)"?=1-2*)"2(*-2r+1), z€R, necN. (2.6)

Comparing the coefficients of 2*™ (with m € IN) on the both sides of (2.6),
we find

2m
S o (-1)rCacim = O (-1 + O (1™, meN. (2.7)
q=0

Combining (2.5) and (2.7), we have
H,=Cm )t —Com,. (2.8)

n —
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Next, let us calculate H,. By a similar way dealing with H;, we can
obtain

My =3 (-1 + 2RO

k=0
k=0
~ m (2.9)
= Z (_1)‘1—M—1quLCfLM+1—q + Z(_l)ﬂl—q—lqczm+l_ch
qg=m+1 =0
2m+1
= (—1)m+1 Z (_1)qq03072lm+1_%
q=1

At the same time, we have the identity:

(1+ x)"%(l —2)"=-n(l+2)(1-2°)""" z€R, neN. (2.10)

Comparing the coefficient of 2™ (with m € IN) on the both sides of (2.10),
we find:

2m 2m+-1
DO Dk DO = Y (1) 1CIC T = —n(=1) G
k=0 q=1
(2.11)
Combining (2.9) and (2.11), we have
Ho =nC)" . (2.12)
Finally, it follows from (2.3), (2.8) and (2.12) that
2n —2m —1
Ko = 205 — Oy + M2 Do
) 2 (2.13)
n m
= ?Cn—l‘
This completes the proof of Proposition 2.1. O



2.2  Decomposition of 60]v

In this subsection, we introduce a decomposition of #97v, which will play
an important role in the proof of our main result.

Proposition 2.2. Let 0 be given by (1.1). Set w = 0v. Then

s—1
o= S [Co LG [Cyemasan], @)
T =0

r4+2s+m=n
where v, 5, m € ZL>.

Remark 2.2. For any fized n, the decomposition of 007w can be obtained
by virtue of an iteration. Indeed, it is clear that

0% = w, 00rv = 000 w) = d,w — Lyw.

Assuming f = 002v, noting that 0, = 0L,, we have

0rly = eax(g) - 9(%) =0, f — . f

= 0,(000v) — £,(00%v).

(2.15)

As we explained before, the order of A equals to the sum of orders of 9/,
j > 1. In fact, we only care about terms with s = 0,1 in §0}v. The terms
involved in (2.14) with s > 2 only yield lower order terms. Truncating 69} v
at s = 0,1, we have

bore = > (—1)Creorw— > (=1 CRCR by w + -

n “x¥z n~"n—2
r+m=n r+m=n—2
=Y (e
m=0
n—2
—Clyy Y (=1)"2TmCR O w A
m=0

(2.16)

Proposition 2.3. Under the assumption of Proposition 2.2, we have
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where

[(Lw)= S Ci(-)reT o
odd j€[0,n]
—Colee Y Cr (=12 R ok,
even ke€[0,n—2]
Lw)= Y Ch-1)"retokw (2.18)
even ke[0,n]
~Cllae Y (1) P,

odd j€[0,n—2]

| I(w) £ 00™0 — I (w) — L(w).

For concrete n, by Proposition 2.3, we can obtain the decomposition of
002w immediately.

Example 2.1. In the case that n = 4, we have

I = —40,0Pw — 4030, w — 60,,07w — 602w,
(2.19)

I, = 8?;10 + 6&268310 + Eiw + 120,40, w.
Example 2.2. In the case that n =5, we have

I = Ow + 1002020 + 5020, + 30,0, 07w + 1003( w0,
Iy = —50,0%w — 1003 0%w — Pw — 100,,0°w — 30020,,0,w.

Our proof of Proposition 2.2 is based on the iteration (2.15). The follow-
ing example will help us to understand our idea.

Example 2.3. If we have already known that 00%v = 120,0,,0,w — 403 0w —
6020w+ - -+ (see Example 2.1), we can find all the coefficients in (75 0™ w
with v + 25 +m = 5 in 002v. Let us see how to obtain the coefficient of
(20,0, in 0Pv.

