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We study dynamical scaling associated with a Kondo-breakdown quantum critical point (KB-QCP)
of the periodic Anderson model, treated by two-site cellular dynamical mean-field theory (2CDMFT).
In the quantum critical region, the staggered spin exhibits SYK-like slow dynamics and its dynamical
susceptibility shows ω/T scaling. We propose a scaling Ansatz that describes this behavior. It also
implies Planckian dissipation for the longest-lived excitations. The current susceptibility follows
the same scaling ansatz, leading to strange-metal scaling. This demonstrates that the KB-QCP
described by 2CDMFT is an intrinsic (i.e., disorder-free) strange-metal fixed point. Surprisingly, the
SYK-like dynamics and scaling are driven by strong vertex contributions to the susceptibilities. Our
results for the optical conductivity match experimental observations on YbRh2Si2 and CeCoIn5.
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Introduction.—Strange metals are enigmatic states of
matter which, despite extensive theoretical and experimen-
tal effort, still defy clear and unified understanding [1–5].
They are found in the phase diagrams of a large number
of strongly correlated materials, such as cuprate supercon-
ductors [6–9], iron based superconductors, twisted bilayer
graphene [10–12] or heavy fermion metals [13–18].

The phenomenology of strange metals is incompatible
with our current understanding of conventional metals.
Most prominently, they show T -linear resistivity [9] down
to temperatures too low to be of phononic origin (cur-
rent record: ∼ 15 mK in YbRh2Si2 [19]) and a ∼ T lnT
specific heat. Both are incompatible with the ∼ T 2 re-
sistivity and ∼ T specific heat expected in normal Fermi
liquids [20]. In many materials, ω/T scaling of dynamical
susceptibilities [21–23] and more recently also of the op-
tical conductivity [8, 16, 18, 24] is observed. Dynamical
scaling is incompatible with Fermi liquids, where quasi-
particles with ∼ T 2 decay rates lead to Lindhard-type
susceptibilities and to a Drude peak with width ∼ T 2

in the optical conductivity. A recent experiment on a
strange-metal YbRh2Si2 nanowire further found an al-
most complete suppression of the shot noise, indicating
the absence of well-defined quasiparticles [25].

Despite the ubiquity of materials and experiments show-
ing strange metallicity, even basic questions are to date
not fully settled [1]. Do strange metals arise due to quan-
tum critical points and quantum critical phases, or are
they intimately connected to quantum criticality at all?
Do intrinsic strange metals, i.e., ones without disorder, ex-
ist [26, 27]? Recent work showed that many of the features
of strange metals can arise from a critical boson coupled
to fermions [28, 29], provided that the boson-fermion cou-
pling is disordered. On the other hand, measurements on
cuprates suggest that disorder only affects the residual

resistivity, while the linear-in-T slope is unaffected [30].
Further, there exist many stochiometric strange-metal
compounds with comparably small residual resistivities.
In this Letter, we show that intrinsic strange-metal

scaling can arise due to a heavy-fermion quantum criti-
cal point (QCP), described via cellular dynamical mean-
field theory (CDMFT) [31, 32]. We study the periodic
Anderson model (PAM). It exhibits a so-called Kondo
breakdown (KB) QCP [33–35] arising as a continuous
orbital-selective Mott transition [36–39]. Its hallmark
is a partial localization of electrons, accompanied by a
Fermi surface reconstruction, experimentally observable,
e.g., via Hall effect or quantum oscillation measurements.
Experimental studies in the quantum critical region of
KB–QCPs at T > 0 often show strange-metal behavior.
In a long companion paper, Ref. [39], we showed that

two-site CDMFT (2CDMFT) combined with the numeri-
cal renormalization group (NRG) [40] describes many
experimental features of the KB–QCP. This includes
a novel quantum critical point (stabilized by DMFT
self-consistency) and strange-metal behavior, such as a
∼ T lnT specific heat in the non-Fermi liquid (NFL) quan-
tum critical region. Here, we focus on quantum critical
dynamical scaling. We find (i) SYK-like slow dynam-
ics; (ii) ω/T scaling of dynamical susceptibilities; (iii)
Planckian dissipation; (iv) strange-metal-like ω/T scaling
of the optical conductivity σ(ω); and (v) results for σ(ω)
consistent with measurements on YbRh2Si2 and CeCoIn5.

Model and methods.—We consider the PAM on a three-
dimensional cubic lattice, consisting of an itinerant c band
and a localized f band, described by the Hamiltonian

HPAM =
∑
kσ

(
ϵf − µ

)
f†
kσfkσ + U

∑
i

f†
i↑fi↑f

†
i↓fi↓

+ V
∑
kσ

(
c†kσfkσ + h.c.

)
+

∑
kσ

(ϵck − µ) c†kσckσ.
(1)
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FIG. 1. (a) Phase diagram of the PAM obtained by
2CDMFT+NRG. The dots (connected by lines as guides to
the eye) denote relevant energy scales TFL and TNFL below
which we observe FL and NFL behavior, respectively, and
THall, the crossover scale between a large and small FS [see
Ref. [39] for details]. The color scale denotes the exponent α
of the imaginary-time correlator ⟨Xxz(τ)Xxz⟩ ∝ τ−α. The
white dashed line denotes V = 0.46, used for all subsequent
plots in this work. (b) Spectra of Xxz and Sz at T = 0.

Here, f†
kσ [c†kσ] creates a spin-σ f [c] electron with momen-

tum k, and ϵck = −2t
∑

a=x,y,z cos(ka) is the c-electron
dispersion. We set the c-electron hopping t = 1/6 as an
energy unit (half bandwidth = 1) and fix the f -orbital
level ϵf = −5.5, the interaction strength U = 10, and the
chemical potential µ = 0.2, as chosen in prior 2CDMFT
studies [37–39]. We tune the c-f hybridization V and
the temperature T as control parameters.
We study the PAM using 2CDMFT, which maps the

lattice model to an effective two-impurity Anderson model
(2IAM) with a self-consistent bath (cf. Refs. [36–39] for
more details). The 2CDMFT approach allows us to study
the competition between local Kondo correlations and
nonlocal RKKY correlations, which is believed to drive
quantum criticality in heavy fermion systems [33, 41–43].
We solve the effective 2IAM using NRG [40], enabling us
to reach exponentially small frequency and energy scales.
We exploit and enforce U(1) charge and SU(2) spin sym-
metries (using the QSpace tensor library [44, 45]), thereby
excluding the possibility of symmetry-breaking order by
hand. We thus study KB quantum criticality in the ab-
sence of symmetry breaking [46–49], as can be observed,
e.g., in experiments on YbRh2Si2 [50] and CeCoIn5 [51].
We do not find tendencies towards symmetry breaking
(divergent susceptibilities) for V > Vc or anywhere within
the quantum critical region emanating from the KB-QCP.
Phase diagram.—Figure 1(a) shows our 2CDMFT+

NRG phase diagram in the (V, T ) plane close to the KB–

QCP. At T = 0, we find two Fermi liquid (FL) phases,
separated by a KB–QCP located at Vc = 0.4575(25),
featuring a sudden Fermi surface (FS) reconstruction [39].
At finite excitation energies, we find two crossover scales,
TFL(V ) and TNFL(V ) [39]. FL behavior emerges below TFL,
which decreases towards and vanishes at Vc. The high-
energy region above TNFL is characterized by thermally
fluctuating f -electron local moments decoupled from the
c electrons. TNFL does not decrease for V near Vc, hence
strong scale separation between TNFL and TFL occurs close
to the QCP. For excitation energies between TFL and TNFL,
we find NFL behavior—the main subject of this work.

