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Abstract

For t ∈ N and every i ∈ [t], let Hi be a di-regular connected graph, with 1 < |V (Hi)| ≤ C
for some integer C ≥ 2. Let G = □t

i=1Hi be the Cartesian product of H1, . . . ,Ht. We show
that if t ≥ 5C log2 C then G contains a (nearly-)perfect matching.

Then, considering the random graph process on G, we generalise the result of Bollobás on
the binary hypercube Qt, showing that with high probability, the hitting times for minimum
degree one, connectivity, and the existence of a (nearly-)perfect matching in the G-random-
process are the same. We develop several tools which may be of independent interest in a
more general setting of the typical existence of a perfect matching under percolation.

1 Introduction

1.1 Background and main results

Given two graphs H1 = (V1, E1) and H2 = (V2, E2), the Cartesian product H = H1□H2 is
the graph whose vertex set is V1 × V2, and for u1, v1 ∈ V1 and u2, v2 ∈ V2, we have that
{(u1, u2), (v1, v2)} ∈ E(H) either if u1 = v1 and {u2, v2} ∈ E(H2) or if u2 = v2 and {u1, v1} ∈
E(H1). More generally, given t graphs, Hi, . . . ,Ht, their Cartesian product G = □t

i=1Hi is the
graph with the vertex set

V := {v = (v1, . . . , vt) : vi ∈ V (Hi) for all i ∈ [t]} ,

and the edge set {
uv :

there is some i ∈ [t] such that uj = vj
for all i ̸= j and {ui, vi} ∈ E (Hi)

}
.

We call H1, H2, . . . ,Ht the base graphs of G. Cartesian product graphs arise naturally in
many contexts and have received much attention in combinatorics, probability, and computer
science. Many classical graphs, which have been extensively studied, are in fact Cartesian
product graphs: the t-dimensional torus is the Cartesian product of t copies of the cycle Ck,
the t-dimensional grid is the Cartesian product of t copies of the path Pk, and the binary t-
dimensional hypercube Qt is the Cartesian product of t copies of a single edge K2. We refer
the reader to [16] for a systematic coverage of Cartesian product graphs, and related product
structures on graphs. Throughout the paper, whenever we write product graphs we consider
the Cartesian product as defined above.

In this paper, we study perfect matchings in product graphs. One can convince oneself that
if one of the base graphs has a perfect matching, then the product graph G has a perfect
matching as well. Indeed, Kotzig [19] showed something even stronger: let G = □t

i=1Hi be such
that each Hi is regular, then if at least one of the base graphs has a 1-factorisation (recall that a
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1-factorisation is a decomposition of the edges of the graph into disjoint perfect matchings), or
at least two base graphs have perfect matchings, then G has a 1-factorisation; and furthermore
these sufficient conditions are not necessary. However, when none of the base graphs have a
perfect matching, it is not clear whether their product graph will have a perfect matching.
Indeed, not every connected regular graph has a perfect matching (or nearly-perfect matching,
that is, a matching covering all but one vertex when the order of the graph is odd). However,
note that given two graphs H1 and H2, the proportion of vertices covered by a largest matching
is at least as large as this proportion in any of the base graphs. Thus, taking the product of
many graphs, one can hope to improve this proportion. Indeed, our first result gives a simple
sufficient condition for the existence of a perfect matching in product graphs in this spirit.

Theorem 1. Let C > 1 be a constant, and let t ≥ 5C log2C be an integer. For every i ∈ [t],
let Hi be a di-regular connected graph with 1 < |V (Hi)| ≤ C. Let G = □t

i=1Hi and suppose that
|V (G)| is even. Then G has a perfect matching.

Observe that since each Hi is a di-regular connected graph, G = □t
i=1Hi is a connected d-

regular graph with d =
∑t

i=1 di, and in particular d = ΘC(log |V (G)|). Furthermore, we note
that we have not tried to optimise the constants in the above. Theorem 1 shows that if the
dimension of the product graph is sufficiently large, with respect to the maximum size of the
base graphs, then the product graph has a perfect matching — regardless of whether the base
graphs themselves contain any perfect matchings. Furthermore, from the same proof it follows
that if G has an odd number of vertices, then it has a nearly-perfect matching.

As mentioned above, a well-studied product graph is the binary hypercube, Qt, in particular
in terms of bond percolation on it. Given a graph G and probability p, we form the percolated
random subgraph Gp ⊆ G by including every edge of G independently with probability p (note
that G(n, p) is then (Kn)p). The study of Qt

p has been initiated by Sapoženko [22] and by Burtin

[8], who showed that the sharp threshold for connectivity is p∗ = 1
2 : when p < 1

2 , whp1 Qt
p is

disconnected, whereas for p > 1
2 , whp Qt

p is connected. Erdős and Spencer [14] conjectured that
Qt

p undergoes a phase transition with respect to its component structure, that is, the typical
emergence of a giant component (a connected component containing a linear fraction of the
vertices) around p = 1

t , similar to that of G(n, p) around p = 1
n . This conjecture was confirmed

by Ajtai, Komlós, and Szemerédi [1], with subsequent work by Bollobás, Kohayakawa, and
 Luczak [6]. We refer the reader to [20] for a modern short proof of this result.

In recent years, there has been an effort to generalise these results to a wider family of product
graphs. Lichev [21] gave sufficient conditions, in terms of the base graphs, for the typical emer-
gence of a giant component in bond percolation on high-dimensional product graphs. Diskin,
Erde, Kang, and Krivelevich [11] improved upon this, giving sufficient and tight conditions for
the typical emergence of a giant component. Furthermore, they showed that assuming the base
graphs are regular, one can give a rather precise description, similar to that in G(n, p), both
of the typical component structure [10], and of the asymptotic combinatorial properties of the
giant component [12].

Returning to the dense regime, that is, when p is constant, studying connectivity and the
existence of a perfect matching in Qt

p, Bollobás [4] obtained a hitting time result for the random
graph process on Qt. Given a graph Γ, the random graph process on Γ is defined as a random
sequence of nested graphs Γ(0) ⊆ . . . ⊆ Γ(|E(Γ)|) together with an ordering σ on E(Γ), chosen
uniformly at random from among all |E(Γ)|! such orderings. We set Γ(0) to be the empty
graph on V (Γ). Given Γ(i), with 0 ≤ i < |E(Γ)|, we form Γ(i + 1) by adding the (i + 1)-th
edge, according to the ordering σ, to Γ(i). The hitting time of a monotone increasing, non-
empty graph property P, is a random variable equal to the index τ for which Γ(τ) ∈ P, but
Γ(τ − 1) /∈ P. Note that having minimum degree one, connectivity, and the existence of a
perfect matching are all monotone increasing properties. Furthermore, observe that for a graph

1With high probability, that is, with probability tending to one as t tends to infinity.
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Γ to be connected or contain a perfect matching, the minimum degree of Γ has to be at least
one. A classical result of Erdős and Rényi [13], and of Bollobás and Thomason [7], is that in
the random process on Kn, whp the hitting time for minimum degree one, connectivity, and
the existence of a perfect matching are the same. In 1990, Bollobás [4] showed that the same
phenomenon holds in the random graph process on Qt.

Theorem 1.1. Consider the random graph process on Qt. Let τ1 be the hitting time of minimum
degree one, let τ2 be the hitting time for connectivity, and let τ3 be the hitting time for the
existence of a perfect matching. Then, whp, τ1 = τ2 = τ3.

Subsequent work by Joos determined the threshold for connectivity for Cartesian powers of
graphs [17, 18], that is,

∏t
i=1Hi where all the base graphs Hi are the same.

Our main result generalises the result of Bollobás [4] to a wider family of product graphs.

Theorem 2. Let C > 1 be an integer. For every i ∈ [t], let Hi be a di-regular connected graph,
with 1 < |V (Hi)| ≤ C. Let G = □t

i=1Hi, and suppose that |V (G)| is even. Consider the random
graph process on G. Let τ1 be the hitting time of minimum degree one, let τ2 be the hitting time
for connectivity, and let τ3 be the hitting time for the existence of a perfect matching. Then,
whp, τ1 = τ2 = τ3.