By (2.15), one knows that 005v = 0,(00%v) — ,(00%v). So one only needs
to find all terms A in 003v such that

8IA:c-€i,€m8xw+~-~, or —&Azc-ﬁiﬁmﬁxw—i—~-~,

10



where ¢ € R s the coefficient. There are 3 terms one can find, which are

Ly - (1200 ,4,0,w) = —12020,, 0w,
ar(_4£iarw> = _12€i£wwamw T, (2'20)
0p (=602 gpw) = =602 0pw + - - - .

Adding them up leads to the coefficient —30. This matches what we got in
Example 2.2.

Proof of Proposition 2.2. It is easy to check that

00, v = w, — Lyw,

9851) = Wyy — 20w, + €iw —{w

satisfy (2.14). We inductively assume that (2.14) holds for some n > 2. We
will prove that (2.14) holds for n + 1.

By (2.15), we know that 69""'v = 0,(00"v) — £,(00"v). Considering
a general term (7¢5 0w in 00" v with r + 25 + m = n + 1, proceeding
exactly the same analysis of (2.20), we know that there are 3 terms in 69}v
contributing to 2.3 O

rxrr-x

(_gm) .Cleg—lgs oM = _Clgres amw7

O (2l T 0 w) = (r + 1) el ls, 0w + - - - (2.21)
B (cslh 3, 0T w) = calh 3 M w + - -

where )

s—1
r— S 1 m
a =(-1) o ;(HCE—ﬂ)Cr—l—i—m?
=0
1

(s—1)—1

< cy = (_1)r+1+s—1

)—
(8—1)!< 1 Cg—m)@ium,

s—1
T 81 m—
o = (1)< ([T i) O
=0

\
Adding 3 formulas in (2.21) up, noting that r + 2s +m =n + 1, we can get
the coefficient of "¢ 0™w in 0" v. Considering whether r, s, m equal(s)
zero, we discuss the following 7 cases:

11



1.r#0, s#0,m#0:

d =—c+(r+1)cy+c3

s—1
r+s 1 m (T + 1)
= 1) * a(HCz—ﬂ) |: r—14m 02 (e 1) r+1+m Cr—i—m 1]
r s = m (T + 1) m m—
* H —21 [Cr 14+m + C C?“-i—l—i—m + Cr+n"}—1:|
‘ r4+m-+1
T,+8 r +2s+m
! H r+m rm
S— 1
1 n+1
— 1 r+s 02 m
( ) s](H n—2l)n_|_1 — 9 r+m
T+S H n+1— 2l 7“+m
(2.22)
2.1r=0,s#0,m=#0: ¢, =0,

d —(7‘+1)02+03

R 31<H

2

2

n+1-21

n+1-21

Cly+ Cinl]

o)

n2(s 1)
1—2s72
n+1 m

n+1-—2s 2s+m

)

Ps n+1 m
1 s—1
= (1 (i)
T =0
3.r#0, s=0m#0: ¢ =0,
d = —C+C3= C;n—l—i-m + Cr—i—m 1= C:}i-m

12



4.7r#0, s#A0,m=0: c3 =0,

d =—-c1+(r+1)ey
g1 r (r+1)s
=(-1) g(ll}cz—zz) [CS—HO 02—2(3—1) CS+1+O:|
= +1
— g (Meza) [+ 5]
1=0 n—2(s—1)
= n+1-2s 2r+1)s
=(=1) Q(ECZ“_Z) n+1 [ (n—2$+2)(n—2$+1)}
= r (r+1)(n+1—7r)
=(=1) g(gc’z“_m)n—l—l [1+ (r+1)r }
s—1
= (_1)85(1_[02“—21)
T =0
5,7r=0,s=0, m#0: ¢, =cy =0,

6. 7r=0,s#0, m=0: ¢ =c3=0,
d —(7‘—1-1)02

= -0y, (HC% 2)CY

81n+1n(n—1)(n—2)(n—3) 3x2

st 2 2 2 2
Jd(n+1Dn 4x3
s! 2 2

s' H n+1— 2l

7.r#0, m=0, s:(): 02203:0,

1) CI R EEET() )

We note that the results of cases 2-7 are consistent with those of case 1.
Then we complete the proof of Proposition 2.2. O

13



2.3 Introduction of Back-Propagation Method

In this subsection, we will show how the back-propagation method works
in this paper.

