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Abstract—This survey offers a comprehensive examination
of collaborative perception datasets in the context of Vehicle-
to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and Vehicle-
to-Everything (V2X). It highlights the latest developments in
large-scale benchmarks that accelerate advancements in per-
ception tasks for autonomous vehicles. The paper systematically
analyzes a variety of datasets, comparing them based on aspects
such as diversity, sensor setup, quality, public availability, and
their applicability to downstream tasks. It also highlights the
key challenges such as domain shift, sensor setup limitations,
and gaps in dataset diversity and availability. The importance
of addressing privacy and security concerns in the development
of datasets is emphasized, regarding data sharing and dataset
creation. The conclusion underscores the necessity for compre-
hensive, globally accessible datasets and collaborative efforts
from both technological and research communities to overcome
these challenges and fully harness the potential of autonomous
driving.

Index Terms—Autonomous driving, collaborative perception,
dataset, V2X communication

I. INTRODUCTION

In the evolving landscape of Intelligent Transportation
Systems (ITS), there is a significant shift toward collaborative
perception, which enhances the capabilities of autonomous
driving and traffic management systems. Central to this
shift is the implementation of V2X communications, which
includes interactions such as V2V [1], V2I [2], and even
Vehicle-to-Pedestrian (V2P) [3]. This advanced approach
substantially improves traditional single-vehicle detection
systems, offering a more comprehensive and accurate un-
derstanding of complex traffic environments. One of the
key advantages of collaborative perception lies in its ability
to overcome the inherent limitations of individual vehicle
systems, particularly in dealing with occlusions and detecting
long-range objects and sensor noise [4]. Integrating data
from multiple sources increases the field of view, leading to-
wards a holistic view of the surroundings. This multi-faceted
perception enhances safety by providing a more accurate
representation of the environment and contributes to more
efficient traffic flow and better decision-making capabilities
for autonomous vehicles. Established single-vehicle datasets
such as KITTI [5], nuScenes [6], and Waymo [7] do not
address the complexity of collaborative perception in addition
to limitations such as sensor heterogeneity, communication
protocols testing, information fusion, testing and validation
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of collaborative perception frameworks. Recognizing these
limitations, researchers have published various datasets to test
and benchmark frameworks under conditions that mimic real-
world scenarios involving multiple vehicles and infrastructure
components.

To the best of our knowledge, this work presents the
most comprehensive collection of datasets for V2V and V2I
research to date, incorporating road intersection datasets.
Intersections represent some of the most complex and dy-
namic urban traffic environments, where various agents such
as vehicles, pedestrians, and cyclists interact [8]. For au-
tonomous vehicles, navigating through intersections poses a
formidable challenge. The unpredictability and diversity of
scenarios encountered at these junctions necessitate advanced
perception and decision-making capabilities [9]. Further-
more, infrastructure sensors crucially enhance perception by
providing vital environmental data less prone to the blind
spots and occlusions typical of vehicle-mounted sensors [10].
The paper’s main contributions include:

• Comparison between different datasets based on di-
versity, sensor setup, quality, public availability, and
downstream tasks such as 3D object detection, object
tracking, motion prediction, trajectory prediction, and
domain adaptation.

• Comprehensive discussion on the challenges and domain
gaps encountered by datasets, along with exploring the
scope of future work to address these issues, is a vital
aspect of this study.

Some datasets have been excluded due to their limited size
[11], lack of information regarding size, annotation, and
benchmark [12].

The paper is organized as follows: Section II-A system-
atically analyzes the road intersection datasets, presenting
a comparison in Table I. This is followed by a systematic
analysis of collaborative perception datasets in Section II-B
with a summarized comparison in Table II. Section III
discusses open challenges for future research. Section IV
summarizes the key findings of this review.