Dynamical susceptibilities.—The different regions can
be most conveniently distinguished in terms of the dynam-
ical behavior of response functions. For now, we focus on
the staggered f -electron spin on a two-site cluster, Xxz =
Sz
1 − Sz

2 , with Sz
i = 1

2

[
f†
i↑fi↑ − f†

i↓fi↓
]
. The color scale

in Fig. 1(a) shows the exponent α of the imaginary-time
autocorrelation function of Xxz, ⟨Xxz(τ)Xxz⟩ ∝ τ−α, ob-
tained via log-derivative. For long times, τ−1 < TFL, we
find α = 2, consistent with FL behavior and the presence
of long-lived quasi-particles (QP) [3] and thus quickly
decaying, localized spin excitations. For short times,
τ−1 > TNFL, staggered spin excitations decay very slowly
with an exponent α < 0.5, consistent with local moment
behavior. For intermediate times, TFL < τ−1 < TNFL,
we find an SYK-like exponent α ≃ 1 in the NFL re-
gion, indicative of the absence of coherent QP [3]. For
at V = 0.46, our data closest to Vc, this behavior ex-
tends over almost 4 orders of magnitude: in fact, our data
suggests that it extends down to τ−1 → 0 at Vc, where
TFL = 0. We note that we do not find ∝ τ−1/2 behavior of
the single-electron Green’s function G(τ), in contrast to
the SYK model [3]. Thus, ⟨Xxz(τ)Xxz⟩ is not ∝ G(τ)2,
i.e., the τ−1 behavior is governed by vertex contributions.
To understand the origin of the τ−1 dependence, we

consider the spectral representation of bosonic correlators,

⟨A†(τ)B⟩ =
∫ ∞

−∞
dω

e−τω

1− e−βω
χ′′[A,B](ω) . (2)

Here, the spectrum χ′′(ω) is obtained from the dynamical
susceptibility χ(ω) = χ′(ω)− iπχ′′(ω),

χ[A,B](ω) = −i

∫ ∞

0

dt ei(ω+i0+)t
〈[
A†(t),B

]〉
. (3)

We use the shorthand χ[A](ω) = χ[A,A](ω).
The spectra for Xxz and for the total spin Sz = Sz

1+Sz
2

are shown in Fig. 1(b) at V = 0.46 and T = 0. The
spectra χ′′[Xxz] and χ′′[Sz] both show ∝ ω behavior
below TFL, indicating that these fluctuations are screened
in the FL, as expected. For long times, τ−1 < TFL, the
corresponding imaginary time correlation function Eq. (2)
therefore decays as τ−2, as shown for Xxz in Fig. 1(a).
In the NFL region (TFL <ω<TNFL) the spectra differ

qualitatively: while χ′′[Sz] ∝ ω still holds, χ′′[Xxz] has an
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FIG. 2. Dynamical susceptibility χ[Xxz](ω, T ): (a) spectral
part and (b) corresponding real part; (c,d) scaling collapse of
spectral and real parts. Black dashed lines show the scaling
functions X ′′(ω/T ) and X ′(ω/T ), respectively [cf. Eq. (5)].
Inset: χ′(0, T ) (orange) and X ′

0(T/TNFL) + c [black dashed,
cf. Eq. (5)]. The constant shift c accounts for spectral weight
at |ω| > TNFL. Grey areas indicate fitting uncertainties [56].

ω-independent plateau; hence Sz fluctuations are screened,
Xxz fluctuations are over-screened (reminiscent of the
two-channel or two-impurity Kondo models [52–54]). For
intermediate times ⟨Sz(τ)Sz⟩ thus decays as τ−2 (not
shown) whereas ⟨Xxz(τ)Xxz⟩ decays as τ−1 [cf. Fig. 1(a)].
We note that besides Xxz, many other operators also have
plateaus in their spectra, see Fig. 4 in Ref. [39]. Thus,
the FL is reached via a two-stage screening process: as ω
drops below TNFL, some excitations are screened, others
over-screened; below TFL, the latter are screened, too.

Dynamical scaling.—We now turn to the T > 0 be-
havior, focusing on V = 0.46 and χ[Xxz], whose spec-
trum shows a plateau in the NFL region at T = 0.
The T -dependent spectra χ′′(ω, T ) and the correspond-
ing real parts χ′(ω, T ) are shown in Figs. 2(a) and (b),
respectively. As T is decreased from around TNFL to TFL,
the aforementioned plateau in χ′′(ω, T ) emerges between
T < ω < TNFL, crossing over to ∝ ω behavior for ω < T .
For T < TFL, the spectrum becomes T -independent, tak-
ing the same form as already shown in Fig. 1(b) for T = 0.

χ′(ω, T ) is related to χ′′(ω, T ) via a Kramers–Kronig
relation. It thus shows a logarithmic [55] ω-dependence
for max(T, TFL) < ω < TNFL where χ′′(ω, T ) has a plateau,
and is constant for ω < max(T, TFL) where χ′′(ω, T ) ∝
ω. As a result, χ′(0, T ) [inset of Fig. 2] has a ∝ lnT
dependence for TFL < T <TNFL and is constant for T <
TFL, where Xxz fluctuations are screened.

Figure 2(c) shows χ′′(ω, T ) vs. ω/T . In the NFL region
(TFL< T <TNFL, |ω| < TNFL), the spectra all collapse onto
a single curve. This demonstrates that the T -dependent
spectra show dynamical scaling in the sense that in the
NFL region, Tαχ′′(ω, T ) = X ′′(ω/T ) with α = 0. Thus,
χ′′(ω, T ) depends on ω only via the ratio ω/T , implying

that T is the only scale in this region. The scaling function
X ′′(x) is flat for x > 1 and ∝ x for x < 1 (we discuss a
phenomenological fit below). The real part also shows
ω/T scaling, χ′(ω, T )− χ′(0, T ) ≃ X ′(ω/T ).
Scaling function and Planckian dissipation.—In the

NFL region (TFL< T <TNFL, |ω| < TNFL), the spectra of
dynamical susceptibilities showing plateaus (e.g., χ[Xxz])
can be fitted with a phenomenological ansatz for ω > 0:

χ̃′′(ω, T ) = χ0

∫ TNFL

T

dϵ

π

(1− e−
ω
T )( ϵ

T )
νbT

(ω − aϵ)2 + (bT )2
. (4)

ω < 0 follows from anti-symmetry of χ̃′′, the real part χ̃′

is determined through a Kramers–Kronig relation. χ0,
a, b, and ν are determined by fits to our spectra in the
NFL region [56]. We find a ≃ 10−1, b ≃ 1 and ν ≃ 0;
χ0 determines the plateau value. (These parameters are
V -independent within our fitting accuracy.) When Eq. (4)
is evaluated for |ω|, T ≪ TNFL one finds the scaling form

χ̃(ω, T ) ≃ X ′
0

( T

TNFL

)
+ X ′

(ω
T

)
− iπX ′′

(ω
T

)
. (5)

An explicit T -dependence, due to the high-energy cutoff
TNFL, only enters via X ′

0(T/TNFL) ≃ χ̃′(0, T ); otherwise,
χ̃(ω, T ) only depends on the ratio ω/T (for more informa-
tion on the scaling functions X ′

0, X ′ and X ′′, see Ref. [56]).
In Fig. 2(c,d), we show that the scaling function X cap-
tures χ[Xxz] well in the NFL region (black dashed lines).
The ansatz (4) is motivated by a fit of ⟨Xxz(t)Xxz⟩

to a superposition of coherent excitations with mean
energy aϵ, decay rate bT and density of states (ϵ/T )ν [56].
Since b ≃ 1, these coherent excitations have a decay rate
γ ≃ T or correspondingly a lifetime τ ≃ 1/T , i.e., the
longest-lived Xxz excitations have a Planckian lifetime.
By contrast, we do not observe a Planckian lifetime for
single-particle excitations [cf. Fig. 3(d) and its discussion].
Optical conductivity.—Our 2CDMFT approximation

allows us to compute the local current susceptibility
χ[jai ](ω, T ) of the lattice model from the effective im-

purity model. Here, jai = −ite
∑

σ

(
c†iσci+aσ − c†i+a,σciσ

)
is the current operator in a-direction, where i and i+a are
nearest neighbors on the lattice, chosen to also correspond
to the two sites of the self-consistent impurity model.
For optical experiments and electronic transport, the

uniform current susceptibility χ[jaq=0](ω, T ) is relevant,
where jaq is the q-dependent current in a-direction, jaq =
1
N

∑
iσ e

−iq·rijai . Assuming translation symmetry, χ[ja0 ]
can be expressed as a sum χ[jai ] + χnl[j] of local and non-
local parts, with χnl[j] =

1
N

∑
ℓ ̸=i χ[j

a
ℓ , j

a
i ] = χ[ja0 ]−χ[jai ].

