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Abstract — Existing brain tumor segmentation methods 
usually utilize multiple Magnetic Resonance Imaging (MRI) 
modalities in brain tumor images for segmentation, which 
can achieve better segmentation performance. However, 
in clinical applications, some modalities are missing due 
to resource constraints, leading to severe degradation in 
the performance of methods applying complete modality 
segmentation. In this paper, we propose a Multimodal fea- 
ture distillation with Convolutional Neural Network (CNN)- 
Transformer hybrid network (MCTSeg) for accurate brain 
tumor segmentation with missing modalities. We first de- 
sign a Multimodal Feature Distillation (MFD) module to 
distill feature-level multimodal knowledge into different 
unimodality to extract complete modality information. We 
further develop a Unimodal Feature Enhancement (UFE) 
module to model the relationship between global and lo- 
cal information semantically. Finally, we build a Cross- 
Modal Fusion (CMF) module to explicitly align the global 
correlations among different modalities even when some 
modalities are missing. Complementary features within 
and across different modalities are refined via the CNN- 
Transformer hybrid architectures in both the UFE and CMF 
modules, where local and global dependencies are both 
captured. Our ablation study demonstrates the importance 
of the proposed modules with CNN-Transformer networks 
and the convolutional blocks in Transformer for improving 
the performance of brain tumor segmentation with miss- 
ing modalities. Extensive experiments on the BraTS2018 
and BraTS2020 datasets show that the proposed MCT- 
Seg framework outperforms the state-of-the-art methods 
in missing modalities cases. Our code is available at: 
https://github.com/mkang315/MCTSeg. 

Index Terms— Multimodal MRI, missing modalities, med- 
ical image segmentation, feature distillation, cross modali- 
ties. 
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I. INTRODUCTION 
 

CCURATE segmentation of brain tumors is crucial for 
tumor diagnosis and treatment. Multimodal image seg- 

mentation has emerged in medical imaging processing [1]– 
[5]. Multimodal MRI images have different imaging fea- 

tures, including Fluid-attenuated inversion recovery (Flair), 
T1-weighted (T1), enhanced T1-weighted (T1ce), and T2- 

weighted (T2) as shown in Fig. 1. Different modalities usually 
have various information in content, so multimodal comple- 

mentary information can be used to strengthen the feature 
representation ability of the model. However, in practical 

applications, there may be cases where some modalities are 
missing [6], [7] or modality data are scarce [8], thus, in- 

complete modalities bring new challenges to multimodality 
learning tasks. Incomplete multimodal learning methods aim 
to handle any available modality during model inference. The 

segmentation of brain tumors in incomplete multimodality 
MRI involves the problem of segmenting brain tumor regions 
from some modality-missing brain tumor images. Segmenting 
tumor regions from incomplete brain tumor data [9]–[12] is 
more clinically meaningful compared to brain tumor segmen- 
tation tasks with complete modalities. However, in some cases, 
certain modalities may not be available due to technical issues 
(e.g., image corruption, visual artifacts, imaging protocols), 
patient allergies to contrast agents, or financial constraints. 
Segmentation of brain tumors in MRI with missing modalities 
poses a significant challenge due to the incomplete information 
available. Researchers and clinicians have developed special- 
ized algorithms and techniques to address this challenge. 

Segmentation methods that can adapt to incomplete modal- 
ities provide flexibility in clinical practice, ensuring consistent 
and reliable results across different scenarios. Methods ex- 
amined in the previous studies include the classical synthesis 
techniques alongside the more recent strategies that utilize 
deep learning. The newer approaches include common latent 
space models, knowledge distillation networks, mutual in- 
formation maximization, and generative adversarial networks 
[13], [14]. The issue of missing modalities presents a signifi- 
cant challenge that needs to be addressed when conducting 
brain tumor segmentation tasks in multimodal MRI. The 
approaches of brain tumor segmentation in MRI with missing 
modalities often involve leveraging the available modalities 
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Fig. 1. Examples of four-modality MRI images. From left to right, there 
are fluid-attenuated inversion recovery images (Flair), T1ce images 
(T1ce, using contrast agent in T1 images), T1-weighted images (T1), T2- 
weighted images (T2), and images with ground truth labels that contain 
four sections: black area(background and healthy tissue), green area 
(enhancing tumor), red area (gangrene and non-enhancing tumor), and 
yellow area (peritumoral edema). 

 
 

effectively, incorporating classical CNN approaches, such as 
U-Net [15] derived 3D U-Net [16] series, and in recent 
years, utilizing Transformer [17] or Vison Transformer (ViT) 
[18] and CNN-Transformer methodologies to compensate for 
missing imaging modalities. 

