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The local Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) quantum master equation is a pow-
erful tool for the study of open quantum many-body systems. However, its microscopic derivation
applicable to many-body systems is available only in limited cases of weak internal couplings, and it
has yet to be fully understood under what microscopic conditions the local GKSL equation is valid.
We derive the local GKSL equation on the basis of the Lieb-Robinson bound, which provides an
upper bound of the propagation of information in quantum many-body systems. We numerically
test the validity of the derived local GKSL equation for a one-dimensional tight-binding fermion
chain.

I. INTRODUCTION

Most quantum systems are inevitably influenced by
surrounding environments, i.e., they are open quantum
systems [1]. In recent years, open quantum many-body
systems have intensively been studied both theoretically
and experimentally due to advances in experimental tech-
niques [2, 3]. The standard method to describe an open
quantum system is based on the quantum master equa-
tions (QMEs) [4–10], such as the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation [9, 10] and the
Redfield equation [8]. In fact, the QMEs can correctly
reproduce many experimental results about open quan-
tum many-body systems [11–16]. The QMEs have also
been used to analyze transport phenomena in nonequi-
librium steady states of quantum systems in contact with
reservoirs [17–24].

Among the QMEs, the local GKSL equation is widely
applied to open many-body systems [2, 19, 25]. The
GKSL equation is given by (with ℏ = 1)

d

dt
ρ = −i[H, ρ] +

∑
µ

(
LµρL

†
µ − 1

2
{L†

µLµ, ρ}
)
, (1)

where ρ is the density matrix of a system, H is the Hamil-
tonian of the system, and Lµ’s are the Lindblad opera-
tors. Equation (1) is called the local GKSL equation if
each Lindblad operator in Eq. (1) acts only on a spatially
local subsystem. The local GKSL equation reflects the
local nature of the effect of dissipation due to the environ-
ment and consequently guarantees the physically desir-
able properties. For example, the locality of the Lindblad
operators guarantees the existence of the Lieb-Robinson
bound in open quantum many-body systems [26], ther-
malization of bulk-dissipated systems in the weak cou-
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pling regime [27], and local conservation laws in the bulk
of boundary-dissipated many-body systems [28].

However, since the local GKSL equation is usu-
ally given phenomenologically without any microscopic
derivation [19, 29], it is not clear how properties such as
the temperature of the environment should be incorpo-
rated in the Lindblad operators. It is also unclear when
the local GKSL equation is valid. The validity of the
local GKSL equation is debated in terms of thermody-
namics [30, 31], conservation laws [28], dynamics [32] and
phase transitions [33]. Unfortunately, the microscopic
derivations of the local GKSL equations known so far are
limited to the case of quantum many-body systems con-
sisting of multiple sites where the intersite couplings are
weak enough to be treated perturbatively [34–36]. There-
fore, a microscopic derivation of the local GKSL equation
applicable to generic many-body systems is highly de-
sired.

In this paper, we propose a method to derive the local
GKSL equation by using the Lieb-Robinson bound [37,
38], which provides a fundamental limitation on the
speed of information propagation in locally interacting
quantum many-body systems. The GKSL equation is
commonly derived from the Redfield equation by using
the Born-Markov approximation and further approxima-
tions in the weak-coupling regime, where the system-
environment interaction is weak [1]. Here, we use the
Lieb-Robinson bound to impose locality on the Redfield
equation before applying existing approximations to ob-
tain the GKSL equation such as the rotating-wave (secu-
lar) approximation [39–42], time coarse-graining [43–48],
and approximation of the sum of the spectral densities
by the product of the square roots of the spectral densi-
ties [49–51]. On the basis of this microscopic derivation,
we find that the Lindblad operators of the local GKSL
equation should have a support of size ζ0τB , where ζ0
is the propagation velocity of the system and τB is the
relaxation time of the environment (their precise defini-
tions are given later). We also numerically demonstrate
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that the local GKSL equation can correctly describe the
steady states of open many-body systems when the re-
laxation of the environment is sufficiently fast.

Our microscopic derivation clarifies how the locality
of the Lindblad operators is related to the time scales
of the system, the environment, and the interaction be-
tween them. Moreover, our derivation reduces the com-
putational cost of time evolution since the Lindblad op-
erators can be calculated only from diagonalization of
the Hamiltonian of a local subsystem. The use of lo-
cal GKSL equations based on the microscopic derivation
is expected to deepen understanding of nonequilibrium
phenomena in open quantum many-body systems.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Redfield equation and two types of the
GKSL equations, namely, the Davies equation [39] and
the universal Lindblad equation [50]. In Sec. III, we de-
rive the local GKSL equation on the basis of the Lieb-
Robinson bound. In Sec. IV, we numerically evaluate
the error of our estimates about the equilibrium and
nonequilibrium steady states described by the derived
local GKSL equation for a quadratic fermionic system
and show that the error becomes small when the param-
eter regime is consistent with our derivation based on
the Lieb-Robinson bound. In Sec. V, we discuss the nu-
merical cost for the analysis of open quantum many-body
systems on the basis of the derived local GKSL equation.
Finally, we conclude this paper in Sec. VI.

In Appendix A, we give the derivation of the univer-
sal Lindblad equation in the frequency domain. In Ap-
pendix B, we show that the largest eigenvalue of the dissi-
pator of the QME in the quadratic open fermionic system
can be efficiently calculated. In Appendix C, we provide
additional numerical results.

II. QUANTUM MASTER EQUATIONS

In this section, we introduce three QMEs, namely, the
Redfield equation, the Davies equation, and the universal
Lindblad equation (ULE). We summarize in Table I the
conditions under which these and two related QMEs are
valid, including the local GKSL equations in the next
section.

Let us consider a quantum system S, which interacts
with a bath B and is represented by a finite-dimensional
Hilbert space. Since we consider a many-body system,
the dimension of the Hilbert space grows exponentially
with increasing the system size. The Hamiltonian of the
total system is given by Htot = HS⊗IB+IS⊗HB+HSB,
where HS, HB, and HSB are the Hamiltonians of the sys-
tem, the bath, and the system-bath interaction, respec-
tively, and IS(B) is the identity operator on the system
(bath). The interaction Hamiltonian is represented by

HSB =
∑
µ

Aµ ⊗Bµ, (2)

where Aµ’s and Bµ’s are operators that act on the system
and the bath, respectively. The time evolution of the

total system is described by the von-Neumann equation

d

dt
ρtot(t) = −i[Htot, ρtot(t)], (3)

where ρtot(t) is the density matrix of the total system at
time t.

II.1. Redfield equation

We first introduce the Redfield equation, from which
the GKSL equation can be derived. We assume that
the interaction between the system and the bath is
weak and that the state ρB of the bath is the Gibbs
state ρB = e−βHB/Tr[e−βHB ] with inverse temperature
β throughout time evolution. The correlation functions
of operators Bµ of the bath are denoted by Cµν(t) =
tr
(
B†

µ(t)BνρB
)
, where Bµ(t) = eiHBtBµe

−iHBt.
We introduce the time scale τB of the bath and the

time scale τSB of the system-bath interaction. The pre-
cise definitions of the time scales are given below. If the
system-bath interaction is so weak and the relaxation of
the bath is so fast that there is a separation of the two
time scales such that τB ≪ τSB, then the Born-Markov
approximation [1, 8] is justified and the Redfield equation

d

dt
ρ(t) =− i[HS, ρ(t)]

+
∑
µ,ν

∫ ∞

0

ds
[
Cµν(s)(Aν(−s)ρ(t)A†

µ

−A†
µAν(−s)ρ(t)) + H.c.

