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Abstract. We consider a class of diffusion equations with the Caputo time-

fractional derivative ∂α
t u = Lu subject to the homogeneous Dirichlet boundary

conditions. Here, we consider a fractional order 0 < α < 1 and a second-order

operator L which is elliptic and non-symmetric. In this paper, we show that

the logarithmic convexity extends to this non-symmetric case provided that
the drift coefficient is given by a gradient vector field. Next, we perform some

numerical experiments to validate the theoretical results in both symmetric

and non-symmetric cases. Finally, some conclusions and open problems will
be mentioned.

1. Introduction and main results

Backward and inverse problems for time-fractional evolution equations have had
a growing focus in the recent literature. These equations can model various phenom-
ena, such as slow diffusion and anomalous diffusion, particularly in heterogeneous
or porous media; see, for instance, [1]. We also refer to [27, Chapter 10] for other
physical applications. In contrast to symmetric equations, non-symmetric evolution
equations present some challenges (usually from a spectral viewpoint) and pertur-
bation arguments do not work easily as in the integer case. Hence, few results are
available in the literature. Here we aim at pushing forward the investigation of
fractional non-symmetric equations within the framework of backward and inverse
problems.

Let n ∈ N and Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C2. We
consider the following backward problem with Dirichlet boundary conditions:

∂α
t u(t, x) = Lu(t, x), in (0, T )× Ω,

u|∂Ω = 0, on (0, T )× ∂Ω,

u(T, x) = uT (x) in Ω,

(1.1)

posed in the state space L2(Ω). Note that other boundary conditions can be con-
sidered (e.g., Neumann and Robin). The fractional derivative ∂α

t u stands for the
Caputo derivative:

∂α
t u(t) =


1

Γ(1− α)

∫ t

0

(t− s)−α d

ds
u(s) ds, 0 < α < 1,

d

dt
u(t), α = 1,

(1.2)
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1

ar
X

iv
:2

40
4.

14
04

6v
1 

 [
m

at
h.

A
P]

  2
2 

A
pr

 2
02

4



2 S. E. CHORFI, L. MANIAR, AND M. YAMAMOTO

whenever the right-hand side is defined. Here Γ denotes the Euler gamma function.
Moreover, L is a non-symmetric elliptic operator of second order given by

Lu (x) :=

n∑
i,j=1

∂i(aij∂ju)(x) +

n∑
j=1

bj(x)∂ju(x) + p(x)u(x), (1.3)

such that

aij = aji ∈ C1(Ω), bj ∈ W 1,∞(Ω), 1 ≤ i, j ≤ n, p ∈ L∞(Ω),

and there exists a constant κ > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ κ

n∑
j=1

ξ2j , x ∈ Ω, (ξ1, ..., ξn) ∈ Rn.

The unit outward normal vector field to ∂Ω is denoted by ν and the conormal
derivative with respect to a = (aij) by

∂a
νu =

n∑
i,j=1

aijνj(∂iu)|∂Ω.

The domain of the operator L is given by

D(L) = H2(Ω) ∩H1
0 (Ω). (1.4)

Set A = (aij)ij for the diffusion matrix and B = (b1, b2, . . . , bn) for the drift term.
Then the operator L defined by (1.3) can be written as

Lu (x) = div(A(x)∇u(x)) + B(x) · ∇u(x) + p(x)u(x).

Next, we introduce the main assumption on the drift term:

(H) There exists a function b ∈ W 2,∞(Ω) such that B = A∇b.

Assumption (H) is satisfied for the isotropic case A = In (the identity matrix) and
gradient drift B = ∇b. We emphasize that this special case of Assumption (H)
has been widely considered in the literature. It appears for instance in differential
topology and theoretical physics (Helffer-Sjöstrand theory [17]) as it relates to Wit-
ten Laplacian. Furthermore, such an assumption has been useful in resolving some
uniform controllability problems for parabolic equations with vanishing viscosity;
see [21] and its bibliography.

Let us state the main result of the logarithmic convexity of the non-symmetric
equation (1.1).