Let (A, B) € Z>o X Z>o be a pair of positional parameters (which can
be replaced), and F(A, B) be a given term located at position (A, B). For
(X,Y) € Z x Z, we define

POX.Y) = { 0 X0, AlorY ¢ 0,5,
TxyF(X—l,Y)+SxyF(X,Y—1), 6[56,
(2.23)
where ryy, sxy € R are known.
The relationship given in (2.23) can be represented by the following prop-

agation graph:

Graph 2.1.
So1 S02 SoB
F(0,0) F(0,1) <_C] F(0, B)
10 . 11 5 1. s ™B
F(1,0) — P(1,1) <= L [F(1,B)
720 S T'21 s T2. s 2B
Al s T A2 s TA. 5 TAB
F(A,0) 2 F(a,1) |2 A% [[(A, B)

Once we desire to know F(A, B) = (7)F(0,0) + etc., this graph will be
helpful.

The number next to an arrow is called a “weight”, meaning the factor
provided by the previous term to the next term. A propagation occurs only

along the arrow.
We define the “weight” from F(A, B) to F(0,0) in the following manner:

(i) When F(A, B) = F(0,0), we define the weight to be 1.

(ii) When there is no viable path from F'(A, B) to F'(0,0) and F(A, B) #
F(0,0), we define the weight to be 0.

(iii) When there are not the same and there exists at least one viable path
from F(A, B) to F(0,0), we first find all such paths, then for every

14



such path, multiply all weights along it to get a weight (which is called

the path weight for this path), and finally, add up path weights for all

paths mentioned above to get a new weight, which is the weight from
F(A, B) to F(0,0).

Based on Graph 2.1, in this paper we will introduce some back-propagation

graphs (BPG(s) for short), in the sense of integration by parts, to give the

proof of Carleman estimate. Through a BPG, one can easily analyse the

weight relationship, allowing one obtains the results of integration by parts
without any practical calculation.

3 BPM for the estimation of 1/,

We arbitrarily fix an integer n > 2. For any integer m with 0 < m < n-—1,
we hope to find the coefficient of the final term ¢2*=2m=2¢ _ |0™w|? in I, I,.
Set

P2 —2m—1.
We introduce the following back-propagation graph:
Graph 3.1.

[zg—léxxagwagw]i[gg—lexxam+lwam—l ]«i[ }i[ez’—lemagmwagw]

—p/2f r] —r]
| mor oy }i[ B m2om =ty }—[ }—[ (r2m a0

The reason that the above graph is called the “back-propagation graph”
is that we start drawing this graph from the goal term which is asked for, and
the rest part of the graph is drawn against the direction of the propagation.

Let A and B be two terms in two adjacent positions. An arrow from A
to B with the number k£ means that A = kB + etc., through one step of inte-
gration by parts. For example, “(P=1(,, 0™ wdm 1w —5 =10, oM wdmw”
means

P, 0 wo™

= (P O wI W)y — 0 O WO w — (p — 1)E202 M wd™  w

= (=1) - o7, 0" wdw + ete..

Based on Graph 3.1, we have the following result.

15



Proposition 3.1. Under the assumption of Proposition 2.3, we have

n—1 2
n
LI, = ()w + [70771—16925”_27”_261090 + O()\2n_2m_3)] |8;”w\2

m=0

Remark 3.1. Based on the selection of Iy, I, one knows that I 15 does not

contain such terms (2"2m=1=sps 10mw|* with s even, after integration by
parts.

Before giving the proof of Proposition 3.1, we first give an example to
show how the BPG works for calculating the coefficient of some term in 111/,
through integration by parts.