The computation of χnl[j] would require four-point corre-
lators [63, 64] for the self-consistent two-impurity model,
which currently exceeds our computational resources.
Hence we approximate it by its bubble contribution,
χnl,B[j] = χB[j

a
0 ]− χB[j

a
i ]. Thus, we use

χ[ja0 ] ≈ χ[jai ] + χnl,B[j] = χB[j
a
0 ] + χvtx[j

a
i ] , (6)
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FIG. 3. (a) Real part of the optical conductivity, σ′(ω, T ).
(b) ω/T scaling of Tσ′(ω, T ); black dashed line: the scaling
function S ′ of Eq. (7). (c) The resistivity ρ(T ). (d) The
single-particle decay rate at the Fermi level, γ∗(T ).

where χvtx[j
a
i ] = χ[jai ]−χB[j

a
i ] is the vertex contribution

to the local current susceptibility.
The uniform current spectrum determines the real part

of the optical conductivity, σ′(ω, T ) = π
ωχ

′′[ja0 ](ω, T ). It
is shown in Fig. 3(a). At T ≪ TFL (blue/black), it features
a hybridization gap around ω ≃ TNFL, ω

−1 behavior for
TFL < ω < TNFL, and a Drude peak at low frequencies
below TFL. These features emerge as the temperature is
lowered from T ≫ TNFL: The hybridization gap forms
around T ≃ TNFL (red), the ω−1 feature emerges between
TFL < T < TNFL (yellow/green) and the Drude peak
finally emerges for T < TFL (blue/black).
The most interesting feature is the ω−1 behavior in

the NFL region. This feature is due to the fact that
χ′′[jai ] (Fig. S2 in Ref. [56]) exhibits a plateau similar
to that of χ′′[Xxz] [Fig. 2(a,c)] for |ω|, T < TNFL. This
plateau is entirely due to the vertex contribution χ′′

vtx[j
a
i ],

which in the NFL region completely dominates the bubble
contribution, |χ′′

vtx[j
a
i ]| ≫ |χ′′

B[j
a
0 ]| [56]. (The same is true

for χ[Xxz].) Remarkably, χ′′[jai ], just as χ
′′[Xxz], is well

described by the ansatz (4) (see Fig. S6 of Ref. [56]),
implying ω/T scaling and Planckian dissipation of current
fluctuations. This implies that in the NFL region TFL <
T < TNFL, σ

′(ω, T ) is governed by a scaling function S ′:

Tσ′(ω, T ) = (T/ω)πX ′′(ω/T ) = S ′(ω/T ) . (7)

Figure 3(b) shows that Tσ′(ω, T ) is indeed well described
by this scaling function (black dashed line). We discuss
scaling of the imaginary part σ′′(ω, T ) in Ref. [56].

The scaling behavior (7) has two striking implications
for the NFL region TFL < T < TNFL: First, a scaling col-
lapse is achieved for Tασ′(ω, T ) with α = 1, an exponent
which is also found experimentally [16, 18, 24]. Second,
the static conductivity σ(T ) = σ′(0, T ) = S ′(0)/T scales
as 1/T , implying T -linear behavior for the resistivity,
ρ(T ) = 1/σ(T ) ∝ T . This is born out in Fig. 3(c): ρ(T )

has a maximum around TNFL, where the hybridization
gap forms, then decreases with T approximately ∝ T for
TFL < T < TNFL, before finally becoming ∝ T 2 below TFL.
In Ref. [56], we analyze the complex optical conductiv-
ity, see Sec. S-IV, Fig. S10. In the high-T part of the
NFL region TNFL/10 <∼ T <∼ TNFL, it shows qualitative
similarities to data on CeCoIn5 of Ref. [65]: a dynami-
cal transport scattering rate ∝ ω2, and a renormalized
transport scattering rate ∝ T 2.

In the FL region, on the other hand, the Drude peak
and ρ(T ) ∝ T 2 behavior are due to the nonlocal bubble
part χnl,B[j]. These features can be understood from the
single-particle decay rate [66],

γ∗ = Zγ , γ = ImG−1
kF

(0) , Z−1 = ∂ωReG
−1
kF

(0) , (8)

shown in Fig. 3(d). In the FL region, γ∗ ∝ T 2 as expected,
leading to a Drude peak of width ∝ T 2 and ρ(T ) ∝ T 2,
i.e., these features are due to long-lived coherent QP
carrying the current. Since we neglect nonlocal vertex
contributions, the transport relaxation rate, and thus the
T 2 prefactor of ρ(T ), is set purely by the QP decay rate
and is therefore very likely overestimated [67].

In the NFL region, we find Z ∝ T and γ ∝ lnT , leading
to γ∗ ∝ T lnT . The latter is also found in the marginal
FL (MFL) [68] approach, but there, by contrast, one has
Z ∝ lnT and γ ∝ T . Further, Fig. 3(d) shows γ∗(T ) > T
in the NFL region, i.e., single-particle excitations are not
Planckian and decay faster than, for instance, current or
Xxz fluctuations. We emphasize that in the NFL region
(in contrast to the FL region), the transport relaxation
rate is not set by the single-particle decay rate: there,
σ(ω, T ) and thus ρ(T ) are qualitatively influenced by the
vertex contribution χ′′

vtx[j
a
i ], as discussed above.

We conjecture that the following two features in
Fig. 3(c) are artifacts of neglecting nonlocal vertex contri-
butions: First, ρ(T ) shows a slight deviation from perfect
T -linear behavior. This deviation results from the fact
that the bubble part of the nonlocal current susceptibil-
ity, χB,nl[j], does not show ω/T scaling [not visible in
Fig. 3(b)]. In Sec. S-IID of Ref. [56], we provide indica-
tions that the full χnl[j] does show scaling of the same
type as χ′′[jai ](ω), which would imply perfect T -linear be-
havior. Second, ρ(T ) has a shoulder somewhat below TFL.
This likely reflects the above-mentioned overestimation
of the T 2 prefactor of ρ(T ) in the FL region.

Discussion and Outlook.—Our work provides a promis-
ing route towards an intrinsic strange metal. However, we
have not yet achieved a full understanding of the current
decay mechanism. An inherent feature of (C)DMFT is
that the interaction vertex does not ensure conservation of
crystal momentum [32, 69]. Therefore, electron-electron
scattering does not conserve crystal momentum, leading
to current decay. This mechanism usually manifests as a
dominant bubble contribution (in single-site DMFT, this
is the only contribution). A dominant bubble contribution
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is also key to the Yukawa–SYK approach [28] to strange
metals. There, a disordered Yukawa coupling leads to non-
conserved momentum in scattering processes. The result
is a MFL where strange-metal scaling arises in the bubble
contribution and interaction disorder is needed to avoid
its cancellation by the vertex contribution. By contrast,
in our 2CDMFT approach the strange-metal scaling in the
NFL region arises entirely from the vertex contribution,
and not at all from the (much smaller) bubble contribution.
This strongly suggests that the current decay mechanism
is not due to the non-conservation of crystal momentum
at the interaction vertex. Our 2CDMFT approach also
includes crystal momentum conserving Umklapp scatter-
ing processes between momenta around k = (0, 0, 0) and
k = (π, π, π) which flip the current. We conjecture that
these cause our observed strange-metal scaling.

A detailed analysis of the current decay mechanism is
left for future work. This will involve studying (i) the
frequency and temperature dependence of three- and four-
point vertices in the NFL region and (ii) the relevance of
Umklapp scattering in 2CDMFT.
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In Sec. S-I, we provide basic definitions and expres-
sions regarding the Fourier transforms of operators and
regarding the optical conductivity. Section S-II provides
additional information on the numerical computation of
the optical conductivity, the role of vertex contributions,
and to what extent the Drude term vanishes. Section S-
III provides more information on the scaling functions X
and S. In Sec. S-IV, we discuss scaling of the imaginary
part of the optical conductivity and provide an analysis
of the complex optical conductivity similar in spirit to the
analysis of experimental data on CeCoIn5 of Ref. [65].

S-I. OPTICAL CONDUCTIVITY

In this section, we state some textbook [67] formulas
that are important in the context of the optical conduc-
tivity for the PAM.

A. Fourier transforms of operators

We define the Fourier transform of fermionic creation
and annihilation operators in a unitary fashion,

ckσ =
1√
N

∑
i

e−ik·riciσ , (S1)

ensuring {c†kσ, ck′σ′} = δσσ′δkk′ . For bosonic observables
Oi like the current density, on the other hand, we define
it as an orthogonal but non-unitary transformation,

Oq =
1

N

∑
i

e−iq·riOi . (S2)

This ensures that the expectation values ⟨Oq⟩ and ⟨Oi⟩
scale the same way with N in the thermodynamic limit.
(if we had used a unitary Fourier transforms for bosonic
observables, ⟨Oq⟩ ∼

√
N would not be well-defined in the

thermodynamic limit). The same goes for source fields
like the vector potential.