Theorem 1.1. Assume that Assumption (H) is fulfilled. Let uT ∈ L2(Ω) and
let u ∈ C([0, T ];L2(Ω)) be a solution to (1.1). Then there exists a constant κ =
κ(A, b, p, α, T ) ≥ 1 such that

∥u(t, ·)∥L2(Ω) ≤ κe∥b∥∞∥u(0, ·)∥1−
t
T

L2(Ω)∥u(T, ·)∥
t
T

L2(Ω), 0 ≤ t ≤ T. (1.5)

As a direct consequence, we infer the following backward uniqueness property.

Corollary 1.2. Under the assumptions of Theorem 1.1, the backward uniqueness
for (1.1) holds, i.e., if u(T, ·) = 0, then u(t, ·) = 0 for all t ∈ [0, T ].

Remark 1. Assumption (H) is sufficient but not necessary for the logarithmic
convexity estimate; see Section 4, Example 3.
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The logarithmic convexity method is a well-known approach that has been ex-
tensively applied to prove backward uniqueness and conditional stability for inverse
and ill-posed problems. We refer to the survey paper [6] and the cited bibliography.
This method is beneficial for reconstructing the initial data and studying backward
problems [7]. Interested readers can find more details in the books [4,26]. We also
refer to [20,23] for abstract results on analytic semigroups. In particular, as for the
backward uniqueness, see [14] and the references therein. It should be pointed out
that the logarithmic convexity method provides a very explicit estimate even for
non-symmetric cases, although its applicability is limited.

Many works are available for backward problems for time-fractional evolution
equations in the symmetric case. For instance, in [29], Tikhonov regularization and
conditional stability have been proposed based on a Fredholm integral equation
for the numerical reconstruction of initial states. The article [16] obtains optimal
stability estimates and a regularization scheme based on a non-local boundary value
method with parameter choice rules for a linear equation. We refer to [28] for a
nonlinear equation where the existence, uniqueness, and regularization of a local
solution have been investigated. It should be emphasized that most results rely on
eigenfunctions expansion and the properties of Mittag-Leffler functions.

The non-symmetric case still needs to be explored regarding backward uniqueness
and logarithmic convexity (see Section 5 for more details). Indeed, we are only
aware of [11], where the authors prove the well-posedness of a backward problem for
time-fractional diffusion equations with a non-symmetric operator. The proofs draw
on a perturbation argument and the completeness of generalized eigenfunctions.
We also mention the recent paper [19] for a boundary unique continuation result
applied to an inverse source problem. The proof is based on the Laplace transform
and the spectral decomposition. For numerical aspects, we refer to the recent paper
[30] for a one-dimensional advection-dispersion equation where a quasi-boundary
regularization method has been proposed.

The structure of the paper will be as follows: in Section 2, we introduce some
preliminary results that will be useful for the sequel. In particular, we extend the
definition of logarithmic convexity to include time-fractional evolution equations.
Section 3 is devoted to the proof of Theorem 1.1. In Section 4, we provide some
numerical experiments to validate our theoretical results in both symmetric and
non-symmetric cases. Finally, we conclude this paper with some conclusions and
open problems.

2. Preliminary results

We start this section by recalling some preliminaries that will be used later
throughout this paper.

Let 0 < α ≤ 1 and T > 0 be fixed. Let X be a Banach space, and let ∥ · ∥ be its
associated norm. We consider the abstract fractional Cauchy problem{

∂α
t u(t) = Au(t), t ∈ (0, T ),

u(0) = u0,
(2.1)

where A : D(A) ⊂ X → X generates a C0-semigroup (S(t))t≥0 in X. The solution

of (2.1) is given by u(t) = Sα(t)u0, with the solution operator given by

Sα(t)v =

∫ ∞

0

Φα(s)S (stα) v ds, v ∈ X, (2.2)
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and

Φα(z) :=

∞∑
n=0

(−z)n

n! Γ(−αn+ 1− α)
, z ∈ C,

is the Wright function which is a probability density function:

Φα(t) ≥ 0, t > 0,

∫ ∞

0

Φα(t) dt = 1.

We denote by Eα(z) the Mittag-Leffler function

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C,

which is an entire function in C, see, e.g., [15]. Note that the two functions are
related by the formula

Eα(z) =

∫ ∞

0

Φα(t) e
zt dt, z ∈ C, 0 < α < 1.