II. DATASETS

A. Road Intersection Datasets

Road intersection datasets are crucial, where the dataset
requires diverse camera angles to capture the complex in-
tersection traffic, and environment conditions present unique
challenges [9]. These datasets are instrumental in refining 3D
object detection and localization, addressing occlusions and
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Dataset Year Source Sensors-(Size) 3D Labels Classes Tasks Website Public
BAAI-VANJEE [13] 2021 Real C-(2,500), L-(5,000) 74,000 12 OD Link ✓
IPS300+ [8] 2021 Real C-(14,198), L-(14,198) 4,5M 7 OD Link ✓
Rope3D [9] 2022 Real C-(50,000) 1,5M 13 OD Link -
TUMTraf-I [14] 2023 Real C-(4,800), L-(4,800) 57,406 10 OD Link ✓
RCooper [15] 2024 Real C-(50,000), L-(30,000) 30,000 10 OD, OT Link ✓

1 Sensors: Camera (C), Lidar (L)
2 Tasks: Object Detection (OD), Object Tracking (OT)

TABLE I: Overview of Road Intersection Datasets

truncations. Table I provides the details of the datasets at a
glance for further reference.

BAAI-VANJEE [13] is an infrastructure-side open-
sourced dataset with highly diverse scenes. The data, which
includes 2,500 frames of LiDAR data and 5,000 frames of
RGB images, were recorded in sunny, cloudy, and rainy
weather conditions. Its 74,000 3D and 105,000 2D object
annotations distinguish the dataset. The dataset focuses on
12 classes, such as pedestrians, bicycles, motorcycles, and
several types of vehicles and roadblocks. The VANJEE smart
base station, approximately 4,5 meters high at a Chinese
intersection, collects the data. It is equipped with a 32-
channel LiDAR sensor and four cameras. Focusing mainly
on tricycles and frames with densely packed object instances,
this dataset features a significantly higher number of anno-
tations per frame compared to the KITTI [5] dataset. The
dataset is available under a non-commercial license.

IPS300+ [8] is multi-modal, the first large-scale open-
sourced roadside perception dataset. IPS300+ covers an
extensive area of 3000 square meters and extends to 300
meters. Being designed from evening rush hour scenarios
in the Haidian district, Beijing, China, comprises 14,198
frames. Each frame contains an average of 319,84 labels,
which is significantly higher than many existing datasets
like KITTI [5]. Labeling incorporates LiDAR point clouds
and images, ensuring accurate 3D bounding box annotations
for categories, including pedestrians, cyclists, tricycles, cars,
buses, trucks, and engineering vehicles. Each intersection in
the dataset has an 80-channel LiDAR, two RGB cameras,
and one GPS, providing a comprehensive view of the sur-
rounding environment. The dataset provides a label document
consistent with KITTI [5] and contains more pedestrians
and vehicles per frame than KITTI [5] or nuScenes [6].
The statistics in the dataset show that the annotation size
of buses and trucks is relatively smaller than that of cars,
which can affect the detection accuracy of those classes. The
dataset employs time synchronization and spatial calibration
between different units, ensuring the consistency of labeling
and accuracy of the collected multi-modal data. While the
dataset’s performance in 3D LiDAR detection assessed using
baseline PointPillar [16], its evaluation with camera-based
methods remains unexplored, emphasizing a notable gap in
monocular approach assessments. The dataset is publicly
available under the CC BY-NC-SA 4.0 license.

Rope3D [9] is another dataset specifically developed for
monocular 3D object detection tasks. Rope3D includes a

collection of 50,000 images and 1.5 million 3D annotations.
Comprising 13 object classes, it provides a detailed represen-
tation of roadside elements. The primary classes include cars,
oversized vehicles, pedestrians, cyclists, and extra classes
such as traffic cones, triangle plates, and unknown-unmovable
objects. The dataset utilizes roadside cameras mounted on
poles or traffic lights and LiDAR sensors equipped on vehi-
cles parked or moving. Rope3D comprises images captured
across various lighting conditions, weather conditions, and
diverse road scenes. Each has distinct camera specifications,
including focal length, pitch angle, and mounted height. The
annotation process focused on accurately aligning 2D and 3D
annotations and paying particular attention to occlusion and
truncation levels. This approach utilizes a model to bridge
3D locations and 2D projections, effectively addressing the
challenge of non-parallel optical axes in cameras with varying
pitch angles, thereby solving the gap as previously discussed
in IPS300+ [8]. Benchmarking involves evaluating adapted
monocular 3D object detection such as M3D-RPN [17].
Addressing ethical concerns, Rope3D anonymizes sensitive
information such as license plates and human faces. It also
restricts the use of time-discrete images to prevent potential
misuse for illegal surveillance. The dataset is governed by
strict usage terms outlined in a detailed confidentiality and
use agreement, restricting its availability outside specified
conditions and prohibiting open-source distribution.