Example 3.1. For n = 4, find the coefficient of (*£,,0*wd*w in I\ 15 after
integration by parts. By choosing p = 3, m = 2 in Graph 3.1, we have the
following BPG:

Graph 3.2.

[ 20, 02w w }i[ 20, P wdw }i[ 020,04 w ]
-3/2] 3] -3
[ cowee e Eowdiw ] Ggwdte

Then fill the coefficients in Iy from Example 2.1, we have

Graph 3.3.

—1 —1
[@ﬁxGMﬂm%w%w}—{GAXHﬂﬁm@w%w}—{@ﬁx1Mym%w@w}

-3/2] 3] 3]
[ (—4 x 6)03Pwdw }i[ (—4 x 1) wdlw }i[ 0 - BPwdlw ]

Though there are many terms in I11s, only at most 6 terms contributing
to (20, 0*wd?w. Thus we only need to see how these 6 terms contribute
coefficients to (20, 0*wd*w.

16



We write d(r, s,a,b) = Z h(r,s,a,b)g(r, s, a,b) by the coefficient of (.45 0w w,

T rTr-xT

D
where D = {(r,s,a,b) € Z,|r +2s+a+b=28, s=0,1, a > b}, h(r,s,a,b)
is the coefficient of each term, and g(r, s, a,b) is the weight from each term
to the goal term. One can know g(r,s,a,b) from the BPG and h(r,s,a,b)
from Iy, 5 in (2.19).

Here, we try to compute d(2,1,2,2), i.e., the final coefficient of (2£,,0*wd*w
in I1Is. By the BPG, we know that

D={(r,s,a,b)} = {(2,1,2,2),(2,1,3,1),(2,1,4,0),
(3,0,3,2),(3,0,4,1),(3,0,5,0)},

h(2,1,2,2) = —6x6, h(2,1,3,1)= —4x12, h(2,1,4,0)= —6x 1,
h(3,0,3,2) = —4x6, h(3,0,4,1)= —4x1, h(3,0,50) = 0,
and
[ ¢(2,1,2,2) = 1,
9(2,1,3,1) = (-,
] 921,40 = (-1
9(3,0,3,2) = (—1)'3/2,
9(3,0,4,1) = (=1)*(3/2+3),
L 9(3,0,5,0) = (—1)*(3/2+3+3).
Then:

d(2,1,2,2) = (=36) 1+ (—48)(=1)"' + (=6)(—1)
+(=24)(3/2) (=)' + (=4)(3/2 + 3)(=1)2 +0- (3/2 + 3 + 3)(—1)

— o,
which means
—6 X6 0l 0PwdPw = —36 (20,.|0%w|*+ etc.,
—4x12 0,,Bwilw = 48  (20,,|0%w|? + etc.,
—6x1 l,0Mwdw = —6 2l,|0%w|* + ete.,
—4x6  BRwdPw = 36 l|0*w|* + ete.,
—4x1  Bowolw = —18 (20,,|0%w|* + etc.,
0 Bhwdw = 0 2,070 + ete.,
= Total = 24 (2, |0%w]? + etc..
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Proof of Proposition 3.1. Example 3.1 (when n = 4) has explained our
main idea. Here we give the detailed proof for an arbitrarily fixed n. We
write d,, (with 0 < m < n — 1) for the coefficient of the term (210, |0mw|?
for 0 <m < n—1. Then we have

dm = Zh(rasaaa b)g(r,s,a, b)a (31)
D

where D = {(r,s,a,b) € Z,|r+2s+a+b=2n, s=0,1, a > b}, h(r,s,a,b)

is the coefficient of ¢7¢5 9%wd’w in I I, before integration by parts, and

rxTTr T

g(r, s,a,b) is the weight from 703 0%wdlw to 2~10,,|0mw|* in Graph 3.1.