B. Current and conductivity

In presence of a vector potential A, the Hamiltonian (1)
is modified by replacing the hopping between site i and
i+ a by t → t exp (−ieAa

i ), where a is some unit lattice
vector. The current density is

jai = − ∂H

∂Aa
i

= −ite
∑
σ

(
e−ieAa

i c†iσci+aσ − h.c.
)
. (S3)

If no lattice symmetry is broken, the current response to
a q- and ω-dependent electric field Eq(ω) = iω+Aq(ω)
(where ω+ = ω + i0+) takes the form ⟨jaq⟩(ω) =
σq(ω)E

a
q(ω), where the dynamical conductivity is given

by

σq(ω) =
1

iω+

[
⟨K̂⟩ − χ[jaq](ω)

]
, (S4)

K̂ = − te2

N

∑
iσ

(
c†iσci+aσ + h.c.

)
,

and jaq = 1
N

∑
i e

−iq·rijai . In a d-dimensional hypercubic

lattice, ⟨K̂⟩ is proportional to the kinetic energy density
ϵkin = d

e2 ⟨K̂⟩.
The optical conductivity σ(ω) = σq=0(ω) is the re-

sponse to a uniform electric field. It can be decomposed
as [57, 58] σ(ω) = σD(ω) + σreg(ω), with

σD(ω) = D

[
δ(ω) + P i

πω

]
, (S5)

D = π
[
χ′[ja0 ](0)− ⟨K̂⟩

]
, (S6)

σreg(ω) = P 1

iω

[
χ′[ja0 ](0)− χ[ja0 ](ω)

]
, (S7)

where P denotes the principal part. The regular term
σreg(ω) describes currents that decay at long times; the
Drude term σD(ω) with Drude weight D describes persis-
tent currents. For a non-superconducting, thermodynam-
ically large lattice model at non-zero temperature, one
expects D = 0.
The optical conductivity fulfills the f -sum rule,∫ ∞

−∞

dω

π
σ′(ω) = −⟨K̂⟩ , (S8)



S2

which follows when evaluating χ′[ja0 ](0) using the Kramers–
Kronig relation for general susceptibilities,

χ′[O](ω′) = −P
∫ ∞

−∞
dω χ′′[O](ω)/(ω − ω′). (S9)

C. Bubble contribution

The bubble contribution to the current susceptibility is
defined as the susceptibility of a free system but with the
Green’s functions replaced by the Green’s function of the
interacting system. We shortly outline the corresponding
formulas for the bubble contribution to the local current
susceptibility, χB[j

a
i ] and to the uniform q = 0 suscep-

tibility, χB[j
a
0 ]. Since the current operator in Eq. (S3)

consists only of c-electron operators, the formulas for
the bubble contribution only involve c-electron Green’s
functions. For brevity, we suppress the c labels on all
Green’s functions, spectral functions and self-energies in
this section and in Sec. S-II A. The current operators can
be written in terms of the bare current vertex J a,

jai =
∑
ℓℓ′σ

J a
iℓℓ′c

†
ℓσcℓ′σ , (S10a)

J a
iℓℓ′ = −ite (δiℓδi+aℓ′ − δi+aℓδiℓ′) , (S10b)

jaq =
1

N

∑
i

e−iq·rijai =
∑
kk′σ

J a
qkk′c

†
kσck′σ (S10c)

J a
qkk′ =

−2te

N
δq,k−k′ei

q·a
2 sin

[(
k− q

2

)
· a

]
. (S10d)

We define the polarization bubble (with Im z > 0),

Pg,g′(z) =T
∑
m

Gg(iωm)Gg′(iωm + z) (S11)

=

∫ ∞

−∞
dω f(ω)[Ag(ω)Gg′(ω + z) (S12)

+Ag′(ω)Gg(ω − z)] ,

where G(z) is the Masubara Green’s function, A(ω) the
corresponding spectral function, f(ω) the Fermi-Dirac
distribution function and g and g′ are quantum numbers
like momentum, spin or spatial distance, rij = ri − rj
and we assume G depends on |ri − rj | only.

The bubble contribution to the q = 0 current suscepti-
bility is

χB[j
a
0 ](z) =

8t2e2

N

∑
k

sin2(k · a)Pk,k(z)

=
8t2e2

N

∑
k

sin2(k · a)
∫ ∞

−∞
dω f(ω)× (S13)

[Ak(ω)Gk(ω + z) +Ak(ω)Gk(ω − z)] .

The corresponding spectral function is (ν± = ν ± i0+)

χ′′
B[j

a
0 ](ν) =

i

2π

[
χB[j

a
0 ](ν

+)− χB[j
a
0 ](ν

−)
]

=
8t2e2

N

∑
k

sin2(k · a)Ik(ν) (S14a)

Ik(ν) =

∫ ∞

−∞
dω [f(ω)−f(ω+ν)]Ak(ω)Ak(ω+ν) .

(S14b)

The bubble contribution to the local current-current
susceptibility (involving one link in the lattice, i.e., two
sites) is then

χB[j
a
i ](z) = 2

∑
mm′

∑
nn′

J a
imm′J a

inn′Prmn′ ,rm′n(z)

=− 4t2e2
∫ ∞

−∞
dω f(ω)× (S15)[

[Ari,i+a(ω)Gri+a,i(ω + z)−Ari,i(ω)Gri,i(ω + z)]

+[Ari+a,i(ω)Gri,i+a(ω − z)−Ari,i(ω)Gri,i(ω − z)]
]
.

The local current-current spectral function is

χ′′
B[j

a
i ](ν) =

i

2π

[
χB[j

a
i ](ν

+)− χB[j
a
i ](ν

−)
]

(S16)

= 4t2e2
∫ ∞

−∞
dω [f(ω)− f(ω + ν)]× (S17)

[Ari,i(ω)Ari,i(ω + ν)−Ari,i+a(ω)Ari+a,i(ω + ν)] .

S-II. OPTICAL CONDUCTIVITY: NUMERICAL
COMPUTATION

In this section, we describe how we compute the bub-
ble contribution χ′′

B[j
a
0 ](ν) [Eq. (S14a)] in a numerically

efficient way, how we treat the electronic self-energy close
to zero frequency and temperature, and how we deal with
vertex contributions and fulfillment of the f sum rule. We
further discuss the potential role of vertex contributions
for short-ranged nonlocal current fluctuations.

A. Bubble contribution

Computing the bubble contribution to the optical con-
ductivity requires numerical evaluation of Eq. (S14a).
This is challenging, especially close to ν = 0 or T = 0,
due to the close-to-singular behavior of Ak(ω)Ak(ω+ν)
in the integrand.
To deal with this, we exploit our knowledge of

G−1
k (ω+) = ω+ + µ− ϵk − Σk(ω

+). It is a smooth func-
tion of ω and known on a predetermined frequency grid
ω ∈ {ωi}. Since G−1

k (ω+) is a smooth function, we rep-
resent it by linear interpolation, G−1

k (ω+) = ai + biω,
for Ii = [ωi, ωi+1]. Due to the logarithmic resolu-
tion of NRG, we use a logarithmic frequency grid with
10−12 ≤ |ωi| ≤ 104 and 200 grid points per decade.

By writing

Ak(ω)Ak(ω+ν)=
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FIG. S1. Self-energy of the f electrons for the self-consistent
2IAM at different temperatures. (a,b) Bonding orbital (+)
and (c,d) anti-bonding orbital (−). Solid lines denote the nu-
merical data, dashed lines (not visible whenever they coincide
with solid lines) denote the extrapolated self-energy. Visible
differences occur only for |ω|, T < 10−1TFL, i.e., well below
the FL scale TFL.