TUMTraf-I [14] is another multi-modal large-scale open-
sourced dataset. TUMTraf-I comprises 4,800 images and Li-
DAR point cloud frames, which include over 57,406 labeled
3D annotations. These are partitioned into ten distinct object
classes of traffic participants, offering a wide range of classes
in real-world scenarios. The classes include cars, trucks,
trailers, vans, pedestrians, motorcycles, buses, bicycles, emer-
gency vehicles, and others. This dataset is equipped with two
cameras and two LiDARs mounted at a height of 7 meters,
offering a 360° field of view. This elevated perspective is
essential for observing traffic scenarios, such as turns, over-
taking maneuvers, and lane merges. Accordingly, the dataset
is segmented into four subsets (S1 to S4), each encapsulating
different atmospheric conditions and providing a realistic
spectrum of driving scenarios. Subsets S1 and S2 capture 30-
second sequences during dusk, presenting continuous camera
footage alongside labeled LiDAR captures. Conversely, sub-
set S3 offers a detailed 120-second sequence shot in bright
daylight, while subset S4 provides a 30-second nighttime
recording amidst heavy rainfall. TUMTraf-I is used to assess

https://data.baai.ac.cn/details/RoadsideDataset
http://www.openmpd.com/column/IPS300
https://thudair.baai.ac.cn/rope
https://innovation-mobility.com/en/project-providentia/a9-dataset/
https://github.com/AIR-THU/DAIR-RCooper


3D object detection, employing PointPillars [16] for LiDAR-
based and MonoDet3D [18] for camera-based approaches.
Additionally, TUMTraf-I provides a development kit. The
kit supports multiple dataset formats, offering versatility and
ease of integration with existing models and systems. Fig 1
is created with the development kit. The dataset is publicly
available under the License CC BY-NC-ND 4.0.

Fig. 1: 3D labels with LiDAR points on camera frame [14].

RCooper [15] is the latest real-world dataset specifi-
cally developed for roadside cooperative perception tasks.
RCooper includes 50,000 images and 30,000 point clouds,
covering two primary traffic scenes: intersections and cor-
ridors. This sets it apart from other datasets focused solely
on intersections. RCooper provides ten object classes, which
include various vehicles, cyclists, pedestrians, and construc-
tion elements. Each scene features tailored sensor setups
to address specific topological challenges: intersections are
equipped with a combination of MEMS LiDARs and 80-
32 channel LiDARs, both operating at 10Hz, along with
cameras, to capture the dynamic and congested nature of
urban crossroads adeptly. Corridors are monitored with
similar LiDARs and cameras, ensuring extensive coverage
along extended road stretches. This varied deployment of
sensors, particularly the distinction in LiDAR technologies,
significantly enhances the dataset’s utility for exploring chal-
lenges related to sensor heterogeneity. The benchmarking
for RCooper includes evaluating cooperative perception tasks
like 3D object detection and tracking using state-of-the-art
methods such as [19]–[21]. The dataset is publicly available.

B. Collaborative Perception Datasets

The collaborative perception is witnessing significant ad-
vancements through the development of datasets. These
datasets focus on enhancing V2V and V2X communication.
By simulating complex urban environments and diverse driv-
ing scenarios, they contribute to developing algorithms for
various tasks. The intricate data provided by these datasets,
including detailed frame collections and comprehensive sen-
sor setups as demonstrated in Table II, are pivotal in address-
ing the challenges of dynamic road conditions. For further
details, reference to the official dataset pages, linked within
the dataset names in Table II, is encouraged.