]
(4)

can be derived from Eq. (3) [8]. Here, ρ(t) = trB[ρtot(t)]
and we assume the condition trB[HSB, ρ(0)⊗ ρB] = 0 for
the initial state ρ(0) of the system. Let En and |En⟩
be an eigenvalue of HS and the corresponding eigenstate.
By decomposing Aµ(t) into the sum of Aµ(ω)’s given by

Aµ(ω) =
∑

En−Em=ω

|Em⟩ ⟨Em|Aµ |En⟩ ⟨En| , (5)

QME Conditions
Redfield [1, 8] τB ≪ τSB
Davies [1, 39] τB ≪ τSB, τS ≪ τSB
ULE [50, 51] τB ≪ τSB
Local Davies τB ≪ τSB, τB ≪ R/ζ0

a , τS,Ω ≪ τSB
b

Local ULE τB ≪ τSB, τB ≪ R/ζ0
a

a Discussed in Sec. III.2. Numerically shown in Sec. IV.
b Discussed in Sec. III.3. Numerically shown in Sec. IV.4.

TABLE I. Conditions required for various QMEs to be valid,
where τB, τSB, τS, and τS,Ω are the relaxation time of the
bath, the time scale of the system-bath interaction, the time
scale of the system, and the time scale of the local subsystem
Ω, respectively, R is the radius of Ω, and ζ0 is the propagation
velocity of the system. The detailed definitions are given in
the text.
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we can rewrite the Redfield equation (4) as

d

dt
ρ(t) = −i[HS +HLS, ρ(t)]

+
∑
µ,ν

∑
ω,ω′

[
γµν(ω) + γµν(ω

′)

2
+ i(ηµν(ω)− ηµν(ω

′))

]

×
(
Aν(ω)ρ(t)Aµ

†(ω′)− 1

2
{Aµ

†(ω′)Aν(ω), ρ(t)}
)
,

(6)

where the Lamb-shift Hamiltonian HLS is defined as

HLS =
∑
µ,ν

∑
ω,ω′

(
ηµν(ω) + ηµν(ω

′)

2

+i
γµν(ω)− γµν(ω

′)

4

)
Aµ

†(ω′)Aν(ω).

(7)

Here, the spectral density function γµν(ω) and the prin-
cipal density function ηµν(ω) are the Hermitian matrices
satisfying

Γµν(ω) :=

∫ ∞

0

dseiωsCµν(s) =
1

2
γµν(ω) + iηµν(ω). (8)

The spectral density function γµν(ω) is given by

γµν(ω) =

∫ ∞

−∞
dseiωsCµν(s). (9)

The time scale τB of the bath is defined by the relax-
ation time of the correlation functions as

τB = max
µ,ν

∫∞
0

t|Cµν(t)|dt∫∞
0

|Cµν(t)|dt
, (10)

where |Cµν | is the absolute value of Cµν . The time scale
τSB of the system-bath interaction is defined as the in-
verse rate of the time evolution due to the system-bath
interaction. Let D[ρ(t)] denote the second term in Eq. (4)
as

D[ρ(t)] =
∑
µ,ν

∫ ∞

0

ds
[
Cµν(s)(Aν(−s)ρ(t)A†

µ

−A†
µAν(−s)ρ(t)) + H.c.

]
,

(11)

which represents the time evolution caused by the
system-bath interaction. The rate of the evolution caused
by D[ρ(t)] is bounded from above by the operator norm
of D:

∥D[ρ(t)]∥1 ≤ ∥D∥∥ρ(t)∥1 ≤ ∥D∥ =: τ−1
SB , (12)

where ∥ · ∥ is the operator norm induced by the trace
norm ∥ · ∥1. We note that τSB

−1 only gives an upper
bound on the rate of time evolution caused by the system-
bath interaction, but does not necessarily characterize
the rate of time evolution itself. Therefore, τB ≪ τSB is
a sufficient condition for deriving the Redfield equation,
but not a necessary condition.

Equation (6) is not in the GKSL form and does not
possess the complete positivity because the Hermitian
matrix γνω,µω′ := (γµν(ω) + γµν(ω

′))/2 + i(ηµν(ω) −
ηµν(ω

′)) is not necessarily positive semidefinite. To
recover the complete positivity, we need further ap-
proximations to the Redfield equation to derive the
GKSL equations. Such derivations have been studied
in Refs. [34, 35, 39–53]. In the following, we introduce
two types of the microscopically derived GKSL equations
that we use in this paper.

II.2. Davies equation

The Davies equation [39] is the well-known GKSL
equation derived by applying the rotating-wave approx-
imation to the Redfield equation. To derive the Davies
equation, we assume that the gaps between energy-level
spacings are so large that the time scale τS of the sys-
tem defined by a typical value of |ω − ω′|−1 in Eq. (6) is
much smaller than τSB. A typical value is, for example,
defined as the maximum value of |ω − ω′|−1 or the max-
imum value of |ω − ω′|−1 over ω and ω′ satisfying that
γµν(ω) or γµν(ω

′) is sufficiently large. Here, we do not
fix the definition of τS and only assume τS ≪ τSB. Then,
we can neglect the rapidly oscillating terms in Eq. (6)
where ω ̸= ω′ and obtain the Davies equation

d

dt
ρ(t) = −i[HS +HLS, ρ(t)] +

∑
ω

∑
µ,ν

γµν(ω)

×
(
Aν(ω)ρ(t)A

†
µ(ω)−

1

2
{A†

µ(ω)Aν(ω), ρ(t)}
)
,

(13)

where HLS is the Lamb-shift Hamiltonian given by

HLS :=
∑
ω

∑
µ,ν

ηµν(ω)A
†
µ(ω)Aν(ω). (14)

Since the Lindblad operators of the Davies equation
cause quantum jumps between energy eigenstates, the
Davies equation (13) leads to a global change of the state
and therefore does not have desired locality in many-
body systems. Moreover, the rotating-wave approxima-
tion often fails for many-body systems [34, 54] because
the energy levels of many-body systems become expo-
nentially small with increasing the system size (i.e. the
condition τS ≪ τSB is violated).

II.3. Universal Lindblad equation

The universal Lindblad equation (ULE) [50] can be
derived under the same assumptions as those made to
derive the Redfield equation and it can describe nonequi-
librium steady states and dynamics with a small error of
O(τB/τSB) [50, 55]. See Refs. [50, 51] for the detailed
derivations. We also give a derivation of the ULE in Ap-
pendix A for the sake of self-containedness of this paper.
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Let us define the Lindblad operators Lλ and the Lamb-
shift Hamiltonian HLS as

Lλ :=
∑
µ

∑
ω

γ
1/2
λµ (ω)Aµ(ω), (15)

HLS :=
∑
µ,ν

∑
ω,ω′

[
ηµν

(
ω + ω′

2

)

+ i
γµν(ω)− γµν(ω

′)

4

]
A†

µ(ω)Aν(ω
′),

(16)

where γ
1/2
µν (ω) is defined to satisfy γµν(ω) =∑

λ γ
1/2
µλ (ω)γ

1/2
λν (ω). Then, we can write the ULE in the

following form:

d

dt
ρ =− i[HS +HLS, ρ]

+

k∑
λ=1

(
LλρL

†
λ − 1

2
{L†

λLλ, ρ}
)
.

(17)

The existence of γ
1/2
µν (ω) is ensured by the positive

semidefiniteness of the matrix γµν(ω) at any fixed ω.
The Lindblad operators (15) of the ULE can also be

written as

Lλ =
∑
µ

∫ ∞

−∞
dsgλµ(−s)Aµ(s), (18)

where gλν(s) is defined as the Fourier transformation of

γ
1/2
λν (ω):

gλµ(s) :=
1

2π

∫ ∞

−∞
γ
1/2
λµ (ω)eiωsdω. (19)

III. LOCAL GKSL EQUATION BASED ON THE
LIEB-ROBINSON BOUND

In this section, we use the Lieb-Robinson bound to de-
rive the local GKSL equations, which are useful for the
analysis of open many-body systems. We first introduce
the Lieb-Robinson bound in Sec. III.1, and use it to im-
pose the locality on the Redfield equation in Sec. III.2.
We use this local Redfield equation to derive the local
GKSL equations, which include the local Davies equation
in Sec. III.3 and the local universal Lindblad equation in
Sec. III.4.