In this paper, we propose a Multimodal feature distilla- 
tion with CNN-Transformer hybrid network for incomplete 
multimodal brain tumor Segmentation (MCTSeg). First, we 
design a Multimodal Feature Distillation (MFD) module that 
uses a multimodal encoder network to distill complementary 
multimodal knowledge into the unimodal encoders to extract 
modality-specific features that are robust to missing modali- 
ties. Secondly, we develop a novel Unimodal Feature Enhance- 
ment (UFE) module that incorporates a convolutional block 
(ConvBlock) into Transformer as an adapter of the network 
to introduce inductive bias (e.g., translation invariance and 
locality) without affecting the transformer’s global modeling 
capability. Thirdly, we build a Cross-Modal Fusion (CMF) 
module that enables the fusion of feature representations of 
different modalities even when some modalities are missing. It 
also uses transformer-based architecture to build inter-modal 
relationships and incorporates a ConvBlock adapter to learn 
local features shared among modalities. 

The main contributions of this work are summarized as 
follows: 

1) To our best knowledge, MCTSeg is the first feature 
distillation-based framework for incomplete multimodal 
learning of brain tumor segmentation. It is an end-to-end 
network that allows for the transferring of multimodal 
information to unimodal feature extractors or encoders. 
It can extract representative features for each imaging 
modality, and learn the relationships between different 
modality representations to increase robustness against 
cases of missing modalities. 

2) By integrating CNNs, which are adept at the locality 
inductive bias, into Transformers, the unimodal fea- 
ture extraction and cross-modal fusion modules are de- 
signed to capture both local and global dependencies for 
complementary information within and across different 
modalities and compensate for the absence of certain 
modalities. 

3) We conduct extensive experiments on the BraTS 2018 

 
and BraTS2020 brain tumor datasets and show that our 
method achieves better performance than some state-of- 
the-art methods in situations of missing modalities. 

 
II. RELATED WORK 

A. CNN-Transformer Methods for Medical Image 
Segmentation 

Several CNN-Transformer methods have been investigated 
for brain tumor segmentation. TransBTS [9] learned the global 
correlation by adding a Transformer structure at the bottom 
of the U-shaped network, and combined the local spatial 
features extracted by 3D CNN to effectively improve the 
segmentation accuracy of the model. TransUnet [19] applied 
Transformer in the field of medical image segmentation for 
the first time, combining the advantages of U-Net and Trans- 
former, modeling local context information through CNN and 
obtaining long-range dependencies from Transformer in low- 
resolution images to improve the feature extraction ability of 
the encoders. TransFuse [20] combined the complementary 
nature of the Transformer and CNN to enhance this model’s 
segmentation capabilities in a parallel way. Swin-UNet [21] 
employed an encoder based on hierarchical representations and 
local windows to extract contextual features. 

 
B. Feature Distillation in Knowledge Distillation 

Knowledge distillation is to get the student network trained 
by minimizing the distillation loss, which realizes knowledge 
transfer between teacher and student models that are isomor- 
phic or non-isomorphic networks. In contrast to transferring 
label knowledge from teacher network [22], feature distillation 
as another approach of knowledge distillation utilizes interme- 
diate representations learned by the teacher network as hints 
to improve the final performance of the student network [23]. 
Intermediate representation distillation is more effective than 
label knowledge distillation, which improves the representa- 
tion ability and information volume of transfer knowledge. The 
classic methods of isomorphic feature distillation, which does 
not need size matching of feature maps, include FitNets [23], 
attention transfer [24], probabilistic knowledge transfer [25], 
factor transfer [26], overhaul [27], dynamic prior knowledge 
[28] among others. 

With the development of distillation techniques, some ad- 
vanced feature distillation methods have been applied to med- 
ical images. Contrastive representation distillation [29] com- 
bines a contrastive objective measuring the mutual information 
between the representations learned by a teacher and a student 
networks for feature distillation. Xing et al. [30] employed 
pathology-genomic knowledge distilled from discrepancy- 
induced contrastive distillation between the teacher’s and 
student’s features to improve the accuracy of glioma grading. 

 
C. Brain Tumor Segmentation with Incomplete Modalities 

Recently, incomplete multimodal brain tumor segmenta- 
tion methods focus on end-to-end encoder-decoder network 
architecture approaches that handle any subset of available 
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modalities, rather than training multiple networks. The Hetero- 
Modal Image Segmentation (HeMIS) network [31] learned the 
embedding of multimodal information by computing the mean 

 
literature. 

