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Abstract

Data-driven approaches have revolutionized scientific research. Ma-
chine learning and statistical analysis are commonly utilized in this
type of research. Despite their widespread use, these methodologies
differ significantly in their techniques and objectives. Few studies have
utilized a consistent dataset to demonstrate these differences within
the social sciences, particularly in language and cognitive sciences.
This study leverages the Buckeye Speech Corpus to illustrate how
both machine learning and statistical analysis are applied in data-
driven research to obtain distinct insights. This study significantly
enhances our understanding of the diverse approaches employed in
data-driven strategies.
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1 Introduction
Advancements in technology have revolutionized the ability of scientists to gather
and analyze data on an unprecedented scale. This surge in data availability has led
to the necessity for more sophisticated analytical techniques and computational
tools, fundamentally changing the way research is conducted and facilitating new
discoveries across various domains (Langley, 1981; Han et al., 1993; Kitchin, 2014;
Montáns et al., 2019; Jack et al., 2018; Núñez et al., 2019).

Data technologies serve as powerful illuminators, revealing hidden patterns and
insights within vast datasets, much like a flashlight cutting through darkness. For
example, machine learning has become indispensable in scientific inquiry, allowing
researchers to decipher complex patterns, enhance their understanding of intri-
cate phenomena, and make precise predictions. This technology is applied across
diverse fields including medicine, astronomy, genomics, social sciences, and envi-
ronmental studies, enabling researchers to swiftly extract significant insights from
large volumes of data, much faster than traditional methods would permit (Mjol-
sness and DeCoste, 2001; Jordan and Mitchell, 2015; LeCun et al., 2015; Webb
et al., 2018). Such acceleration not only deepens the exploration of research ques-
tions but also unveils knowledge that was once concealed or unreachable. Further-
more, statistical methods play a critical role in the modern landscape of scientific
research. They are integral in every phase of a study, from planning and design to
data collection, analysis, and the interpretation and reporting of results (Carleo
et al., 2019; Núñez et al., 2019; Butler et al., 2018; Grimmer et al., 2021). While
machine learning helps in identifying patterns that may elude human detection
in massive datasets, statistical techniques continue to enrich scientific research by
providing robust frameworks for making inferences and validating findings (Fisher,
1955; Box, 1976; Nelder, 1986; Nosek et al., 2012). Together, these tools are trans-
forming scientific paradigms, propelling forward our capacity to understand and
manipulate the natural world.

Data-driven research has made significant strides across various fields, bringing
to the forefront disciplines such as data science, statistics, machine learning, and
deep learning (Solomatine and Ostfeld, 2008; Wolf, 2010; Miller and Goodchild,
2015; Zhang et al., 2011). Among these, machine learning and statistics form the
foundational core. While often conflated due to their shared capability to process
data, machine learning and statistics frequently overlap, creating ambiguity around
their distinct roles and unique contributions. Moreover, both machine learning
and statistics take advantage of the shared knowledge of probability theory, linear
algebra etc. Many researchers have found it challenging to distinguish clearly
between these two areas. Although both fields are fundamentally concerned with
extracting knowledge from data, they differ significantly in their approaches and
objectives.

The rapid advancement of statistics in the early 20th century significantly
enhanced scientists’ ability to quantitatively evaluate hypotheses such as “does
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treatment X affect outcome Y?”. These inquiries often required definitive, binary
answers, leading to the development of statistical tools focused primarily on val-
idating binary propositions through hypothesis testing and generating confidence
intervals to estimate the magnitude and uncertainty of observed effects. Contrast-
ingly, machine learning seemingly emerged from the field of engineering, driven by
the ambition to enhance machine functionality. Initially, machine learning aimed
to augment machine capabilities, with a secondary focus on comprehending intelli-
gence itself. In this discipline, verifying real-world truths ranked lower in priority,
considered relevant mostly as components of intelligent behaviors, a point still
open to debate.

While both statistics and machine learning are interconnected, they hold dis-
tinct identities, as evidenced by various studies. Gaining a clear understanding of
these differences is crucial for mastering both fields and effectively applying data-
driven strategies. Contemporary research methodologies frequently incorporate
advanced techniques such as machine learning and statistical analysis, often lever-
aging both to harness the strengths of each approach. Despite the prevalent use of
these methods, there remains a notable gap in studies that systematically apply
both techniques to identical datasets to highlight potential differences in outcomes.
This comparative approach is rarely employed. However, it could provide valuable
insights into how each method processes and interprets the same dataset differently.
Moreover, the specific contributions of these techniques to various academic fields
have not been extensively explored. In particular, the fields of language sciences,
cognitive research, and social sciences could greatly benefit from targeted studies
examining how machine learning and statistical analysis can uniquely advance our
understanding of complex phenomena within these disciplines. Such investigations
could elucidate the distinct advantages or limitations of each method, potentially
leading to more refined and effective research methodologies in these areas.