1
π Im

[
Gk(ω

+)
Gk(ω+ν+)−Gk(ω+ν−)

2πi

]
, (S18)

the frequency integral in Eq. (S14b) can be computed by
evaluating the integrals,

I±k (ν) =

∫ ∞

−∞
dω [f(ω)−f(ω+ν)]Gk(ω

+)Gk(ω+ν±)

=
∑
i

∫
Ii

dω
αi + βiω

(ai + biω)(ci,± + di,±ω)
(S19)

where αi+βiω is a linear interpolation of f(ω)−f(ω+ν)
on the interval Ii and ai + biω and ci,± + di,±ω are the
linear interpolations of G−1

k (ω+) and G−1
k (ω + ν±), re-

spectively. The integral over every interval Ii in Eq. (S19)
is very simple to evaluate exactly, summing up the con-
tributions from all intervals gives I±k (ν).

The k sum/integral in Eq. (S14a) is finally computed us-
ing a standard integrator. (We use MATLAB’s integral
function.) We use the periodized self-energy when com-
puting Eq. (S14a), cf. App. A.3 of Ref. [39]. In our case,
this allows us to reduce the three-dimensional k integral
in Eq. (S14a) to a one-dimensional one, cf. Eq. (A10) of
Ref. [39].

B. Self-energy at ω, T ≃ 0

The Drude peak which emerges in the optical conduc-
tivity at T < TFL for small frequencies arises due to
−ImΣ(ω+) = aω2 + bT 2 behavior for |ω|, T < TFL. Cap-
turing this ω, T -dependence for very small TFL (≪ TNFL),
as is the current case close to the QCP, is highly chal-
lenging. To achieve this, we keep a large number of
states—up to 40,000 U(1)×SU(2) symmetry multiplets—
in iterative diagonalization and use an interleaved Wilson

chain [59, 60] to keep the computational cost manageable.
We compute the f -electon self-energy by using the sym-
metric improved estimator of Ref. [61] which significantly
reduces numerical artifacts and leads to state-of-the-art ac-
curacy. This accuracy allows us to obtain −ImΣf±(ω

+) =
aω2+ bT 2 behavior for |ω|, T ∈ (TFL/10, TFL) (but not for
|ω|, T ∈ (0, TFL/10), because there −ImΣf±(ω

+) becomes
smaller than 10−4, and numerical inaccuracies become
significant). Therefore, we fit the coefficients a and b with
the data for (TFL/10, TFL) then extrapolate −ImΣf±(ω

+)
to (0, TFL/10) based on the fitting. Figure S1 shows the
low T and ω behavior of −ImΣf±(ω

+) before (solid) and
after (dashed) extrapolation. The c-electron self-energy
Σc±(ω

+) = V 2/
(
ω+ − ϵf − Σf±(ω

+)
)
(which is not one-

particle irreducible) follows from Σf±(ω
+).

Note that in an FL, aπ2/b = 1 should hold. On the
other hand, our fits yield aπ2/b = O(2–3) due to the
broadening used in NRG, which overestimates a. We have
checked that a → b/π2 when we lower the broadening
width. This however comes at the expense of severe
discretization artifacts. Since the exact value of a is
irrelevant to the present work, we preferred to adopt the
procedure described above.

C. Local vertex contributions

We stated several times in the main text that vertex con-
tributions are crucial for the current-current correlation
functions to capture the strange metallicity and Planck-
ian dissipation. As described in the main text, we have
included vertex contributions only for the local contribu-
tion, χ[jai ], to the uniform current susceptibility, χ[ja0 ] =

χ[jai ]+χnl[j
a
0 ], where j

a
i = −ite

∑
σ(c

†
iσci+aσ−h.c.) is the

current between lattice sites i and i+a, the neighbor of i in
a-direction. The main reason is that we do not currently
have access to three- or four-point correlation functions.
By choosing sites i and i + a as the two sites of our
self-consistent two-impurity model, we can compute χ[jai ]
directly as a two-point correlation function using NRG.
Here, we provide supplemental data that shows to what
extent the full local susceptibility χ[jai ] is influenced by
its vertex contribution χvtx[j

a
i ] = χ[jai ]− χB[j

a
i ]. To this

end, we compare χ[jai ] to its bubble contribution χB[j
a
i ],

computed via Eq. (S17). The integrand of the latter is
not close-to-singular [in contrast to that of Eq. (S14b)]
and can therefore be efficiently evaluated via a standard
integrator.

The bare output of NRG are discrete spectra for χ′′[jai ],
which are subsequently broadened through log-Gaussian
broadening kernels, see Ref. [62] for more details. The
spectral functions used in Eq. (S17) to compute χ′′

B[j
a
i ]

on the other hand are obtained by computing the self-
energy via the symmetric improved estimators of Ref. [61];
χ′′
B[j

a
i ] therefore contains finer high-frequency details than

achievable with NRG for χ′′[jai ]. To compare the full
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FIG. S2. (a) Spectrum of the local current susceptibility
χ′′[jai ](ω, T ). Solid lines are full susceptibilities χ′′[jai ], dashed
lines are the bubble contributions χ′′

B[j
a
i ]. χ′′

B[j] is almost
temperature independent, which is why the χ′′

B[j
a
i ] curves for

T < 10−3 are covered by the T = 10−3 curve. χ′′
B[j

a
i ] and

χ′′[jai ] are almost identical at T = 10−3. (b) The ratio between
full susceptibility and bubble contribution.

χ′′[jai ] and its bubble contribution χ′′
B[j

a
i ] [computed from

Eq. (S17)], we, therefore, smear out the continuous curve
of χ′′

B[j
a
i ] by further applying the log-Gaussian kernel used

to broaden the discrete data for χ′′[jai ], to match their
resolution levels. We emphasize here that this broadening
of χ′′

B[j
a
i ] only affects high-frequency details at |ω| > TNFL,

the basic features remain the same.
Figure S2(a) shows the spectrum of the full local current

susceptibility χ′′[jai ] and of the corresponding bubble
contribution χ′′

B[j
a
i ], while Fig. S2(b) shows their ratio.

The bubble contribution captures only the high-frequency
behavior at |ω|, T > TNFL well: the spectra in Fig. S2(a)
almost coincide and the ratios in Fig. S2(b) are close to
1.

On the other hand, the plateau emerging below |ω|, T <
TNFL is not captured at all by the bubble contribution, i.e.,
both the ω/T scaling and the Planckian dissipation dis-
cussed in the main text and in Sec. S-III result from vertex
contributions. The ratio shown in Fig. S2(b) increases
dramatically in the NFL region (TFL < |ω|, T < TNFL) by
several orders of magnitude and saturates close to 103 in
the FL region (|ω|, T < TFL).

D. Estimate of nonlocal vertex contributions

To estimate what to expect for nonlocal current fluc-
tuations in terms of scaling and vertex contributions,
we define “current” operators that lie across the cluster
boundaries,

ji = (−1)i
ite√
5

(
c†iσaiσ − h.c.

)
, (S20)

where aiσ annihilates a spin-σ electron in the first bath
orbital (within the Wilson chain) that directly couples
to the c orbital of the cluster site i = 1, 2. According
to the effective medium construction of DMFT (which
defines bath sites by replacing the interaction on the
original lattice sites by the self-energy, cf. Sec. III D of
Ref. [69]), the Green’s function of aiσ is the same as

FIG. S3. (a,b) Absolute values of the spectra of different nonlo-
cal current susceptibilities, χ′′[jai , j1](ω, T ) and χ′′[j1, j2](ω, T ).
Solid lines are full susceptibilities, dashed lines are the bubble
contributions. Cusps indicate sign changes in the spectra.
(c,d) Ratios between the spectra of the full susceptibility and
the bubble contribution. The cusps at |ω| > 10−1 arise due to
a slight misalignment between the sign changes in χ′′ and χ′′

B.

that of a symmetric superposition of the five nearest
neighbors (on the lattice) of site i which are not located
on the same cluster. Due to that, we can interpret these
orbitals as a proxy for the aforementioned symmetric
superposition. The current operators in Eq. (S20) can
therefore be interpreted as a proxy for the average (hence
normalization by

√
5) current between these five nearest-

neighbor sites and the corresponding cluster site. Since
there is no specific direction in the lattice associated
with these currents, we did not specify a superscript a in
Eq. (S20). We emphasize that this correspondence is not
exact since the first bath sites are non-interacting orbitals
that belong to the dynamical mean field. Correlators
involving j1 or j2 do not enter the results shown in the
main text.