 
 

III. METHODS 
and variance of the features of any available modality. Dorent 
et al. [32] proposed a Hetero-Modal Variational Encoder- 
Decoder (U-HVED) network for joint modality completion 
and segmentation tasks, by using information from multiple 
modality images for joint training. Shen & Gao [33] treated 
different missing modalities as a specific domain, employed 
two segmentation networks to segment the complete multi- 
modal and the missing modal images respectively, and used 
confrontation learning in the segmentation device to project 
these features into the same common space. However, it is 
challenging to align the different distributions when a large 
number of modalities are missing. Zhang et al. [34] proposed 
an adaptive feature integration method to learn to segment 
multimodalities using an unimodal model, but this method 
can only handle cases where pairs or multiple modalities 
are available. mmFormer [11] employed Transformer to build 
intra-modal and inter-modal relationships to align global fea- 
ture representations between different modalities. Ting & Liu 
[35] presented a multimodal transformer network to learn 
features of missing modalities for the segmentation of brain 
tumors. Our approach differs from previous approaches in 
that we utilize Transformer to not only model the relations 
within modalities but also consider the interactions between 
modalities. 

In addition to feature completion, recent approaches have 
explored the use of feature separation [36], correlation rep- 
resentation [37]–[39], attention mechanisms [40], adversarial 
co-training networks [41], [42], self-supervised multimodal 
representation [43], and domain-specific classification objec- 
tive [44] for robust multimodal brain tumor segmentation. 
Chen et al. [36] used the method of feature disentanglement 
and gating fusion to fuse the information of multimodality 
MRI images. The encoder network uses the feature-connected 
entanglement mechanism to separate the common and in- 
dividual characteristics of different modal images, and the 
decoder network uses the gating fusion mechanism to fuse 
multiple entangled features. It mainly solves the problem of 
inconsistency and noise in multimodal images; however, when 
only a few modalities are available, the model performance 
degrades severely because using only one or two modalities 
may not be enough to provide reliable missing modality 
features. 

Incomplete multimodal brain tumor segmentation via 
knowledge distillation is to synthesize missing modalities with 
a segmentation network with complete modality information 
[45]–[51]. Hu et al. [45] employed information from multi- 
modal images to train a complex multimodal model to extract 
multimodal features and used these features together with 
unimodal images to train a simple unimodal model, making 
it easy to learn the knowledge of multimodal models. These 
methods have achieved a certain level of performance, but they 
need complicated methods to train specific models for each 
subset of missing modalities, which renders them less suitable 
for clinical practice. To our knowledge, feature distillation in 

 

Fig. 2 illustrates an overview of the proposed MCTSeg 
network for brain tumor segmentation with missing modalities. 
We construct our networks based on 3D U-Net, which consists 
of encoder and decoder stages for incomplete multimodal 
learning. We first design modality-specific and complete multi- 
modal CNN encoders to extract discriminative features within 
each modality and over all modalities, respectively. A set of 
convolutional encoders is also designed to perform progressive 
up-sampling of the latent feature space to produce robust seg- 
mentation. We introduce three novel modules in the encoder- 
decoder architecture to enhance the model’s robustness to 
incomplete modalities: 

1) an MFD for knowledge distillation allowing transfer of 
feature-level knowledge from the multimodal network 
(teacher) to unimodal networks (students) to provide 
complementary information to the latter when dealing 
with missing modalities. 

2) a set of intra-modal UFEs—computational blocks that 
combine a transformer and a ConvBlock, for joint learn- 
ing of both local and global dependency within each 
modality, and 

3) a CMF for multimodal feature fusion to build long-range 
contextual relationships across different modalities. 

 
A. Encoder-Decoder Architecture 

Let M = Flair, T 1ce, T 1, T 2 be the complete set of 
modalities. We denote the complete multimodal 3D MRI 
images by XM      RC×H×W ×D where H     W is the size 
of spatial resolution, C is the number of modalities, and D 
is the number of slices, and the data for each modality by 
Xm  R1×H×W ×D, m   M . Given the complete input XM , 
we first design a convolutional encoder EM to extract com- 
pact multimodal features FM = EM (XM ). The multimodal 
encoder EM consists of five feature extraction layers each 
composed of 3D convolution with 3  3  3 convolution 
kernel, instance normalization, and LeakyReLU. Simultane- 
ously, given the unimodal inputs Xm, a set of modality 
encoders Em, m M are adopted to extract modality-specific 
features Fm = Em(Xm) for each modality m, separately. The 
unimodal encoders Em have the same network architecture as 
EM . Besides, the convolutional decoders have the symmetric 
architecture of convolutional encoders, similar to the 3D U- 
Net. 