The current study aims to bridge these gaps by employing both statistical
analysis and machine learning on the same dataset to achieve different objectives.
This study is intended to provide fresh perspectives to researchers in language
sciences and cognitive studies, illustrating distinct applications of each method to
extract unique insights.

2 Relation and differences between statistics
and machine learning

Before starting our demonstration, we should systematically have a detailed ac-
count of how statistics and machine learning are related and differ from each other
in theoretical perspectives. After having an understanding of these differences on
theory, we believe that the practical implementation abilities will be enhanced,
and this is our purpose of this paper.
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2.1 How are statistics and machine learning related?
Breiman (2001b) highlighted the divergent approaches to data analysis, emphasiz-
ing the ongoing evolution of these methodologies over the decades. Many machine
learning techniques have their roots in traditional statistical methods, such as
linear and logistic regression, while also drawing from disciplines like calculus, lin-
ear algebra, and computer science. This intersection has led some to mistakenly
merge the concepts of machine learning and statistics. Moreover, the introduc-
tion of user-friendly machine learning packages, such as Python’s scikit-learn
(Pedregosa et al., 2011), has further abstracted machine learning from its sta-
tistical foundation. This has propagated a belief among some newcomers to the
field that a deep understanding of statistics isn’t necessary for machine learning
applications. While basic tasks might not require intensive statistical knowledge,
advanced modeling and the development of new algorithms heavily rely on a solid
grounding in statistics and probability theory.

Statistical learning theory, formulated in the 1960s, lays the theoretical founda-
tion for machine learning. It introduces concepts such as the hypothesis space and
loss functions, providing a framework for supervised learning. The theory defines a
dataset: Let S be the set of all pairs (xi, yi), where xi and yi are elements related
by some function or condition. We then define S as S = {(xi, yi)}, comprising
n data points, where each data point consists of features x and a corresponding
output y. The objective in statistical learning is to discover the function that
maps the input features to the output, navigating through a hypothesis space of
potential functions, guided by the minimization of a loss function which evaluates
the expected risk over the dataset.

2.2 How are two fields different?
Despite the original intentions to remain separate, the core components of machine
learning algorithms often rely on statistical principles that have been examined by
statisticians for over a century. These mathematical principles apply universally,
indifferent to whether the objective is to achieve artificial intelligence, publish re-
search, or develop unbiased estimators. Consequently, many pressing questions in
machine learning are, at their heart, statistical challenges previously unexplored
by mainstream statistics. In recent decades, the field of statistics has found itself
both challenged and invigorated by the successes of machine learning, particu-
larly in areas traditionally dominated by statistics, such as predictive modeling
(L’heureux et al., 2017; Saidulu and Sasikala, 2017; Ratner, 2017; Rudin et al.,
2022; Ratner, 2017; Ley et al., 2022). This has sparked vigorous efforts to merge
the theories and tools of both fields. However, for these efforts to be successful,
they must first recognize and address the underlying reasons for their differences
(Bzdok et al., 2018; Makridakis et al., 2018; Boulesteix and Schmid, 2014). Un-
derstanding these differences is essential for leveraging the strengths of both fields
effectively, whether the goal is to uncover deep insights from data or to develop
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robust predictive algorithms.
One of the fundamental distinctions between statistics and machine learning

is their purpose. Statistics aims to infer properties about a population through
samples, focusing on understanding and describing data relationships. In contrast,
machine learning seeks to predict outcomes based on patterns identified in data,
often using large and complex datasets to train predictive models. This training
process typically involves dividing data into subsets for training, validation, and
testing, which helps refine the models for better accuracy.

Another significant difference lies in how data is approached. In statistics, the
focus is on the quality of data and the validity of the conclusions drawn from it
through significance testing, which considers the presence of noise and potential
confounding variables. Machine learning, however, emphasizes the quantity of
data, often requiring large datasets to achieve the accuracy needed for effective
predictions.

Interpretability also varies greatly between the two. Statistical models, often
simpler and based on fewer variables, tend to be more interpretable. This clarity
comes from the use of statistical significance tests that validate the relationships
within the data. Machine learning models, in contrast, can become highly complex,
especially with the inclusion of many variables, making them accurate yet some-
times difficult to decipher. This complexity can render machine learning models
as “black boxes” (Adadi and Berrada, 2018; Gilpin et al., 2018; Linardatos et al.,
2020), where it is challenging to trace how inputs are transformed into outputs.