In fact, we prove the following description of Gp, from which standard results (see, for example,
[5] and [4, Lemma 2]), allow one to derive Theorem 2.

Theorem 3. Let C > 1 be an integer. For every i ∈ [t], let Hi be a di-regular connected
graph with 1 < |V (Hi)| ≤ C. Let G = □t

i=1Hi, and suppose that n := |V (G)| is even. Let
d := d(G) =

∑t
i=1 di. Let ϵ ≥ 0 be a sufficiently small constant, and let p be such that

(1 − p)d ≤ n−(1−ϵ). Then, whp, the following holds in Gp.

(a) There exists a unique giant component, spanning all but o(n) of the vertices. All the other
components of Gp, if there are any, are isolated vertices. Furthermore, every two isolated
vertices in Gp are at distance at least two in G.

(b) The giant component of Gp has a (nearly-)perfect matching.

A few comments are in place. Note that the threshold probability p∗, at which the expected

number of isolated vertices is zero, is p∗ = 1 −
(
1
n

)1/d
. Since 2d ≤ n ≤ Cd, one can observe

that p∗ is bounded away from zero and one. Since d = ΘC(log n), note that if p is such that
(1 − p)d ≤ n−(1−ϵ) for small enough constant ϵ ≥ 0, then p = ΘC(1), and in particular is
bounded away from zero and one as well.

Furthermore, let us remark that Theorem 3(a) implies that whp adding any edge to Gp,
which is not contained in the giant component, must connect an isolated vertex to the giant
component, and indeed this suffices to show that the hitting times of minimum degree one and
connectivity are whp the same. Theorem 3(b) then shows that whp the only obstacle to a
perfect matching in Gp itself is the existence of isolated vertices. Moreover, the proof of Theorem
3(a) does not rely on the product structure of the graph, and only uses the assumptions that
the graph is d-regular, has optimal edge-expansion for sets of size polynomial in d, and has some
mild edge-expansion for larger sets.

Let us briefly remark that since the hypercube is bipartite, in order to find a perfect matching
it suffices to apply Hall’s theorem. In our setting, however, the graph G is not necessarily
bipartite, which means that in order to show the typical existence of a perfect matching, one
needs to consider the Tutte-Berge formula. This requires a much more delicate treatment, which
is detailed in the proof outline in the subsequent section, and also requires us to develop tools
which are valid for more general graphs (see Lemmas 3.2 and 3.7) and could be of independent
interest when treating perfect matchings in the setting of percolation.
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The paper is structured as follows. In Section 1.2 we give an outline of the proofs. In Section 2
we prove Theorem 3(a), and in Section 3 we prove Theorem 3(b). Finally, in Section 4 we
conclude with a short discussion of the results and possible avenues for future research.

1.2 Proofs outline

Notation and definitions. Throughout the paper we let C > 1 be an integer, (Hi)
t
i=1 be a

sequence of di-regular and connected graphs with 1 < |V (Hi)| ≤ C, and let G = □t
i=1Hi be

their product. We let G = (V,E). We call t the dimension of G, and given u = (u1, . . . , ut) ∈ V
we call ui the i-th coordinate of u. Furthermore, we denote by n := |V | the order of G, and by
d := d(G) the degree of G, noting once again that d =

∑t
i=1 di = ΘC(log n).

Given a graph Γ and subsets S1, S2 ⊆ V (Γ) with S1∩S2 = ∅, we denote by EΓ(S1) the set of
edges in Γ whose both endpoints are in S1, and by EΓ(S1, S2) the edges in Γ with one endpoint
in S1 and the other endpoint in S2. We set eΓ(S1) := |EΓ(S1)| and eΓ(S1, S2) := |EΓ(S1, S2)|.
If the choice of Γ is clear, we may omit the subscript. Moreover, given S ⊆ V (Γ), we define SC

to be V (Γ) \ S.
Finally, throughout the paper, we let ϵ ≥ 0 be a sufficiently small constant, and let p be such

that (1 − p)d ≤ n−(1−ϵ), recalling that this implies that p = ΘC(1).

External results. We make extensive use of the following generalisations of Harper’s inequality
to regular high-dimensional product graphs.

Theorem 1.2 (Theorems 1 and 2 in [12]). For every S ⊆ V with 1 ≤ |S| ≤ n,

e(S, SC) ≥ |S|(d− logC |S|)
C − 1

and

e(S, SC) ≥ |S|(d− (C − 1) log2 |S|).

We also utilise the following bound on the number of trees on k vertices in a d-regular graph,
that are rooted at a fixed vertex.

Lemma 1.3 (Lemma 2 in [3]). Let Γ be a d-regular graph, let k be a positive integer and
let v ∈ V (Γ). Denote by tk(v) the number of trees on k vertices rooted at v in Γ. Then
tk(v) ≤ (ed)k−1.

Proof outline of Theorem 3(a). The proof follows from a double-exposure argument, similar
in spirit to the classical argument of Ajtai, Komlós, and Szemerédi [1]. Let p2 := 1

d2
and let p1

be such that (1−p1)(1−p2) = 1−p. Note that Gp1 ∪Gp2 ∼ Gp, and p1 ≈ p− 1
d2

. We first show,
using a first-moment calculation, that whp every two vertices u, v which are isolated in Gp1

are at distance at least two in G (Lemma 2.1). Then, utilising Theorem 1.2 and Lemma 1.3,
we show that whp there are no components in Gp1 whose order is in

[
2, d20

]
(Lemma 2.2). We

then turn to show that typically components whose order is at least d20 merge after sprinkling
with p2 — this is fairly standard, and follows the same approach as in [1]. Noting that any
vertex which was an isolated vertex in Gp1 , is whp either an isolated vertex after sprinkling
with p2 or merged into a component which was of size at least d20 in Gp1 , we obtain that whp
Gp has a unique large connected component, and all the other vertices are isolated vertices.
Finally, from Markov’s inequality it follows that the total volume of isolated vertices in Gp is
at most nϵ/2 = o(n).

Proof outline of Theorem 3(b). Recall that we seek to show that the giant component of
Gp has a (nearly-)perfect matching. We know from Theorem 3(a) that whp every vertex of G
which is not in the giant component is an isolated vertex in Gp. Thus, it suffices to show that
whp Gp has a perfect matching if there are typically no isolated vertices in Gp. To that end, we
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will utilise the Tutte-Berge formula [2], which implies that the number of unmatched vertices
in a maximum matching in Γ is equal to

max
U⊆V (Γ)

(odd (Γ[V (Γ) \ U ]) − |U |) ,

where odd (Γ[V (Γ) \ U ]) is the number of connected components with an odd number of vertices
in Γ[V (Γ) \ U ]. In particular, a graph Γ has a perfect matching if and only if for every subset
U ⊆ V (Γ), the subgraph Γ[V (Γ)\U ] has at most |U | connected components with an odd number
of vertices. Note here that if Γ has isolated vertices, then choosing U = ∅ witnesses that there
is no perfect matching in Γ.

We thus define Tutte-like obstructions — we say that U ⊆ V is an obstruction (for Gp) if
|U | ≥ 1, and the number of components of size different than two in Gp[V \U ] is at least |U |+1.
We say that the size of the obstruction is |U |. Note that if Gp has no such obstructions, then
the only possible obstructions to a perfect matching are isolated vertices, and whp the giant
component has a perfect matching. Furthermore, observe that this definition does not capture
all the properties coming from the Tutte-Berge formula – indeed, we treat components with an
even number of vertices, except two, the same as components with an odd number of vertices
– but this crude, yet much-simplified, outlook will suffice for our needs.