III.1. Lieb-Robinson bound

In the following, we consider a many-body system on
a lattice with Hamiltonian HS =

∑
X⊆Λ hX , where Λ

denotes the set of sites and hX is an operator that acts
nontrivially only on a local region X ⊂ Λ. A distance
dist(p, q) between lattice sites p and q is defined by the
number of sites in the shortest pass from site p to site q.

We also define the distance between sets X and Y of sites
by dist(X,Y ) := minp∈X,q∈Y dist(p, q). We assume the
Hamiltonian HS to be strictly local, that is, hX = 0 holds
for X whose radius exceeds a certain constant value.
We follow Ref. [38] to introduce the Lieb-Robinson

bound in the form of Lemma 1.

Lem. 1 Let H =
∑

Y hY be a local Hamiltonian, and
OX be any operator acting on the sites belonging to a
region X. Suppose that we take a set of sites Ω ⊆ Λ
which satisfies l = dist(X,Λ \ Ω). Then,∥∥∥(UH

t )†OXUH
t − (UHΩ

t )†OXUHΩ
t

∥∥∥ ≤ |X|∥OX∥ (2ζ0|t|)
l

l!
,

(20)
where HΩ :=

∑
Y⊆Ω hY is a Hamiltonian of the subsys-

tem Ω, UH
t = exp(−itH) is a unitary time evolution op-

erator, and ζ0 := maxp∈Λ

∑
Z∋p |Z|∥hZ∥ = O

(
L0

)
is the

propagation velocity of the system which does not depend
on the system size L. The norm ∥·∥ is the operator norm
and |X| denotes the number of sites in X.

This lemma states that in many-body systems the time
evolution of a local operator OX acting on a local region
X during time T can be approximated by an operator
acting on a set of sites within a distance of ζ0T from X.

III.2. Localizing the dissipators in the Redfield
equation

Using the Lieb-Robinson bound, we can approximate
the Redfield equation (5) so that its locality is appar-
ent. Focusing on the integrand on the right-hand side
in Eq. (4), we find that the correlation function Cµν(s)
decays with the relaxation time τB of Cµν(s). Thus, the
range of the integral can be well approximated by [0, T ],
where T ∼ τB. Therefore, it is legitimate to replace the
upper bound of the integral with T . We assume that
Aµ acts on a local region Xµ and that the correlation
function Cµν(s) decays sufficiently fast as the distance
between the two regions, dist(Xµ, Xν), increases.
Here, we can use the Lieb-Robinson bound in Lem. 1

and approximate Aµ(s) in Eq. (4) by

Aloc
µ (s) := exp

(
isHΩµ

)
Aµ exp

(
−isHΩµ

)
, (21)

where Ωµ is the subsystem which is chosen to satisfy
dist(Xµ,Λ \ Ωµ) ≳ ζ0τB (see Fig. 1). For example, if
Xµ consists of a single site, Ωµ is constituted from sites
whose distance from the single site is less than R ≳ ζ0τB.
Then, we obtain the local Redfield equation:

d

dt
ρ(t) = −i[HS, ρ(t)] +

∑
µ,ν

∫ ∞

0

ds [Cµν(s)

×(Aloc
ν (−s)ρ(t)Aµ −AµA

loc
ν (−s)ρ(t)) + H.c.

]
,

(22)

where all the operators Aloc
ν and Aµ in the dissipator

act on local subsystems. When all Aµ’s act on the same
region X, the second term in Eq. (22) is local, acting
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Environment

Xμ

Ωμ

R ≳ ζ0 × τB

FIG. 1. Subsystem Ωµ on which a local operator Aloc
µ acts in

the dissipator. Circles represent the sites of the system. The
inner shaded region represents Xµ, the set of sites on which
Aµ acts. The outer shaded region represents the subsystem
Ωµ on which the system-bath coupling Aµ⊗Bµ exerts during
the relaxation time τB of the bath. This subsystem is chosen
to be composed of the sites within the distance shorter than
R ≳ ζ0 × τB from every site connected to the corresponding
bath.

only on Ω which satisfies dist(X,Λ \ Ω) ≳ ζ0τB. When
Aµ acts on a spatially distant region Xµ, the second term
in Eq. (22) is also local, if the correlation function Cµν(s)
of the bath decays sufficiently fast as the spatial distance

dist(Xµ, Xν) increases.

III.3. Local Davies equation

By making the rotating-wave approximation in
Eq. (22), the local Davies equation can be derived. The
local Davies equation has been used in the literature of
quantum thermodynamics [30, 32, 56] because it can de-
scribe the relaxation to the Gibbs state at the tempera-
ture of a bath.
An operator Aµ can be decomposed into the sum of its

frequency components Aloc
µ (ω) over ω,

Aµ =
∑
ω

Aloc
µ (ω), (23)

where Aloc
µ (ω) is defined as

Aloc
µ (ω) :=

∑
Eloc

n −Eloc
m =ω

∣∣Eloc
m

〉 〈
Eloc

m

∣∣Aµ

∣∣Eloc
n

〉 〈
Eloc

n

∣∣ ,
(24)

with Eloc
n and |Eloc

n ⟩ being an eigenvalue and the corre-
sponding eigenstate of HΩµ

. We note that the sum on
the right-hand side runs over all pairs of energy levels in
HΩµ

whose spacing is equal to ω.
By substituting Eq. (23) into Eq. (22), we obtain

d

dt
ρ(t) = −i[HS, ρ(t)] +

∑
µ,ν

∑
ω,ω′

[(
1

2
γµν(ω) + iηµν(ω)

)
(Aloc

ν (ω)ρ(t)Aloc
µ

†
(ω′)− ρ(t)Aloc

µ

†
(ω′)Aloc

ν (ω)) + H.c.

]
. (25)

We define the time scale τS,Ωµ
of the subsystem by a

typical value of |ω−ω′|−1, where ω and ω′ are the energy-
level spacings of HΩµ

. By assuming that the time scale
τS,Ωµ

is sufficiently shorter than the time scale τSB of the
system-bath interaction (see Eq. (12) for its definition),
we can ignore the terms with ω ̸= ω′ in Eq. (25), and
obtain the local Davies equation as

d

dt
ρ(t) =− i[HS +HLS, ρ(t)]

+
∑
µ,ν

∑
ω

γµν(ω)
(
Aloc

ν (ω)ρ(t)Aloc
µ

†
(ω)

−1

2

{
Aloc

µ

†
(ω)Aloc

ν (ω), ρ(t)
})

,

(26)

where the Lamb-shift Hamiltonian HLS is defined as

HLS :=
∑
µ,ν

∑
ω

ηµν(ω)A
loc
µ

†
(ω)Aloc

ν (ω). (27)

The Lindblad operators Aloc
µ (ω) in Eq. (26) induce the

transitions between energy eigenstates of the Hamilto-
nian HΩµ of the local subsystem and satisfy the detailed
balance condition for HΩµ , provided that the bath is at
thermal equilibrium.

In order for the rotating-wave approximation for the
Hamiltonian of the local subsystem HΩµ

to be valid, the
energy-level spacings of HΩµ

must be sufficiently large so
that the time scale τS,Ωµ

of the subsystem defined by a

typical value of |ω − ω′|−1 must be much smaller than
the time scale τSB of the system-bath interaction, where
ω and ω′ are the energy-level spacings of HΩµ

. Since
the energy-level spacings become smaller as the size of
the subsystem becomes larger, we cannot take the sub-
system Ωµ too large. In contrast, the replacement of
Aµ(t) by Aloc

µ (t) becomes a better approximation as we
take a larger subsystem. Therefore, we expect a trade-off
relationship between the error arising from localization
of the Redfield equation and the error arising from the
rotating-wave approximation. We numerically show in
Sec. IV that such a trade-off relationship indeed exists.