2.3 An example
Linear regression is fundamentally a statistical method designed to minimize the
squared error between data points. However, it is also widely used in machine
learning for predictive tasks. An example of employing regression models is taken
to illustrate different intentions and outcomes in language sciences.

In language sciences, regression models can be particularly illuminative. For
example, researchers might use regression analysis to explore how the complexity
of syntactic structures in children’s language development correlates with cogni-
tive development indicators. Statistically, this would involve collecting data on
children’s language use and cognitive tests, then applying linear regression to un-
derstand and quantify how changes in one variable relate to changes in another,
typically across a complete dataset. The statistical approach focuses on infer-
ence—determining whether there is a statistically significant relationship between
syntactic complexity and cognitive development. This method does not neces-
sitate training and testing subsets of data; instead, it aims to characterize the
relationship across the entire data set, assessing the significance and reliability of
the observed relationships.

Conversely, in a machine learning context, the same regression model could
be employed to predict cognitive developmental outcomes based on the existing
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Figure 1: Differences between machine learning and statistics

linguistic data. The model would be trained on a subset of data, with the model’s
parameters adjusted to optimize performance as measured on a separate test set.
The objective is less about understanding the underlying dynamics of the relation-
ship and more about achieving high predictive accuracy.

Suppose a language scientist wants to predict future cognitive development
based on early linguistic behaviors using machine learning. In that case, they might
employ a regression model on a divided dataset (training and testing), focusing on
how well the model predicts developmental outcomes in new, unseen data. This
approach would likely prioritize predictive power over interpretability, with model
adjustments driven by performance metrics on the test set. Thus, while both fields
use regression models, the context and objectives dictate their implementation:
statistical modeling seeks to uncover and explain relationships within the data,
providing comprehensive insights into language development patterns. In contrast,
machine learning leverages these models primarily for their predictive capabilities,
often in applications that require rapid assessments of developmental trajectories
based on linguistic inputs.

These differences underscore the importance of distinguishing between the pur-
poses and methodologies of statistics and machine learning in language sciences,
ensuring that the chosen approach aligns with the specific goals of the research or
application.

2.4 Key differences
In short, the contrast between machine learning and statistics is rooted in their
different approaches and priorities. These key differences are summarized as shown
in Table 1 and Fig. 1. The following provides some details on these key differences.
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Machine learning is primarily focused on achieving high predictive accuracy
and is comfortable with models that are effective but not easily interpretable, often
referred to as ‘black box’ models. On the other hand, statistics places a greater
emphasis on relation among variables in data. Statisticians value models that
are transparent and explainable, reflecting the field’s deep roots in mathematics
and science, where theoretical foundations and provable properties are paramount.
This includes a strong focus on the behavior of estimates as sample sizes increase
and ensuring that models are robust even with small datasets.

Moreover, statistical methods rigorously address the bias and variance of esti-
mates, seeking models that not only perform well but also provide insights into the
certainty and reliability of predictions. In contrast, while machine learning does
consider these factors, the emphasis is more on how the model performs in practical
scenarios, often prioritizing larger datasets that feed the algorithmic complexity
necessary for modern applications.

Table 1: Key Differences between Machine Learning and Statistics

Characteristic Machine Learning Statistics
predictive accuracy High Lower
black box models High Low
relation among variables Low High
various asymptotic properties Low High
provable characteristics and bounds Low High
bias and variance of estimates Less Concerned Highly Concerned

3 Experiments
After having a systematic understanding the differences between statistics and
machine learning, we carried out the experiments to demonstrate how machine
learning and statistics differently contribute to linguistic and cognitive research.

3.1 Materials & methods
The Buckeye Corpus of conversational speech contains high-quality recordings
from 40 speakers in Columbus OH conversing freely with an interviewer (Pitt
et al., 2005). The speech has been orthographically transcribed and phonetically
labeled. The sessions were conducted as sociolinguistics interviews, and are essen-
tially monologues. The speech has been orthographically transcribed and phonet-
ically labeled. The corpus includes 357908 words.