We denote the components in Gp[V \ U ] of size different from two by K1, . . . ,Kℓ, where

ℓ ≥ |U | + 1 if U is an obstruction, and let K =
⋃ℓ

i=1 V (Ki) and ki := |Ki| for every i ∈ [ℓ]. We
denote the components of size two in Gp[V \ U ] by W1, . . . ,Ww/2, such that their total volume
is w.

We say that U is a minimal obstruction, if it is an obstruction with the smallest size of U .
Note that if a graph has an obstruction, then it must also have a minimal obstruction. We will
use the convention that u := |U | and k := |K|. Note that u + k + w = n.

We will require a finer description of the components in K. Let us partition the vertices in K
into three sets, according to the size of the component in Gp[V \ U ] they belong to. Let ℓ1 be
the number of components of size one in Gp[V \U ], let ℓ2 be the number of components whose
size is in [3, d2] in Gp[V \U ], and let ℓ3 = ℓ− ℓ1− ℓ2 be the number of components in Gp[V \U ]
that contain more than d2 vertices. We further denote the set of vertices in components of
Gp[V \ U ] whose size is one by V1, those whose size is in [3, d2] by S, and those whose size is
larger than d2 by B. We write s := |S| and b := |B|, and note that ℓ1 = |V1|.

Figure 1: Illustration of an obstruction, with the sets U , V1, W , S and B. Note that the only
edges in Gp, which are not induced by U or by components Ki in K or Wi in W , are
in E(U, V1 ∪W ∪ S ∪B).

Note that an obstruction is uniquely determined by the choice of U , and that U is not
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necessarily connected, and thus the number of choices could be
(
n
u

)
. As is often the case, a key

ingredient will be to efficiently enumerate the number of possible obstructions, and
(
n
u

)
will often

be an inefficient bound. We thus prove two claims, which could be of independent interest in
arguing about perfect matchings under percolation for general graphs. First, in Lemma 3.2, we
show that a minimal obstruction of size u is determined by the choice of W∪S∪B. We stress that
this result holds for any graph G, without requirements on its degree or structure. As these sets
contain connected components, by Lemma 1.3 there are at most (roughly) nw/2+ℓ2+ℓ3(ed)s+w+b

choices for a minimal obstruction of size u (see Lemma 3.3 for a precise statement). Since
d = ΘC(log n), for ‘large’ u this will be a much more efficient bound than

(
n
u

)
. As it turns out,

for certain types of obstructions, neither of these bounds will be efficient enough, and we will
require a different approach. Utilising the isoperimetric properties of G (Theorem 1.2), we show
in Lemma 3.7 that whp if U is an obstruction of order polynomial in n (that is, na for some
constant 0 < a < 1), then there is a set M such that U ⊆ M , |M | ≤ 10u, and there are relatively
few connected components in M — that is, U must reside in a relatively well-connected set of
order proportional to |U |. This allows us to more efficiently bound the number of choices of
such obstructions, using Lemma 1.3.

With these definitions and tools at hand, we can now describe how to proceed in showing that
typically obstructions do not exist. Using Theorem 1.2 one can deduce a lower bound of the
number of edges in E(Ki,K

C
i ). Note that for U to be an obstruction, EGp(Ki,K

C
i ) ⊆ E(Ki, U)

for all i ∈ [ℓ]. Since G is d-regular, there are at most du edges touching U . So in order to have an
obstruction in Gp, many of the edges in

⋃
i∈ℓE(Ki,K

C
i ) cannot be present in Gp. Utilising the

enumeration given by Lemma 3.7 and this probabilistic bound, we show in Lemma 3.8 that whp
there are no obstructions with 1 ≤ u ≤ n

dC
3/p

. Then, using the enumeration given by Lemma
3.2 and the aforementioned probabilistic bound, we show that whp there are no obstructions
with b not ‘too large’. For larger values of b, the aforementioned probabilistic bound no longer
suffices. Thus, the final ingredient, similar in spirit to the approach of Bollobás in [4], will be
Lemma 3.5, which allows to efficiently bound the number of choices for sets B that have ‘bad
expansion’, that is, the number of edges in E(B,BC) is small. We note that this is the only
place where we use the structure of G as a product graph. Indeed, sets B with bad expansion
leave a large ‘fingerprint’ on some coordinates of the product, in particular, if B intersects
non-trivially with a projection G(I) of G onto some coordinates I ⊆ [t], then G(I) spans many
edges of E(B,BC).

Finally, let us briefly comment on the difference between the proof here and the proof for the
hypercube, given in [4]. Since the hypercube is a bipartite graph, it suffices there to apply Hall’s
theorem, and in particular, one does not need to consider the entirety of the giant component,
but only sets of size at most n

2 which expand badly. Hence, Harper’s isoperimetric inequality for
the hypercube, together with a fingerprint argument given by Bollobás [4], allows one to show
that whp there are no obstructions (bar isolated vertices) to a perfect matching. Here, since
G is not necessarily bipartite, one needs to consider Tutte-type obstructions, and in particular
sets encompassing the entirety of the giant component. This, in turn, requires a much more
delicate treatment, and in particular, to consider the structure of obstructions, and the more
efficient enumerations given by Lemmas 3.2 and 3.7.

2 Connectivity

We begin by showing that isolated vertices in Gp are typically at distance at least two in G.

Lemma 2.1. Whp, every two isolated vertices in Gp are at distance at least two.

Proof. Fix an edge {u, v} ∈ E. Since G is d-regular, the total number of edges meeting u and
v is 2d− 1. Thus, the probability that u and v are isolated vertices in Gp is at most

(1 − p)2d−1 ≤ (1 − p)−1n−2(1−ϵ) ≤ n−2(1−2ϵ),

6



where we used that (1 − p)d ≤ n−(1−ϵ). There are dn
2 edges to consider. Thus, by the union

bound, the probability that two isolated vertices in Gp are at distance one in G is at most
dn
2 n−2(1−2ϵ) = o(1).

Let us further show the following ‘gap’ statement, which is an almost-immediate corollary
of Theorem 1.2 and Lemma 1.3. We note that d20 in the following lemma is chosen rather
arbitrarily, and a much tighter bound can be obtained.

Lemma 2.2. Whp, there are no connected components K in Gp with |V (K)| =: k ∈ [2, d20].

Proof. Fix k ∈ [2, d20]. Let us estimate the probability that there is a connected component K
of order k in Gp. By Theorem 1.2, we have that e(K,KC) ≥ k(d− (C − 1) log2 k) ≥ 9kd

10 , where
we used the fact that k ≤ d20. Let Tk be the set of trees of order k, and let Ak be the event
that there exists a connected component of order k in Gp. Thus, by the union bound and by
Lemma 1.3,

P [Ak] ≤
∑
T∈Tk

(1 − p)e(T,T
C) ≤ n(ed)k−1(1 − p)

9kd
10 ≤ n1−(1−ϵ) 9k

10 (ed)k−1 ≤ n1−(1−2ϵ) 9k
10 .

By the union bound over the less than d20 possible values of k, we have that the probability of
an event violating the statement of the lemma is at most

d20∑
k=2

n1−(1−2ϵ) 9k
10 ≤ 2n1−(1−2ϵ) 18

10 ≤ n−7/10 = o(1).

We are now ready to prove the key result of this section, that is, Theorem 3(a), whose proof
will utilise the classical double-exposure argument of [1].

Proposition 2.3. Whp there is a unique giant component in Gp whose order is n− o(n), and
all the other components in Gp are isolated vertices. Furthermore, every two isolated vertices
are at distance at least two from each other.

Proof. Let p2 = 1
d2

, and let p1 be such that (1−p1)(1−p2) = 1−p. Note there exists ϵ′ > 0 such

that (1 − p1)
d = n−(1−ϵ′), and thus we may apply Lemmas 2.1 and 2.2 on Gp1 . Furthermore,

observe that Gp has the same distribution as Gp1 ∪Gp2 .
We begin by percolating with probability p1. Note that by Lemma 2.2, whp in Gp1 there

are only isolated vertices and components of order at least d20. We begin by showing that after
sprinkling with p2, typically all the components of order at least d20 merge. Let W be the set of
vertices in components of order at least d20 in Gp1 . Let A ⊔B = W be a partition of W which
respects the components of Gp1 . We may assume that |A| ≤ |B| and let a := |A|.