Then, the MFD module distills prior multimodal knowledge 
to improve the training of unimodal encoders, by aligning the 
feature map FM of the multimodal encoder and Fm of the 
unimodal encoders to produce F ′      for each modality. The 
resulting output F ′ is mapped to the same space as FM . 
To constrain the feature extraction process of the encoders, 
a multimodal decoder DM and a set of modality-specific 
decoders Dm, m M which correspondingly have five layers, 
takes FM and Fm respectively as inputs to obtain the pre- 
dicted segmentation maps Y M and Y m. The distilled unimodal 

  are then fed into the UFE to obtain feature m brain tumor segmentation has not been explored in the existing 
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Fig. 2. Overview of the proposed model. The Multimodal Feature Distillation (MFD) module adopts a multimodal encoder network to distill 
complementary multimodal knowledge into the unimodal encoders. The Unimodal Feature Enhancement (UFE) module extracts intra-modal feature 
maps. The Cross-Modal Fusion (CMF) Module is then used to aggregate features across modalities. Dseg produces the final segmentation result 
Yseg. The auxiliary outputs Ym of Dm and YM of DM are used in loss functions along with the segmentation map of the primary output. The 
description of symbols in the figure is given in the legend box. 

 
maps F ′′ which encodes both the local and global contextual where ∥·∥1 denotes the ℓ1 norm. The unimodal student en- 
information within each modality. The CMF is then used to coders can learn the multimodal knowledge from layers of 
aggregate features F ′′    of all available sets of modalities to the multimodal teacher network, by reducing the discrepancy 
obtain fused representations Ffusion which captures cross- 
modal long-range dependency even when some modalities are 
missing. Finally, a decoder Dseg is used to obtain the final 
segmentation result Yseg from the fused features Ffusion of 
incomplete multimodalities. 

 
B. Multimodal Feature Distillation Module 

Integration of features learned from multimodal MRIs can 
provide complementary information for anatomies and lesion 
areas for accurate brain tumor segmentation. However, features 
extracted from individual modality encoders are vulnerable to 
situations of missing modality data, which can degrade the 
subsequent fused representation and, hence, the segmentation 
performance. To overcome this issue, we propose an MFD at 
the encoder stage to transfer complementary knowledge from 
different modalities from the multimodal teacher encoder to 
assist the learning of unimodal student encoders in producing 
features that are robust against missing modalities. 

Let Fl and Fl be the l-th layered feature maps of the 
multimodal encoder DM (teacher) and the unimodal encoders 
Dm (students), respectively. To achieve the multimodal knowl- 
edge transfer, the feature maps of the student networks are 
aligned to the teacher network, by minimizing a feature-level 
distillation loss (called MFD loss): 

in the intermediate feature maps with the teacher as in (1). 
Due to the same architectures of the multimodal and unimodal 
encoders, the MFD is considered an isomorphic feature distil- 
lation. Besides, only the high-level semantic features from the 
middle layers of the unimodal encoders (i.e., l = 3, 4, and 5) 
are involved in the MFD according to (1). This is to maintain 
the local invariance property of low-level features that are 
specific to each modality. 

 
C. Unimodal Feature Enhancement Module 

For each modality-specific encoder, we further design a 
UFE module that combines a Transformer and ConvBlocks to 
extract both local and global contextual information within a 
modality. The use of Transformers in UFE can overcome the 
limited receptive field of the generic convolutional encoder 
and establish a global contextual relationship within a spe- 
cific modality. Considering that the Transformer has no prior 
information specific to vision tasks, we further incorporate 
ConvBlocks as the adapter of the network to offer a better 
spatial inductive bias into the Transformer. Concretely, the 
UFE is a hybrid of Transformer and ConvBlocks arranged 
in a parallel structure. The 3 3 ConvBlock consists of four 
kinds of layers: convolution, linear, reshape, and GELU [52]. 
In contrast to ViT which flattens the image into a 1D token 
sequence, here we retain the 3D structure of the input features 

LMFD =    
          

∥Fl 
 

  

— F ∥ (1) before the convolution operation. Given the distilled modality- 

  as input, UFE produces feature maps F ′′′ specific features F ′ l m∈
M 

1 
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for each modality m as follows 

F 
′′ 
= F 

′ 
+MHSA[LN (F 

′ 
)]+ConvBlock[LN (F 

′ 
)] (2) 

′′′ ′′ ′′ ′′ 

 
ConvBlock[Concat(FCMF )]. The final output of CMF is a 
fused representation defined by 

Ffusion = Ftrans ⊕ Fconv (9) 
Fm  = Fm + FFN [LN (Fm)] + ConvBlock[LN (Fm)]  (3) 

where MHSA( ) is the Multi-Head Self-Attention, FFN ( ) 
is Feed Forward Network, and LN ( ) is Layer Normalization. 

In contrast to the prior transformer-based segmentation 
networks, the proposed CNN-Transformer hybrid network in 
the unimodal feature extraction and cross-modal fusion can 
establish long-range dependencies among different modalities 
via the transformer, balanced with the locality inductive bias 
from the CNN, which can further improve segmentation. 