The original dataset from the Buckeye provided diverse factors: speaker’s gen-
der (female, male), age (old, young), word duration, etc. However, we can add
more factors such as PoS tag for each word, word length, word frequency, the
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phrase rate, deletions and semantic relevance. Most of these factors have been
investigate to show that they are closely related with word duration (Cowan et al.,
1997; Baker and Bradlow, 2009; Terroir and Lavandier, 2014; Cohen Priva, 2015;
Pierrehumbert, 2016; Bürki, 2018). However, these relevant research mostly em-
ployed statistical correlation and simply linear regression to explore how these
factors affect word duration in speech. We adopt machine learning methods and
some advanced mixed-effect regression models to examine them in the current
study. The specific information on these factors is detailed in the Table 2:

Table 2: Factors and Their Descriptions

Factor Description
Word Duration The time to articulate a target word in

spontaneous speech.
Word Length The number of alphabets in a target word.
Word Frequency (log) (Logarithm of) the normalized frequency of

the word in the subtitle corpus 1.
CiteLength The number of syllables in transcript

phonetic form of this word.
PhraseRate [Word number in this phrase] / [duration

from the beginning of the phrase to the end
of the phrase in a target word].

Deletion The number of segments in a target word
deleted or reduced.

Semantic Relevance The semantic relatedness degree with the
context.

Speaker/Sex/Age Speakers in corpus; Female vs. male; young
vs. old.

Additionally, semantic relevance is a novel measures, representing how a target
word is semantically related with the context. It measures the semantic degree of
how the contextual information influence the target word (Sun et al., 2023; Sun,
2023).

3.2 Machine learning methods
Machine learning can be categorized mainly into three types: supervised learn-
ing, where models predict an outcome based on input data; unsupervised learn-
ing, where models identify patterns and relationships in data without any specific
outcome to predict; and reinforcement learning, where an agent learns to make
decisions by receiving rewards for actions (Bishop and Nasrabadi, 2006; Hastie
et al., 2009; Murphy, 2012; Harrington, 2012; Raschka and Mirjalili, 2019).
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Due to the features of our data, we introduced supervised machine learning
models to recognize patterns in the new data. The main purpose of ML is to
predict word speech duration. To reduce the training load, we classify the data
of word duration into eight ranges. Originally there are 357908 words, and their
durations differ from each other, in other words, there are 357908 different values.
However, we classified 357908 values into eight ranges. Put it simply, our trained
LM models were required to predict which one belongs to a specific range among
the eight ones. The data used for training the ML models include age, gender,
word length, word frequency. The dataset is divided by 75% as the training one,
and the remaining 25% as testing dataset.

3.2.1 Random forest

Random Forest is an ensemble machine learning algorithm that operates by con-
structing a multitude of decision trees during training and outputting the class
that is the mode of the classes (classification) or mean prediction (regression) of
the individual trees. Random Forests correct for decision trees’ habit of overfitting
to their training set (Breiman, 2001a). During the training phase, random forest
creates multiple decision trees. Each tree is trained on a random subset of the data
samples, and at each node, a subset of features is randomly chosen to determine
the split. For predictions, each tree in the forest votes, and the final class assigned
to a sample is based on the majority vote for classification tasks, or an average
in case of regression. This aggregation helps to mitigate errors from individual
trees and exploit the strength of multiple learners. Random Forest’s performance
can typically be assessed using standard metrics such as accuracy for classification
tasks. Since the model uses multiple trees, it is usually more robust to overfitting
compared to a single decision tree. The final accuracy result is about 51%. The
following code is used to implement the task of the classification of different classes
on durations.

import pandas as pd
import numpy as np
from sklearn . model_selection import train_test_split
from sklearn . ensemble import RandomForestClassifier
from sklearn . metrics import accuracy_score
import matplotlib . pyplot as plt
from sklearn import tree

df = pd. read_csv (" buckeye1 .csv", delimiter =‘\t’)

# Define the breaks for the ranges of ’Duration ’
breaks = np. quantile (df[’Duration ’], np. arange (0, 1,

0.2))
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labels = [‘1’, ‘2’, ‘3’, ‘4’, ‘5’] # Number of labels
matches number of quantile edges minus one

# Cut the ‘Duration ’ variable into ranges and assign
labels

df[‘ range_label ’] = pd.cut(df[‘ Duration ’], bins=breaks ,
labels =labels , include_lowest =True)

df. dropna ( subset =[‘ range_label ’], inplace =True)

# Feature selection
feature_names = [‘ CiteLength ’, ‘PhraseLength ’, ‘

Deletions ’, ‘wordlen ’, ‘logfreq ’]
X = df[ feature_names ]
y = df[‘ range_label ’]

# Split the data into training and testing sets
X_train , X_test , y_train , y_test = train_test_split (X, y

, test_size =0.25 , random_state =42)