Let A′ := (A ∪NG(A)) \ B, where NG(X) is the external neighbourhood of X in G, and let
B′ := (B ∪NG(B)) \A′. By Lemma 2.1, whp every two isolated vertices in Gp1 are at distance
at least two from each other in G. We continue assuming this holds deterministically. Thus,
every isolated vertex in Gp is in the neighbourhood of A or B, and we have that V = A′ ⊔ B′,

that is, B′ = V \A′. By Theorem 1.2, we have that e(A′, B′) ≥ a(d−logC a)
C−1 ≥ a

C−1 , since a ≤ n
2 .

We can thus extend these edges to a
C−1 paths of length at most 3 between A and B. Very

naively, we can trim these to a set of a
Cd2

edge-disjoint paths of length at most 3 between A
and B.

We now sprinkle with probability p2. The probability none of these paths are in Gp2 is thus

at most (1 − p32)
a

Cd2 ≤ exp
{
− a

d9

}
. Thus, by the union bound, the probability that there is a
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component of order at least d20 in Gp1 which does not merge in Gp1 ∪Gp2 is at most

n
2d20∑
a=d20

(
n/d20

a/d20

)
exp

{
− a

d9

}
≤

n∑
a=d20

(en)a/d
20

exp
{
− a

d9

}
= o(1),

where we used the fact that lnn ≤ ln(Cd) ≤ d2, and that a ≥ d20. Thus, all the components of
order at least d20 in Gp1 merge after sprinkling with probability p2.

Note that by Lemma 2.1, whp every two isolated vertices in Gp1 are not connected by an edge
of G. Hence, adding any edge touching an isolated vertex connects it to a component whose
order is at least d20 in Gp1 , and these components all merge whp. Hence, whp, there exists a
unique connected component in Gp1 whose order is at least d20, and all the other components
are isolated vertices, whose distance in G is at least two. Finally, let Y be the random variable
counting the number of isolated vertices in Gp. Then, E[Y ] = n(1−p)d ≤ nϵ. Thus, by Markov’s
inequality, whp Y ≤ nϵ/2 = o(n), completing the proof.

3 Perfect matching

We begin with the proof of Theorem 1. Throughout the section, we assume divisibility by two
whenever is necessary, noting that minor modifications will allow us to argue for the existence
of nearly-perfect matching otherwise. Let us first show that, by Theorem 1.2, for ‘high enough’
dimension of G every edge-cut of G has at least d edges.

Lemma 3.1. Suppose that t ≥ 5C log2C. Then, we have that G is d-edge-connected.

Proof. It suffices to show that e(S, SC) ≥ d for all S ⊆ V with 1 ≤ |S| ≤ n− 1, and in fact by
symmetry, for S of size at most n

2 . By Theorem 1.2,

e(S, SC) ≥ |S|(d− (C − 1) log2 |S|). (1)

For all |S| such that d ≥ C log2 |S|+C/ ln 2, (1) is increasing with |S|. Since d ≥ t ≥ 5C log2C,
we have that

d− C log2 d ≥ 1.1C log2C

ln 2
>

C

ln 2
,

where we further used the fact that C ≥ 2. Hence, |S|(d − (C − 1) log2 |S|) is increasing with
|S| for |S| ≤ d, and for all S with |S| ≤ d we have that e(S, SC) ≥ d, as required. For

d ≤ |S| ≤ 2
d−1
C−1 we have d − (C − 1) log2 |S| ≥ 1, and thus e(S, SC) is at least d, as required.

Thus, suppose that 2
d−1
C−1 ≤ |S| ≤ n

2 . Note that |S| ≤ n/2 ≤ Ct/2 ≤ Cd/2, which implies that
d− logC |S| ≥ logC 2. Hence, by Theorem 1.2,

e(S, SC) ≥ |S|(d− logC |S|)
C − 1

≥ |S| logC 2

C − 1
≥ 2

d−1
C−1 logC 2

C − 1
≥ 2

d−1
C−1

2C lnC
. (2)

We claim that for our choice of t, (2) is at least d. Note that the 2
d−1
C−1

2C lnC − d is increasing as d
is increasing, and indeed

2
5C log2 C−1

C−1

2C lnC
− 5C log2C >

C3

2 lnC
− 5C log2C ≥ 0,

for C ≥ 2.

The proof of Theorem 1 then follows immediately from Lemma 3.1, since every d-regular,
(d− 1)-edge-connected graph has a perfect matching (see [2, Theorem 7, Chapter 18]).
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3.1 Threshold for a perfect matching

Recall the definitions of an obstruction and the sets U, V1,W, S and B given in Section 1.2, and
that p satisfies (1− p)d ≤ n−(1−ϵ) for a sufficiently small constant ϵ ≥ 0. We begin by collecting
several lemmas which we will utilise to show that whp there are no obstructions with u ≥ 1.

3.2 Typical properties of obstructions

We begin with the following Lemma, which will allow us to bound the number of possible
obstructions more efficiently.

Lemma 3.2. There are at most two minimal obstructions, U and U ′, with |U | = |U ′| = u ≥ 2
and the same choice of W ∪ S ∪B.

Proof. Fix a minimal obstruction U with u = |U | ≥ 2. We have that V \ (U ∪W ∪S ∪B) = V1.
Suppose first that there are two sets, ∅ ̸= A1 ⊊ U and ∅ ̸= A2 ⊆ V1, such that X :=

(U \ A1) ∪ A2 is a minimal obstruction as well. By minimality, we have that |A1| = |A2|.
Since X is also an obstruction and has the same set of components of size strictly larger than
one, every v ∈ V1 \ A2 has that N(v) ⊆ U \ A1. But then, we have that U \ A1 is also an
obstruction, where 1 ≤ |U \ A1| < u — contradicting the minimality of U . Indeed, there are
ℓ1 − |A2| components of size 1 in Gp[V \ (U \A1)], and ℓ2 + ℓ3 components of size at least three
in Gp[S ∪B], thus at least ℓ1 + ℓ2 + ℓ3 − |A2| = ℓ− |A2| ≥ u + 1 − |A2| = |X| + 1 components
in total.

Now, suppose towards contradiction that there are three minimal obstructions U,U ′, U ′′ with
the same choice of W ∪ S ∪ B. Then, by the above, we have ∅ ̸= U ′, U ′′ ⊆ V1 with U ′ ̸= U ′′,
such that u = |U ′| = |U ′′|. But then, note that there must be some v ∈ U ′′ ⊆ V1, with v /∈ U ′.
Since N(v) ⊆ U , N(v) ⊆ U ′, and U ′ ∩ U = ∅, we have that v is an isolated vertex. But then
U ′′ \ {v} is also an obstruction of size u− 1 ≥ 1 — contradiction.

We will often seek to enumerate the number of minimal obstructions, having fixed w, ℓ2, s, ℓ3,
and b.

Lemma 3.3. Given u,w, ℓ2, s, ℓ3, and b, the number of minimal obstructions is at most

2nw/2+ℓ2+2ℓ3(ed)w/2+2s+b.

Proof. Recall that W is a set of w/2 edges. We thus have at most
(nd/2
w/2

)
≤ (nd)w/2 ways to

choose W . As for S, it has ℓ2 components. Let us denote the sizes of these components by
s1, . . . , sℓ2 , where we have that 3 ≤ si ≤ d2 for every i ∈ [ℓ2]. Thus there are at most d2ℓ2 ways
to choose s1, . . . , sℓ2 . We then have at most

(
n
ℓ2

)
≤ nℓ2 ways to choose roots for some spanning

trees of these components. Thus by Lemma 1.3, the number of ways to choose S is at most
d2ℓ2nℓ2

∏ℓ2
i=1(ed)si−1 ≤ nℓ2(ed)2s. Finally, B has ℓ3 components, and here we use the crude

bound of at most nℓ3 ways to choose their sizes. Then, similarly to the above, by Lemma 1.3
there are at most n2ℓ3(ed)b ways to choose B.

