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ABSTRACT

We investigate fast data aggregation via over-the-air computation

(AirComp) over wireless networks. In this scenario, an access point

(AP) with multiple antennas aims to recover the arithmetic mean of

sensory data from multiple wireless devices. To minimize estimation

distortion, we formulate a mean-squared-error (MSE) minimization

problem that considers joint optimization of transmit scalars at wire-

less devices, denoising factor, and receive beamforming vector at the

AP. We derive closed-form expressions for the transmit scalars and

denoising factor, resulting in a non-convex quadratic constrained

quadratic programming (QCQP) problem concerning the receive

beamforming vector. To tackle the computational complexity of the

beamforming design, particularly relevant in massive multiple-input

multiple-output (MIMO) AirComp systems, we explore the optimal

structure of receive beamforming using successive convex approx-

imation (SCA) and Lagrange duality. By leveraging the proposed

optimal beamforming structure, we develop two efficient algorithms

based on SCA and semi-definite relaxation (SDR). These algorithms

enable fast wireless aggregation with low computational complexity

and yield almost identical mean square error (MSE) performance

compared to baseline algorithms. Simulation results validate the

effectiveness of our proposed methods.

Index Terms— AirComp, receive beamforming, optimal struc-

ture, SCA, low computation complexity.

1. INTRODUCTION

Given the scarcity of spectrum resources and the demand for

ultra-low latency, the conventional transmit-then-compute wireless

transmission scheme falls short in meeting the requirements for fast

wireless data aggregation. Fortunately, AirComp addresses this is-

sue by enabling wireless devices to transmit information simultane-

ously over the same wireless channel [1–3], resulting in fast wireless

data aggregation within a single transmission interval. To achieve

this, AirComp leverages the superposition property of multiple ac-

cess channels (MACs).

Numerous studies have extensively investigated AirComp due

to its potential for significant wireless data aggregation [4–9]. The

fundamental concept behind AirComp was initially proposed in

a seminal study that explored functional computation in wireless

sensor networks. In recent works, the authors of [4, 5] examined

AirComp with multiple-input single-output (MISO) and devel-

oped a receive beamforming vector using a semi-definite relaxation

(SDR) based successive convex approximation (SCA) algorithm.

This work was supported in part by Shanghai Sailing Program under
Grant 23YF1402600.

The authors of [7, 8], on the other hand, developed transceiver

designs for multi-function computation and multi-model sensing,

respectively, for a multiple-input multiple-output (MIMO) AirComp

system. Moreover, the authors of [9] devised an optimal receive

beamforming algorithm for AirComp using the branch and bound

(BnB) method. Nevertheless, the high computational complexity

associated with BnB makes it impractical for AirComp, particularly

when the access point (AP) is equipped with multiple antennas.

This paper addresses the challenge of designing receive beam-

forming for an AirComp system equipped with a multi-antenna AP.

SDR is a commonly employed numerical algorithm for approximat-

ing or approximating a globally optimal solution to this problem by

relaxing it as a semi-definite program (SDP). However, SDR-based

algorithms experience an increase in computational complexity as

the problem size grows, leading to significant performance degrada-

tion. Consequently, SDR-based algorithms are ill-suited for multi-

antenna APs, especially in the case of MIMO systems with large-

scale antenna arrays.

To overcome these limitations, the authors of [6] introduced the

use of successive convex approximation (SCA) for the receive beam-

forming design in AirComp. SCA employs a series of convex ap-

proximations to iteratively address the original problem. Compared

to SDR, SCA offers improved performance with reduced complex-

ity. Nevertheless, SCA still entails a high computational load when

applied to AirComp systems featuring a large number of antennas.

Motivated by the necessity for low-complexity algorithms in the

design of receive beamforming for AirComp, our objective is to

develop efficient solutions. Inspired by [10], by leveraging both

SCA and Lagrangian duality, we derive the optimal structure for

receive beamforming in AirComp, reducing the dimension of the

problem from the number of antennas to the number of wireless de-

vices. Leveraging this proposed optimal structure, we devise two

efficient algorithms based on SDR and SCA, respectively. These al-

gorithms significantly reduce the computational complexity associ-

ated with receive beamforming while maintaining the same level of

mean square error (MSE) performance as achieved by the original

SDR and SCA.