# Create and train the Random Forest Classifier
clf = RandomForestClassifier ( n_estimators =100 ,

random_state =42)
clf.fit(X_train , y_train )

# Make predictions
preds_rf = clf. predict ( X_test )
accuracy = accuracy_score (y_test , preds_rf )
print(‘‘ Accuracy :", accuracy )
# accuracy 51.02712%

We selected five estimators from 100 ones to visualize them, as shown in Fig.
2. RandomForest model using Python’s matplotlib.pyplot and sklearn.tree
libraries. This kind of visualization can be particularly useful for understanding
how individual trees in the ensemble make decisions, which can provide insights
into the model’s operation.

However, we can streamline the factors in our training dataset. For instance,
by selecting only ‘WordLength’ and ‘WordFrequency’, the prediction accuracy
achieved was 50.75%. Conversely, using ‘CiteLength’ and ‘PhraseRate’ as factors,
the prediction accuracy dropped to 37.13%. Furthermore, combining ‘Deletions’
with ‘WordLength’ yielded a prediction accuracy of 42.36%. By experimenting
with various factor combinations, we can deduce the impact of different factors on
machine learning accuracy. Evidently, ‘WordLength’ and ‘WordFrequency’ appear
to play more significant roles in enhancing machine learning performance.
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Figure 2: The five decision trees in the random forest

3.2.2 Support vector machine

Support vector machine (SVM): SVM is a powerful and versatile supervised ma-
chine learning model, particularly well-suited for classification tasks (Hearst et al.,
1998). It works by finding the hyperplane that best divides a dataset into classes
with the maximum margin, i.e., the maximum distance between data points of
both classes. SVMs are effective in high-dimensional spaces and relatively im-
mune to overfitting, especially in cases where the number of dimensions exceeds
the number of samples.

import pandas as pd
import numpy as np
from sklearn . model_selection import train_test_split
from sklearn .svm import SVC
from sklearn . metrics import accuracy_score

# Feature selection
X = df[[‘ Age ’, ‘Score ’, ‘CiteLength ’, ‘PhraseLength ’, ‘

PhraseRate ’, ‘Deletions ’]]
y = df[‘ range_label ’]
X = X. dropna ()
y = y.loc[X.index]

X_train , X_test , y_train , y_test = train_test_split (X, y
, test_size =0.25 , random_state =42)

# Create and train the Support Vector Machine Classifier
clf = SVC( kernel =‘ linear ’, C=1.0 , random_state =42)
clf.fit(X_train , y_train )

preds_svm = clf. predict ( X_test )
accuracy = accuracy_score (y_test , preds_svm )
print(‘‘ Accuracy :", accuracy )
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# accuracy 51.2334%

We used the SVC from the package “scikit-learn” to create a Support Vector
Machine classifier. kernel=‘linear’ specifies that we are using a linear kernel for
the SVM. “C=1.0” is the regularization parameter, which controls the trade-off
between maximizing the margin and minimizing the classification error. We fit the
classifier to the training data using the fit() method. Then, we make predictions
on the test data using the predict() method. Finally, we calculate the accuracy of
the model using “accuracy_score()” from scikit-learn. We can adjust the kernel
type (linear, rbf, poly, etc.) and other hyperparameters of the SVM as needed
based on the specific requirements and the characteristics of the dataset. The final
accuracy reaches about 51%, which is close to the one predicted by the random
forest. The consistent accuracy results show that these factors play stable roles
in machine learning. The classifier function from SVM is shown in Fig. 3. We
selected four features to visualize how SVM helps classify them.
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Figure 3: The two classifiers from the SVM. Each plot selected two factors
as x-axis and y-axis.

Following the random forest strategies, we streamlined the factors in our train-
ing dataset. For example, using only ‘WordLength’ and ‘WordFrequency,’ we
achieved a prediction accuracy of 50.92%. In contrast, CiteLength’ and PhraseR-
ate’ resulted in a lower accuracy of 38.36%, while combining Deletions’ with
WordLength’ reached 42.72%. Such results are quite close to those run in the
random forest. This approach helped us understand that ‘WordLength’ and ‘Word-
Frequency’ are more critical for improving performance. In the following statistical
analysis, we should treat both factors as control predictors.