 
D. Cross-Modal Fusion Module 

We design a CMF module to learn long-range correlations 
between various modality-specific features, which provide 
complementary information to improve segmentation. The 
extracted fused cross-modal features via CMF can represent 
modality-robust information in the latent space for improving 
segmentation for settings of missing modalities. The CMF 
consists of two parallel branches. In contrast to the intra-modal 
transformers in UFEs, the first branch is an inter-modal Trans- 
former to learn modality-correlated feature representations. 
The second branch uses the ConvBlock adapter to improve the 
inductive bias of the inter-modal Transformer in latent space. 
Specifically, CMF takes as input varying subsets F ′′ δm of 
available modality-specific features F ′′′ RC×N from UFEs, 
defined as follows 

where denotes element-wise addition. Finally, the fused 
feature Ffusion is fed to the decoder Dseg through stepwise 
upsampling operations to obtain the final segmentation map 
Yseg . 

E. Loss Function 
To align the prediction with ground-truth segmentation, the 

unimodal decoders Dm are optimized based on the Weighted 
Cross-Entropy (WCE) and Dice loss [53] as follows 

Lum = [LW CE(Ym, Ym) + LDice(Ym, Ym)] (10) 
m∈M 

where Ym and Ym are, respectively, the predicted and ground- 
truth segmentation labels for each modality m. 

The multimodal decoder DM is optimized by 

Lmm = LW CE(YM , YM ) + LDice(YM , YM ) (11) 

where YM and YM are the predicted and ground truth of 
complete multimodal images, respectively. 

The loss function of the cross-modal decoder Dseg is 
formulated as 

Lseg = LW CE(Yseg, YM ) + LDice(Yseg, YM ) (12) 
In addition, we adopt a deep supervision strategy to regu- 

larize the output features of the first to the fourth layer of the 
decoder Dseg. The layer-wise prediction loss is formulated as 

4 

FCMF = {F 
′′′

 ⊗δFlair, F ⊗δT 1ce, F ⊗δT 1, F ⊗δT 2} L =  
   

[L 
 

 

(Y  , Y ) + L (Y  , Y )] (13) 

where    denotes element-wise multiplication and δm 
0, 1 is the Bernoulli indicator function which represents the 

presence/absence of a particular modality. Modality features 
are randomly dropped by setting corresponding δm = 0 to 
stimulate missing modality. This random modality dropout is 
implemented during model training in order to improve the 
model’s robustness against missing modalities. 

The FCMF is then processed by the inter-modal Trans- 
former to build long-range dependency across modalities. For 
example, the resulting cross-modal feature maps between two 
modalities α and β are defined as follows 

Qα · KT 
 

 

where l denotes the index of layer in the decoder Dseg. 
The overall loss function is defined as 

Ltotal = Lum + Lmm + Lseg + Llayer (14) 

IV. EXPERIMENTS AND RESULTS 

We evaluate the effectiveness of our MCTSeg framework for 
brain tumor segmentation from MRI with missing modalities. 

A. Datasets and Evaluation Metrics 
1) Datasets: We conducted extensive experiments on the 

2018 Brain Tumor Segmentation Challenge BraTS2018 and 
BraTS2020 [54] datasets. The BraTS2018 dataset consists 

Fα←β = MHSA(Qα · Kβ · Vβ) = softmax( √
d

 )Vβ 
(5) 

of scan images of 285 patients, and the BraTS2020 dataset 
contains scan images of 369 patients. Each sample contains 

where dk represents queries and keys of dimension, and Qα, 
Kβ and Vβ are formulated as 

MRI scan images of four different modalities: Flair, T1ce, T1, 
and T2. The ground-truth labels are divided into four cate- 

Qα = LN (F 
′′′ 
)WQ 

Kβ = LN (F 
′′′ 
)WK 

(6) 
(7) 

gories, including healthy tissue, edema area, necrosis area, and 
enhancing tumor area. We evaluate segmentation performance 
on enhanced tumor region (ET), core tumor region (TC), and β β 

Vβ = LN (F 
′′′ 
)WV (8) whole tumor region (WT). WT is composed of an enhancing 

β β area, edema area, and necrosis area; TC is composed of an 
The four modality features in FCMF are integrated by the 
inter-modal Transformer to get modality-correlated features 
Ftrans. In parallel, the ConvBlock processes the concatenated 
features of all modalities Concat(FCMF ) to get Fconv = 

enhancing area and necrosis area; and ET is composed of an 
enhancing area. The acquired dataset has been preprocessed 
by registration, skull removal, and resampling to 1 mm3 
resolution. 

l=
 

′′
′ T 1ce 

(4
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2) Evaluation Metrics: To evaluate the segmentation accu- 
racy quantitatively, we employ the Dice similarity coefficient: 

2∥Ŷc ∩ Yc∥ 
 

 

 
model’s feature representation fusion and semantic under- 
standing, which leads to more accurate segmentation in MRI 
brain tumor images with missing modalities. 