T xTTrTxT

On the one hand, by (2.18), comparing the terms in I;I5 to find their
coefficients, one can get

(- (=CiorCit,), s=1, a=b=m,
(=) [=CHCRCh_y + CrChy)],
h(r,s,a,b) = s=1, m+1<a<2m, b=2m—a; (3.2)
(=D (CaCy),
s=0, m+1<a<2m+1,b=2m+1—a.

(

On the other hand, from the BPG one can obtain the weight:
(=)™ s=1, m<a<2m,
g(r,s,a,b) = (—1)@‘”%[2@ —m)—1], (3.3)
s=0 m+1<a<2m+1.
Combining (3.1)-(3.3), one has

dp = (=1 (=)™ (=CRCTCTL)

+ Y (ST OO+ O]
a=m+1
+ 2§1 (_1>a—m]_)[2(a o m) _ 1](_1>a+2m+1—a(CaC2m+1—a>
S 2 e (3.4)
__CACmOn, - C2 Y (OO + O

p = k m+1+k ~ym—k
+3 D (DFA A 2m)CRC R

e
i
o
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n2

Then, by Proposition 2.1, we are led to that d,,, = KC,,,, = 5 S O

4 BPM for the estimation of w;/s

First, by (2.18) and through integration by parts, we have

wily = (i+ (et Y, (NGL)0 W]

r+2s4+2m=n (41)
+3 " do(r, s,m) 0, 00wl w,
D
where
D ={(r,s,m) € Z3y|r + 25 + 2m + 1 = n}. (4.2)

Since ¢y, = 0, we have (¢3.03,); = 0. Therefore, we only need to calculate the
coefficient dc.
To calculate d¢, we introduce the following BPG:

Graph 4.1.
[ 000 0T 0wd ™ w H 0005 0T L OwdT 2w H H 0005 Orwd2™ T }
—(r+1)T 7’+1)T r+1 r+1)T
[4;*%;;18;"@11)0;"“11)}—[ T oL 9, wam H H T 9o 2y ]
7(r+2)T r+2)T 7’+2T r+2)T
S T —
—(r+s—1)T 7'—|—S—1)T 7"—|—s—1T r+s—1)T
[ZT'S_1€;zaf’8tw8;n+ng€T+s Lot O, wor et H H o=l o, w82m+gwl
—(r+s)T T—I—S)T r—l—sT r+s)T
E O wd ™ H a1 9wt 2y H H 0+ Bwd2m sty ]

Based on Graph 4.1, we have the following result.

Proposition 4.1. Under the assumption of Proposition 2.3,

wils(w) = ()¢ + (+)x + Z de(r, s, m)00 05 O 0w ™ w, (4.3)

r"rr-x
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where De 2 {(r,s,m) € Z:y|r+2s+2m+1=n, s >3,(-1)° = -1} and

s—1
JAN _1\nt+m (S - 1)(2m + S)(?’L —2m —s— 1) 2m—+s+1 s .
dC - ( 1) 2(m+ S) Cn Cm-‘,—s E(T +.])

Remark 4.1. In the case that n < 6, we know that Do = &. In the case
that n = 7, we know that Dc = {(0,3,0)} and wilz(w) = () + (+)z —
21003 Oywo,w.

Proof of Proposition 4.1. Similar to what we did in the proof of Propo-
sition 3.1, we write

dC’ = Z h(’f’, S, a, b)g(’f’, S, a, b)a

D/

where the domain D’ is the set of all parameters sets (r,s,a,b) by terms
0r 03 0°0,wdlw in Graph 4.1, and h(r, s, a,b) and g(r, s, a, b) denote the coef-

[ A e v

ficients and weights of term £7¢5 0%0,wdlw, respectively. Recall that I(w)
has the following form:

Lw)= Y, Ci(=1" e omw

even ke[0,n]

—Colyy Y O (=120 00w,

odd j€[0,n—2]

Hence, we can find at most two terms ¢7.75711 9,w0*™ 5w and £7 75 Q,wd>™+s+ 1y,
with possible non-zero coefficients, in the bottom right corner of Graph 4.1.
Then we see that

de(rys,m) = h(r+s—1,1,0,2m+ s)g(r + s —1,1,0,2m + s)
+h(r+s,0,0,2m+ s+ 1)g(r +s,0,0,2m + s + 1).