We compute χ[jai , j1] and χ[j1, j2] to estimate the be-
havior of nearest-neighbor and next-nearest-neighbor cur-
rent susceptibilities, respectively. Their spectra, includ-
ing the corresponding bubble contribution, are shown in
Fig. S3(a,b). The spectra of the full susceptibilities again
show a similar plateau as observed for the local current
susceptibility. Figure S3(c,d) shows the ratio between full
susceptibility and bubble contribution. Similarly to the
local current susceptibility, the ratio is somewhat close to
1 for |ω|, T > TNFL and becomes large for |ω|, T < TNFL,
suggesting that vertex contributions are important also
on the nonlocal level in this region.

In Fig. S4, we further illustrate that χ′′[jai , j1] and
χ′′[j1, j2] show ω/T scaling very similar to χ′′[jai ]. Since
the behavior of the nonlocal susceptibilities is qualitatively
similar to that of the local susceptibility, we expect that
the full nonlocal current susceptibility χ′′

nl[j], in contrast
to its bubble contribution χ′′

B,nl[j], will show similar ω/T
scaling as χ′′[jai ]. As discussed in the main text, we expect
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FIG. S4. Current spectra versus frequency (left columns) and
versus ω/T (right columns). (a,b) Local current spectrum.
(c,d) Proxy to the nearest-neighbor current spectrum. (e,f)
Proxy to the next-nearest-neighbor current spectrum.

that the full inclusion of vertex contributions in χ′′
nl[j] will

ameliorate or fully avoid the artifacts seen in Fig. 3(c)
for the resistivity ρ(T ): (i) in the NFL region, the nearly-
T -linear behavior will become fully-T -linear; and (ii) in
the FL-to-NFL crossover region, the shoulder will become
less prominent or disappear.

E. Drude weight

In this section, we discuss the Drude weight of Eq. (S6),
D/π = χ′[ja0 ](0)− ⟨K̂⟩. According to Eq. (S5), if D ̸= 0
that would imply (i) a δ(ω) contribution to σ′(ω) and
therefore zero resistivity (i.e., persistent currents), and
(ii) a 1/ω contribution in σ′′(ω). Since our study of σ(ω)
considers only non-superconducting solutions at T > 0,
we expect that our system does not support persistent
currents and D = 0. Accordingly, we have set D = 0 for
all results shown in this manuscript.
As a consistency check, we have also computed the

Drude weight directly. This is a difficult task, since the
numerical challenges involved in computing χ′[ja0 ](0), a
uniform, zero-frequency susceptibility, and ⟨K̂⟩, a local,
equal-time expectation value, are quite different. More-
over, our computation of χ′[ja0 ] involves a rather crude
approximation [Eq. (6) of the main text]. Nevertheless,
we find |D|/π to be remarkably small, <∼ 10−3, with an
estimated numerical uncertainty that is likewise of the
order of 10−3. This justifies our choice to set D = 0.
Below, we describe how we obtained these values.

Figure S5 shows the Drude weight D/π, with the static
current response χ′[ja0 ](0) computed via Eq. (6) in the

FIG. S5. The Drude weight D/π = χ′[ja0 ](0)−
〈
K̂
〉
vs. tem-

perature. For the upper (or lower) row of the legend, χ′[ja0 ](0)
was approximated as χ′

B[j
a
0 ](0) (or χ

′
B[j

a
0 ](0)+χ′

vtx[j
a
i ](0)), i.e.,

using only the bubble contribution (or including also the local
vertex contribution). When computing these χ′[j](0) terms via
the Kramers–Kronig transformation (S9), we either integrated
over all ω ∈ R (solid lines) or only high frequencies |ω| > TNFL

(dashed lines). Since solid and dashed lines almost match,
χ′[j](0) is governed by high-frequency contributions, where
NRG has poorer frequency resolution. From that perspective,
the values for the Drude weight found here, D/π <∼ 10−3, are
remarkably close to the expected value of zero.

main text. Both the bubble contribution χ′
B[j

a
0 ](0) and

our locally vertex-corrected result χ′
B[j

a
0 ](0) + χ′

vtx[j
a
i ](0)

show a deviation from ⟨K̂⟩ of the order of 10−3. The
inclusion of χ′

vtx[j
a
i ](0) slightly reduces this deviation

at low T but slightly increases it at high T . The solid
and dashed lines in Fig. S5 compare results obtained by
computing the χ′[ja0 ](0) contributions via the Kramers–
Kronig transform (S9) in two ways, either including the
spectral weight from all frequencies, ω ∈ R (solid), or
only from large frequencies, |ω| > TNFL (dashed). Since
the solid and dashed lines almost match, the contribution
to D from low frequencies |ω| < TNFL (including the
contribution from the plateau in χ′′

vtx[j
a
i ](ω)) is negligible.

Therefore, the non-fulfillment of D = 0 is mainly due to
inaccuracies at high frequencies.

High-frequency inaccuracies are to be expected in NRG
spectra, due to the use of logarithmic discretization and an
asymmetric log-Gaussian broadening kernel (cf. Eqs. (17)
and (21) from Ref. [62]), which can lead to slight shifts
in spectral weight. The broadened spectral function is
evaluated on a logarithmic frequency grid and approx-
imated by linear interpolation between grid points. In
practice, this means that if a discrete spectrum of the
form χ′′(ω) =

∑
j χ

′′
j δ(ω − Ej) is broadened, the integral

of the broadened spectrum can differ slightly from the
actual weight,

∑
j χ

′′
j , typically by an amount ∼ O(10−3).

As a result, the Kramers–Kronig transformation used to
compute χ′(0) = −P

∫
χ′′(ω)/ω usually induces an er-

ror ∼ O(10−3), compared to the result directly computed
from the discrete data, χ′(0) = −

∑
j χ

′′
j /Ej . Since our ap-

proximation of χ′′[ja0 ](ω) involves the bubble contributions
χ′′
B[j

a
0 ](ω) and χ′′

B[j
a
i ](ω) which are only available as broad-
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ened spectral functions, direct computation of χ′
B[j

a
0 ](0)

from discrete data is not possible. All of the aforemen-
tioned issues, on top of the approximation (6), can lead to
inaccuracies in the spectral weights and their correspond-
ing frequencies. We have checked that shifting spectral
positions by O(1%), i.e., ω → (1±10−2)ω and normalizing
the spectra accordingly, i.e., χ′′(ω) → (1± 10−2)−1χ′′(ω),
is sufficient to change χ′[ja0 ](0) by O(10−3). For all these
reasons, we estimate the numerical uncertainty of our
determination of the Drude weight D to be at least of the
order of 10−3.

S-III. SCALING FUNCTION

In the main text, we proposed the phenomenological
ansatz χ̃′′(ω, T ) to capture the Xxz and current spectra
in the NFL region. In the limit of |ω| ≪ TNFL, the
ansatz is governed by the scaling function (5), X (x) =
X ′(x)− iπX ′′(x). To ease future referencing, we duplicate
the ansatz (4) and its relation (5) to the scaling function
here:

χ̃′′(ω, T ) = χ0

∫ TNFL

T

dϵ

π

(1− e−
ω
T )( ϵ

T )
νbT

(ω − aϵ)2 + (bT )2
, (S21)

χ̃(ω, T ) ≃ X ′
0

( T

TNFL

)
+ X ′

(ω
T

)
− iπX ′′

(ω
T

)
, (S22)

In this Section, we motivate the ansatz, derive the scaling
function, and provide the detail of the fitting, for the Xxz

susceptibility. The discussion for other susceptibilities
showing a plateau and scaling in the NFL region (e.g.,
the current susceptibility) is analogous.

We start with representing the greater correlation func-
tion χ>[X

xz] in terms of a superposition of coherent
excitations,

χ>[X
xz](t) = −iθ(t)⟨Xxz(t)Xxz⟩ (S23)

≃ χ̃>[X
xz](t) = −i

∫ TNFL

T

dϵ
( ϵ

T

)ν

e−i(aϵ−ibT )t .