Notations: Boldface upper-case, boldface lower-case, and

lower-case letters denote matrices, vectors, and scalars, respec-

tively. The imaginary unit of a complex number is denoted as j. The

conjugate transpose of a matrix or a vector is represented as (·)H.

The l2 norm operator is denoted by ‖ · ‖. The real part, imaginary

part, absolute value, and argument of a scalar are denoted by Re{·},

Im{·}, | · |, and arg(·), respectively. The expectation of a random

variable is denoted as E [·].
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2. SYSTEM MODEL AND PROBLEM FORMULATION

We investigate AirComp in a wireless system comprising K
single-antenna wireless devices and an AP with N antennas. The ob-

jective of the AP is to retrieve the arithmetic mean of the sensory data

from all wireless devices. Denote the index set of devices as K =
{1, 2, . . . , K}. The transmit signal of device k is denoted as sk =
ϕk(zk), where ϕk(·) represents the specific pre-processing function

and zk ∈ C represents the representative information-bearing data at

device k. We assume that {sk}Kk=0 are independent, have zero mean,

and unit power, i.e., E[sks
H

k ] = 1, and E[sks
H

j ] = 0, ∀k 6= j [5].

The AP estimates the target function g =
∑

k∈K
sk to obtain the

arithmetic mean of the sensory data from all the connected wireless

devices, i.e., 1
K

∑

k∈K
zk. By synchronizing the transmission tim-

ing of each device, the signals transmitted by all wireless devices

can be aligned. Consequently, we can represent the received signal

at the AP as follows

y =
∑

k∈K

hkwksk + n, (1)

where wk ∈ C represents the transmit scalar of device k, hk ∈
C

N×1 represents the channel coefficient vector of the link from de-

vice k to AP, and n ∼ CN (0, σ2IN ) represents the additive white

Gaussian noise (AWGN) with zero mean and variance σ2. In prac-

tice, the maximum transmit power is limited, i.e., |wk|2 ≤ P, ∀k.

After the received signal combination at AP, the estimated function

is as follows [6, 9]

ĝ =
1√
η
m

H
y =

1√
η
m

H
∑

k∈K

hkwksk +
1√
η
m

H
n, (2)

where m ∈ C
N and η denote the receive beamforming vector and

the denoising factor at AP, respectively.

We use MSE criterion as the metric to assess the distortion be-

tween ĝ and g, which is

MSE(ĝ, g) = E
(

|ĝ − g|2
)

=
∑

k∈K

∣

∣

∣

∣

mHhkwk√
η

− 1

∣

∣

∣

∣

2

+
σ2‖m‖2

η
.

After determining receive beamforming vector m, the optimal trans-

mit scalars that realize the minimization of MSE are as follows [1,6]

w⋆
k =

√
η
(mHhk)

H

‖mHhk‖2
, ∀k. (3)

Due to the transmit power constraint, we can express η as

η = P min
k∈K

‖mH
hk‖2. (4)

With (3) and (4), we can further rewrite MSE as

MSE =
‖m‖2σ2

η
=

‖m‖2σ2

P mink∈K ‖mHhk‖2
. (5)

Hence, we endeavor to find receive beamforming vector m as fol-

lows:

min
m

( ‖m‖2σ2

P mink∈K ‖mHhk‖2
)

. (6)

From [6], we can equivalently transform problem (6) to the fol-

lowing non-convex quadratic constrained quadratic programming

(QCQP) problem

Po : min
m

‖m‖2

s.t. ‖mH
hk‖2 ≥ 1, ∀k. (7)

3. OPTIMAL RECEIVE BEAMFORMING STRUCURE

In this section, we investigate the optimal receive beamforming

structure using the SCA algorithm and Lagrangian duality. With

SCA, by introducing the auxiliary vector z ∈ C
N×1, we obtain the

following optimization problem, i.e.,

PSCA(z) : min
m

‖m‖2

s.t. |zH
hk|2 − 2Re{mH

hkh
H

kz} ≤ −1, ∀k.