V2X-Sim 1.0 [22] is another open-source V2V dataset,
even though the dataset’s name suggests otherwise. The
dataset is created by using CARLA [31] and SUMO [32]. It

features a 32-channel LiDAR system with a 70-meter range,
operating in a dense traffic simulation within the Town05
environment. Each scenario includes 20s traffic flow and
recordings at 5Hz. Within each scene, 2-5 vehicles are ran-
domly chosen as Connected Autonomous Vehicles (CAVs).
The dataset format, derived from nuScenes [6], is extended
to multi-agent scenarios, containing 10k frames in total. The
dataset focuses on the 3D perception task and proposes
a trainable, dynamic collaboration graph to control agent
communication. Comprehensive benchmarks conducted in
3D object detection have shown that the proposed DiscoNet
[22] outperforms methods such as V2VNet [1], Who2com
[33], and When2com [34] in terms of the performance-
bandwidth trade-off and communication latency. The dataset
has been designed to be reproducible for future research.

V2X-Sim 2.0 [4] is the first open-source simulated V2X
dataset, a V2I extension version of V2X-Sim 1.0 [22]. It
captures traffic flow at intersections in three different CARLA
towns, maintaining the same frame rate and total frame count
as V2X-Sim 1.0 [22]. Each vehicle includes RGB cameras,
LiDAR, GPS, and IMU, while Road Side Units (RSUs) are
outfitted with RGB cameras and LiDAR as demonstrated
in Fig 2. Vehicles have six RGB cameras based on the
nuScenes [6] configuration, and RSUs have four cameras
pointing in all directions at intersections. The dataset is
benchmarked simultaneously for 3D BEV object detection,
tracking, and segmentation with intermediate collaborative
methods [1], [22], [33], [34]. The dataset is available under
a non-commercial license. The entire dataset with V2X-Sim
1.0 [22] is open-sourced.

OPV2V [20] is another simulated open-source dataset for
V2V communication, includes various roadway types and
scenarios. The dataset was generated using CARLA [31] in
conjunction with the OpenCDA [23] co-simulation tool, fea-
turing multiple CAVs equipped with a comprehensive sensor
setup. It comprises more than 70 scenes, 11,464 frames, and
232,913 annotated 3D vehicle bounding boxes, gathered from
eight towns in CARLA and the digital town of Culver City,
Los Angeles. Each frame has, on average, approximately
three CAVs, with a minimum of two and a maximum of seven
CAVs. Each CAV has four cameras, 64-channel LiDAR,
and GPS/IMU sensors. The sensor data is streamed at 20
Hz and recorded at 10 Hz. The dataset covers frames from
short scenarios in six road types: suburban midblock, urban
T-intersection, urban curved road, freeway entrance ramp,
urban 4-way intersection, and rural curvy road. The dataset
supports collaborative 3D vehicle detection, BEV semantic
segmentation, and tracking tasks only in V2V scenarios. Its
benchmarking includes three fusion strategies, with the effect
of CAV quantity and detection accuracy-compression trade-
off. These are applied only in 3D Lidar-based object detection
methods like VoxelNet [35] and PointPillar [16]. The dataset
is made fully reproducible through the inclusion of driving
logs. The dataset is available under a non-commercial license.

DAIR-V2X [24] is a large-scale V2I collaborative percep-
tion dataset derived from the real world. It features 71,254
LiDAR and camera frames with various vehicle types and



Dataset Year Source V2X Sensors Size Agents Tasks PA/R
V2X-Sim 1.0 [22] 2022 Sim V2V L 10,000 2-5 OD, OT, SS ✓/✓
V2X-Sim 2.0 [4] 2022 Sim V2V, V2I C, L 10,000 2-5 OD, OT, SS ✓/✓
OPV2V [23] 2022 Sim V2V C, L 11,464 2-7 OD, OT ✓/✓
DAIR-V2X-C [24] 2022 Real V2I C, L 38,845 2 OD - / -
V2XSet [10] 2022 Sim V2V, V2I C, L 11,447 2-7 OD ✓/ -
DOLPHINS [25] 2023 Sim V2V, V2I C, L 42,736 3 OD ✓/✓
LUCOOP [26] 2023 Real V2V L 54,000 3 OD, OT ✓/ -
V2V4Real [27] 2023 Real V2V C, L 60,000 2 OD, OT, DA ✓/ -
V2X-Seq(SPD) [28] 2023 Real V2I C, L 15,000 2 OD, OT, TP - / -
DeepAccident [29] 2023 Sim V2V, V2I C, L 57,000 1-5 OD, OT, SS, MP, DA ✓/ -
TumTraf-V2X [30] 2024 Real V2I C, L 7,500 2 OD, OT ✓/ -