III.4. Local universal Lindblad equation

In a manner similar to the derivation of the ULE in
Sec. II.3, starting from Eq. (22), we can obtain the local
ULE where Aµ(ω)’s in Eq. (15) are replaced by Aloc

µ (ω).
The Lindblad operators and the Lamb-shift Hamiltonian
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of the local ULE can be represented in terms of Aloc
µ (ω)

as

Lλ =
∑
µ

∑
ω

γ
1/2
λµ (ω)Aloc

µ (ω), (28)

HLS =
∑
µ,ν

∑
ω,ω′

[
ηµν

(
ω + ω′

2

)

+i
γµν(ω)− γµν(ω

′)

4

]
Aloc

µ

†
(ω)Aloc

ν (ω′).

(29)

These Lindblad operators and the Lamb-shift Hamilto-
nian can be obtained from the diagonalization of HΩµ

,
while it is necessary to diagonalize the full Hamiltonian
HS to calculate the Lindblad operators (15) and the
Lamb-shift Hamiltonian (16) of the original ULE. The
local ULE derived here is yet another efficient approach
to avoiding the diagonalization of the full Hamiltonian in
numerical calculations.

The Lindblad operator can also be written as

Lλ =
∑
µ

∫ ∞

−∞
dsgλµ(−s)Aloc

µ (s). (30)

The relaxation time of gµµ(t) is also of the order of τB.
Because we have chosen the subsystem Ωµ for Aµ so that
dist(Xµ,Λ \Ωµ) ≳ ζ0τB, where Xµ is the support of Aµ,
Aµ(s) in Eq. (18) can be replaced by Aloc

µ (s) by using
the Lieb-Robinson bound. We find that Eq. (30) reduces
to Eq. (18) in the limit of τB → 0. Since the error of
the ULE relative to the Redfield equation is O(τB/τSB),
the error of the local ULE from the Redfield equation
vanishes in the limit of τB → 0.

IV. NUMERICAL TEST OF THE LOCAL GKSL
EQUATIONS

In this section, we numerically test the validity of
the local Davies equation and the local ULE derived in
Sec. III. Here, we show that the distance between the
generator of the local GKSL equation and that of the
Redfield equation becomes small if τB ≪ R/ζ0, which is
consistent with the condition shown in Table I. This re-
sult guarantees that the dynamics in a sufficiently short
time is described by the local GKSL equation with a
small error. However, it does not guarantee the correct-
ness of the steady state because the small error of the
generator can accumulate to grow exponentially in a suf-
ficiently long time compared with τSB. Even if the gen-
erators of time evolution change only slightly, the steady
state can change significantly. Therefore, we investigate
the errors in steady states obtained from the local GKSL
equations and confirm that the steady states can also be
accurately described by the local GKSL equations.

IV.1. Model

We consider spinless fermions on a one-dimensional lat-
tice with L sites. The Hamiltonian of the system is given

by

HS = ω0

L∑
j=1

a†jaj − J

L−1∑
j=1

(a†jaj+1 + a†j+1aj) (31)

=:

L∑
i,j=1

hija
†
iaj , (32)

where ω0 is an on-site energy and J > 0 is the hopping

amplitude. Here, aj and a†j represent the annihilation
and creation operators at site j, and they satisfy the an-

ticommutation relations {ai, a†j} = δi,j . The propagation

velocity of the system is given by ζ0 = 4J (see Lem. 1 in
Sec. III.1 for the definition of the propagation velocity).

We couple N sites from each edge of the one-
dimensional lattice to identical baths constituted of free
fermions (see Fig. 2). The state ρB,j of the bath con-
nected to site j is assumed to be the Gibbs state at in-
verse temperature βj and the average number of fermions
therein with wave number k is given by the Fermi-Dirac
distribution fβ(ω(k)) = 1/(1 + eβjω(k)), where ω(k) is
the dispersion relation of fermions in the bath measured
from the chemical potential. Here, the chemical poten-
tials at the baths are set to be equal. The temperature βj

is set to be βj = βl (βr) if site j is close to the left (right)
edge. In this section, we consider the two settings: an
equilibrium setting where βl = βr, and a nonequilibrium
setting where there is a temperature difference, βl ̸= βr

(see Fig. 2). The Hamiltonian HB,j of the bath at each
site and the system-bath interaction Hamiltonian HSB,j

at each site are given as

HB,j =
∑
k

ω(k)c
(j)†
k c

(j)
k , (33)

HSB,j =
Jint√
V

∑
k

(a†jc
(j)
k + c

(j)†
k aj), (34)

where V is the volume of the baths, and c
(j)
k and c

(j)†
k

are the annihilation and creation operators of a fermion
of the bath with wave number k, respectively. The total
Hamiltonian is written as

Htot = HS+

N∑
j=1

(HSB,j+HB,j)+

L∑
j=L−N+1

(HSB,j+HB,j).

(35)
To introduce the time scale τB of the bath in this

model, we assume that the density of states D(ω) of the
baths in the limit V → ∞ is well-approximated by the
Cauchy-Lorentz distribution as

D(ω) :=
1

V

∑
k

δ(ω − ω(k)) →
2τ−1

B

τB−2 + (ω − ω0)2
. (36)

Here, we assume that the density of states peaks at ω0

for simplicity. The interaction Hamiltonian at site j can
be rewritten as HSB,j = A1,j ⊗B1,j +A2,j ⊗B2,j , where

A1,j := aj , A2,j := a†j ,

B1,j :=
Jint√
V

∑
k

c
(j)†
k , B2,j :=

Jint√
V

∑
k

c
(j)
k .

(37)
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 sites from each edge are coupled to baths 
with equal temperature
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FIG. 2. Schematic illustration of the model for numerical
demonstration of the validity of the local GKSL equations.
A spinless fermion chain is connected to baths so that an
equilibrium (top, βl = βr) or a nonequilibrium (bottom, βl ̸=
βr) steady state is achieved. The round square under each
site represents a bath connected to it.

Since the state of each bath is assumed to be given

by the Gibbs state, the correlation functions C
(j)
µν (t) =

tr
[
B†

µ,j(t)Bν,jρB,j

]
in the limit of V → ∞ are written as

C
(j)
11 (t) = J2

int

∫ ∞

−∞
dωe−iωt(1− fβj

(ω))D(ω),

C
(j)
22 (t) = J2

int

∫ ∞

−∞
dωe−iωtfβj (ω)D(ω),

C
(j)
12 (t) = C

(j)
21 (t) = 0,

(38)

and the spectral density functions are given as

γ
(j)
11 (ω) = J2

int(1− fβj
(ω))D(ω),

γ
(j)
22 (ω) = J2

intfβj (ω)D(ω),

γ
(j)
12 (ω) = γ

(j)
21 (ω) = 0.

(39)

In the infinite-temperature limit βj = 0, the correlation
functions are given by

C
(j)
11 (t) = C

(j)
22 (t) = J2

inte
−t/τB . (40)

Thus, at high temperature, τB characterizes the time
scale of decay of the correlation functions of the bath.

Here we derive the local GKSL equation for this model
by using the method in Sec. III. To obtain the local Lind-
blad operators that describe the dissipation due to the

bath at site j, we make the subsystem Ω
(j)
R composed of

sites whose distance from site j is shorter than R (see

Fig. 1). We call this R the radius of the subsystem Ω
(j)
R .

The Hamiltonian Hloc,j of the subsystem is then given
by

Hloc,j = ω0

∑
i∈Ω

(j)
R

a†iai

− J
∑

{i,i+1}⊂Ω
(j)
R

(a†iai+1 + a†i+1ai)

= :
∑

i,l∈Ω
(j)
R

h
(loc,j)
il a†ial.