Dicec(Ŷc, Yc) = 1 
∥Ŷc∥1 + ∥Yc∥1 (15) 

where the subscript c represents different combinations of 
complete/incomplete multimodalities. The Dice score aims to 
evaluate the overlap rate of predicted results and real labels. 
The range is from 0 to 1, the larger the value of the Dice 
score, the better the segmentation prediction result. 

 
B. Implementation Details 

We used three-fold cross-validation to conduct experiments. 
During the experiment, we performed Z-score normalization 
on the input MRI image, randomly cropped the spatial reso- 
lution of the input image to a size of 128     128     128, and 
then performed random rotation, intensity shift, and mirror 
flip. Adam optimizer [55] was used to optimize the network 
parameters, β1 and β2 are 0.9 and 0.999 respectively, and 
the weight decay is 1e−5. The entire network was trained for 
1000 epochs, and the batch size is set to 1. In addition, we 
adopted a polynomial learning rate strategy similar to [56], 
with an initial learning rate of initial   = 1e−4, and a current 

D. Qualitative Analysis 

In Fig. 3, we visualize our model, mmFormer, and Robust- 
Seg in full modalities, missing one modality (Flair + T1 + 
T2), missing two modalities (T1 + T2), and missing three 
modalities. The segmentation results in state (T1), and the 
visualization results show that in most cases, our method 
can obtain accurate segmentation results. At the same time, 
we further analyzed the impact of different modes missing. 
It can be seen from Fig. 3 that the T1 modality plays an 
important role in the segmentation of the entire tumor. Even 
if the other three modalities are missing, the T1 modality 
can obtain more accurate segmentation results. The region is 
the most sensitive, and when the T1ce modality is missing, 
the segmentation effect of gangrene and non-enhancing tumor 
regions is severely degraded, resulting in inaccurate boundary 
segmentation. When the Flair modality is missing, the seg- 
mentation accuracy of peritumoral edema decreases. 

In Fig. 4, we show the segmentation results of our model 

learning rate of lr = initiallr ×( 
lr 

1−num )p with p = 0.9 and epoch 

in the absence of 15 different modalities. It is evident that our 
method can adapt to the absence of different modalities, and 

num is the epoch number. 
 

C. Quantitative Results 
We compare the proposed MCTSeg with state-of-the-art 

methods on different cases with missing MRI modalities on 
the BraTS2018 dataset. These competing methods include 
HeMIS [31], U-HVED [32], RobustSeg [36], D2-Net [7], and 
mmFormer [11]. For a fair comparison, all experiments use 3-
fold cross-validation. As shown in Table I, we use the Dice 
score as the evaluation index, and the average Dice scores 
of the proposed model on ET, TC, and WT are 57.44%, 
74.37%, and 84.91%, respectively. Compared with mmFormer, 
our network improves by 1.4% and 1.97% in the TC and WT 
regions on the mean of 15 different modality deletion cases, 
and the results show that our model obtains the tumor core 
and the overall tumor region. Significant improvement, and 
as can be seen from the Dice scores of WT in Table I, our 
proposed method achieves the best performance than any other 
models under 15 different modality missing cases. This can be 
attributed to the capability of our model to adapt to all tumor 
regions, and to establish a global semantic relationship well. 

To evaluate the robustness of our proposed method, we 
also conducted experiments on the BraTS2020 dataset. We 
compared 4 advanced models such as HeMIS, U-HVED, 
RobustSeg, and RFNet [40]. As shown in Table II, we use 
Dice Score as the evaluation index, and the average Dice 
scores of the proposed model on ET, TC, and WT are 64.91%, 
81.66%, and 87.24%, respectively. Compared with RFNet, our 
model improves by 3.44%, 3.43%, and 0.26% on ET, TC, and 
WT regions, respectively. The results show that our method 
achieves a significant improvement in tumor core and enhances 
tumor regions. Compared with pure CNN and Transformer 
methods, our proposed hybrid architecture can improve the 

can obtain accurate segmentation results even with only one 
modality. 

Our proposed CMF module aims to extract modality- 
invariant feature representations by establishing and aligning 
global correlations between modalities. It leverages the at- 
tention mechanism of the Transformer to focus on relevant 
modality-specific features corresponding to tumor regions, 
compensating for the absence of certain modalities. The com- 
parison results of the qualitative analysis show that different 
modalities have different sensitivities to different tumor re- 
gions, and the CMF module we designed can make full use 
of the complementary characteristics of different modalities to 
improve the overall performance of the model. 