1 Public Availability (PA), Reusability (R)
2 Sensors: Camera (C), Lidar (L)
3 Tasks: Object Detection (OD), Object Tracking (OT), Semantic Segmentation (SS), Trajectory Prediction (TP), Motion Prediction (MP), Domain Adaptation
(DA)

TABLE II: Overview of Collaborative Perception Datasets

Fig. 2: The left panel shows the RSU detection frames and the right panel illustrates a LiDAR point cloud dataset, where
the RSU is denoted in grey and an array of distinct colors distinguishes the various CAVs [4].

pedestrians, including cyclists and motorcyclists. The dataset
encompasses various environments, including 10 kilometers
of urban roadways, an equal distance on highways, and
28 distinct intersections, all captured under varying weather
conditions and lighting scenarios. The dataset is divided into
three main subsets, with the DAIR-V2X-C subset focusing
on V2I collaboration. This subset is particularly notable for
introducing the Time Compensation Late Fusion (TCLF)
framework, which was developed to address the challenges
of temporal asynchrony by using a specialized asynchronous
subset from DAIR-V2X-C. Alongside the DAIR-V2X-C sub-
set, the dataset also features the DAIR-V2X-V and DAIR-
V2X-I subsets, focusing on vehicle and infrastructure only.
Unlike others, the dataset incorporates both 3D LiDAR
and image detection. For LiDAR detection, it leverages
PointPillar [16] and implements both early and late fusion
techniques, accommodating synchronous and asynchronous
data, and includes the TCLF framework. The late fusion
framework utilizes ImvoxelNet [36] as the 3D detector with

synchronous data for image detection. The license conditions
of this dataset mirror those of Rope3D [9], adhering to
identical usage and distribution terms.

V2XSet [10] is an open-source simulation dataset that
considers real-world challenges in V2X collaboration using
CARLA [31] and OpenCDA [23]. It comprises 55 repre-
sentative scenes covering five roadway types: straight, curvy,
intersection, midblock, and entrance from eight towns. Statis-
tical analysis shows that the dataset is biased on intersection
data. Comprising 11k frames, V2XSet incorporates both V2X
cooperation and realistic noise simulation, unlike DAIR-
V2X [24] or OPV2V [20]. Each vehicle is equipped with
32-channel LiDAR mounted on the top and infrastructure
sensors at approximately 4.5 meters, which record at 10
Hz. Each scene contains at least two and, at most, seven
intelligent agents and lasts 25 seconds. The dataset is used
for evaluating the effect of spatial and temporal uncertainties
on 3D object detection accuracy in collaborative intermediate
fusion methods such as V2VNet [1], AttFuse [20], F-Cooper

https://ai4ce.github.io/V2X-Sim/download.html
https://ai4ce.github.io/V2X-Sim/.
https://mobility-lab.seas.ucla.edu/opv2v/
https://github.com/AIR-THU/DAIR-V2X.
https://github.com/DerrickXuNu/v2x-vit
www.dolphins-dataset.net.
https://doi.org/10.25835/75o9yrc0
https://mobility-lab.seas.ucla.edu/v2v4real/
https://github.com/AIR-THU/DAIR-V2X-Seq.
https://deepaccident.github.io/
https://tum-traffic-dataset.github.io/tumtraf-v2x/


[19], and DiscoNet [22]. The dataset is released under a non-
commercial license.