If s is even, from I, and the BPG we know

h(r+s—1,1,0,2m+ s) = h(r +s,0,0,2m+ s+ 1) = 0. (4.4)

20



If s is odd, we can find

([ B(r+s—1,1,0,2m + ) = (~1)"C2C275,

s—1
g<7" + 5= 17 17 07 2m + S) = (_1)m+(5_1) ;?—i—(s—l) H(T + .])7

i=1 (4.5)
h(r+5,0,0,2m + 5 +1) = (=1)"Cpm+**,

s

g(r+s,0,0,2m+s+1) = (=1)""*Cm H(T +7),

\ 7=1
therefore
dC(T7 S, m)
s—1
= ()" CRCmE = C5 (r+ s) O [ [ (r + )
j=1
—1)(2m+s)(n—2m—s—1) = :
= (=1 n+m (S C2m+s+lcs )
( ) 2(m+s) n m+s}:[1(r+j)

(4.6)
In the last equation, we used the fact that r = n—2s—2m — 1, which follows

from (r,s,m) € D defined in (4.2). Set D¢ 2Dpn {s >3, (-1 = —1}. By
(4.4) and (4.6), we know that

T rTr-T

> do(r,s,m)C0,00 000w = " do(r, s,m) 05,00 Owdy w.
D D¢
This, along with (4.1), implies (4.3). O

5 Proof of Theorem 1.1

This section proves Theorem 1.1.

Proof. By the definitions of I; and I (see (2.18)), using Propositions
3.1, 4.1, integrating (1.4) over (0,7) x (0, L), we obtain that when v €
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Cse([0,T) x [0, L]) and w = Ov,

T L
/ / 02| Pv|*dxdt
0 0

T L _n—1
> / / [Zn2c,2”_1£§"‘2m—2em+O(A2“—2m—3) o w|dadt  (5.1)
0 0 m=0
T L
+2 / / o do(r,s,m)0,63,07 00 wddt,
o Jo Do

where the last term Z de(r, s, m)0 05 07 0wd M w is defined in Proposition

r"xrTxrTx
D¢

4.1. Noting that
0res 0t 0wd w = (0005, 0% Owd T w),, — (045,) 0% L Owd ™

—0 05 0%t 0w w,
(5.2)
with (r,s,a,m) € Dy 2 {(r;s,a,m) e Zi 1 <a<m, r+2s+a+m+1=
n, s > 3}, where a decreases to 1 during the iteration, one knows

005,080 w = () + Opw Y ()05, 00w,
Do

rrr-x rrr-x

where D, £ {(r,s,m) € Z%|r + 2s + m = n, s > 3}. Therefore,

> (e, 0r0wor T w = () + Y ()L, 080wdr w
D¢ D

! (5.3)
= (o + 0w Y ()L, 0w,
Do

For convenience, we set ® = Z(~)£T€s 07w in (5.3). Then by (1.2), we

- rr-xT
Do

find
20w, d = 20 [97% Yalaw—1T, — I, — 13}
(5.4)
> 0| Pu)? — |B)? + 20 [aetw Ny R - 13]

In the case that s > 3, ® is a lower order term compared with I; or I5.
Comparing the order of /.., we can obtain

O(alyw + I + I + I3) = O(N"2m73)|9mw)?. (5.5)
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Now, it follows from (5.1) and (5.5) that

T L
/ / 02| Pv|Adxdt
o Jo

T L _n—1
- / / [Z RO 22y + ON 22 O w] *ducd.
0 0 m=0

This completes the proof of Theorem 1.1. O

6 Application

In this section, we will prove the conditional stability in a Cauchy problem
for a time fractional diffusion equation with %—order with the help of Theorem
1.1. First, we transfer the original equation to an usual p.d.e. with its
principal part 9; — 9%, with the aid of the Caputo derivative. Then we apply
our Theorem 1.1 to obtain a Carleman-type inequality for the new equation.
Finally, we use the similar way to that used in [13] to obtain the desired
conditional stability:.

