
ar
X

iv
:2

40
4.

14
04

9v
1

 [
cs

.D
S]

 2
2

A
pr

 2
02

4

DECLINE AND FALL OF THE ICALP 2008 MODULAR DECOMPOSITION

ALGORITHM

WILLIAM ATHERTON AND DMITRII V. PASECHNIK

Abstract. We provide a counterexample to a crucial lemma in ICALP 2008 paper [7], invali-
dating the algorithm described there.

1. Introduction

Graph modular decomoposition is an important technique in graph theory, and a well-studied
algorithmic problem, with dozens of different algorithms published since the pioneering work [3],
see e.g. [4]. One highly cited linear time algorithm has been presented at ICALP 2008 [7], also
publised as [6]. A Java implementation [5] has been made available by the first author of [loc.cit.].
An archival copy of this implementation can be found in [8]. As well, a number of attempts has
been made to implement it in a different language, one of them by the first author of this note, as
a part of an undergraduate project [1] supervised by the second author in Spring of 2023. At the
testing phase of the implementation, done in SageMath [9], an example, see Sect. 2, has been found
which produced an obviously incorrect output. The problem was traced back to a lemma in [6],
which is invalidated by the example. As well, the implementation [5] run on this example produced
basically the same incorrect output.

We contacted the authors of [6] in May 2023, who were quick to acknowledge the problem to
us. In March 2024 they published a revision [2] of [6], without mentioning the problem in [loc.cit.]
and in the associated with it implementation [5], and without mentioning our communication. The
main purpose of this note is to publicise the problem in [6], [7], and thus to stop further waste of
time stemming from attempts to implement the incorrect algorithm.

We quickly recall that for a graph G with the vertex set V := V (G), a module is a subset of
vertices M ⊆ V s.t. M any two x, y ∈ M cannot be distinguished by any v ∈ V \ M , i.e. v is
either simultaneously adjacent to x and y, or non-adjacent to x and y. Modules V and singleton
modules are called trivial. Note that connected components of G and of the complement graph G

are modules. A module M can be properly contained in another module M ′ 6= M , or they can
overlap, in the sense that M ∩M ′ 6= ∅, but neither M ′ ⊂ M , nor M ⊂ M ′. A module which does
not overlap any module is called strong. A modular decomposition tree is a recursive partition (also
known as a laminar set family) of V into strong modules; an example may be see on Fig. 1. More
details may be found in e.g. [4].

2. The example

The counterexample graph G which was discovered is described here. Note that not only its
isomorphism type matters here, but the particular vertex ordering—different orderings lead to
different outcomes, for some of them the result is correct. We mark nodes with letters a, b,. . . , i,
to adhere to the vertex labeling conventions of [5]. G is the join of two graphs: the 4-cycle with

1

http://arxiv.org/abs/2404.14049v1

2 W. ATHERTON AND D. PASECHNIK

a

i

b

e

c

d

f

g h

series

//

//

prime

series

Figure 1. The modular decomposition of G, with ”series”, resp. ”parallel” (ab-

breviated ”//”), resp. ”prime”, nodes of the decomposition tree are show by blue ,

resp. red , resp. green boxes.

an extra edge attached at a vertex, and the disjoint union of a vertex and the 3-cycle. G and its
modular decomposition is shown on Fig. 1.

The implementation [5] on this example produces

(SERIES, numChildren=5

(label=e, neighbours:a,b,d,f,i), (label=b, neighbours:a,d,e,f,g,h,i),

(label=c, neighbours:a,d,f,g,h,i),

(PARALLEL, numChildren=2

(label=g, neighbours:a,b,c,d,f,i), (label=h, neighbours:a,b,c,d,f,i)),

(PARALLEL, numChildren=2

(label=f, neighbours:b,c,e,g,h),

(SERIES, numChildren=3

(label=j, neighbours:a,b,c,d,e,g,h), (label=a, neighbours:b,c,d,e,g,h,i),

(label=d, neighbours:a,b,c,e,g,h,i))))

which is obviously incorrect, there is no prime node! Or, alternatively, note that the top series node
contains 5 children, i.e. the corresponding quotient graph is K5, and in particular there must be an
edge between the singleton nodes b and c. The latter would only be possible if (b, c) was an egde
in G—which is not the case.

Alternatively one could compute the decomposition of the complement G of G. Such decompo-
sitions must be “dual” to each other, in the sense that one must swap meanings of “series” and
“parallel“. Indeed, [5] works correctly on G and produces, modulo the swap just mentioned, the
decomposition at Fig. 1.