DOLPHINS [25] is a large-scale, open-source V2X
dataset generated using CARLA [31]. It distinguishes itself
from other simulation datasets by featuring dynamic weather
conditions across 42,736 frames and 292,549 3D annotations
compatible with the KITTI format [5]. The dataset includes
at least three agents per scenario, each equipped with 64-
channel LiDAR and RGB cameras, providing synchronized
images and point clouds from CAVs and RSUs. DOLPHINS
covers six autonomous driving scenarios: urban intersections,
T-junctions, steep ramps, highways on-ramps, and uniquely
mountain roads and lane merging, unlike V2X-Sim [4]
datasets, which have a limited viewpoint on specific scenar-
ios. In addition to standard labeling, the dataset is enriched
with two key information types: the positions of surrounding
vehicles and context-sensitive labels. These elements are vital
for synchronizing perception data from various viewpoints.
They cover all traffic entities within a 100-meter radius
ahead and behind the ego vehicle and 40 meters on either
side, providing extensive and detailed coverage. The dataset
focuses on vehicle and pedestrian detection and supports 2D
and 3D object detection in single-vehicle Perception. Further,
it benchmarks the early fusion LiDAR 3D object detection
with PointPillars [16] and MVX-Net [37]. Along with the
dataset, the corresponding codes are released for flexibility
and extendability of the dataset on-demand. The dataset is
released under a CC BY-NC-SA 4.0 license.

LUCOOP [26] is a large scale real-world V2V dataset cre-
ated by Leibniz University. It stands out from the other real-
world datasets, focusing on multi-vehicle urban navigation
and collaborative perception. The LUCOOP dataset encom-
passes over 54,000 LiDAR frames, approximately 700,000
IMU measurements, 3D map point clouds, and more than
2.5 hours of 10 Hz GNSS raw data. The dataset is gathered
from three vehicles equipped with LiDAR, GNSS, IMUs, and
Ultra-Wide-Band (UWB) sensors, capturing a detailed view
of urban environments with narrow streets and tall buildings.
Furthermore, it is enriched with a LOD2 [38] city model,
enhancing its urban simulation capabilities. Integrating a
stationary total station and static UWB sensors is crucial for
improving the dataset’s accuracy. This integration contributes
over 6,000 high-precision measurements that cover more than
1 km of the vehicle’s trajectory. This level of granularity and
precision in ground truth verification is particularly valuable
for V2V and V2X range measurements. The dataset provides
further 3D bounding box annotations and precise vehicle
poses but includes no benchmarking. The dataset is published
with a CC BY-NC 3.0 License.

V2V4Real [27] is another large-scale, real-world, multi-
model dataset for V2V perception. The dataset is collected
in Columbus, Ohio, and features a diverse sensor suite on
two vehicles. It has 240,000 annotated 3D bounding boxes
and uniquely HDMaps across five vehicle classes captured
over diverse road types, including intersections, highway
ramps, and urban roads. Equipped with LiDAR, front and rear
mono cameras, and GPS/IMU systems, the dataset ensures

Fig. 3: Lidar point clouds, coloring relative to agents [27].

comprehensive data capture at 10Hz. The vehicles covered
410 km of road, maintaining a distance within 150 meters to
guarantee overlapping sensor views as demonstrated in Fig
3. To address potential overlaps in object identification, each
vehicle in the dataset is assigned a unique range of object IDs,
ensuring clear differentiation. V2V4Real’s benchmarking in-
cludes three fusion strategies: Late Fusion, Early Fusion,
and leading intermediate methods such as AttFuse [23], F-
Cooper [19], V2VNet [1], V2XVit [10], and CoBEVT [21].
These are applied over three cooperative perception tasks:
3D object detection, object tracking, and sim-to-real domain
adaptation. Lidar data in OPV2V [20] and KITTI [5] format
is available for download. The dataset is available under a
non-commercial license.

V2X-Seq [28] is the first large-scale sequential dataset,
offering data collected from real-world scenarios. Unlike
DAIR-V2X [24], which focuses on 3D object detection,
V2X-Seq is uniquely designed for tracking and trajectory
forecasting tasks. It consists of two main parts: the Sequential
Perception Dataset (SPD) and the Trajectory Forecasting
Dataset (TFD). SPD, an extension of DAIR-V2X-C [24],
includes over 15,000 frames from 95 scenarios, each lasting
10–20 seconds. It features vehicle and infrastructure frames
sampled at 10Hz, equipped with 3D annotations for ten object
classes, including unique tracking IDs for each object. TFD,
on the other hand, comprises about 80,000 infrastructure-
view, 50,000 vehicle-view, and 50,000 cooperative-view sce-
narios from 28 intersections. This subset covers 672 hours
of data, providing sequences of tracked object data for 10
seconds. Additionally, the dataset includes real-time traffic
light signals recorded at 10 Hz for the infrastructure portion
of TFD. This data encompasses the timestamp, location, color
status, shape status, and remaining time, offering significant
insights into traffic participant behaviors and interactions.
The V2X-seq dataset addresses challenges related to latency,
and the proposed FF-Tracking method tackles the tracking
task. Besides, V2X-Seq provides vector maps for intersection
areas, organized similarly to Argoverse [39]. These maps
contain detailed representations of lane centerlines, cross-
walks, stop lines, and essential attributes like lane width and
turn directions. These are crucial for building spatial context
in trajectory analysis. The license conditions of this dataset
mirror those of Rope3D [9], adhering to identical usage and
distribution terms.