Given T' > 0, L > 0, we consider the following fractional diffusion equa-
tion:

Ot x) — O%ult,x) = f(t,x), (t,z) € (0,T) x (0,L),
u(0,z) = 0, z € (0,L), (6.1)
Fu(t,x)]o—0 = hi(t)(j =0,1), te(0,7),

where f(z) and h;(t) (j =0, 1) are given, 93 is the fractional order deriva-
tive in the Caputo sense which is defined by

t
. A 1 Osy(9)
= 1
at y(t) F(]_—’}/) /0 (t_s),ydsa ’YE (Oa )7
+oo
and I'(x) = 5" te™*ds is the Gamma Function.

0
Before the main result, we introduce some notation. Given 0 < §y < 7'/2,

we let . .
Q={t,x)|0o<t<T, 0<zxz<L} Q=(0,L).
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Given 0 < e <min{L? 1} and L < 2y < L + /£/2, we define

Q. £ {(t,z) € Qu(t,x) > ¢},

where
A

U= (o —w0)® = Bt = T/2)?
with 8 > 22/(6p —T/2)?. One can easily see that Q. is a nonempty subset of
@ when ¢ is small. By (6.1), one can easily check that if u € C*5(Q), then

(

2u(t,0) = 8 ho(t) — £(t,0) = ha(1),
Ou(t,0) = 8 ha(t) — 0. f(t,0) = hy(t),
Lu(t,0) = 8,720 ho(t) — 8}° f(¢,0) — B2F(t,0) = ha(t),
[ Pu(t,0) = ”3 0 hi(t) — 020, £(t,0) — 82£(2,0) = hs(t).

T

(6.2)

)

Theorem 6.1. Assume thatu € C%(Q) satisfies (6.1), and f € C*([0, T]; L3(Q))N
L*(0,T; HY(2)). Let (t,x) be given chosen such that Q.;4 C Q and h;(j =
2,3,4,5) be given by (6.2). Then there exist C >0 and T € (0,1) such that

5
> Nloull2q.) < C(F + M'TFT), (6.3)

5
where M 2 Z ||07ul|L2(q) and

J=0

F =0+ 8,02 + 8,8 f(t, x>||Lz<Q 11700, )| 20.n

(6.4)
H1(22 + 0;%) (0, 2)| 20,1 +Z|Ih Mo

7=0

Corollary 6.1. u € C*9(Q) satisfies (6.1) with f =0 and hy = hy = 0 in
Q. Thenu=0 1 Q.

We recall the following known result:

Lemma 6.1. ([13, Lemma 2.2]) If z € AC([0,T]) and z(0) = 9;*2(0) = 0,
then
P02 =0"""zin (0,T), 0<y+v <1,7,7 >0.
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Proof of Theorem 6.1. We divide the proof into several steps.
Step 1. Set

3/2
N _ _ 1/3 _ 2/3
a(t, ) = u(t, ) i) f(0,z) r23) fi(x) (6.5)
where N
fi(@) = (02 +0,")1(0,2). (6.6)
For 71,7, € (0,1), we know that
F+92) -
a’ht'yz — T
t F(l + vo — ”)/1)
Hence, by (6.1) and (6.5), it is easy to see that
a(0,2) =0, 8%u(0,2) = 0. (6.7)
Further, by (6.7) and (6.6), we have
0;"a(0,2) = 0,0, a(t, )|
_ al/3| 52 _ _ 1/3
01 Bhutt, ) + £(4.2) = F0.2) = gyt P A .