 
E. Ablation Study 

We conducted a series of ablation studies on our model. 
As shown in Table III, the proposed MFD, UFE, and CMF 
modules can significantly improve network performance. For 
example, after removing the prior knowledge guide module, 
the performance of the three tumor regions ET, TC, and 
WT decreased by 1.82%, 1.16%, and 1.73%, respectively, 
suggesting that the prior knowledge guide module can ef- 
fectively distill multimodal prior information to unimodality 
and improve the representativeness of the unimodal features. 
After removing the UFE module, the performance of the three 
tumor regions ET, TC, and WT decreased by 2.27%, 1.54%, 
and 1.89%, respectively, indicating that the UFE module can 
well model the global relationship within the modality. After 
removing the CMF module, the performance of the three tumor 
regions ET, TC, and WT decreased by 1.42%, 0.82%, and 
0.84%, respectively. This indicates that the global correlation 
of different modalities should be effectively aligned through 
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TABLE I 
COMPARISON  OF  BRAIN  TUMOR  SEGMENTATION  PERFORMANCE  BETWEEN  MCTSEG  AND  OTHER  STATE-OF-THE-ART  METHODS  ON  THE 

BRATS2018 DATASET. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Dice score (%) is used to evaluate the performance of the model on the three tumor regions of ET, TC, and WT. M represents modalities. Avg 
indicates the average value of 14 different missing modalities and 1 complete modality. denotes the modality is missing, denotes the modal- 
-ity exists. The best results are shown in bold. 

 
 

TABLE II 
COMPARISON OF BRAIN   TUMOR   SEGMENTATION   PERFORMANCE 

BETWEEN MCTSEG AND OTHER STATE-OF-THE-ART METHODS ON THE 
BRATS2020 DATASET 

 

Models Average Dice scores (%) 

ET TC WT 
HeMIS [31] 47.73 65.45 75.10 

U-HVED [32] 48.55 67.19 81.24 
RobustSeg [36] 55.49 73.45 84.17 

RFNet [40] 61.47 78.23 86.98 
MCTSeg (Ours) 64.91 81.66 87.24 
The Dice score (%) is used to evaluate 
method performance of the three tumor 
regions of ET, TC, and WT. 
The best results are shown in bold. 

 

TABLE III 
ABLATION STUDY  OF MCTSEG  ON BRATS2018 DATASET 

 
Method Average Dice scores (%) 

ET TC WT 
MCTSeg 57.44 74.37 84.91 

W/O MFD 55.62 73.21 83.18 
W/O UFE 55.17 72.83 83.02 
W/O CMF 56.02 73.55 84.07 
W/O MFD, W/O UFE, and W/O CMF 
represent removing MFD, UFE, 
and CMF respectively. 

 
 

the information interaction between modalities in order to 
improve the segmentation performance. 

We also evaluated the effectiveness of ConvBlock. We 

 
TABLE IV 

ABLATION  STUDY  ON  THE  EFFECTIVENESS  OF  THE  CONVBLOCK 
 

Method Average Dice scores (%) 

ET TC WT 
W/O UFE 

W/O ConvBlock in UFE 
55.17 
55.02 

72.83 
72.13 

83.02 
82.20 

W/O CMF 
W/O ConvBlock in CMF 

56.02 
55.79 

73.55 
72.98 

84.07 
83.28 

W/O ConvBlock in UFE and W/O ConvBlock in CMF 
represent removing ConvBlock from UFE and CMF 
respectively. 

 
 

vBlock in CMF, the performance of the three tumor regions 
ET, TC, and WT is reduced by 0.23%, 0.57%, and 0.79%, 
respectively. This suggests that the introduction of CNN can 
make up for the insufficient inductive bias of Transformer. 

 
V. CONCLUSION 

We developed a novel model that utilizes feature distillation 
to guide the segmentation of incomplete multimodal brain 
tumors, resulting in high-precision tumor segmentation. Com- 
plementary information distilled across multimodalities and 
modality-invariant feature representation extracted from each 
unimodality is effectively fused via novel CNN-Transformer 
hybrid networks to figure out missing modalities. The exper- 
imental evaluation and ablation study demonstrate that the 
proposed CNN-Transformer hybrid networks play a key role 
in improving performance on brain tumor segmentation with 

examine the effect of the proposed UFE by removing the 
ConvBlock from UFE and CMF. It can be seen from Table 
IV that, after removing ConvBlock in UFE, the performance 
of the three tumor regions of ET, TC, and WT decreased by 
0.15%, 0.7%, and 0.82%, respectively. After removing Con- 

incomplete MRI modalities by modeling the semantic relation- 
ship between global and local information. This overcomes 
the existing problem in medical image segmentation that it is 
difficult for convolution to effectively establish global context 
and the Transformer’s inductive bias ability is low. 