DeepAccident [29] is another large-scale open-source
V2X dataset generated with CARLA [31] to represent di-
verse accident scenarios. It is the first simulated dataset
that supports a motion prediction task. Compared to the
V2X-Seq [28], it doesn’t rely on precise vehicle locations,
map topology, and traffic light information. The dataset
features 57,000 annotated frames recorded at 10 Hz. It
encompasses a variety of scenarios, including different road
types, weather conditions, and times of day. The dataset’s
unique creation involved capturing scenes with two vehicles
having overlapping planned trajectories. Additionally, two
vehicles following each accident-involved vehicle and one
infrastructure unit facing the intersection, summing up to
five agents. Each agent has six RGB cameras and one 32-
channel LiDAR. The dataset classes consist of vehicle types,
including motorcycle, cyclist, and pedestrian. Specifically,
DeepAccident concentrates on twelve varieties of accident
scenarios at intersections, including those with and without
traffic control signals. These scenarios range from running
against a red light at four-way intersections to unprotected
left turns and conflicting turns at three-way intersections.
Besides its main focus on end-to-end motion and accident
prediction, the dataset supports 3D object detection, tracking,
and BEV semantic segmentation. Regarding benchmark-
ing, the dataset’s baseline model, V2XFormer, is compared
against various state-of-the-art intermediate fusion modules.
These include DiscoNet [22], V2X-ViT [10], and CoBEVT
[21]. Finally, real-world applicability tests using the nuScenes
[6] dataset reveal improved performance with models trained
on both DeepAccident and nuScenes [6] data. The license
conditions of the dataset are unknown, but the dataset is
open-sourced.

TumTraf-V2X [30] dataset, derived from real-world data,
is the latest to be released as open-source. It includes 2,000
labeled point clouds and 5,000 images, with approximately
30,000 3D bounding boxes that are enhanced with precise
GPS and IMU data for accurate object location and move-
ment tracking. Annotations conform to the ASAM OpenLA-
BEL [40] format, and the dataset features a heterogeneous
sensor setup: 32-64 channel LiDARs operating at 10 Hz and
high-resolution cameras. It records a broad spectrum of traffic
scenarios under various environmental conditions, including
complex maneuvers such as overtaking and U-turns, and
instances of traffic violations, setting it apart as a unique
resource among real V2X datasets. Central to this dataset is
the CoopDet3D model, a V2X cooperative perception model
that utilizes vehicle and infrastructure data to improve object
detection and tracking. The accompanying TUMTraf V2X
development kit facilitates this data collection, providing data
processing, visualization, and evaluation tools. The entire
package is available under a CC BY-NC-SA 4.0 license.

III. DISCUSSION

By comprehensively reviewing 16 collaborative perception
datasets, we have identified critical areas such as domain
shift, sensor setup limitations, dataset diversity, and availabil-

ity. Addressing these concerns is essential for accelerating the
development of autonomous driving technologies.

Domain Shift: According to Table II, it is clear that most
of the datasets are created by using simulated environments,
and only two of them evaluated the datasets with domain
adaptation techniques. Due to inherent challenges such as
labeling, privacy, and investment in gathering comprehensive
real-world datasets, domain shift will likely remain an issue
soon. As a result, the reliance on simulated datasets and the
subsequent need for effective domain adaptation techniques
are expected to be ongoing areas of focus in developing
collaborative perception systems.