(41)

The matrix h
(loc,j)
il can be diagonalized by an orthogonal

matrix O as∑
i,l

Omih
(loc,j)
il Onl = ω(loc,j)

m δnm, (42)

and the subsystem Hamiltonian can be written as

Hloc,j =

|Ω(j)
R |∑

m=1

ω(loc,j)
m d†mdm, (43)

where dm =
∑

i∈Ω
(j)
R

O∗
miai is the annihilation opera-

tor of the energy eigenmode of the subsystem Hamilto-
nian. Therefore, A1,j and A2,j can be decomposed as
(see Eq. (23))

A1,j =

|Ω(j)
R |∑

m=1

A
(loc)
1,j (ω(loc,j)

m ) =

|Ω(j)
R |∑

m=1

Omjdm, (44)

A2,j =

|Ω(j)
R |∑

m=1

A
(loc)
1,j (−ω(loc,j)

m ) =

|Ω(j)
R |∑

m=1

O∗
mjd

†
m. (45)

We can use Eqs. (44) and (45) to derive the local GKSL
equation in a manner similar to the derivation in the
previous section.
The obtained local GKSL equations and the Redfield

equation can be written in the form of

dρ

dt
= −i[HS, ρ] +

∑
m,n

(Mmn[wmρ, wn] + H.c.)

=: −i[HS, ρ] +D[ρ],

(46)

where M = (Mmn) is a Hermitian matrix and

w2j−1 := aj + a†j , w2j := i(aj − a†j). (47)

Here, we neglect the small Lamb-shift Hamiltonian for
the sake of simplicity. For such QMEs, the steady-state
expectation value of an observable which is written in
the quadratic form of the annihilation and creation op-
erators can be efficiently calculated [57–60]. In addition,
the modulus of the largest eigenvalue λmax of D is also
efficiently calculated from the matrix M in Eq. (46) as
|λmax| = 2| trM | as long as the dissipator has a single
zero eigenvalue and the real part of all the other eigen-
values of the dissipator are negative (see Appendix B for
a proof). This condition is satisfied in all the following
numerical calculations.
The norm of the dissipator D(Redfield) in the Redfield

equation cannot be computed efficiently. Therefore, al-
though the norm ∥D(Redfield)∥ and the modulus |λmax| of
the largest eigenvalue do not generally coincide, here we
expect the norm and the maximum eigenvalue to take
similar values and characterize the time scale τSB by
|λmax| as

τ−1
SB := ∥D(Redfield)∥ ≃ |λmax| = 2| trM (Redfield)|. (48)
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This time scale τSB can be adjusted by changing the cou-
pling Jint between the system and the bath. In the follow-
ing, we discuss the validity of the local GKSL equations
by changing the ratios of the three time scales, τB, τSB,
and Rζ−1

0 = R/4J . In the numerical calculation, the
unit of time is set to be the inverse hopping rate J−1.

IV.2. Error in the generator of the local GKSL
equation

To confirm the validity of the local GKSL equations
derived in Sec. III, we numerically calculate the distance
between the generator of the time evolution of the Red-
field equation and that of the derived local GKSL equa-
tion. We fix τSB and show that the distance becomes
small under the condition τB < R/ζ0 by decreasing the
value of τB(≪ τSB). We define the distance between the
generators of the two QMEs in terms of the ratio of the
Hilbert-Schmidt norm of the difference of the matrix M
in Eq. (46) to that of M of the Redfield equation as√

tr
[
|M (locGKSL) −M (Redfield)|2

]√
tr
[
|M (Redfield)|2

] , (49)

where |M |2 = M†M . This distance represents the error
in the generator of the local GKSL equation.

The distance (49) depends on the radius R of the sub-
system chosen in the derivation of the local GKSL equa-
tion. For local GKSL equations with a different choice
of the radius of the subsystem, the distances are plotted
in Fig. 3 against the relaxation time τB of the baths. As
local GKSL equations, we consider the local Davies equa-
tion (see Sec. III.3) and the local ULE (see Sec. III.4).

The distance becomes small for both the local Davies
equation and the local ULE when the relaxation time τB
is so short that the radius R is larger than ζ0τB, where
ζ0 = 4J is the propagation velocity of the system. This
result is consistent with the condition used in the deriva-
tion of the local GKSL equation in Sec. III, where the
radius R of the subsystem should be chosen to be larger
than ζ0τB according to the Lieb-Robinson bound. By
comparing the two local GKSL equations, we find that
the error is smaller for the local ULE when τB is short,
which indicates that the local ULE is a better approxima-
tion in terms of accuracy. For the local Davies equation,
the distance is nonzero in the limit of τB → 0 (Fig. 3-
(a,b)) while it vanishes for the local ULE (Fig. 3-(c,d))
as mentioned in Sec. III.4. This is because the error due
to the rotating-wave approximation, which is determined
by the time scales τS,Ω and τSB, remains nonzero in the
limit of τB → 0. In addition, the distance for the local
Davies equation does not decrease monotonically with in-
creasing the radius, even though the distance for the local
ULE decreases as the radius increases. The origin of this
behavior will be discussed in more detail in Sec. IV.4.

As shown in Appendix C, the behavior of the distance
is quantitatively different depending on whether the ra-

(a)

(c)

(b)

(d)

Lo
ca
l D
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ie
s

Lo
ca
l U
LE

FIG. 3. Distance between the generator of each local GKSL
equation and that of the Redfield equation plotted against the
relaxation time τB of the baths. Here R represents the radius
of the local subsystem upon which the Lindblad operators
act. The parameters used are L = 128, N = 16, τSB = 100,
J = 1, ω0 = 0, βl = 0.5 and βr = 0.1. (a) Distance for
the local Davies equation in the nonequilibrium setting. The
distance varies nonmonotonically with increasing the radius.
(b) The same quantity as in (a) with only the horizontal axis
rescaled. The distance for the local Davies equation decreases
significantly below τB = R/4J . (c) Distance for the ULE
in the nonequilibrium setting. The distance decreases with
increasing the radius. (d) The same quantity as in (c) with
only the horizontal axis rescaled. The distance for the local
ULE decreases significantly below τB = R/4J .

dius R is even or odd. We emphasize that the differ-
ence is noticeable for large τB, where the localization of
the Redfield equation is not justified in the first place.
Therefore, the difference does not affect the validity of
the local GKSL equation. In this section, we focus on
only even R.

IV.3. Error in the steady state of the local GKSL
equation

We numerically calculate the error in the steady state
described by the local GKSL equation from the steady
state described by the Redfield equation. We again fix
τSB and show that the error in the steady state also be-
comes small as long as the condition τB < R/ζ0 is sat-
isfied. The accuracy of the GKSL equation cannot be
evaluated by the errors of the generators alone. This is
because even if the error in the generator is small, the er-
ror can accumulate over time and the error in the steady
state can become large. Nevertheless, we argue that the
time coarse-grained dynamics or steady state can accu-
rately be described by the GKSL equation if the error
in the generator is small. To demonstrate this, we eval-
uate the error in the steady states of the local GKSL
equations.
For the steady state of each QME, we follow Refs. [57–

60] to compute the 2L× 2L-matrix W = (Wmn) defined
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by

Wmn = tr(wmwnρsteady), (50)

where ρsteady is the density matrix of the steady state.
The error in the steady state of the local GKSL equa-
tion is evaluated by the normalized maximal difference
between the W matrix of the steady state of the local
GKSL equation and that of the Redfield equation:

∆ =
maxmn |W locGKSL

mn −WRedfield
mn |

maxm ̸=n |WRedfield
mn |

, (51)

where we normalize the error by the maximum off-
diagonal element of the W matrix of the Redfield equa-
tion. We note that the diagonal elements ofW are always
unity and do not reflect the state of the system.