3.3 Statistical analysis
Statistical analysis is broadly divided into two main types: descriptive statistics
and inferential statistics. Descriptive statistics summarize and describe the fea-
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tures of a dataset through metrics like mean, median, mode, and standard devia-
tion, helping to visualize and understand data distributions. Inferential statistics,
on the other hand, use samples of data to make generalizations or predictions about
a larger population, employing techniques such as hypothesis testing, regression
analysis, and confidence intervals. This distinction allows statisticians and re-
searchers to both understand the data they have and to infer properties about
data they do not have, supporting decision-making across fields like economics,
medicine, engineering, and social sciences.

We first employed descriptive correlation to explore in the data, and then
applied some advanced regression models to make further explorations. Machine
learning needs to use training data to train models and do tests in the test data.
In contrast, statistical analysis does not require to do this.

3.3.1 Correlation

The first statistical analysis is to explore the Pearson’s correlationship among these
factors we have applied. Using in-built R function, we could obtain the correlation
matrix for these variables, and it highlights significant relationships among various
features, as shown in Fig. 4. Specifically, a very strong positive correlation exists
between “WordLength” and “CiteLength” (ρ = 0.926), indicating that as words
get longer, they generally contain more syllables. This is complemented by strong
negative correlations, such as between “WordLength” and “LogFrequency” (ρ = -
0.662), where longer words appear less frequently. Similarly, “WordDuration” and
“LogFrequency” show a moderate negative correlation (ρ = -0.589), suggesting
that less frequent words tend to have longer durations. These patterns suggest a
close link between the physical characteristics of words and their usage frequencies.

Further analysis shows relationships affecting phrase dynamics and overall
speech patterns. Here we included more factors, such as PhraseLength (the al-
phabet number of phrase where the target word is located), SpeakerRate (the
average speaking speed for this speaker) to show more divergent correlations.
For instance, there is a moderate positive correlation between “PhraseRate” and
“PhraseLength” (ρ = 0.249), indicating that longer phrases typically have a faster
speech rate. Conversely, a moderate negative correlation between “SpeakerRate”
and “PhraseRate” (ρ = -0.349) suggests that faster phrase rates correlate with
slower overall speaking rates, potentially reflecting variations in speaking dynam-
ics based on phrase complexity. These findings highlight the specific ways in which
speech elements interact, providing valuable insights for studies in linguistic pat-
terns and speech processing. Importantly, while these correlations reveal trends,
they do not imply causation, and correlations above approximately 0.5 are partic-
ularly noteworthy in social science contexts.
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3.3.2 Mixed-effect regression analysis

Data collection often involves variables such as the characteristics of speakers,
age groups, and gender. Furthermore, the sample sizes available for these studies
may be limited, posing challenges when attempting to apply complex models that
include a multitude of parameters. Additionally, the assumption of data indepen-
dence can be problematic. For instance, data may be gathered using quadrats
within specific sites, creating a hierarchical data structure with quadrats nested
inside the sites. Mixed models are specially designed to manage these types of in-
tricate, structured datasets—even when faced with smaller sample sizes and a large
number of variables. Notably, these models also provide the benefit of conserv-
ing degrees of freedom, an improvement over traditional linear models in handling
such data scenarios. We employed two popular mixed-effect regression models to
explore how different factors take effect on durations of words.

The first is Linear Mixed-Effects Regression (LMER) (Bates, 2010; Kuznetsova
et al., 2017). LMER is a statistical model used to analyze data with both fixed
effects, which represent the main variables of interest expected to have a consistent
impact across the dataset, and random effects, which account for inherent varia-
tions from grouped or nested data sources. This model is particularly useful for
dealing with hierarchical structures, such as students within classrooms, or data
from repeated measures on the same subjects, allowing for more accurate estimates
by accounting for both within-group and between-group variability. LMER helps
in understanding complex datasets by modeling the dependencies and structure
within the data, making it a powerful tool for robust statistical analysis. The
present study employed LMER to explore how independent variables and random
variable take effects on the dependent variables. The dependent variable is “word
duration”, and other independent variables include word length, word frequency,
and the random variables (i.e. Speaker, Age and Sex). The data number (n) in
the regression fittings is 262342.

The LMER fittings were summarized as follows, and we made comparison via
AIC (Akaike Information Criterion). Control predictors such as word length and
word frequency were included, and random variables such as age, sex and speaker
could be included. almUnderstanding mixed-effect models is essential for appre-
ciating the significance of these indicators, highlighting the Akaike Information
Criterion (AIC) as the preferred tool for model comparison. A smaller AIC indi-
cates better performance, as shown in Table 3.