Sensor Setup and Limitations: As presented in Table
I, the datasets are created using multiple sensor modalities.
However, a critical observation from the datasets listed in
Table II is the inconsistency in multi-modal approaches,
especially in real-world scenarios. This indicates a signif-
icant gap in capturing the diverse and complex real-world
driving conditions. Addressing limitations in vehicle and
infrastructure sensors, especially under changing weather and
varying light conditions, is a crucial area for further research
and development. Challenges such as dealing with diverse
camera angles, handling occlusions, and overcoming depth
perception issues from various viewpoints are essential to
address. These issues are critical for ensuring the effective-
ness and reliability of data collected for both V2V and V2I
applications. For V2I applications, in particular, the strategic
choice of sensor heights and types necessitates further ex-
ploration. Optimizing sensor placement is key to enhancing
data capture quality, which is fundamental for accurate and
comprehensive environment perception. Furthermore, the fu-
ture of autonomous driving, where all cars are interconnected,
introduces a new layer of complexity due to the heterogeneity
of sensor modalities. Car manufacturers may employ varied
sensor setups, leading to diverse data types and formats. This
diversity necessitates the development of effective strategies
for handling and interpreting these various data.

Dataset Diversity: The study conducted by Xiang et
al. [41] provides a pivotal understanding of perception in
challenging scenarios, which is essential for safe and robust
collaborative perception in vehicle-to-everything communi-
cation systems. These scenarios extend beyond the typical
occlusions, accident prediction in 12 scenarios. Trajectory
prediction will play a crucial role, especially in environments
where the number of CAVs exceeds the average (see Table
II). Another essential improvement is integrating Vulnerable
Road Users (VRUs) into V2X communications systems,
particularly V2P. Additionally, advanced tasks like anomaly
detection and out-of-distribution [42] analysis are integral
for evaluating and responding to unforeseen and potentially
hazardous events.

Dataset Availability: The practice of open-sourcing
datasets is crucial for promoting transparency and collabo-
ration within the global research community, enabling re-
searchers worldwide to address challenges with a shared
resource pool. However, as indicated in Tables I and II of
the paper, there is a noticeable disparity in the availability



of simulated versus real-world datasets. While simulated
datasets are generally accessible, many comprehensive real-
world datasets remain restricted, particularly in certain re-
gions. This lack of access presents a major obstacle for
researchers needing real-world data to test and advance
V2X applications, regardless of location. Furthermore, the
reusability of datasets, especially simulated ones, is increas-
ingly important. Creating flexible datasets for adaptation or
expansion to include specific user scenarios or tasks enhances
their value and longevity. Integrating them into a unified
framework like OpenCOOD [20] simplifies their application
in benchmarking and comparative studies.

Privacy and Security: The development of autonomous
driving relies heavily on extensive data, including images
and videos from onboard and exterior cameras. Including
personal details like faces, dates, and locations in this data
raises concerns about privacy and security, particularly when
the collected data is used for tracking or monitoring indi-
viduals without their consent. This is especially important
in the creation of real-world datasets. Collaboration faces
significant challenges, particularly in dataset creation, due to
security concerns like malicious attacks, especially regarding
sharing sensor-captured data. In response to these challenges,
using Federated Vehicular Transformers, proposed by Tian et
al. [43], offers a promising direction.

IV. CONCLUSION

In conclusion, our comprehensive overview of collabora-
tive perception datasets has highlighted key advancements
along with persistent challenges that need to be addressed.
Technological progress in this area is evident, but there are
notable gaps in the availability of real-world V2X datasets.
Addressing these gaps is crucial for the global research
community to fully realize the potential of collaborative per-
ception. Collaborative efforts between technology innovators
and the research community are essential in this endeavor.
The development of extensive, globally accessible datasets
will play a pivotal role in overcoming these challenges and
unlocking the full capabilities of autonomous vehicles. Our
review not only highlights critical gaps but also outlines a
pathway for future advancements. By underlining the im-
portance of diverse, real-world datasets and improved sensor
setups, our findings encourage the development of more
adaptable and robust systems. We advocate for increased
collaboration and innovation in dataset creation, aiming to
accelerate the progress of autonomous vehicle capabilities.
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