PSCA is a convex approximation of Po.

By replacing non-convex constraint (7) with convex constraint,

PSCA(z) becomes convex. Therefore, we employ standard SCA al-

gorithm to tackle PSCA(z). In particular, SCA can guarantee the

convergence of Po to a stationary point [11]. When choosing the

initial point m(0) appropriately, i.e., z(0) is at the vicinity of the

global optimal solution mo, the solution of PSCA(z) obtained by

SCA is guaranteed to converge to global optimal solution of Po. In

this paper, we leverage SDR to obtain z(0) for PSCA(z).
Next, we present the steps to obtain the optimal receive beam-

forming of AirComp. As PSCA(z) is convex, then Slater’s condition

holds. Therefore, we can obtain its optimal solution from its La-

grange dual domain. The Lagrangian for PSCA(z) is as follows

L(z,m,λ) =
K
∑

k=1

λk

(

|zH
hk|2 − 2Re{mH

hkh
H

kz}+ 1
)

+ ‖m‖2, (8)

where λk represents the Lagrange multiplier associated with con-

straint (7) for device k, and λ = [λ1, λ2, . . . , λK ]. The Lagrange

dual problem for PSCA(z) is as follows

DSCA(z) : max
λ

g(z,λ) s.t. λ < 0, (9)

where

g(z,λ) = min
m

L(z,m,λ). (10)

Reordering (8), we have

L(z,m,λ) =‖m‖2 −
K
∑

k=1

2Re{λkm
H
hkh

H

kz}

+

K
∑

k=1

λk

(

|zH
hk|2 + 1

)

. (11)

Accordingly, we can equivalently transform the optimization prob-

lem (8) to

min
m

‖m‖2 −
K
∑

k=1

2Re{λkm
H
hkh

H

kz}. (12)

Since (12) is convex, we can leverage KKT conditions to obtain its

optimal solution in closed form.

Proposition 1. The optimal solution of PSCA is as follows

m
∗(z) =

K
∑

k=1

λ∗
kh

H

kzhk, (13)

where λ∗ = [λ∗
1, λ

∗
2, . . . , λ

∗
K ] represents the optimal dual solution

for DSCA(z).



Proof. Given z, we use J(z,m) to denote the objective function in

(12). By KKT condition, at the optimality of PSCA(z), the gradient

of J(z,m) w.r.t. m is

∇mJ(z,m) = m
∗ −

K
∑

k=1

λ∗
khkh

H

kz = 0, (14)

and we obtain m∗(z) =
∑K

k=1 λ
∗
kh

H

kzhk. �

Examining the optimal solution m∗(z) in Proposition 1, we

note that m∗ depends on z. This observation denotes that the opti-

mal solution m∗(z) for PSCA(z) is updated accordingly when SCA

algorithm iteratively updates z, while the structure of m∗(z) re-

mains the same. Hence, if z → mo, we obtain the optimal solution

for Po.

Theorem 1. The optimal receive beamforming solution for Air-

Comp beamforming problem Po is given by

m
o = Ha

o, (15)

where H = [h1,h2, . . . ,hK ], ao
k = λo

kH
H
k mo, ao = [ao

1, a
o
2, . . . ,

ao
K ].

Proof. The SCA iteration is guaranteed to converge to a stationary

point. Therefore, if z(0) is initialized at the vicinity of the global

optimal solution, SCA algorithm will converge to the global opti-

mal solution, i.e., z → mo. Also, as z → mo, the optimal λ∗

for D(z) converges to λo for D(mo). Therefore, we have mo =
∑K

k=1 λ
o
kh

H

km
ohk = Hao. �

Note that the optimal solution mo in (15) is expressed in semi-

closed form, where ao should be determined numerically. Comput-

ing the optimal mo is still challenging because Po is NP-hard.