• lm1=lmer(WordDuration∼WordLength+LogWordFreq+CiteLength+PhraseRate+(1|Sex)+(1|Speaker))

• lm2=lmer(WordDuration∼WordLength+LogWordFreq+CiteLength+SemanticRelevance+PhraseRate+
Deletions+(1|Age)+(1|Sex)+(1|Speaker))

• lm3=lmer(WordDuration∼WordLength+LogWordFreq+CiteLength+SemanticRelevance+PhraseRate+
Deletions+(1|Age)+(1|Speaker))

• lm4=lmer(WordDuration∼WordLength+LogWordFreq+CiteLength+SemanticRelevance+PhraseRate+
(1|Age)+(1|Speaker))
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• lm5=lmer(WordDuration∼WordLength+LogWordFreq+CiteLength+SemanticRelevance+PhraseRate+
Deletions+(1|Sex)+(1|Speaker))

Table 3: LMER Model Comparison with AIC Values (n=262342)

Model Degrees of Freedom (df) AIC
lm1 8 -433759.4
lm2 11 -459522.0
lm3 10 -459523.8
lm4 9 -433952.1
lm5 10 -459523.8

First, most of factors listed were significant in these fittings. In other words,
these factors significantly influenced word duration. Despite this, clearly, the
smaller AIC indicates better performance. “lm3” / “lm5””has the smallest AIC,
and this suggests that these factors and the random variable have significant effects
on word duration. Compared with “lm3” and “lm4”, we find that the factor “Dele-
tion” did significantly contribute to AIC in the model. However, when the random
effect “age” or “sex” or both appears, they have no great difference. Through
comparison, we found that the random factor “sex” had no significant effect on
word duration.

Next, we applied Generalized Additive Mixed Models (GAMM) in analyz-
ing these factors in a similar way. GAMMs are an extension of Generalized Linear
Mixed Models (GLMM), incorporating non-linear relationships between the depen-
dent and independent variables through smooth functions (Wood, 2017). GAMMs
allow for both fixed and random effects, accommodating complex variations within
hierarchical data structures. The “additive” part of GAMM means that the model
expresses the dependent variable as a sum of smooth functions of predictors, along
with any random effects and an error term. This flexibility makes GAMMs partic-
ularly useful for modeling non-linear trends in data, where the effect of variables
is not strictly linear and may vary by group or over time.

We still listed a number of GAMM fittings and made comparison by referring
to AIC. The biggest differences between GAMM and LMER is that GAMM could
leverage the function s() and interaction smooth te(). The smooth function bet-
ter gets model fittings for some factors, and the interaction smooth could find the
interaction among some given factors. The independent and dependent variables
were set similarly as the ones in LMER. The AIC results are shown in Table 4.

• t1=bam(WordDuration∼s(WordLength)+s(LogWordFreq)+s(CiteLength)+s(SemanticRelevance)+
s(PhraseRate)+s(Deletions)+s(Age, bs="re")+s(Speaker, bs="re"))

• t2=bam(WordDuration∼s(WordLength)+s(LogWordFreq)+s(CiteLength)+s(SemanticRelevance)+
s(PhraseRate)+s(Deletions)+s(Sex, bs="re")+s(Speaker, bs="re"))
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• t3=bam(WordDuration∼te(WordLength,LogWordFreq)+s(CiteLength)+s(SemanticRelevance)+
s(PhraseRate)+s(Deletions)+s(Speaker, bs="re"))

• t4=bam(WordDuration∼te(WordLength,LogWordFreq)+s(CiteLength)+s(PhraseRate)+s(Deletions)+
s(Sex, bs="re")+s(Speaker, bs="re"))

• t5=bam(WordDuration∼te(WordLength,LogWordFreq)+s(PhraseRate)+s(Deletions)+s(Sex, bs="re")+
s(Speaker, bs="re"))

• t6=bam(WordDuration∼s(WordLenght)+s(LogWordFreq)+s(CiteLength)+s(PhraseRate)+s(Deletions)+s(Sex,
bs="re")+
s(Speaker, bs="re"))

Table 4: GAMM Model Comparison with AIC Values (n=262342)

Model Degrees of Freedom (df) AIC
t1 281.8724 -486185.2
t2 281.7350 -486185.1
t3 282.5285 -486017.5
t4 279.2962 -485994.0
t5 275.9720 -471297.8
t6 278.3133 -486159.7

Similarly, most of these factors are significant in these cases, which is consistent
with the results in LMER. Random effect plays a crucial role in regression analysis
(Baayen et al., 2017). Through the analysis, we found that the random variable
“age” is not significant in “t1”. T2 is the best fitting compared with other ones.
Comparing “t2” and ”t6”, we could find that the factor “semantic relevance” sub-
stantially contributed to the model, namely, the factor “semantic relevance” had
a significant impact on word duration.