We refer to the thesis [5] for a detailed exposition.
Inspired by [8, Definition 3.1] for the integer case α = 1, we introduce the

following general definition.

Definition 2.1. Let 0 < α ≤ 1. We say that the solution operator (Sα(t))t≥0 to
(2.1) satisfies a logarithmic convexity estimate for T > 0 if there exist a constant
κ = κ(T, α) ≥ 1 and a continuous function w : (0, T ) → (0, 1), w(0) = 0 and
w(T ) = 1, such that the following estimate

∥Sα(t)u0∥ ≤ κ∥u0∥1−w(t) ∥Sα(T )u0∥w(t)
(2.3)

holds for all t ∈ [0, T ] and all u0 ∈ X.

We collect a few facts about logarithmic convexity.

• Integer case α = 1: logarithmic convexity holds for symmetric opera-

tors with κ = 1 and w(t) =
t

T
(see e.g. [13, Section 2]). This results

from the fact that t 7→ ∥u(t)∥ is a log-convex function (hence the name
logarithmic convexity). If the operator is subordinated to its symmetric
part, a logarithmic convexity result is established in [18, Theorem 3.1.3]

with w(t) =
1− e−ct

1− e−cT
, c > 0 being constant. More generally, for analytic

semigroups, a more general function w(t) (given by the so-called harmonic
measure) satisfies (2.3). More details can be found in [3]. It should be
emphasized that some logarithmic convexity estimates have recently been

obtained for non-analytic cases in [8, 9] with w(t) = cT
t

T
, cT ∈ (0, 1] is

constant.
• Fractional case 0 < α < 1: only a few results are known. For instance,
logarithmic convexity holds for symmetric operators such as (1.3) without
drift term, i.e., B = 0. It has recently been proven in [10] that (2.3) holds

in this case with w(t) =
t

T
. The general case of non-symmetric operators

remains an open problem. This motivates our present work.

For future use, we recall the following result from [10] on the symmetric case. Let
0 < α ≤ 1 and X = H be a separable Hilbert space.
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Theorem 2.2. Assume that the operator A is self-adjoint, bounded above and has
compact resolvent. Then the associated solution u to (2.1) satisfies the logarithmic

convexity estimate for T > 0 with w(t) =
t

T
, t ∈ [0, T ]. That is, there exists a

constant κ ≥ 1 such that

∥u(t)∥ ≤ κ∥u0∥1−
t
T ∥u(T )∥ t

T , 0 ≤ t ≤ T (2.4)

for all u0 ∈ H.

3. Proof of the logarithmic convexity estimate

In this section, we prove the main result of Theorem 1.1. The key idea is to
transform the equation (1.1) into a symmetric equation of the same kind, thanks
to Assumption (H).

Proof of Theorem 1.1. Let us make the change of variable

v(t, x) = e
b
2u(t, x),

where u(t, x) is a solution to (1.1). Then, by a simple calculation, the following
identities hold

∂α
t u(t, x) = e−

b
2 ∂α

t v(t, x),

∇u = e−
b
2

(
−1

2
v∇b+∇v

)
,

div(A∇u) = e−
b
2

(
div(A∇v)−A∇b · ∇v +

(
1

4
A∇b · ∇b− 1

2
div(A∇b)

)
v

)
,

B · ∇u+ pu = e−
b
2

((
−1

2
A∇b · ∇b+ p

)
v +A∇b · ∇v

)
.

Therefore, we obtain that v is a solution to the backward problem
∂α
t v(t, x) = L0v(t, x), in (0, T )× Ω,

v|∂Ω = 0, on (0, T )× ∂Ω,

v(T, x) = vT (x) in Ω,

(3.1)

where vT = e
b
2uT , v0 = e

b
2u0, and the operator L0 is given by

L0v (x) = div(A(x)∇v(x)) + q(x)v(x), (3.2)

with

q(x) = p(x)− 1

2
div(A(x)∇b(x))− 1

4
A(x)∇b(x) · ∇b(x), x ∈ Ω.

SinceA is of class C1 in Ω and b ∈ W 2,∞(Ω) (by Assumption (H)), then q ∈ L∞(Ω).
With the domain