M 
Flair 
T1ce 
T1 
T2 

HeMIS [31] 
U-HVED [32] 
RobustSeg [36] 

D2-Net [7] 
mmFormer [11] 
MCTSeg (Ours) 

HeMIS [31] 
U-HVED [32] 
RobustSeg [36] 

D2-Net [7] 
mmFormer [11] 

MCTSeg (Ours) 
HeMIS [31] 

U-HVED [32] 
RobustSeg [36] 

D2-Net [7] 
mmFormer [11] 
MCTSeg (Ours) 

◆ 。 
。 ． 

。 。 ． 。 。 ． 。 ◆ 。 ． ． ． ． 

11.78 

。 。 
。 。 ． 。 ． 。 ． 。 ． ． 。 ． ． Avg 

。 。 
62.02 10.16 

◆ 。 。 ． ． 。 。 
。 ． 。 ． 。 ． ． 

25.63 66.10 32.39 66.22 30.22 67.83 10.71 

◆ ． 。 ． ． ． 
。 ． ． ． 。 ． 

69.92 68.72 31.07 68.54 70.27 

ET 

TC 
 
 
 
 
WT 

23.80 
25.69 
8.10 
39.33 
34.72 
26.06 
57.90 
53.57 
47.30 
61.21 
61.05 
52.48 
84.39 
85.69 
84.20 
86.10 
85.90 

57.64 
67.07 
66.30 
72.60 
65.74 
65.29 
59.59 
76.83 
65.10 
75.41 
78.84 
61.53 
53.62 
74.93 
42.80 
72.22 
75.20 

8.60 
17.29 
8.10 
32.35 
29.14 
37.39 
33.90 
47.90 
16.80 
56.55 
59.60 
57.62 
49.51 
70.11 
15.50 
67.52 
73.92 

46.10 
22.82  68.36  24.29  61.11  32.31  67.83  27.96  67.75  68.93  32.34  68.60  69.03  46.76 
28.97  70.30  32.01  69.06  33.84  69.71  32.13  70.10  70.88  70.78  70.78  71.13  51.02 
16.00  64.80  16.50  70.70  17.40  68.70 9.50 68.30  66.40  19.40  65.70  68.40  42.30 
43.05  75.05  44.99  74.04  47.52  74.51  42.96  74.75  75.67  47.70  75.47  77.61  59.85 
37.92  69.81  69.64  68.37  39.86  69.64  39.24  70.09  70.98  40.89  70.24  71.33  57.44 
57.20  71.49  60.92  72.46  57.68  76.64  41.12  78.96  77.53  60.32  76.01  79.48  62.57 
54.67  75.07  56.26  67.55  62.70  73.92  61.14  75.28  76.75  63.14  77.05  77.71  64.84 
57.49  80.62  62.19  78.72  61.16  80.20  60.68  80.33  80.72  81.06  81.06  80.86  69.78 
56.70  80.80  63.20  78.20  62.60  80.30  61.60  79.00  80.70  63.70  80.90  80.10  66.50 
64.20  77.88  69.42  78.59  69.75  78.61  65.91  80.39  79.55  71.52  79.80  85.78  72.97 
63.97  82.48  82.61  82.31  69.26  82.61  70.83  82.83  82.85  71.87  83.04  82.96  74.37 
80.96  68.99  82.41  68.47  82.95  82.48  64.62  83.94  83.85  83.43  72.31  84.74  74.05 
79.83  85.93  81.56  64.22  87.58  81.32  85.71  82.32  88.09  88.07  86.72  88.46  79.16 
82.24  88.51  84.78  77.18  88.28  85.19  88.24  86.01  89.27  88.73  88.73  89.45  84.39 
76.30  87.50  80.10  62.10  87.90  84.10  87.30  80.90  88.80  88.40  87.70  88.80  76.20 
81.15  87.30  82.20  74.42  87.59  82.99  87.06  82.71  88.14  87.75  87.33  89.64  82.94 
82.70  88.88  86.69  79.96  89.37  86.69  88.61  87.33  90.14  89.83  89.68  90.31  84.91 
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Fig. 3. Visualization of mmFormer [11], RobustSeg [36], and our proposed model on BraTS2018 dataset. There are more segmented areas in 
images of our proposed model than the other two. 

 

 
Fig. 4. Qualitative comparison for segmentation results of fifteen different missing modalities. Four different modalities on the left, and segmentation 
results and ground truth of the proposed model in fifteen different combinations on the right. 
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