The errors for each local GKSL equation are evalu-
ated for both an equilibrium steady state and a nonequi-
librium steady state. The results for the local Davies
equation and the local ULE are shown in Figs. 4 and 5,
respectively. The errors in the steady states for both of
the local GKSL equations become small when τB < R/4J
in a similar way as the distance between the generators.
This is consistent with the condition for applying the
approximation to the Redfield equation using the Lieb-
Robinson bound described in Sec. III.

For the local Davies equation (Fig. 4), the error in
the steady states are reduced to about 10% for R ≥ 4
and τB ≪ R/ζ0, even though the generators produce
errors larger than 40% (see Fig. 3 (b)). In the equi-
librium case, the Gibbs state is the exact steady state
of the Davies equation and the steady state described
by the local Davies equation approaches the Gibbs state
as R increases despite the large error in the generators.
The error in the nonequilibrium steady state of the local
Davies equation is also as small as that in the equilibrium
steady state even though the nonequilibrium steady state
of the Davies equation and that of the Redfield equation
do not coincide. The error is nonzero in the limit of
τB → 0 since the generator of the local Davies equation
has nonzero error as mentioned in Sec. IV.2.

For the local ULE (Fig. 5), the error is smaller than
that of the local Davies equation in both equilibrium and
nonequilibrium cases. In contrast to the local Davies
equation, the error in the steady state tends to be larger
in the nonequilibrium case than the equilibrium case
(Fig. 5 (c)). For R = 2 and 4, the steady state of the
local ULE has nonzero errors even in the limit of τB → 0,
whereas the steady states for the local ULEs of R ≥ 8
and the ULE have negligible errors in the same limit.
This result can be attributed to the fact that small er-
rors in the generators of the dynamics may accumulate in
the long time and result in a nonzero error of the steady
state. In fact, we have numerically confirmed that the
distance of the generator vanishes in the limit of τB → 0.
There may be such errors even for R > 4 although they
are too small to be seen and buried in numerical errors.
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FIG. 4. Error of the steady state described by the local Davies
equation where Lindblad operators act on local subsystems
with radius R. The parameters are set to be L = 128, N = 16,
τSB = 100, J = 1 and ω0 = 0. (a) Case of an equilibrium
steady state, where the inverse temperatures of the baths are
set to be equal: βl = βr = 0.1. It can be seen that the er-
ror between the Redfield equation and the Davies equation
(R = 128) vanishes because both lead to the same steady
state (the Gibbs state). (b) The same quantity as in (a) with
only the horizontal axis rescaled. We see that the error sig-
nificantly decreases around the region 4JτB/R < 1 where the
radius R of the subsystem is larger than ζ0τB (ζ0 = 4J is the
propagation velocity) except for the case of R = 2. (c) Case
of a nonequilibrium steady state, where the inverse temper-
atures of the baths at the ends are βl = 0.5 for the left and
βr = 0.1 for the right. The behavior of the steady-state error
is qualitatively the same for the equilibrium and nonequi-
librium cases except that the error for the Davies equation
(R = 128) is nonzero since the steady state is no longer the
Gibbs state. (d) The same quantity as in (c) with only the
horizontal axis rescaled. As in (b), we also see that the error
significantly decreases around the region 4JτB/R < 1 where
the radius R of the subsystem is larger than ζ0τB except for
the case of R = 2.

IV.4. Trade-off between two errors in the steady
state of the local Davies equation

We numerically show a trade-off relationship between
two errors caused by the rotating-wave approximation
and the localization using the Lieb-Robinson bound. We
fix τSB and τB and change the radius R of the subsystem
to investigate how the errors in the generator and the
steady state change as the time scale τS,Ω of the subsys-
tem is changed. As shown in Fig. 6, both the error in
the generator and the error in the steady state decrease
with increasing R because the error due to localization
becomes smaller. However, the errors begin to increase
at certain values of R because the error caused by the
rotating-wave approximation becomes larger. The er-
ror in the generator and that in the steady state behave
differently. While the error in the generator increases
rapidly after R = 16, the error in the steady state first
decrease and then gradually increases from R = 32. This
result shows that when one uses the local Davies equa-
tion, the size of the subsystem should be taken appropri-
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FIG. 5. Error of the steady state described by the local ULE
where Lindblad operators act on local subsystems with the
radius R. The parameters are set to be L = 128, N = 16,
τSB = 100, J = 1 and ω0 = 0. (a) Case of an equilibrium
steady state, where the inverse temperatures of the baths are
set to be equal as βl = βr = 0.1. There is a nonzero error in
the steady state of the R = 2 local ULE even in the limit of
τB → 0, where the local ULE reduces to the ULE. (b) The
same quantity as in (a) with only the horizontal axis rescaled.
We see that the error becomes small in the region 4JτB/R <
1. (c) Case of a nonequilibrium steady state, where the inverse
temperatures of the baths are βl = 0.5 and βr = 0.1. Errors
are larger than those in the equilibrium case. (d) The same
quantity as in (c) with only the horizontal axis rescaled. We
see that the local ULE can describe the steady state with a
sufficiently small error in the region 4JτB/R < 1.

(a) (b)

FIG. 6. Errors in the generator (a) and the steady state (b)
of the local Davies equation plotted against the radius R of
the local subsystem. The parameters are set to be L = 128,
N = 16, τSB = 10, τB = 1, βl = 0, 5, βr = 0.1, J = 1 and
ω0 = 0. As R increase, both errors initially decrease and then
begin to increase at certain values of R. For (b), this can be
clearly seen in the inset.

ately depending on whether one focuses on the dynamics
or the steady state.

V. DISCUSSION

We discuss the advantages of the local GKSL equa-
tions from the viewpoint of the numerical analysis of
open quantum many-body systems compared with the
existing GKSL equations. To numerically simulate the
dynamics of an open quantum many-body system, for

practical purposes, it is desirable that the QME satisfies
the following three conditions: (i) The QME preserves
the positive semidefiniteness of the density matrix, i.e.,
it takes a GKSL form as Eq. (1). As a consequence,
the QME can be efficiently solved by the Monte Carlo
method [1, 2]. (ii) The number of Lindblad operators of
the QME is small enough to be numerically tractable,
since we have to calculate the probabilities of quantum
jumps caused by the Lindblad operators at each iteration
of the Monte Carlo method [2]. For example, in cases
where the number of Lindblad operators grows exponen-
tially with respect to the system size, it is necessary to
compute the probabilities associated with an exponential
number of quantum jumps at each iteration of the Monte
Carlo method. This exponential growth requires a large
numerical cost for a large system size. (iii) The numer-
ical cost for the computation of the Lindblad operators
in Eqs. (13) and (15) is not so high. For example, it is
practically impossible to compute Lindblad operators of
the Davies equation and the ULE in cases where the di-
agonalization of the Hamiltonian is not feasible, such as
in many-body systems [50].

We first discuss whether or not each of these three
conditions holds in the existing microscopically derived
GKSL equations introduced in Sec. II. All GKSL equa-
tions satisfy condition (i). However, the Davies equation
does not satisfy conditions (ii) and (iii). The Lindblad
operators in Eq. (13) represent the transitions between
energy levels. Therefore, there are as many Lindblad op-
erators as possible energy transitions due to interactions
with the bath, the number of which is exponentially large
in many-body systems. In addition, to obtain Lindblad
operators, we need to diagonalize the Hamiltonian HS

of the many-body system of interest, find the eigenvalue
En and its eigenstate |En⟩, and calculate Aµ(ω). On
the other hand, the ULE satisfies the condition (ii) be-
cause the number of Lindblad operators is not more than
the number of interaction terms in Eq. (2). However, it
is still necessary to diagonalize the Hamiltonian of the
entire many-body system to calculate the Lindblad op-
erators in Eq. (15) as in the Davies equation. Therefore,
the ULE does not satisfy condition (iii).