D(L0) = H2(Ω) ∩H1
0 (Ω),

it is well-known that L0 is a self-adjoint operator that is bounded above with
compact resolvent. Then by applying Theorem 2.2 to the equation (3.1), there
exists κ ≥ 1 such that

∥v(t, ·)∥L2(Ω) ≤ κ∥v0∥
1− t

T

L2(Ω)∥vT ∥
t
T

L2(Ω), 0 ≤ t ≤ T. (3.3)

On the other hand, by b ∈ L∞(Ω), we obtain

∥u(t, ·)∥L2(Ω) ≤ e
1
2∥b∥∞∥v(t, ·)∥L2(Ω), 0 ≤ t ≤ T.
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In particular,

∥v0∥L2(Ω) ≤ e
1
2∥b∥∞∥u0∥L2(Ω), ∥vT ∥L2(Ω) ≤ e

1
2∥b∥∞∥uT ∥L2(Ω).

Plugging the above inequalities in (3.3), we get

∥u(t, ·)∥L2(Ω) ≤ κe∥b∥∞∥u0∥
1− t

T

L2(Ω)∥uT ∥
t
T

L2(Ω), 0 ≤ t ≤ T.

Thus, the proof is completed. □

4. Numerical experiments

In this section, we use the Wolfram language to validate the theoretical results
discussed above. In particular, we use the function DSolve for solving a simple PDE
and the recent function CaputoD for the Caputo fractional derivative. Note that
the predefined function NDSolve in the last update of Wolfram language cannot
solve fractional PDEs numerically.

To approximate the Caputo fractional derivative and solve the corresponding
PDEs, we use the classical L1 scheme; see [25, Section 8.2] and [12]. Let us briefly
recall this method. For the temporal interval [0, T ], we denote by ∆t = T

N the
temporal step size of the grid tk = k∆t, k = 0, 1 . . . , N (N ∈ N). By definition, we
have

∂α
t u(t)|t=tk

=
1

Γ(1− α)

∫ tk

0

(tk − s)
−α

u′(s) ds

=
1

Γ(1− α)

k∑
j=1

∫ tj

tj−1

(tk − s)
−α

u′(s) ds.

Then by using a piecewise linear interpolation of u(t) in each subinterval [tj−1, tj ]
for 1 ≤ j ≤ k, we obtain the L1 approximating formula for 0 < α < 1,

Dα
t u(t)|t=tk

=
(∆t)−α

Γ(2− α)

u (tk)−
k−1∑
j=1

(
a
(α)
k−j−1 − a

(α)
k−j

)
u (tj)− a

(α)
k−1u (t0)

 ,

(4.1)

where a
(α)
j := (j+1)1−α− j1−α, 0 ≤ j ≤ k− 1. Note that the L1 formula (4.1) has

an accuracy of order 2 − α, and other higher-order schemes can also be used; see,
e.g., [24].

Now using the formula (4.1) to approximate the time-fractional derivative and
a finite difference scheme for the spatial derivative, we can discretize the fractional
PDE 

∂α
t v(t, x) = vxx(t, x) + q(x)v(t, x), (t, x) ∈ (0, T )× (0, 1),

v(t, 0) = v(t, 1) = 0, t ∈ (0, T ),

v(0, x) = v0(x), x ∈ (0, 1).

(4.2)

Indeed, for the spatial interval [0, 1], we consider the grid xi = i∆x, i = 0, 1, . . . ,M
(M ∈ N), where ∆x = 1

M denotes the spatial mesh size. Then we set vi := v(xi)
and use the centered difference approximation for vxx:

δ2xvi =
vi−1 − 2vi + vi+1

(∆x)2
, i = 1, . . . ,M − 1.
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Then the equation (4.2) is approximated by
Dα

t v
k
i = δ2xv

k
i + q(xi)v

k
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N,

vk0 = vkM = 0, 1 ≤ k ≤ N,

v0i = v0(xi), 0 ≤ i ≤ M.

(4.3)

Next, we fix N = 20 and M = 80 in the following examples.