= 32 [0fult,x) + f(t.0)| |+ 01 F(0.2) — fula)
= (024 0;"°) f(0,2) = fulx) = 0.
Next, by (6.7)—(6.8), we have

dya(t, z) = 0, [0 *a(t, x)]
= 8| 0tu(t, ) + B2 f(t,x) + 0, f(t, ) — fulx)

(6.9)
= OMO2u(t,x) + f(t, )]+ 8,2 (02 + 8} f (¢, x)
= O0ult,z) + (0" + 8,202 + 8,20\ f (t, x).
Combining (6.5) and (6.9), we end up with
u—Bu = f(t,z), (6.10)
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where
£ xr) = 1 —2/3 x 3/2 -1/
f(t> ) - F(l/?))t f(o’ ) + F(2/3)t fl (6'11)

(02 + 0,702 + 0,0, 1.
By (6.2) and (6.10), we have

atu - agu = f(t>$)a (t>$) 6 Q> (612)
Du(t, z)|smo = hi(t), 7=0,1,....,5, t € (&, T).

Step 2. Let x(t,z) € C>(Q; [0, 1]) satisfy

1) = 1’ (t>$) S Qa/2>
X { 0, (t,7) € Q\Qeys. (643

Then we set

u=x [u - Z %hj(t)] 2 xu — xh(t, z). (6.14)

The boundary of ()./4 consists of two line segments: one is a subset of
{(t,x)]0p < t < T, x = 0}, while another one is in Q\Q./3. One can
casily check that dyu(t,z) = dlu(t,z) = 0, j = 0,1,...,5 on dQ./4, hence
u € H&’G(QE/@. Moreover

ou + 8gﬂ

- 5 ) . . ~ ~ 6.15
T+ @0u+ S G0 — O+ 0k — o )

J=0

Applying the Carleman estimate in Theorem 1.1 with v = u, w = e ,
we conclude that there is a large A > Ao > 0 on (). /4, such that

5
Y N Aillia.,, < Clle (@ + 3)illzeq, .
§=0

< Clle™xflli2q., + Clle™ (@ex)ullizg. ) (6.16)

5 5
+CZ ||€w(8g_jX)8iu||%z(Qs/4) + CZ ||hj||%{1(50,:r)-

j=0 7=0
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By the definition of x(¢,x) in (6.14), one knows that J;x, 0. X, ---,
5

By are

supported on {z|i) < e/2}. Recall that M = Z ||07ul]12(g)- Thus, we have

j=0
5
X (@0)ul |22, + > 1 (027 ) DullEa(q. ) < Ce™ M2
j=0
Therefore
5
leewaﬁllﬂ(gsﬂ) < CeM(|If11220 +Z|Ih |311.69.17) + Ce M2,

J=0

Since u = U + h, (6.18) yields

5
>l aulliag
j=0

5
< CZ ||€waiﬂH2L2(Qs) + CHe}\whH%Q(Q )

3=0
5 5
<O Nlilliz ., + CEN Y Il
j=0 j=0

5
< Ce™ [Hf”%?(Q) + Z ||hj||§{1(6o,T)] + Ce M.

=0
Meanwhile, it follows from (6.14) and (6.4) that
B 5
17122 + D Wl o) < CF™
=0

Since 1 > ¢ in @), the above, along with (6.19), implies

(6.17)

(6.18)

(6.19)

5 5
> dullFaq.) < €PN [1e0lul[3a ., < CePMF? + Cem MM, (6.20)
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for all A > A\, where \; is a sufficiently large number. Replacing the constant
C by Ce“ | setting A S A1 > 0, we have

5
Z ||0fcu| |%2(Q5) < CefM [C’QC)‘F2 + Cleer—CM Mz]
= (6.21)

< C’eCXF2 + Ce‘aXMz.

~ M
Step 3. In the case that F' < M, we put A = In— > 0. Then we

e+C F
have ;
. e 2e
|32, < CMee Feie | with r 2 . 6.22
;H pulliaq S CMeFae, with T = 7 (6-22)
In the case that F' > M, it follows from (6.21) that
5 ~ ~
D 1dullFzq.) < Ce? +e ) F? < CF”. (6.23)
=0
Combining (6.22) and (6.23), we get the desired result. O
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