(PARALLEL, numChildren=2

(SERIES, numChildren=2

(label=f, neighbours:a,d,i),

(PARALLEL, numChildren=3

(label=i, neighbours:f), (label=a, neighbours:f), (label=d, neighbours:f))),

(PRIME, numChildren=4

(label=b, neighbours:c), (label=c, neighbours:b,e), (label=e, neighbours:c,g,h),

(SERIES, numChildren=2

(label=h, neighbours:e,g), (label=g, neighbours:e,h))))

DECLINE AND FALL OF THE ICALP 2008 MODULAR DECOMPOSITION ALGORITHM 3

3. Faulty lemma

We were able to trace the flaw down to Lemma 4 in [7] (which is Lemma 3.1 in the preprint
version [6]). The latter lemma plays a crucial role in the proof of correctness and is shown false on
our example.

Let x be an arbitrary vertex of G.

Lemma (Lemma 4 in [7]). The nodes in the ordered list of trees resulting from refinement that do
not have marked children correspond exactly to the strong modules not containing x.

First, note a typo in the statement of Lemma 4, which we corrected above in boldface - the
missing “not”.

This is a misprint. The proof of the Lemma is clearly proving the statement with “not” inserted.
As well, the way it is used in the proof of Lemma 3 in [7] also indicated the correct statement
should have the missing “not”.

We now show where the algorithm is going wrong on G. It starts by choosing a vertex x to be the
first pivot (this choice is arbitrary in the algorithm), and recurses on G(x), the set of the neigbours

of x, a tentative (strong) module. Then it processes the non-neighbours G(x), resulting in a number
of tentative modules as in (1), and, finally, does a refinement step: rearranging tentative modules
into the modules for the tree. For a detailed complete description, see [7].

(1) T (N0)
︸ ︷︷ ︸

G(x)

, x, T (N1), . . . , T (Nk)
︸ ︷︷ ︸

G(x)

,

Let the algorithm choose the vertex i to be the first pivot. We get the neighbours of i, G(i) =

{a, b, c, d, e, g, h}, {i}, and G(i) = {f}.
It then recursively processes the neighbour partition. The recursively computed modular decom-

position for G(i) can be seen on Fig. 1; one has to remove i, f , and the two nontrivial decomposition
tree nodes (strong modules) containing i (i.e. the two nested boxes on the left of the green box).

The next step of the algorithm, “pull-forward”, is skipped, as there is only one node, f , in G(i).

It then calculates the modular decomposition of G(i), which is just the single-vertex tree con-
sisting of f .

It then goes on to the refinement step, where the error lies.
The refinement process consists of Algorithms 1 and 2 from [7], which we copy here verbatim.

We process the following decomposition of the vertices of G into subtrees of modules.
Lemma 4 is necessary for the correctness of the main algorithm. However, we will be going

through Algorithm 1 on the given example G, and show that its result contradicts Lemma 4. We
start its loop from vertex f . Then v = f and α(f) is the list of incident active edges of f .

Definition 1 ([7]). An edge becomes active when one of its endpoints is a pivot or if its endpoints
reside in different layers.

As f is in its own layer, all its incident edges are active. Therefore α(f) = {bf, cf, ef, gf, hf}.
Algorithm 2 is then run on the ordered list of trees, with the set X = {b, c, e, g, h}.

It first calculates T1, . . . , Tk, the maximal subtrees in the forest whose leaves are all in X . The
list of maximal subtrees in this case is a single subtree corresponding to the whole of X is given by
the prime node in Fig. 1, which we refer to as T1.

P1, the parent of T1, is the topmost node from the modular decomposition of G(i).

4 W. ATHERTON AND D. PASECHNIK

Algorithm 1: Refinement of the ordered list of trees (1) by the active edges

foreach vertex v do

Let α(v) be its incident active edges;
Refine the list of trees using α(v) according to algorithm 2, such that:
if v is to x’s left then

refine using left splits, and when a node is marked, mark it with “left”;

else if v is to x’s right and refines a tree to x’s left then

refine using left splits, and when a node is marked, mark it with “left”;

else if v is to x’s right and refines a tree to x’s right then

refine using right splits, and when a node is marked, mark it with “right”;

end

end

Algorithm 2: Refinement of an ordered list of trees by the set X

Let T1, . . . , Tk be the maximal subtrees in the forest whose leaves are all in X ;

Let P1, . . . , Pℓ be the set of parents of the Ti’s;

foreach non-prime Pm do

Let A be the set of Pm’s children amongst the Tj’s, and B its remaining children;
Let Ta either be the single tree in A or the tree formed by unifying the trees in A under
a common root, and define Tb symmetrically;

Assign Pm’s label to Ta and Tb;

if Pm is a root then
Replace Pm in the forest with either Ta, Tb (left split) or Tb, Ta (right split)

else

Replace the children of Pm with Ta and Tb;

end

Mark the roots of Ta and Tb as well as all their ancestors;

end

foreach prime Pm do

Mark Pm as well as all of its children and all of its ancestors;

end

As there is only one Pk, the outer loop is only run once, on P1.
A is the set of P1’s children among the Tj’s, which is just the singleton set T1, and B is the

set of remaining children, which is the singleton—the bottommost parallel node from the modular
decomposition of G(i).