Example 1: a symmetric case. To illustrate the difficulty in non-symmetric
equations, we start with the following symmetric equation

∂α
t u(t, x) = uxx(t, x), (t, x) ∈ (0, 0.02)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, 0.02),

u(0, x) = sin(πx), x ∈ (0, 1).

(4.4)

This equation can be resolved by the Laplace transform technique as follows. De-

note L{f(t)}(s) :=
∫ ∞

0

e−stf(t)dt the Laplace transform (with respect to t) of f(t).

Applying the Laplace transform to (4.4) and solving the corresponding ordinary

differential equation in x, we obtain L{u(t, x)}(s) =
sα−1

sα + π2
sin(πx). Therefore,

by the inverse Laplace transform, the solution of equation (4.4) is given by the
following formula

uα(t, x) = Eα

(
−π2tα

)
sin(πx), t ∈ (0, 0.02), x ∈ (0, 1).

Next, we plot the solution uα(t, x) for α = 0.1.

0.

0.2

0.4

0.6

0.8

1.0

Figure 1. The solution uα(t, x) for α = 0.1 in Example 1.

Now we plot log ∥uα(t, ·)∥L2(0,1) for α = 0.1, 0.3, 0.5.
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-2.5

-2.0

-1.5

-1.0

-0.5

0.000 0.005 0.010 0.015 0.020

t

lo
g(
u
(t
)
)

α  0.5

α  0.3

α  0.1

Figure 2. log ∥uα(t, ·)∥L2(0,1) for α = 0.1, 0.3, 0.5 in Example 1.

Figure 2 shows that, for α = 0.1, 0.3, 0.5, the function t 7→ ∥uα(t, ·)∥L2(0,1)

is log-convex. This is compatible with the theoretical results established in the
symmetric case; see [10]. However, the results therein do not cover non-symmetric
equations.

Example 2: a non-symmetric case with Assumption (H). In this example,
we perturb the equation (4.4) of the previous example and consider instead the
following non-symmetric equation

∂α
t u(t, x) = uxx(t, x) + ux(t, x), (t, x) ∈ (0, 0.02)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, 0.02),

u(0, x) = sin(πx), x ∈ (0, 1).

(4.5)

It should be emphasized that it is difficult to obtain an explicit formula for the
solution to (4.5) similarly to Example 1. Indeed, by using the symmetrization
process presented in Section 3, the function v(t, x) = e

x
2 u(t, x) satisfies

∂α
t v(t, x) = vxx(t, x)− 1

4v(t, x), (t, x) ∈ (0, 0.02)× (0, 1),

v(t, 0) = v(t, 1) = 0, t ∈ (0, 0.02),

v(0, x) = e
x
2 sin(πx), x ∈ (0, 1).

(4.6)

However, an analytical formula for the solution to (4.6) is still difficult due to
the additional term 1

4v(t, x) and the exponential that appears in the initial datum
v(0, x). Furthermore, even the Laplace transform technique fails in this context.
Indeed, if we apply the Laplace transform to (4.6) and solve the corresponding
ordinary differential equation in x, we obtain a very complicated formula that is
difficult to invert. Thus, we only solve this equation numerically by the finite
difference method presented earlier.

Next, we plot the solution uα(t, x) = e−
x
2 v(t, x) to equation (4.5) for α = 0.1.
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0.

0.2

0.4

0.6

0.8

1.0

Figure 3. The solution uα(t, x) for α = 0.1 in Example 2.

Now we plot log ∥uα(t, ·)∥L2(0,1) for α = 0.1, 0.3, 0.5.

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
0.000 0.005 0.010 0.015 0.020

t

lo
g(
u
(t
)
)

α  0.5

α  0.3

α  0.1

Figure 4. log ∥uα(t, ·)∥L2(0,1) for α = 0.1, 0.3, 0.5 in Example 2.

Figure 4 shows that, for α = 0.1, 0.3, 0.5, the function t 7→ ∥uα(t, ·)∥L2(0,1) is
also log-convex as in the symmetric case.

In our main result, we have proven that Assumption (H) is sufficient for the
logarithmic convexity estimate to hold. The following numerical example shows
that this assumption is not necessary for logarithmic convexity.