By Lemma 3.2, given W ∪S∪B and u there are at most 2 minimal obstructions. Thus, given
u,w, ℓ2, s, ℓ3, and b, the number of minimal obstructions is at most 2nw/2+ℓ2+2ℓe(ed)w/2+2s+b.

Noting that there are at most du edges touching U in G, let us bound from below the number
of edges leaving the components Ki for i ∈ [ℓ]. To that end, for m ∈ [n/2], let

f(m) = max

{
m(d− (C − 1) log2m),

m(d− logC m)

C − 1

}
, (3)

where for m ∈ [n/2 + 1, n] we set f(m) = f(n−m).
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Lemma 3.4. Suppose U ⊆ V is an obstruction. Then

ℓ∑
i=1

e(Ki,K
C
i ) ≥ d(ℓ− 1) + f(k − ℓ + 1),

where f is defined according to (3).

Proof. By Theorem 1.2, we have that
∑ℓ

i=1 e(Ki,K
C
i ) ≥

∑ℓ
i=1 f(ki). We have that

ℓ∑
i=1

f(ki) =

ℓ∑
i=1

max

{
ki(d− (C − 1) log2 ki),

ki(d− logC ki)

C − 1

}
.

We claim that the function f is concave, and thus the minimum of the above sum is obtained
with ki = 1 for all i ∈ [ℓ−1], and kℓ = k−(ℓ−1). Indeed, note that g1(x) = x(d−(C−1) log2 x)

and g2(x) = x(d−logC x)
C−1 are concave. While the maximum of two concave functions is not

necessarily concave, observe that there is some minimal integer m0 such that for all m ≥ m0,
g2(m) ≥ g1(m), and for all m′ < m0, g2(m

′) ≤ g1(m). It thus suffices to verify that that the
discrete second derivative at m0 is decreasing. Indeed, the function g(x) = g2(x) − g1(x− 1) is
decreasing at x = m0, and thus f(x) is concave.

We will further make use of the following estimate on the number of sets whose size is not
too small, yet having a small edge-boundary.

Lemma 3.5. Let a ≥ n

dln2 d
. Then, the number of sets A ⊆ V of size a with e(A,AC) < a ln2 d

is at most exp
{

2a
ln d

}
.

Proof. Let F be the family of A ⊆ V satisfying the conditions of the lemma.
For i ∈ [t] and any A ⊆ V , let Ei(A,A

C) ⊆ E(A,AC) be the set of edges in E(A,AC)
corresponding to a change in the i-th coordinate, and let ei,A := |Ei(A,A

C)|. Moreover, given
I ⊆ [t], let eI,A =

∑
i∈I ei,A. We say that A is bad with respect to a set of coordinates I, if

eI,A < a ln2 d · |I|
t . Let AI be the family of sets A which are bad with respect to some I ⊆ [t].

Note that for every fixed m ∈ N, if A ∈ F , then there is some I with |I| = m such that

eI,A < a ln2 d · |I|
t . Thus,

|F| ≤
∑
I⊆[t]
|I|=m

|AI | ≤
(
t

m

)
max
I⊆[t]
|I|=m

|AI |.

We now set m = logC
(
ln5 d

)
, and turn to estimate |AI | for any I ⊆ [t] with |I| = m.

For such an I and v ∈ V , let G(I, v) := □i∈[t]\I{vi}□i∈IHi ⊆ G. Observe that 2|I| ≤
|V (G(I, v))| ≤ C |I|, and that for every v ̸= u ∈ V , V (G(I, v)) and V (G(I, u)) are either disjoint
or identical. Thus, fixing I with |I| = m, there are at most n

2m different subgraphs G(I, v), and
their union is V . We say that A intersects non-trivially with G(I, v) if V (G(I, v))∩A ̸= ∅ and
V (G(I, v)) \A ̸= ∅. By Theorem 1.2 and Lemma 3.1, we have that if A intersects non-trivially
with G(I, v), then G(I, v) spans at least |I| = m edges of E(A,AC). Thus, if A ∈ AI , we have

that A intersects non-trivially at most a ln2 d
t such subgraphs. Indeed, otherwise, there would

be no I with |I| = m and eI,A < a ln2 d · m
t . Therefore, a set A ∈ AI contains at least

a− Cma ln2 d
t

Cm
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such subgraphs, and at most Cma ln2 d
t other vertices. Recalling a ≥ n

dln2 d
we thus obtain that

|AI | ≤
( n

2m
a

Cm

)(
n

Cma ln2 d
t

)
≤
(
enCm

a

) a
Cm
(

ent

Cma ln2 d

)Cm a ln2 d
t

≤
(
edln

2 dCm
) a

Cm

(
etdln

2 d

Cm ln2 d

)Cm a ln2 d
t

≤
(
edln

2 d ln5 d
) a

ln5 d

(
edln

2 d+1

ln7 d

)a ln7 d
t

≤ exp
{ a

ln d

}
.

Altogether, we obtain that |F| ≤
(

t
logC(ln5 d)

)
exp

{
a

ln d

}
≤ exp

{
2a
ln d

}
, as required.

We finish this section by showing that given an obstruction with u ≥ 2
d

10C , whp U lies in
a set which is not ‘too disconnected’, and whose size is proportional to that of U . First, we
require the following fairly simple claim.

Claim 3.6. Whp there are no obstructions such that one (or more) of the following holds,

(a) ℓ1 ≥ 5u,

(b) s ≥ 6u,

(c) ℓ3 ≥ 6u
d2

and u ≥ d2.

Proof. We first claim that in any of the above cases, we would have that∑
i∈[ℓ]

e(Ki,K
C
i ) ≥ 5du.

Indeed, if ℓ1 = |V1| ≥ 5u, since the graph G is d-regular,
∑

i∈[ℓ] e(Ki,K
C
i ) ≥ dℓ1 ≥ 5du.

Similarly, since by Theorem 1.2, every component Ki in Gp[S] satisfies e(Ki,K
C
i ) ≥ |Ki|(d −

2(C − 1) log2 d), if s ≥ 6u then
∑

i∈[ℓ] e(Ki,K
C
i ) ≥ (1− o(1))ds ≥ 5du. Finally, if ℓ3 ≥ 6u

d2
, then,

by Theorem 1.2 and by convexity arguments similar to Lemma 3.4, we have that∑
i∈[ℓ]

e(Ki,K
C
i ) > (ℓ3 − 1)d2(d− 2(C − 1) log2 d)

≥ 6du− d3 + 2(C − 1) log2 d ≥ 5du,

where we used the assumption that u ≥ d2.
Fix u and recall that U has at most du edges touching it. Note that any edge between two

components Ki,Kj for i, j ∈ [ℓ] would contradict the fact that we consider an obstruction.
Hence, the probability of an obstruction with

∑
i∈[ℓ] e(Ki,K

C
i ) ≥ 5du is at most(

n

u

)
(1 − p)5du−du ≤ nun−(1−ϵ)4u ≤ n− 5u

2 ,

where we used (1− p)d ≤ n−(1−ϵ), and recalling that choosing U determines the obstruction. A
union bound over all possible values of u, and the at most n2 choices for s and ℓ3 yields that
the probability of an event violating the statement of the claim is at most

3n2
n∑

u=1

n− 5u
2 ≤ 3n2 · 2n− 5

2 = o(1).
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We are now ready to describe for some range of u a set M containing U with relatively few
components.

Lemma 3.7. Whp for every obstruction with u ≥ 2
d

10C , there is a M ⊆ V satisfying the
following,

1. U ⊆ M ; and,

2. |M | ≤ 10u; and,

3. G[M ] contains at most u/2
d

(100C)3 components.