To further understand the impacts of these factors, we visualized the partial
effects of various predictors on word duration, as shown in Fig. 5. We found
that word length and “CiteLength” are negatively correlated with word duration,
indicating that as these factors increase, the word duration decreases. It is under-
standable that words with more syllables and letters could be spoken more slowly.
Conversely, fast phrase rates and more deletions lead to shorter word durations.
Word frequency and semantic relevance exhibit complex effects. When word fre-
quency is low (less than 2), it is positively correlated with word duration; however,
when word frequency exceeds 3, its impact turns negative. Similarly, when a word
is less semantically related to the context (score less than 2), it negatively af-
fects word duration. In contrast, high semantic relevance (score greater than 2)
positively influences word durations.
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Figure 5: Partial effects of a given factor on word duration. (Note: The x-axis
signifies the metrics, while the y-axis delineates word duration. Each curve
visually articulates the relation between a predictor variable and the response
variable. A steeper incline on these curves underscores a more robust impact
between the predictor and reading speed, whereas gentler slopes imply a less
pronounced effect. Moreover, when a curve fluctuates around zero, its effect
vanishes. The p-values is smaller than 0.0001 in each plot.)
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3.4 Discussion
In summary, we employed machine learning methods such as random forests and
SVMs to train on the training dataset, allowing them to identify patterns that were
then applied to predict various word durations in the test dataset. In contrast,
statistical methods like LMER or GAMM were used primarily to analyze how
specific factors affect word duration. These statistical methods do not require
training on a testing dataset to determine necessary model parameters, and they
are not typically involved in pattern recognition. Consequently, datasets used for
statistical analysis do not need to be divided into training and test datasets.

Let us correlate our experiments with the key differences outlined in Table 1
to illustrate their specific applications in research on language and cognitive sci-
ences. First, random forest and SVM were primarily employed to predict varying
ranges of word durations in a new dataset. It was observed that both methods
achieved a prediction accuracy of 51%. However, correlation analyses and mixed-
effects regression demonstrated weaker predictive performance for word durations
on new data. Second, machine learning methods often prioritize model accuracy
over the interpretability of the extracted features. While the features used in these
methods are interpretable, real-world machine learning algorithms focus on feature
effectiveness in prediction. In contrast, features (i.e., variables) in statistical anal-
ysis should be interpretable from linguistic or cognitive perspectives. In fact, all
the factors we selected are highly interpretable. Third, machine learning focuses
on how features contribute to the prediction accuracy of word duration. Regres-
sion models, however, aim to determine how certain factors affect word duration
and the strength of these effects, often within the framework of established sta-
tistical theories and constraints. For instance, regression models provide insights
into how various factors influence model performance, thereby helping researchers
understand the significant impact of these factors on the dependent variable (i.e.,
word durations). Fourth, statistical analysis addresses the bias and variance of
estimates. This focus is crucial as researchers are interested in the distribution of
data and their correlations; hence, bias and variance are key considerations.

As mentioned earlier, while machine learning and stastistics are closely related,
the choice between employing a machine learning model or a statistical model of-
ten hinges on the intended use of the analysis. In some cases, a mixture of machine
learning and statistical analysis could be probably used, especially in data-driven
research. For instance, in computing the factor semantic relevance, we intro-
duced word embeddings to represent word meanings. Word embedding is a well-
known machine learning (specifically, deep learning) technique for deriving word
meanings (Mikolov et al., 2013; Kusner et al., 2015; Ethayarajh, 2019), and the
algorithm for semantic relevance also incorporates various machine learning meth-
ods. However, the computation of semantic relevance remains transparent and
interpretable. We employed methods such as Generalized Additive Mixed Models
(GAMM) or Linear Mixed Effects Regression (LMER) to investigate how seman-
tic relevance influences word durations. The ultimate goal is to elucidate that
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semantic relevance is a crucial aspect of human language comprehension; in other
words, contextual information plays a vital role when humans produce language.
In this sense, GAMM analysis provides interpretable results, further confirming
the impact of semantic relevance on the complexity of language production.

In short, machine learning models are preferable for tasks requiring high accu-
racy in predictions. Conversely, when the goal is to ascertain relationships between
variables or to draw inferences from data, statistical models are more suitable, of-
fering the rigor and transparency needed for such analyses. In many instances,
combining machine learning and statistical methods can enhance research out-
comes. Despite this potential synergy, it is common for one approach to dominate
within a specific study.
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