4. PROPOSED EFFICIENT ALGORITHMS

In this section, we first provide a detailed description of efficient

algorithms to compute ao. We then discuss the computation com-

plexity of the developed algorithms.

We first define fk = HHhk . By leveraging the optimal structure

of mo in (15), we can recast the receive beamforming problem Po

into a weight optimization as follows

P1 : min
a

‖Ha‖2

s.t. |aH
fk|2 ≥ 1, ∀k. (16)

Similar to the constraint in Po, the constraint (16) is non-convex.

Hence, P1 is still NP-hard. However, the key difference here is that

the beamforming vector m in Po is of sizeN . In contrast, the weight

vector a for the weight optimization problem P1 is of size K, which

no longer depends on N . This is particularly appealing to massive

MIMO systems with K ≪ N . Solving P1 with much reduced size

instead of Po reduces the computation cost significantly.

Next, we propose to employ two approaches, i.e., SDR and SCA,

to compute the weight vector a for P1.

1) The SDR algorithm: Defining X = aaH, Hk = hkh
H

k ,

D = HHH, and dropping the rank-one constraint on X, P1 is re-

laxed to the following SDP problem

P1SDR : min
X

tr(DX)

s.t. tr(fkf
H

k X) ≥ 1, ∀k,

X � 0.

2) The SCA algorithm: Define fk = HHhk, and leverage the

auxiliary variable y ∈ C
K×1. By applying convex approximation

to constraint (16) in P1, we have the following convex optimization

problem for any given y

P1SCA(y) : min
a

‖Ha‖2

s.t. 2Re{aH
fkf

H

k y} − |yH
fk|2 ≥ 1, ∀k. (17)

The SCA algorithm requires that the initial y(0) is feasible for

P1SCA(y). To ensure this, we employ the solution aSDR of P1SDR for

the initialization of P1SCA(y), i.e., y0 = aSDR. The solution aSDR

provides a good initial point close to the optimum of Po, which in

turn will fasten the convergence of SCA algorithm. Compared to

original problem Po, the problem size of P1SCA is smaller, comput-

ing aSDR is fast even for large N and we will verify it in Section 5.

Compared to directly solving Po by SDR, adopting SDR to solve

P1 can significantly reduce the computation complexity. Specif-

ically, by employing the typical interior point methods, the worst

case complexity of solving P1 is O((K2)3.5) [12], while the worst

case complexity of directly solving Po via SDR is O((N2)3.5).
On the other hand, the computation complexity in each iteration

is O(K3) by leveraging SCA with typical interior-point method

to tackle P1SCA(y). The computation complexity in each iteration

is O(N3) to directly solve Po via SCA. This complexity analysis

shows that we can significantly reduce the computation complexity

with the help of the proposed optimal structure.

5. SIMULATION RESULTS

In this section, we present simulation results of the proposed

algorithm for AirComp in wireless networks. We consider a three-

dimensional setting where the AP is located at coordinates (0, 0, 20),
and devices are uniformly distributed within a circular region cen-

tered at (120, 20, 0) meters with a radius of 20 meters. The an-

tennas at the AP are arranged as a uniform linear array. We con-

sider both large-scale fading and small-scale fading for the wire-

less channel. We model the distance-dependent large-scale fading

as T0(d/d0)
−α, where T0 is the path loss at the reference distance

d0 = 1 meter, d denotes the distance between transmitter and re-

ceiver, and α is the path loss exponent. Additionally, we model

small-scale fading as Rician fading with Rician factor β. All simula-

tion results are obtained by averaging over 128 channel realizations.

Unless specified otherwise, we set α = 3, T0 = −30 dB, β = 3,

P = 30 dBm, σ2 = −100 dBm, and ǫ = 10−5.