Proof. Suppose that U is an obstruction with u = |U |, |V1| = ℓ1 and s = |S|. By Claim 3.6, we
have that whp there is no obstruction with ℓ1 ≥ 4u, as well as no obstruction with s ≥ 5u, and
no obstruction with ℓ3 ≥ 10u/d2. We may thus assume that ℓ1 < 4u, s < 5u and ℓ3 < 10u/d2.
In particular, ℓ1 + ℓ2 ≥ u + 1 − 10u/d2.

For every component Ki in Gp[S ∪ V1], we have that EGp(Ki,K
C
i ) ⊆ E(Ki, U). Now, by

Theorem 1.2,∑
Ki∈Gp[S∪Vi]

e(Ki,K
C
i ) ≥ dℓ1 + (1 + o(1))ds ≥ d(ℓ1 + ℓ2) ≥ d(u + 1 − 10u/d2),

where in the second inequality we used that s ≥ 3ℓ2. Thus, the probability that there is such
an obstruction with e(U, V1 ∪ S) ≤ du

100C2 is at most(
n

u

)
(1 − p)d(u+1−10u/d2− u

100C2 ) ≤
(en
u

)u
n
−
(
1− 1

95C2

)
u ≤ exp

{ u

95C2
lnn + u− u lnu

}
≤ exp

{
u

(
lnn

95C2
− ln 2 · d

10C

)}
= o

(
n−3

)
,

where we used n ≤ Cd, C ≥ 2 and u ≥ 2
d

10C . Hence, by the union bound over the at most

n3 possible choices for u, s and ℓ3, we have that whp any obstruction U with u ≥ 2
d

10C has
ℓ1 < 4u, s < 5u and there are at least du

100C2 edges in G[U ∪ V1 ∪ S].
Let M = U ∪ V1 ∪ S. We have that U ⊆ M and |M | = u + ℓ1 + s ≤ 10u, by our assumptions

ℓ1 < 4u and s < 5u. Theorem 1.2 implies that for any set M ⊆ V (G)

eG(M) ≤ |M |d− |M |(d− (C − 1) log2 |M |) = |M |(C − 1) log2 |M |.

If G[M ] had at least u/2
d

(100C)3 components, then by standard convexity arguments, we would
have that

eG(M) ≤ |M |(C − 1) log2

 |M |

u/2
d

(100C)3


≤ 10u(C − 1) log2

(
10 · 2

d
(100C)3

)
≤ du

(100C)2
<

du

100C2
,

a contradiction.

3.3 Typically no obstructions

We are now ready to show that whp there are no obstructions with u ≥ 1 in Gp. We consider
several cases separately: when |U | is small; when s = b = 0; when s ̸= 0 and b = 0; when
0 ̸= b ≤ n

2 ; and, when b > n
2 . We show that for each of these cases, whp there are no

obstructions, thus completing the proof of Theorem 3(b).
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Obstructions with small U . We denote by Bu the event there exists an obstruction in Gp with
|U | = u.

Lemma 3.8. We have that ⋃
1≤u≤ n

dC
3/p

P (Bu) = o(1).

Proof. Suppose there exists a construction with |U | = u and u ∈
[

n

dC
3/p

]
. By Lemma 3.4, we

have that

j=w/2∑
j=1

e(Wj ,W
C
j ) +

ℓ∑
i=1

e(Ki,K
C
i ) ≥ w(d− 1) + d(ℓ− 1) + f(k − ℓ + 1)

≥ w(d− 1) + du + f(n− 2u− w) ≥ du + f(2u),

where we used that ℓ ≥ u + 1, k = n− u− w and the definition of f(x).

We continue by considering two ranges separately. First, suppose that u ≤ 2
d

10C . We then
have that (C − 1) log2 u ≤ (C − 1) d

10C < d
10 and thus f(2u) ≥ 2u(d − (C − 1) log2 u) > 3du

2 .
As there are at most du edges touching U , and noting that any edge between any two different
components in Gp[V \ U ] would rule out the existence of such an obstruction, we have that

P (Bu) ≤
(
n

u

)
(1 − p)3du/2 ≤ n−(1−ϵ) 3u

2
+u < n−u/3.

Therefore, by the union bound,

⋃
1≤u≤2

d
10C

P (Bu) ≤
2

d
10C∑
u=1

1

nu/3
= o(1).

We now turn to 2
d

10C ≤ u ≤ n

dC
3/p

. By Lemma 3.7, we may assume that there exists M such

that |M | ≤ 10u, U ⊆ M and there are at most u/2
d

(100C)3 =: r components in G[M ]. We have
at most nr ways to choose the sizes of these components. Thus, by Lemma 1.3, there are at
most

(
10u
u

)
n2r(ed)10u ways to choose U . Since u ≤ n

dC
3/p

, we have that

f(2u) ≥ 2u(d− logC u)

C
≥ 2uC2 logC d

p
.

Thus, the probability of such an obstruction is at most(
10u

u

)
n2r(ed)10u(1 − p)

2uC2 logC d

p ≤ (10e)u n2r(ed)10u exp
{
−2uC2 logC d

}
≤ exp

{
u

(
11 + ln 10 +

2 lnn

2d/(100C)3
+ 10 ln d− 2C2 logC d

)}
≤ exp

{
u

(
15 +

2 lnn

2d/(100C)3
−
(

10 − 2C2

lnC

)
ln d

)}
= exp

{
−u ln d

2

}
≤ d−u/2,

using 2C2

lnC ≥ 11 for C ≥ 2 and 2 lnn

2d/(100C)3
= o(ln d). A union bound over the less than n possible

values of u completes the proof.

We now turn to consider obstructions with large U . We consider several cases separately.
The proofs in Lemmas 3.9-3.14 follow quite similar calculations, however, each such calculation
requires a slightly different approach. As these differences are telling of the different challenges
in showing that such typical obstructions do not appear, we left the calculations explicit.
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Obstructions with s = b = 0.

Lemma 3.9. Whp, there are no obstructions with s = b = 0.

Proof. Fix u and w, and let Bu,w be the event that there is a minimal obstruction with u =
|U |, w = |W | and s = b = 0. By Lemma 3.3, there are at most 2nw/2(ed)w/2 such minimal
obstructions. In particular, ℓ = |V1| = n− u− w.

We have that

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ dℓ + w(d− 1).

As there are at most du edges touching U in G, we have by the union bound

P

 ⋃
u∈[1,n/2−1]

w∈[0,n−2u−1]

Bu,w

 ≤
n/2−1∑
u=1

n−2u−1∑
w=0

2nw/2(ed)w/2(1 − p)d(ℓ+w−u)−Cw

≤
n/2−1∑
u=1

n−3∑
w=0

2n−(1−ϵ)(ℓ−u)−w/3.

Recall that since u and w are fixed, ℓ−u is fixed as well and ranges from 2 to n−2. Furthermore,
note that the sum over w is a geometric sum and is at most twice its value when w = 0. Thus,
we have that

P

 ⋃
u∈[1,n/2−1]

w∈[0,n−2u−1]

Bu,w

 ≤ 4

n−2∑
j=2

n−(1−ϵ)j = o(1),

as required.

Obstructions with s ̸= 0, b = 0.

Lemma 3.10. Whp, there are no obstructions with s ̸= 0 and b = 0.

Proof. Fix u,w and s, and let Bu,w,s be the event that there is a minimal obstruction with
u = |U |, w = |W |, 0 ̸= s = |S| and b = 0. We then have that

ℓ∑
i=1

e(Ki,K
C
i ) +

j=w/2∑
j=1

e(Wj ,W
C
j ) ≥ dℓ1 + ds− 2Cs log2 d + w(d− 1),

since the components in S are of size at most d2, and thus by Theorem 1.2, any Ki of size at
most d2 has that e(Ki,K

C
i ) ≥ |Ki|(d− 2C log2 d).