These coherent excitations have mean energy aϵ, decay
rate bT , and a power-law density of states with exponent
ν. We assume that the spectrum of this ansatz,

χ̃>[X
xz](ω) = −i

∫ ∞

0

dt ⟨Xxz(t)Xxz⟩eiω
+t , (S24)

χ̃′′
>[X

xz](ω) = − 1

π
Im χ̃>[X

xz](ω) ,

captures the low-frequency behavior, |ω| < TNFL. High
frequencies |ω| > TNFL are not governed by the quantum
critical point and contain information on the local-moment
behavior which is not of interest here. The spectrum
should also fulfill the fluctuation-dissipation theorem,

χ̃′′
>[X

xz](−ω) = −1− e−ω/T

1− eω/T
χ̃′′
>[X

xz](ω) , (S25)

which mainly affects and constrains the very low-frequency
spectrum, |ω| <∼ T . We therefore use our ansatz (S23)
to compute the ω > 0 part of the spectrum (S24) and
we then determine the ω < 0 part via Eq. (S25), i.e., we
enforce Eq. (S25).

The spectrum of the corresponding retarded correlator
is given by

χ̃′′[Xxz](ω) = (1− e−ω/T )χ̃′′
>[X

xz](ω) , (S26)

which leads to the ansatz (S21) for ω > 0. The ω < 0 side
is given by the oddity, χ̃′′[Xxz](−ω) = −χ̃′′[Xxz](ω). The
real part is obtained via the Kramers–Kronig relation,

χ̃′[Xxz](ω) = P
∫ ∞

−∞
dω′ χ̃

′′[Xxz](ω′)

ω − ω′ . (S27)

To get the scaling function X ′′, we take the limit of
TNFL → ∞ in Eq. (S21). (This limit exists for ν < 1,
while our data shows ν ≃ 0.) Equation (S21) is then a
function of x = ω/T ,

X ′′(x) = χ0

∫ ∞

1

dy

π

(1− e−x)yνb

(x− ay)2 + b2
, x > 0 , (S28)

X ′′(−x) = −X ′′(x) .

In Eq. (S27), χ̃′[Xxz](ω) is singular in TNFL/T → ∞ if
ν ≥ 0. Therefore, we split the real part into a potentially
singular static part, χ̃′[Xxz](0), and a non-singular part,
χ̃′[Xxz](ω)− χ̃′[Xxz](0). Using

1

ω − ω′ −
1

−ω′ =
ω

(ω − ω′)ω′ ,

we can take the TNFL/T → ∞ limit of the non-singular
χ̃′[Xxz](ω)− χ̃′[Xxz](0) part,

X ′(x) = P
∫ ∞

−∞
dx′ xX ′′(x′)

(x− x′)x′ . (S29)

This defines the scaling function X (x) = X ′(x)− iπX ′′(x).
For the potentially singular static contribution

χ̃′[Xxz](0), we cannot safely take the TNFL → ∞ limit.
In the TNFL/T ≫ 1 limit, the spectral part χ̃′′[Xxz](ω)
sharply drops to zero for |ω| > TNFL, so that we can
approximate χ̃′[Xxz](0) ≃ X ′

0(T/TNFL), with

X ′
0(y) = −P

∫ y

−y

dx′ X ′′(x′)

x′ . (S30)

X ′
0(T ) describes the contribution of the excitations within

the NFL region to the static response,

χ′
NFL(0) = −P

∫ TNFL

−TNFL

dω′ χ
′′(ω′)

ω′ . (S31)

The remaining contribution from high-energy excitations,

χ′
high(0) = χ′(0)− χ′

NFL(0) , (S32)



S7

FIG. S6. (a) χ′′[Xxz](ω) and (b) χ′′[j](ω) (solid lines) versus
scaling function X ′′(x) (black dashed line). The grey shaded
area indicates the deviation when fitting at different tempera-
tures. Only curves used in the fitting process are shown, the
ticks on the color bar at the top indicate the temperature, and
the color range is the same as in Fig. 3 of the main text. (c,d)
Corresponding real parts. Insets: NFL contribution to the
static susceptibility. (e,f) Fit parameters at different tempera-
tures. The 95% confidence interval is smaller than the symbol
size.

may dominate the temperature dependence of χ′(0). In
that case, X ′

0(T/TNFL) only governs χ′
NFL(0) but not χ

′(0).
This is for instance the case for the static current sus-
ceptibility, where only χNFL[j]

′(0) follows X ′
0(T ). On the

other hand, χ′[Xxz](0) is well described by X ′
0(T ) up to

an additive constant.

We determine the parameters a, b, ν and χ0 in Eq. (S28)
by fitting logarithms of χ′′

>(ω) to the logarithm of our
scaling ansatz (S28). We employ a least-square fit on a
logarithmic frequency grid with 20 grid points per decade
and frequencies between ωmin = 10−9 and ωmax = TNFL/4,
i.e., we stay well below the crossover temperature TNFL.
Our fits are done for seven logarithmically spaced tem-
peratures between (TFL ≪)10−6.5 and 10−5(≪ TNFL), i.e.,
for temperatures well separated from the crossover tem-
peratures TFL and TNFL. We then determine a scaling
curve by the geometric average over the fitted curves at
different temperatures. The largest deviations from the
geometric average serve as an error bar. X ′(x) and X ′

0(T )
are determined via Eqs. (S29) and (S30), respectively.

Figure S6(a–d) shows the fitting result for χ′′[Xxz](ω)
and χ′′[j](ω). In both cases, our ansatz fits our data
very well, with all temperatures yielding very similar
curves (the grey area, indicating the largest deviations
from the geometric mean, is relatively small). Fig. S6(e,f)

FIG. S7. Effect of log-Gaussian broadening width σ = α lnΛ
on the fit parameter b for (a) χ′′[Xxz](ω) and (b) χ′′[j](ω).

shows the results for the fit parameters a, b and ν. The
fitting parameters for both χ′′[Xxz](ω) and χ′′[j](ω) are
very similar and the variation with temperature is small.
We note that the fits for the highest temperatures are
a little less reliable because the plateau in χ′′(ω) is not
that well developed yet. Most important to us is the
result for b, which varies between 1.153 at T = 10−6.5

and 1.005 at T = 10−5 for χ′′[Xxz](ω) and between 1.130
at T = 10−6.5 and 0.999 at T = 10−5 for χ′′[j](ω). Thus,
our results are consistent with Planckian dissipation, i.e.,
the lifetime of Xxz or current excitations is τ ≃ 1/T , up
to a prefactor close to 1.

The fit parameters also depend on how the discrete
spectral data from NRG is broadened. For our scaling
analysis, we used both a log-Gaussian broadening ker-
nel (cf. Eq. (17) of Ref. [62]) with width σ = 0.7 lnΛ
(Λ = 3) and the derivative of the Fermi-Dirac distribution
with width γ = T/10 (cf. Eq. (21) of Ref. [62]) as linear
broadening kernel. The broadening parameters are chosen
such that the data is almost underbroadened (i.e., dis-
cretization artifacts become visible for smaller broadening
width). In Fig. S7, we show the effect on b of varying the
width σ = α lnΛ of the log-Gaussian broadening kernel.
Most importantly, b remains of order 1 and changes from
b ≃ 1.4 for α = 0.4 (underbroadened) to b ≃ 0.66 for
α = 1.2 (overbroadened). Interestingly, the parameter b
which determines the decay rate decreases with increasing
broadening width. The linear broadening parameter γ
(not shown) appears to have the converse effect, i.e., lower
γ leads to lower b and vice versa.

The scaling function S(x) for the optical conductivity
follows from the scaling function X (x) for the current
susceptibility,

Tσ(ω) = S(x) = − 1

ix
X (x) = S ′(x) + iS ′′(x) ,

S ′(x) =
π

x
X ′′(x) , (S33)

S ′′(x) =
1

x
X ′(x) = P

∫ ∞

−∞
dx′ X ′′(x′)

(x− x′)x′ .

We show and discuss the scaling of the real part of σ in
the main text; the scaling of the imaginary part is shown
in Fig. S8(b).
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FIG. S8. (a) Imaginary part of the optical conductivity at
different temperatures. σ′′(ω) becomes negative around ω <∼
10−3. (b) Dynamical scaling of the imaginary part. In the
NFL region, all curves fall onto the scaling curve S ′′(ω/T ).
Data at ω > 10−3 has been omitted for clarity.