Example 3: a non-symmetric case without Assumption (H). Now we con-
sider a non-symmetric equation with a non-smooth drift coefficient

∂α
t u(t, x) = uxx(t, x) + θ

(
x− 1

2

)
ux(t, x), (t, x) ∈ (0, 0.02)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, 0.02),

u(0, x) = sin(πx), x ∈ (0, 1),

(4.7)
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where θ(x) :=

{
1, x ≥ 0,

0, x < 0,
denotes the Heaviside function. Note that the drift coef-

ficients are given by B(x) := θ
(
x− 1

2

)
/∈ W 1,∞(0, 1) and b(x) :=

(
x− 1

2

)
θ
(
x− 1

2

)
+

c /∈ W 2,∞(0, 1), c is constant. Therefore, this example violates Assumption (H),
and one cannot use the symmetrization process as in Example 2.

We solve this equation numerically by the finite differences as before. Then, we
plot the solution uα(t, x) to equation (4.7) for α = 0.1.

0.

0.2

0.4

0.6

0.8

1.0

Figure 5. The solution uα(t, x) for α = 0.1 in Example 3.

Now we plot log ∥uα(t, ·)∥L2(0,1) for α = 0.1, 0.3, 0.5.
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(t
)
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α  0.5

α  0.3

α  0.1

Figure 6. log ∥uα(t, ·)∥L2(0,1) for α = 0.1, 0.3, 0.5 in Example 3.

Figure 6 shows that, for α = 0.1, 0.3, 0.5, the function t 7→ ∥uα(t, ·)∥L2(0,1)

is also log-convex. Note that Theorem 1.1 does not apply to this case. However,
several numerical tests with different initial data show that logarithmic convexity
still holds in this case, even if Assumption (H) is not fulfilled.
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5. Final comments and open problems

This section will address some concluding comments and open problems that
deserve further investigation.

5.1. Logarithmic convexity without Assumption (H). We have shown that
Assumption (H) is sufficient for the logarithmic convexity estimate to hold for
the solutions of non-symmetric equations. We have also seen in Example 3 that
this assumption is not necessary. It is then natural to ask how this assumption
can be dropped (or weakened) in the proof. Indeed, in the integer case α = 1,
the logarithmic convexity estimate holds for a general non-symmetric operator L
defined by (1.3) without assuming (H), see [18, Example 3.1.6] and [2, Lemma A.4]
for a general abstract result. We expect the same general result for the fractional
case 0 < α < 1.

5.2. Backward uniqueness for analytic semigroups. First, recall that the
backward uniqueness is a weaker property implied by logarithmic convexity. In the
integer case α = 1, it is known that the solution of the Cauchy problem correspond-
ing to an analytic semigroup satisfies the backward uniqueness property. This fact
results from analyticity and the semigroup law [20, 23]. However, in the fractional
case 0 < α < 1, although the analyticity of the solutions is preserved as shown
in [5, 22], there is no standard analog of the semigroup law. In the fractional case
with a non-symmetric operator L, we know that the backward uniqueness holds
given the results in [11]. We expect an affirmative answer to this question in a
general framework of Banach spaces, but the proof is still an open problem to be
resolved.
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[16] D. N. Hào, J. Liu, N. V. Duc and N. V. Thang, Stability results for backward time-fractional
parabolic equations, Inverse Problems, 35 (2019), 125006, 25 pp.

[17] B. Helffer and J. Sjöstrand, Puits multiples en mecanique semi-classique iv etude du complex

de Witten, Commun. Partial Differ. Equ., 10 (1985), 245-340.
[18] V. Isakov, Inverse Problems for Partial Differential Equations, third edition, Springer, 2017.

[19] D. Jiang, Z. Li, M. Pauron and M. Yamamoto, Uniqueness for fractional non-symmetric
diffusion equations and an application to an inverse source problem, Math. Meth. Appl. Sci.,

46 (2023), 2275-2287.

[20] S. G. Krein and O. I. Prozorovskaya, Analytic semigroups and incorrect problems for evolu-
tionary equations, Dokl. Akad. Nauk SSSR, 133 (1960), 277-280.
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