In contrast, the local GKSL equations satisfy all these
three conditions (i)-(iii). Owing to the locality, the num-
ber of Lindblad operators representing the effect from a
bath is at most limited to the dimension of the space
of those operators that act on the local subsystem, and
the cost of computing the Lindblad operators is as small
as the cost of diagonalizing the operators acting on the
local subspace. The computational cost required for com-
puting the dynamics of the system by the Monte Carlo
method is given by M × D2, where D is the dimension
of the Hilbert space of the system and M is the num-
ber of sampled quantum trajectories [2]. Here, M is
smaller than D for most cases [2]. In the case of the
GKSL equation which requires the diagonalization of the
Hamiltonian of the entire system, the computational cost
of diagonalization is of the order of D3. Thus, the to-
tal computational cost for computing the dynamics with
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such a GKSL equation is also of the order of D3. On
the other hand, in the case of the local GKSL equations
based on the Lieb-Robinson bound, diagonalization of
the Hamiltonian of the local subsystem is required to
compute the Lindblad operators, and the computational
cost stays roughly the same with respect to the system
size since the dimension of the local subsystem is inde-
pendent from the system size. Therefore, the total com-
putational cost for computing the dynamics with the lo-
cal GKSL equations is of the order of M × D2. Thus,
the use of the local GKSL equations reduces the compu-
tational cost in the numerical analysis of open quantum
many-body systems.

VI. CONCLUSION

We have proposed a method of microscopic derivation
of the local GKSL equation by combining the localization
of the Redfield equation on the basis of the Lieb-Robinson
bound and the existing derivations of the GKSL equa-
tion [34, 35, 39–53]. While other derivations of the local
GKSL equation [34–36, 53] treat the couplings between
sites perturbatively, the causal structure given by the
Lieb-Robinson bound makes the derivation valid for more
general cases. This derivation shows that the locality of
the Lindblad operators is determined by the relaxation
time τB of the bath and the propagation velocity ζ0 of
the system. In this paper, we have introduced the local
Davies equation and the local ULE; the former is derived
from the local Redfield equation with the rotating-wave
approximation, and the latter is derived from the local
Redfield equation with the derivation of the ULE. The
different local GKSL equations can be used depending
on the purpose of applications. The local Davies equa-
tion can be used for thermodynamic settings, such as the
case where dissipation due to a bath satisfies the detailed-
balance condition for each subsystem. The local ULE can
be used to accurately describe a steady state as well as
the dynamics.

By the numerical calculations for the one-dimensional
tight-binding fermion chain, we have shown that the er-

rors in the generators and in the steady state of the local
GKSL equations become small when localization of the
Redfield equation is performed so as to be compatible
with the Lieb-Robinson bound, i.e., the radius of the lo-
cal subsystem on which Lindblad operators act is taken
to be larger than ζ0τB. These numerical results support
the validity of our derivation. However, since small er-
rors in the generators may accumulate over a long time,
a small error in the generators does not necessarily guar-
antee a small error in the steady state. While we have
numerically shown that the errors in the steady state are
indeed small for some cases, it is still an open problem
how the behavior of errors in a steady state can be un-
derstood from the microscopic derivation.

The local GKSL equation is a QME that can efficiently
analyze open quantum many-body systems. However,
the local GKSL equation previously discussed in liter-
ature [19, 29] has been given phenomenologically and
does not reflect details of baths such as relaxation times.
Our microscopic derivation allows us to efficiently ana-
lyze open quantum many-body systems in such a man-
ner as to accommodate detailed properties of surrounding
baths.
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Appendix A: Derivation of the universal Lindblad equation in the frequency domain

For the sake of self-containedness, we provide a derivation of the universal Lindblad equation (ULE) [50]. While the
original derivation in Ref. [50] is performed in the time domain, here we present another derivation in the frequency
domain. In the derivation of the ULE, we only assume that the time scale τSB of the time evolution caused by the
bath is much larger than the relaxation time τB of the bath i.e., τSB ≫ τB, — this condition is assumed to derive the
Redfield equation. Therefore, the ULE can describe the dynamics of an open system within the error of the same
order as that of the Redfield equation [50].

Let us begin with Eq. (6). If the condition τSB ≫ τB is satisfied, there always exists an intermediate time scale ∆t
such that τB ≪ ∆t ≪ τSB. To derive the ULE, we modify the terms in Eq. (6) with |ω−ω′| > ωc = ∆t−1 so that the
dynamics of the obtained GKSL equation does not deviate from that of the Redfield equation in the coarse-grained
time scale larger than ∆t. The idea of the derivation presented here is fundamentally the same as that in Ref. [51],
with a slightly different definition of the Lamb-shift Hamiltonian.
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Expanding the Lamb-shift term in Eq. (6), we obtain

d

dt
ρ =− i[HS, ρ] +

∑
µ,ν

∑
ω,ω′

[
γµν(ω) + γµν(ω

′)

2
+ i(ηµν(ω)− ηµν(ω

′))

](
Aν(ω)ρA

†
µ(ω

′)− 1

2
{A†

µ(ω
′)Aν(ω), ρ}

)

+ i
∑
µ,ν

∑
ω,ω′

1

2

(
ηµν(ω

′) + i
γµν(ω)− γµν(ω

′)

2

)(
A†

µ(ω
′)Aν(ω)ρ−Aν(ω)ρA

†
µ(ω

′)
)

+ i
∑
µ,ν

∑
ω,ω′

1

2

(
ηµν(ω) + i

γµν(ω)− γµν(ω
′)

2

)(
Aν(ω)ρA

†
µ(ω

′)− ρA†
µ(ω

′)Aν(ω)
)
.

(A1)

Here, we approximate the coefficients composed of γ(ω) and η(ω) as follows:

γµν(ω) + γµν(ω
′)

2
≃
∑
λ

γ
1/2
µλ (ω)γ

1/2
λν (ω′), (A2)

ηµν(ω), ηµν(ω
′) ≃ηµν

(
ω + ω′

2

)
. (A3)

The square root γ
1/2
µν of the spectral density function is defined as

γµν(ω) =
∑
λ

γ
1/2
µλ (ω)γ

1/2
λν (ω). (A4)

Since we approximate the spectral density function using its square root, this approach to deriving the ULE is called
the “

√
SD-approach” in Ref. [51]. This approximation is justified in the following two situations. The first situation

is that the condition |ω − ω′| ≲ ∆t−1 ≪ τB
−1 holds so that γµν(ω) ≃ γµν(ω

′) and ηµν(ω) ≃ ηµν(ω
′). In fact,

γµν(ω) =

∫ ∞

−∞
dteiωtCµν(t)

≃
∫ √

τB∆t

−
√
τB∆t

dteiωtCµν(t) (C(t) ∼ 0 for t >
√

τB∆t ≫ τB)

=

∫ √
τB∆t

−
√
τB∆t

dteiω
′tei(ω−ω′)tCµν(t)

≃
∫ √

τB∆t

−
√
τB∆t

dteiω
′tCµν(t) (e

i(ω−ω′)t ≃ 1 because |(ω − ω′)t| ≪ 1 at |t| ≪ ∆t.)

≃
∫ ∞

−∞
dteiω

′tCµν(t) = γµν(ω
′).

(A5)

Since γµν(ω) ≃ γµν(ω
′) holds, ηµν(ω) ≃ ηµν(ω

′) also holds for |ω − ω′| ≲ ∆t−1 ≪ τB
−1 and the approximation in

Eq. (A3) is also justified. The second situation is that |ω−ω′| ≳ ∆t−1 holds so that the effect of such terms is canceled
out after the coarse graining of time in the scale of ∆t. In this sense, the dynamics described by the obtained GKSL
equation does not deviate from that described by the Redfield equation up to the coarse graining of time.