We evaluate the performance of the proposed algorithms uti-

lizing the optimal beamforming structure mo in (15) for Po. We

employ both SDR and SCA algorithms in Section 4 to compute the

weight vector a for P1SDR and P1SCA, which we refer to as SDR-Opt

and SCA-Opt, respectively, for clarity. To demonstrate the effective-

ness of our approach, we compare our algorithms to the following

baseline methods: 1) Direct SDR: Po is solved directly via SDR

with Gaussian randomization; 2) Direct SCA: Po is solved directly

via SCA, taking the solution from direct SDR as the initial point.

Fig. 1 depicts the effect of the number of antennas at the AP on

the MSE with a fixed number of devices K = 10. From the SCA-

based algorithms, we can observe that as the number of antennas

increases, the MSE of AirComp monotonically decreases due to the

increased diversity gain. Compared to the direct SDR and SDR-Opt,

SCA-Opt exhibits a better MSE performance that is almost identical

to the direct SCA. However, there is a significant performance gap
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Fig. 1. MSE versus N at AP when K = 10.
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Fig. 2. Average computation time versus N when K = 10.

between SCA-Opt and SDR-based algorithms, as the latter is not

optimized for the AirComp system.

Fig. 2 depicts the impact of the number of antennas at AP on the

average computing time with a fixed K = 10. The results show that

the average computation time of SDR-Opt (SCA-Opt) is lower than

that of direct SDR (SCA). Moreover, the number of antennas at AP

has negligible impact on the average computation time of SDR-Opt

and SCA-Opt since their computation complexity is only dependent

on K. On the other hand, SCA based algorithms incur more com-

puting time than SDR based algorithms since they require an initial

solution point from SDR based algorithms. The experimental re-

sults in Fig. 2 demonstrate that the proposed optimal structure can

significantly reduce computation time without degrading the MSE

performance.

Fig. 3 displays the relationship between MSE and the number of

wireless devices, where the number of antennas at the AP is set to 10.

We observe that SCA-Opt achieves better MSE performance than di-

rect SDR-based algorithms, which is almost identical to direct SCA.

Moreover, as the number of wireless devices increases, the quality

of the solutions for SCA-based algorithms deteriorates noticeably.

This is because the MSE performance is determined by the worst

wireless link between the device and the AP, and it decreases with

the increase in the number of wireless devices.

Fig. 4 illustrates the impact of the number of devices on the av-

erage computing time, with a fixed number of antennas at the AP

(N = 120). Comparing SDR-Opt (SCA-Opt) with direct SDR (di-

rect SCA), we observe that SDR-Opt (SCA-Opt) incurs less compu-
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Fig. 3. MSE versus K when N = 120.

6 8 10 12 14
Number of devices

0

2

4

6

8

10

12

A
ve

ra
g
e
 c

o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Direct SDR

Direct SCA

SDR-Opt

SCA-Opt

Fig. 4. Average computation time versus K when N = 120.

tation time. Additionally, the average computation time of SCA-Opt

increases with the increase of the number of devices, owing to the

increment in computation complexity with K. The results in Fig. 4

demonstrate that the proposed optimal structure could significantly

reduce the computation time for the receiver beamforming design of

AirComp.

6. CONCLUSIONS

In this paper, we investigated the joint design of transmit scalars,

denoising factor, and receive beamforming vector for the AirComp

system. We derived closed-form expressions for the transmit scalars

and denoising factor, resulting in a non-convex QCQP problem with

respect to the receive beamforming vector at the AP. Through the

utilization of the SCA numerical algorithm and Lagrange duality,

we obtained the optimal receive beamforming structure for the Air-

Comp system. Notably, the optimal beamforming structure remains

independent of the system’s large parameter N, which is particularly

advantageous for massive MIMO AirComp systems. Leveraging the

optimal receive beamforming structure, we developed two highly

efficient algorithms, named SDR-Opt and SCA-Opt. Compared to

baseline algorithms, these newly developed efficient algorithms re-

quire much lower computation complexity while achieving almost

identical MSE performance.
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