By Lemma 3.3 there are at most 2nw/2+ℓ2(ed)w/2+2s choices for such a minimal obstruction
with u = |U |, w = |W |, s = |S| and b = 0. As before, we obtain that

P

 ⋃
w∈[0,n−u−s−ℓ1]

Bu,w,s

 ≤
n−u−s−ℓ1∑

w=0

2nw/2+ℓ2(ed)w/2+2s(1 − p)d(ℓ1+s+w−u)−2Cs log2 d−w

≤ 4nℓ2(ed)2s(1 − p)d(ℓ1+s−u)−2Cs log2 d.
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Now, ℓ1 + ℓ2 ≥ u + 1, and thus ℓ1 − u ≥ 1 − ℓ2. Hence,

nℓ2(ed)2s(1 − p)d(ℓ1+s−u)−2C log2 ds ≤ nℓ2(ed)2s(1 − p)d(s−ℓ2+1)−2Cs log2 d

≤ n−(1−ϵ)(s−2ℓ2+1)(ed)2s(1 − p)−2Cs log2 d

≤ exp

{
−(1 − ϵ)(s− 2ℓ2 + 1) lnn + 5C

(
1 + ln

(
1

1 − p

))
s ln d

}
.

Note that the above decreases as s increases, and therefore, using s ≥ 3ℓ2 and ℓ2 ≥ s
d2

, we have
that

P

 ⋃
s∈[3,n−u−ℓ1]

w∈[0,n−u−s−ℓ1]

Bu,w,s

 ≤ 4

n−u−ℓ1∑
s=3

exp

{
−(1 − ϵ)(ℓ2 + 1) lnn + 15C

(
1 + ln

(
1

1 − p

))
ℓ2 ln d

}

≤ 4d2
n∑

ℓ2=1

exp {−(1 − 2ϵ)(ℓ2 + 1) lnn}

≤ 5d2 exp {−(1 − 2ϵ)2 lnn} = o(1/n),

where we used the fact that p is bounded away from one. Therefore, by the union bound over
the at most n values of u, we have that whp there is no obstruction violating the statement of
the Lemma.

Obstructions with 0 ̸= b ≤ n
2 . We first treat this case under the assumption that the edge

boundary of B in G is not too small.

Lemma 3.11. Whp there are no obstructions with 0 ̸= b and e(B,BC) ≥ b ln2 d.

Proof. Fix u,w, s, ℓ2, b, and ℓ3, and let Bu,w,s,b be the event that there is a minimal obstruction
with u = |U |, w = |W |, s = |S| and 0 ̸= b = |B|. Similarly to before, we then have that

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ ℓ1d + (1 + o(1))sd + e(B,BC) + wd− w.

Since we assume that e(B,BC) ≥ b ln2 d, we obtain that

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ ℓ1d + (1 + o(1))sd + b ln2 d + wd− w.

Now, by Lemma 3.3, there are at most 2nw/2+ℓ2+2ℓ3(ed)w/2+2s+b = 2nℓ−ℓ1+ℓ3+w/2(ed)2s+b+w/2

such minimal obstructions with u = |U |, w = |W |, s = |S| and b = |B|. As before, we obtain
that

P (Bu,w,s,b) ≤ 2nℓ−ℓ1+ℓ3(ed)2s+b(1 − p)d(ℓ1+(1+o(1))s−u)+b ln2 d · nw/2(ed)w/2(1 − p)dw−w

≤ 2nℓ−ℓ1+ℓ3(ed)2s+b(1 − p)d(ℓ1+(1+o(1))s−u)+b ln2 d · n−w/3

≤ 2nℓ−ℓ1+ℓ3(ed)2s+b(1 − p)d(ℓ1+(1+o(1))s−u)+b ln2 d

≤ 2 exp
{

(ℓ− ℓ1 + ℓ3) lnn + (2s + b) ln(ed) − pb ln2 d
}
n−(1−ϵ)(ℓ1+(1+o(1))s−u)

≤ 2 exp
{

(ℓ− ℓ1) lnn + 2s(ln d + 1) − p

2
b ln2 d− (1 − ϵ)(ℓ1 + (1 + o(1))s− u) lnn

}
≤ 2 exp

{
(ℓ + ℓ3 − (2 − ϵ)ℓ1 + (1 − ϵ)u) lnn− s(1 − 2ϵ) lnn− p

2
b ln2 d

}
.
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Recall that ℓ = ℓ1 + ℓ2 + ℓ3 and ℓ2 ≤ s
3 and ℓ3 ≤ b

d2
. Thus,

P (Bu,w,s,b) ≤ 2 exp
{

(ℓ + ℓ3 − (2 − ϵ)(ℓ− ℓ2 − ℓ3) + (1 − ϵ)u) lnn− s(1 − 2ϵ) lnn− p

2
b ln2 d

}
≤2 exp

{(
(1 − ϵ) (u− ℓ) +

2s

3
+

3b

d2

)
lnn− s(1 − 2ϵ) lnn− p

2
b ln2 d

}
≤2 exp

{
(1 − ϵ)(u− ℓ) lnn + O

(
b

d

)
− s

(
1 − 2ϵ− 2

3

)
lnn− p

2
b ln2 d

}
≤2 exp

{
O

(
b

d

)
− p

2
b ln2 d

}
,

where in the last step we used that u < ℓ. Since b ≥ d2, by the union bound over the at most
n6 values for u,w, s, ℓ2, b and ℓ3, we have that the probability of an obstruction violating the
statement of the claim is at most

n6 exp
{
−Ω

(
d2 ln2 d

)}
= o(1).

We now turn to obstructions where B has a small edge-boundary.

Lemma 3.12. Whp there are no obstructions with 0 ̸= b ≤ n
2 and e(B,BC) ≤ b ln2 d.

Proof. Note that every set B ⊆ V with e(B,BC) ≤ b ln2 d is of size at least n

dln2 d
since by

Theorem 1.2, for b < n

dln2 d
,

e(B,BC) ≥ b(d− logC b)

C
≥ b ln2 d logC d

C
> b ln2 d

Fix u,w, s, ℓ2, b, and ℓ3, and let Bu,w,s,b be the event that there is a minimal obstruction with
u = |U |, w = |W |, s = |S| and 0 ̸= b = |B| ≤ n

2 . Similarly to before, we then have that

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ ℓ1d + (1 + o(1))sd + f(b) + wd− w.

By the proof of Lemma 3.3, there are at most nℓ2+w/2(ed)2s+w/2 ways to choose W ∪ S. Fur-
thermore, since we assume e(B,BC) ≤ b ln2 d and b ≥ n

dln2 d
, by Lemma 3.5 there are at most

exp
{

2b
ln d

}
choices for B. Therefore, by Lemma 3.2, there are at most 2nℓ2+w/2(ed)2s+w/2 exp

{
2b
ln d

}
such minimal obstructions. We obtain that

P (Bu,w,s,b) ≤ 2nℓ2(ed)2s exp

{
2b

ln d

}
(1 − p)d(ℓ1+(1+o(1))s−u)+f(b) · nw/2(ed)w/2(1 − p)dw−w

≤ 2nℓ2(ed)2s exp

{
2b

ln d

}
(1 − p)d(ℓ1+(1+o(1))s−u)+f(b)

≤ 2 exp

{
ℓ2 lnn + 2s ln(ed) +

2b

ln d
− pf(b)

}
n−(1−ϵ)(ℓ1+(1+o(1))s−u)

≤ 2 exp

{
ℓ2 lnn + 2s(ln d + 1) +

2b

ln d
− pf(b) − (1 − ϵ)(ℓ1 + (1 + o(1))s− u) lnn

}
≤ 2 exp

{
(ℓ2 − (1 − ϵ)(ℓ1 − u)) lnn− s(1 − 2ϵ) lnn +

2b

ln d
− pf(b)

}
.
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Recall that ℓ = ℓ1 + ℓ2 + ℓ3 and ℓ2 ≤ s
3 and ℓ3 ≤ b

d2
. Thus,

P (Bu,w,s,b) ≤ 2 exp

{
(ℓ2 − (1 − ϵ)(ℓ− ℓ2 − ℓ3 − u)) lnn− s(1 − 2ϵ) lnn +

2b

ln d
− pf(b)

}
≤ 2 exp

{(
ϵ
s

3
+ (1 − ϵ)

b

d2
− (1 − ϵ)(ℓ− u)

)
lnn− s(1 − 2ϵ) lnn +

2b

ln d
− pf(b)

}
≤ 2 exp

{
3b

ln d
− pf(b)

}
,

where in the last step we used that u < ℓ. Since we assume that b ≤ n
2 and n ≤ Cd, we have

that logC b ≤ logC(Cd/2) ≤ d− 1
C . Hence, f(b) ≥ b

C2 . Therefore,

P (Bu,w,s,b) ≤ 2 exp

{
b

(
3

ln d
− p

C2

)}
≤ exp

{
− d2

2C2

}
.

union bound over the at most n6 values for u,w, s, ℓ2, n and ℓ3 completes the proof.