With this approximation, Eq. (A1) can be transformed as

d

dt
ρ =− i[HS, ρ] +

∑
λ

∑
µ,ν

∑
ω,ω′

γ
1/2
µλ (ω)γ

1/2
λν (ω′)

(
Aν(ω

′)ρA†
µ(ω)−

1

2
{A†

µ(ω)Aν(ω
′), ρ}

)

+ i
∑
µ,ν

∑
ω,ω′

(
ηµν

(
ω + ω′

2

)
+ i

γµν(ω)− γµν(ω
′)

4

)(
A†

µ(ω)Aν(ω
′)ρ− ρA†

µ(ω)Aν(ω
′)
)
.

(A6)

By defining the Lindblad operators Lλ and the Lamb-shift Hamiltonian HLS as

Lλ =
∑
ν

∑
ω

γ
1/2
λν (ω)Aν(ω), (A7)

HLS =
∑
µ,ν

∑
ω,ω′

(
ηµν

(
ω + ω′

2

)
+ i

γµν(ω)− γµν(ω
′)

4

)
A†

µ(ω)Aν(ω
′), (A8)
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Eq. (A6) is written in the following GKSL form:

d

dt
ρ = −i[HS +HLS, ρ] +

k∑
λ=1

(
LλρL

†
λ − 1

2
{L†

λLλ, ρ}
)
. (A9)

According to the derivation in Ref. [50], the Lindblad operators of the ULE are given by

Lλ =
∑
ν

∫ ∞

−∞
dsgλν(−s)Aν(s), (A10)

where gµν(s) is defined as the Fourier transformation of γ
1/2
µν (ω):

gλν(s) =
1

2π

∫ ∞

−∞
γ
1/2
λν (ω)e−iωsdω. (A11)

The Lindblad operators in Eq. (A10) are equivalent to those in Eq. (A7) since

Lλ =

∫ ∞

−∞
ds

∑
ν

gλν(−s)Aν(s)

=
∑
m,n

∫ ∞

−∞
ds

∑
ν

gλν(−s)ei(En−Em)s ⟨Em|Aν |En⟩ |Em⟩ ⟨En|

=
∑
ω

∫ ∞

−∞
ds

∑
ν

gλν(−s)eiωsAν(ω)

=
∑
ω

∑
ν

γ
1/2
λν (ω)Aν(ω).

(A12)

By writing the Lindblad operators of the ULE as in Eq. (A10), we can also derive the local ULE by replacing Aµ(s)
with Aloc

µ (s) in the Lindblad operators (A10). In this sense the local ULE can also be considered as the approximation
of the original ULE. Therefore, the local ULE becomes more accurate for a larger subsystem Ωµ in contrast to the
local Davies equation. However, the computational costs of calculating the Lindblad operators and the Lamb-shift
Hamiltonian increase as the size of the subsystem Ωµ increases.

Appendix B: Efficient calculation of the largest eigenvalue of a dissipator

In this appendix, we show that the largest eigenvalue of a dissipator of the quadratic open fermionic system can
efficiently be calculated. In the quadratic open fermionic system, the QME can be represented as in Eq. (46). The
problem of finding the steady state of this system is then reduced to diagonalizing the matrix A [57, 59], whose
nonzero components are given by

A2m−1,2n−1 = −2iHm,n −Mm,n +Mn,m, A2m,2n = −2iHm,n +Mm,n −Mn,m,

A2m−1,2n = iMn,m + iMm,n, A2m,2n−1 = −iMm,n − iMn,m.
(B1)

Here, H = (Hm,n) is an antisymmetric Hermitian matrix which satisfies HS =
∑

m,n Hm,nwmwn. Since A is antisym-

metric, eigenvalues of A are expressed as βj ,−βj , (j = 1, . . . , 2L), where Reβj ≥ 0.
Let L[ρ] be given by the right-hand side of Eq. (46). We assume that the real part of each eigenvalue of L is negative

except for a single zero eigenvalue, which corresponds to a steady state. Here, we focus on the dynamics in subspace
K+ composed of an even number of fermionic operators wm since we are interested in the expectation values of the
product of the even number of wm’s such as Wmn = ⟨wmwn⟩. For the precise definition of K+, see Refs. [57, 59]. Let
P+ be a projector onto K+. The dynamics in subspace K+ is described by L+ := P+LP+. Note that the generator
L is block diagonalized as L = P+LP+ + (1− P+)L(1− P+) [57, 59].

Assuming that the real part of the nonzero eigenvalues of L is negative and that L has a unique zero eigenvalue, L
is expressed as

L+ = −2
∑
i

βib
′
ibi, (B2)

where b′i and bi play a similar role as the creation and annihilation operators of normal modes and satisfy the
anticommutation relations {b′i, bj} = δij , {bi, bj} = {b′i, b′j} = 0. The steady state ρsteady of L is given by the “vacuum
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FIG. 7. (a, c) Distance between generators of the local GKSL equations and that of the Redfield equation. (b,d) Errors in the
steady states of the local Davies equation and the local ULE. The parameters are set to be L = 128, N = 16, τSB = 100, J = 1
and ω0 = 0. The inverse temperatures of the baths are set to be βr = 0.5 and βl = 0.1. When the relaxation time τB is small,
both the distance and the error become small regardless of whether R is even or odd except for the case of R = 1. When τB is
large, the error tends to be large for odd R. (a) Distance between the generator of the local Davies equation and that of the
Redfield equation. (b) Error in the steady state of the local Davies equation. (c) Distance between the generator of the local
ULE and that of the Redfield equation. (d) Error in the steady state of the local ULE. The errors for even R are negligible
compared with those for odd R. The error is larger around τB = 1 when R is odd while the distances of the generators are
comparable regardless of whether R is even or odd as seen in (c).

stat” satisfying biρsteady = 0 for all i. See Ref. [57] for the details. Therefore, the eigenvalues λν of L+ are given by
all the possible binary linear combinations of βj ’s:

λν = −2
∑
j

vν,jβj , vν,j ∈ {0, 1}. (B3)

To evaluate τSB, we need to have the eigenvalues of the dissipator D defined in Eq. (11). They are obtained by setting
Hm,n = 0 in Eq. (B1). For the GKSL equation, Mm,n is a Hermitian matrix. Therefore, when Hm,n = 0, the matrix
A corresponding to D is also a Hermitian matrix and all the eigenvalues of A are real. Since Reβj ≥ 0, the eigenvalue
λmax with the largest absolute value of D+ := P+DP+ is given by

λmax = −2
∑
j

βj , (B4)

if the real part of each nonzero eigenvalue of D is negative. Thus, the eigenvalue with the largest absolute value of a
dissipator of QMEs can be calculated efficiently by using the sum rule shown in Ref. [57]:

2
∑
j

βj = 2 trM. (B5)

Appendix C: Additional numerical results

Here we discuss the errors in the generators and the steady state when the radius R of the subsystem is given by
an odd integer. Compared with the case of even R, the distance between generators for odd R becomes larger in the
region where τB is large for both the local Davies equation and the local ULE (see Figs. 7 (a) and (c)). This makes the
error in the steady state for odd R larger in the region where τB is large (see Figs. 7 (b) and (d)). If τB is sufficiently
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small, the behavior of the errors does not significantly depend on whether R is even or odd. Since the local GKSL
equation is valid when τB is smaller than R/ζ0 (where ζ0 = 4J), the even-odd dependence on R in the error for large
τB is not relevant to the validity of the local GKSL equation.

The error of the local GKSL equation with R = 1 is always equal to one because the steady state of the local GKSL
equation with R = 1 is a product state and the off-diagonal components of W vanish when ω0 = 0. Since the diagonal
components of W are always one, the error ∆ is given by

∆ :=
maxkl |W locGKSL

kl −WRedfield
kl |

maxk ̸=l WRedfield
kl

=
maxk ̸=l |WRedfield

kl |
maxk ̸=l WRedfield

kl

= 1. (C1)
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