S-IV. COMPLEX OPTICAL CONDUCTIVITY

In this section, we provide data on the imaginary part
of the optical conductivity. Further, we make contact
with recent experimental data on CeCoIn5 from Ref. [65],
where the dynamical scattering rate τ−1(ω) and the dy-
namical effective mass m∗(ω) were studied. Even though
CeCoIn5 has a strange-metal-like τ−1(0) ∝ ρ(T ) ∝ T ,
the authors of Ref. [65] found that both the freqnency
dependence of τ−1(ω) and the temperature dependence
of the renormalized scattering rate τ∗−1 = τ−1(0)/m∗(0)
show FL-like ω2 and T 2 behavior, respectively. We make
contact with these surprising experimental findings by
showing that in our CDMFT+NRG data, (i) τ−1(ω) ∝ ω2

holds at low frequencies (|ω| <∼ T ) throughout the strange-
metal region TFL < T < TNFL; and (ii) τ∗−1 ∝ T 2 holds
for TNFL/10 <∼ T < TNFL while deep in the strange metal,
τ∗−1 ∝ T holds.
The imaginary part σ′′(ω) = Imσ(ω) is shown in

Fig. S8. As expected from our discussion on σ′, also
σ′′ exhibits ω/T scaling in the NFL region, where it is
well described by the scaling curve S ′′(x).

Following Ref. [65], we define the ω-dependent transport
scattering rate τ−1(ω) and effective mass m∗(ω),

τ−1(ω) = Re

[
1

σ(ω)

]
, m∗(ω) = − 1

ω
Im

[
1

σ(ω)

]
, (S34)

σ(ω) =
1

τ−1(ω)− iωm∗(ω)
. (S35)

Since we are interested in the qualitative frequency and
temperature dependence of these quantities, we omitted
the constant prefactors in Eq. (1) of Ref. [65]. Note that
τ−1(0) = τ−1

0 = ρ(T ), which is shown in Fig. 3(c) of the
main text. In a normal FL (without disorder) exhibiting a
usual Drude peak in σ(ω), we expect τ−1

0 ∼ T 2, τ−1(ω) =
τ−1
0 + aω2, while m∗(ω) ≃ m∗(0) = m∗

0 is expected to be
a temperature-independent constant.
Figure S9(a) shows our results for τ−1(ω). It shows

a peak around |ω| = TNFL where the hybridization gap
forms and then decreases towards ω = 0. There, τ−1(0) =
τ−1
0 = ρ(T ) ∝ T for TFL < T < TNFL. At intermediate

FIG. S9. Frequency dependence of (a) the transport scattering
rate τ−1(ω), (b) the effective mass m∗(ω), and (c) τ−1(ω)−
τ−1
0 , where τ−1

0 = τ−1(0) = ρ. (d) Temperature dependence
of τ∗−1 = τ−1

0 /m∗
0 and m∗

0 = m∗(0).

frequencies within the NFL region (max(TFL, T ) < |ω| <
TNFL), τ−1(ω) has a non-trivial ω- and T -dependence
and does not seem to follow a simple power law with
possible logarithmic corrections. In this region, the optical
conductivity does not fit to a usual Drude peak. This
non-Drude behavior is most clearly visible from our data
for σ′(ω, T ) [Fig. 3(a) in the main text], which shows a
ω−1 dependence in the NFL region, while a usual Drude
peak would imply an ω2 dependence. Similar non-Drude
behavior of the optical conductivity has been observed in
YbRh2Si2 [16, 18].

Remarkably, in the NFL region (TFL < T < TNFL) at
low frequencies |ω| <∼ T , we also find τ−1(ω)− τ−1

0 ∼ ω2

similar to a FL, cf. Fig. S9(c). An ∼ ω2 dependence of
τ−1(ω) has also been found in CeCoIn5, cf. Fig, 4(a,c)
of Ref. [65] and its discussion. However, an important
difference to normal FL behavior lies in the temperature
dependence of the ω2 prefactor of τ−1(ω)−τ−1

0 = a(T )ω2:
in the NFL strange-metal region, a(T ) is temperature
dependent, which is not the case in a normal FL phase.
At low frequencies, m∗(ω) ≃ const. [c.f. Fig. S9(b)] and
τ−1
0 ∼ 1/T , hence the ω/T scaling of σ(ω, T ) we have
shown in this work dictates a(T ) ∼ 1/T . This is in line
with the data shown in Fig. S9(c).

We emphasize that in our results, τ−1(ω) is not propor-
tional to −ImΣ(ω) (without vertex contributions, a pro-
portionality would be expected). In our CDMFT+NRG
approach to the PAM, −ImΣ(ω) has a logarithmic fre-
quency and temperature dependence, cf. Figs. 11 and 12
of Ref. [39]. The frequency and temperature dependence
τ−1(ω) discussed above is different from that. This again
directly illustrates the importance of vertex contributions.
In an MFL [68] as it appears for instance in the Yukawa–
SYK approach [28] with interaction disorder, the strange-
metal behavior arises due to a dominant bubble contri-
bution and therefore τ−1(ω) ∼ −ImΣ(ω) ∼ max(T, |ω|)
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FIG. S10. (a) Scattering rate τ−1
0 = ρ(T ) versus temperature

for T <∼ TNFL ≃ 1.5 · 10−4 for the PAM. Green squares are
data points, and the blue line is a spline interpolation that
serves as a guide to the eye. (b) Scattering rate τ−1

0 (green
squares) and rescaled resistivity (blue line) for CeCoIn5 close
to its coherence temperature T ∗ = 40K. The data in (b)
is adapted from Fig. 4(b) of Ref. [65]. (c) Renormalized
scattering rate (blue circles) and effective mass (red squares)
versus temperature for the PAM. The black dashed line is
a quadratic fit to the renormalized scattering rate in this
temperature region. (d) Renormalized scattering rate (blue
circles) and effective mass (red squares) versus temperature
for CeCoIn5, adapted from Fig. 4(d) of Ref. [65].

would be linear in frequency.
Figure S9(b) shows m∗(ω). In the NFL region (TFL <

T < TNFL), m
∗(ω) is strongly frequency dependent around

the NFL scale, ω ≃ 10−3–10−4 ≃ TNFL, and then saturates
to an almost frequency and temperature-independent
value m∗(ω) ≃ m∗(0) = m∗

0. The weak frequency and
temperature dependence of m∗(ω) does not seem to follow
a simple power law. Interestingly, even though there are
no well-defined QPs in the strange-metal region, there
nevertheless seems to be a somewhat well-defined effective

mass m∗
0. We emphasize though that in the NFL region,

m∗
0 ≃ 5 · 104 ∼ 10/TNFL is orders of magnitude smaller

than in the FL region, where m∗
0 ≃ 1.5 · 107 ∼ 1/TFL,

cf. Fig. S9(d). The effective mass in the NFL region is
therefore decisively distinct from the QP mass in the
low-temperature FL region.

In Fig. S9(d), we show the temperature dependence of
the renormalized scattering rate τ∗−1 = τ−1

0 /m∗
0 (blue),

together with m∗
0 (red). Deep in the NFL region, we

find τ∗−1 ∼ T , since τ−1
0 ∼ T and m∗

0 = const. In-
terestingly, in the crossover region between T ≃ TNFL

and T ≃ 10−1TNFL, τ
∗−1 deviates from the linear-in-T

behavior and is consistent with FL-like T 2 behavior.

A similar T 2 behavior was reported for CeCoIn5 in
Ref. [65], where this behavior was interpreted as evi-
dence for a hidden Fermi liquid. Our calculations suggest
that the T 2 behavior is rather a crossover behavior and
measurements at lower temperatures are necessary for a
definite conclusion. Such measurements are presumably
not possible in CeCoIn5 due to its relatively high Tc. A
promising candidate material to clarify whether τ∗−1 ∼ T
or ∼ T 2 may be YbRh2Si2. To emphasize the similarity
between the experimental data on CeCoIn5 and our re-
sults on the PAM more visually, we show the resistivity
ρ(T ) of the PAM in Fig. S10(a) on a linear scale in the
crossover region, next to the corresponding experimental
data on CeCoIn5 [Figs. S10(b)], adapted from Fig. 4(b)
of Ref. [65]. In Figs. S10(c) and (d), we further show the
data for the renormalized scattering rate and the effec-
tive mass for both the PAM and CeCoIn5, respectively
(adapted from Fig. 4(d) of Ref. [65] for the latter). The
experimental data on CeCoIn5 and our numerical data on
the PAM show remarkable qualitative agreement in the
crossover region: (i) the resistivity has a broad maximum
and turns to linear-in-T ; (ii) the renormalized scattering
rate τ∗−1 ∝ T 2; and (iii) the effective mass m∗

0 increases
with temperature in a remarkably similar fashion.
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