Obstructions with b > n
2 . Note that here, by Lemma 3.8, we may assume that u ≥ n

dC
3/p

, and

thus |BC | ≥ n

dC
3/p

. We begin by assuming that BC has a large edge-boundary.

Lemma 3.13. Whp there are no obstructions with b > n
2 and e(BC , B) ≥ |BC | ln2 d.

Proof. Fix u, ℓ1, w, s and b. We then have that

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ ℓ1d + (1 + o(1))sd + e(B,BC) + wd− w.

By Claim 3.6, we may assume that ℓ3 <
6u
d2

, and since u + 1 ≤ ℓ1 + ℓ2 + ℓ3, we have that

ℓ1d + (1 + o(1))sd + e(B,BC) + wd− w ≥ du− 6u

d
+ |BC | ln2 d ≥ du +

u ln2 d

2
.

We have at most
(
n
u

)
ways to choose the obstruction. Thus, the probability of having an

obstruction with such u, ℓ1, w, s, b is at most(
n

u

)
(1 − p)u ln2 d/2 ≤

(en
u

)u
exp

{
−pu ln2 d

2

}
≤ exp

{
u

(
1 + lnn− lnu− p ln2 d

2

)}
≤ exp

{
u

(
1 +

C3

p
ln d− p ln2 d

2

)}
≤ exp

{
−pu ln2 d

3

}
,

where in the penultimate inequality we used u ≥ n

dC
3/p

. Union bound over the at most n5

choices of u, ℓ1, w, s and b completes the proof.

We now turn the case where BC has a small edge-boundary.

Lemma 3.14. Whp there are no obstructions with b > n
2 and e(BC , B) ≤ |BC | ln2 d.

Proof. We follow a similar argument to that in Lemma 3.12. Fix u,w, s, and b, and let Bu,w,s,b be
the event that there is a minimal obstruction with u = |U |, w = |W |, s = |S| and n

2 ̸= b = |B|.
Similarly to before, we then have that

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ ℓ1d + (1 + o(1))sd + e(B,BC) + wd− w.
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By Theorem 1.2 e(B,BC) ≥ f(b) = f(n− b) and we obtain

ℓ∑
i=1

e(Ki,K
C
i ) +

w/2∑
j=1

e(Wj ,W
C
j ) ≥ ℓ1d + (1 + o(1))sd + f(n− b) + wd− w.

By the proof of Lemma 3.3, there are at most nℓ2+w/2(ed)2s+w/2 ways to choose W ∪S. Further-
more, since we assume e(B,BC) ≤ |BC | ln2 d and |BC | ≥ u ≥ n

dln2 d
, by Lemma 3.5 there are at

most exp
{

2|BC |
ln d

}
= exp

{
2(n−b)
ln d

}
choices for BC , and hence for B. Therefore, by Lemma 3.2,

there are at most 2nℓ2+w/2(ed)2s+w/2 exp
{

2(n−b)
ln d

}
such minimal obstructions. We thus obtain

that

P (Bu,w,s,b) ≤ 2nℓ2(ed)2s exp

{
2(n− b)

ln d

}
(1 − p)d(ℓ1+(1+o(1))s−u)+f(n−b) · nw/2(ed)w/2(1 − p)dw−w

≤ 2nℓ2(ed)2s exp

{
2(n− b)

ln d

}
(1 − p)d(ℓ1+(1+o(1))s−u)+f(n−b)

≤ 2 exp

{
(ℓ2 − (1 − ϵ)(ℓ1 − u)) lnn− s(1 − 2ϵ) lnn +

2(n− b)

ln d
− pf(n− b)

}
.

Recall that ℓ = ℓ1 + ℓ2 + ℓ3 and ℓ2 ≤ s
3 and by Claim 3.6 ℓ3 ≤ 6u

d2
. Thus,

P (Bu,w,s,b) ≤ 2 exp

{
(ℓ2 − (1 − ϵ)(ℓ− ℓ2 − ℓ3 − u)) lnn− s(1 − 2ϵ) lnn +

2(n− b)

ln d
− pf(n− b)

}
≤ 2 exp

{(
6u

d2
+ ϵ

s

3
− s(1 − 2ϵ) − (1 − ϵ)(ℓ− u)

)
lnn +

2(n− b)

ln d
− pf(n− b)

}
≤ 2 exp

{
3(n− b)

ln d
− pf(n− b)

}
,

where in the last step we used that u < ℓ. Since b ≥ n
2 , we have that logC(n−b) ≤ logC(Cd/2) ≤

d− 1
C . Hence, f(n− b) ≥ n−b

C2 . Moreover, n− b ≥ u. Therefore,

P (Bu,w,s,b) ≤ 2 exp

{
u

(
3

ln d
− 1

C2

)}
≤ exp

{
− u

2C2

}
.

A union bound over the at most n6 values for u,w, s, ℓ2, b and ℓ3 completes the proof.

4 Discussion

We have extended the classical result concerning hitting times of minimum degree one, con-
nectivity, and the existence of a perfect matching to random subgraphs of regular Cartesian
product graphs. In particular, this includes a simplified self-contained version of the connectiv-
ity result for bond percolation on the hypercube. Let us mention that, independently, Collares,
Doolittle, and Erde use a similar approach – that is, sprinkling with probabilities p1 and p2 –
to show a connectivity result for bond percolation on the permutahedron [9]. There, however,
similarly to the approach of [1, 6, 20], one utilises that in Gp1 , large components are relatively
well-spread, that is, typically every vertex in G is quite close (in G) to a large component of
Gp1 . In this paper, we neither require nor utilise such a ‘density’ statement, and instead use
the fact that the isolated vertices are ‘sparsely spread’.

We note that Lemma 3.2 does not require anything from the host graph G, and Lemma 3.7
only utilises some of the isoperimetric profile of G, yet does not utilise the product structure of G.
Hence, these two results could be of independent interest, in particular in questions concerning

18



the typical existence of a perfect matching under percolation in a more general setting. Still, in
this proof, the bound on the number of sets with ‘bad expansion’ from Lemma 3.5 exploits the
coordinate structure present in product graphs.

Many other random graph models are known to have typically the same hitting times for
minimum degree one, connectivity, and the existence of a perfect matching (see, for example,
[15] and the references therein). It is thus natural to ask what are the minimal requirements
on G for this phenomenon to hold. As a step towards this, we propose the following question,
considering regular graphs with high-degree.

Question 4.1. Let G be a d-regular graph on n vertices, with d = ω(1) and n divisible by two.
What minimal requirements are needed on G, such that in the graph process on G, the hitting
times for minimum degree one, connectivity, and the existence of a perfect matching are the
same?

Utilising the Tutte-Berge formula we aimed for a (nearly-)perfect matching, that is, a match-
ing missing none or only one vertex (in the case when n is odd) of the graph. A natural extension
is to look for the threshold to have a matching that covers all but a small fraction of the vertices.

Question 4.2. Let G = □t
i=1Hi for Hi connected, regular and of bounded size. What is the

threshold p∗ such that for all p ≥ p∗, whp, the giant component of Gp contains a (nearly-)perfect
matching?
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