As |A| = |B| = 1, we have that Ta = A = T1, and Tb = B.
Pm is a root, so Pm is replaced by Ta, Tb, as the subtree is to the left of the pivot.
Then, the roots of Ta and Tb are marked, and so are all their ancestors.
This means that the root of Ta, the prime node at the top of T1, is marked.
The algorithm then marks the children of all prime nodes marked this way, so the children of

the prime node at the top of T1 is marked, meaning the nodes b, c, e, and the parallel node from
T1 are all marked.

REFERENCES 5

This is a contradiction to Lemma 4. Lemma 4 states that the nodes in the ordered list of
trees resulting from refinement that do not have marked children correspond exactly to the strong
modules not containing x. This means that the strong modules not containing i must not have a
marked child. However, as you can see from Fig. 1, T1 is a strong module not containing i, but it
has marked children. �

4. Conclusion

From the implmentation point of view, the fact that the children of T1 get marked means that
when the Promotion step happens, the children of T1 get split from T1, and the T1 node gets
deleted. As the rest of the algorithm assumes that strong modules not containing x are not affected
by refinement, these nodes do not get reassembled back into a prime node, so you get the error
occuring in the example implementation, where the prime node is missing.

This is a fundamental problem with the algorithm, as Lemma 4 is used to prove correctness of
the algorithm, and the fact that children of prime nodes get marked in Lemma 2 is important for
other cases of the algorithm to work correctly. Apparently the idea is not easy to salvage, as [2]
appears to take a quite different approach, using LexBFS.

References

[1] W. Atherton. Implementing Linear-time Modular Decomposition in SageMath. 3rd year project
dissertation, supervised by D. Pasechnik. Department of Computer Science, Oxford University,
May 2023.

[2] D. Corneil, M. Habib, C. Paul, and M. Tedder. A recursive linear time modular decomposition
algorithm via LexBFS. 2024. arXiv: 0710.3901 [cs.DM].

[3] T. Gallai. “Transitiv orientierbare Graphen”. German. In: Acta Math. Acad. Sci. Hung. 18
(1967), pp. 25–66. issn: 0001-5954. doi: 10.1007/BF02020961.

[4] M. Habib and C. Paul. “A survey of the algorithmic aspects of modular decomposition”. In:
Computer Science Review 4.1 (2010), pp. 41–59. issn: 1574-0137. doi: j.cosrev.2010.01.001.
url: https://www.sciencedirect.com/science/article/pii/S157401371000002X.

[5] M. Tedder. Homepage with a link to Java code. The page was removed in Nov. 2023, a copy is in
[8]. A copy of the code, retrieved earlier, is included here. 2008. url: https://web.archive.org/web/20231117180003/h

[6] M. Tedder, D. Corneil, M. Habib, and C. Paul. A recursive linear time modular decomposition
algorithm via LexBFS. 2008. arXiv: 0710.3901v2 [cs.DM].

[7] M. Tedder, D. Corneil, M. Habib, and C. Paul. “Simpler Linear-Time Modular Decomposition
Via Recursive Factorizing Permutations”. In: Automata, Languages and Programming. Ed. by
L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 634–645. isbn: 978-3-540-70575-8.
doi: 10.1007/978-3-540-70575-8_52.

[8] Archive of M. Tedder’s Java code for [7]. url: https://github.com/dimpase/MDTreeJavacode.
[9] The SageMath Developers. SageMath, the Sage Mathematics Software System. Version 10.3.

2024. doi: 10.5281/zenodo.8042260. url: https://www.sagemath.org.

Department of Computer Science, University of Oxford

Email address: william.atherton@keble.ox.ac.uk

Department of Computer Science, University of Oxford

Email address: dima.pasechnik@cs.ox.ac.uk

https://arxiv.org/abs/0710.3901
https://doi.org/10.1007/BF02020961
https://doi.org/j.cosrev.2010.01.001
https://www.sciencedirect.com/science/article/pii/S157401371000002X
https://web.archive.org/web/20231117180003/https://www.cs.toronto.edu/~mtedder/
https://arxiv.org/abs/0710.3901v2
https://doi.org/10.1007/978-3-540-70575-8_52
https://github.com/dimpase/MDTreeJavacode
https://doi.org/10.5281/zenodo.8042260
https://www.sagemath.org

	1. Introduction
	2. The example
	3. Faulty lemma
	4. Conclusion
	References
	References

