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Abstract

Scattering, especially multiple scattering, is a well known problem
in imaging, ranging from astronomy to medicine. In particular it is
often desirable to be able to perform non-invasive imaging through
turbid and/or opaque media. Many different approaches have been
proposed and tested through the years, each with their own advan-
tages, disadvantages, and specific situations in which they work. In
this tutorial we will show how knowledge of the correlations arising
from the multiple scattering of light allows for non-invasive imaging
through a strongly scattering layer, with particular attention on the
practicalities of how to make such an experiment work.

1 Introduction

Most objects around us are opaque. Which is good, because otherwise we
wouldn’t be able to see them. But the perk of being visible comes with
the disadvantage of occluding anything behind them. There are many pos-
sible ways to deal with this problem, first and foremost is the option of
physically removing the opaque obstacle, thus gaining direct line of sight to
what we actually want to see, but they all come with their own advantages
and disadvantages (for recent reviews of the topic see [1, 2, 3]). In partic-
ular, techniques like optical clarification [4] are invasive, meaning that they
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strongly modify the sample. This can be undesirable, so there is a push to de-
velop non-invasive imaging techniques able to see things through an opaque
medium.
In this paper we will focus on one such technique, which exploits the opti-
cal memory effect (which we will discuss in detail later) to reconstruct the
image of an object hidden behind a scattering screen. This technique was
originally developed under the name Stellar speckle interferometry, in the
context of ground-based astronomy, where the Earth’s atmosphere acts as
the scattering medium [5], but the same idea was later successfully applied
to x-ray scattering [6, 7] and optical microscopy [8, 9]. This tutorial aims
at providing a self-contained introduction to the technique, and a practical
guide on how to set up an optical experiment and analyze the resulting data.

2 Light scattering

There are two optical phenomena that make objects visible to us: absorption
and scattering. Green glass is mostly transparent (you can see through it),
but since the other colors are largely absorbed by it, we perceive it as green.
On the other hand clouds absorb very little, but they scatter sunlight, thus
appearing white and opaque (dark clouds are still white, just thick enough
that most sunlight is scattered back into space instead of reaching us.) As
a rule of thumb absorption will make a signal weaker, while scattering will
scramble it, with the scrambling being a much harder problem to tackle than
the weakening (at least at the conceptual level). Following the time-honored
tradition of breaking a difficult problem into smaller easier problems and
tackling them one at the time, in the following we will forget about absorp-
tion and focus on the scrambling due to scattering.

2.1 Modeling multiple scattering

The theory of wave multiple scattering is now well established, with several
reviews [10, 11, 12] and textbooks [13, 14, 15] devoted to it. In the following
we will need only a few results from it, so here we will be content with a
simplified intuitive picture. In a uniform and isotropic scattering medium,
the average intensity of the unscattered light will decay exponentially with
the distance x from the source: Iballistic = I0e

−x/ℓs(Lambert-Beer law), where
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ℓs is the scattering mean free path, i.e. the typical distance between two
scattering events. We can think of the scattering events to form an extended
source, whose intensity will also decay exponentially, forming a source for
twice-scattered light, etc. After n scattering events, the total average inten-
sity will be a exponential distribution convolved n times with itself. This is
not an easy calculation to do for an arbitrary n, but if we make the assump-
tion that n ≫ 1, i.e. we are in the multiple scattering regime, we can invoke
the central limit theorem. This tells us that the nth convolution of identical
distributions with finite variance will always converge to a Gaussian distribu-
tion. Using the fact that in three dimensions the variance of the exponential
distribution is σ2 = 6ℓ2s we can write

I(r) =
I(r0)

(2πn6ℓ2s)
3/2

e
− |r−r0|

2

2n6ℓ2s =
I(r0)

(12πℓsvt)
3/2

e−
|r−r0|

2

12ℓsvt =
I(r0)

(4πDt)3/2
e−

|r−r0|
2

4Dt ,

(1)
where we estimated the number of scattering events as the total path vt
(where v is the speed of light in the medium, and t the elapsed time) di-
vided by the scattering mean free path ℓs, and defined the diffusion constant
as D = vℓs/3. This is the well known bulk solution of the diffusion equa-
tion, which tells us that the propagation of light intensity in the multiple
scattering regime is not very different from heat propagation. Which in
retrospect is not overly surprising, as both can be thought as the average
over Brownian random walks, and thus both satisfy the diffusion equation
∂
∂t
I(r, t) = D∇2I(r, t).

A full discussion of the properties of the diffusion equation is beyond the
scope of this tutorial, but there are a couple of important features that are
worth mentioning:

1. The total amount of light transmitted through a scattering layer de-
creases with the layer thickness L as ℓs/L.

2. A point source on one side of a scattering slab will produce a bell-
shaped intensity distribution of width ∼ L on the other side. This
explains why a thick enough scattering medium appears opaque.

The first point is good news, as it tells us that some signal can pass through
even relatively thick scattering media. On the other hand the second point
is very bad news, as it makes difficult to form any good image through
scattering media thicker than a few mm.
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Figure 1: Left panel: When a coherent beam of light passes through a scatter-
ing medium, it forms a speckle pattern, composed by bright dots (speckles)
surrounded by darker regions. Right panel: If the source spatial coherence
is low (but its temporal coherence is still high) the speckle pattern will not
average out, but will take a shape that depends on the shape of the source.

2.2 Interference and speckle

Thankfully, not everything is lost, as in modeling light propagation in scat-
tering media we forgot an important point: light is a wave, and thus it
interferes. This doesn’t seem like a big deal at first sight, but it has a num-
ber of important consequences. The first one is that the light transmitted
through a scattering slab won’t be a shapeless blob, but will have a lot of
internal structure. To see why, we can think about the field propagation as
entering the scattering medium, performing a random walk, and then exiting
the medium. Light doesn’t actually do that (thinking about photons per-
forming a random walk is a common misconception [16]), but it turns out
that the average over all possible random walks yields the same result as the
proper calculation. Since the amount of phase accumulated depends on the
path length, the average field at each point on the output surface will be
the sum of a lot of random terms. To perform this sum we can invoke the
central limit theorem (again) and find that both the real and imaginary parts
of the field are normally distributed. By making a change of variable from
real and imaginary part, to intensity and phase, we find that the phase is
uniformly distributed, and the intensity follows the exponential distribution
p(I) = 1

⟨I⟩e
−I/⟨I⟩ (this is for polarized light. If the light is not polarized,

the result is slightly more complicated [17]), where ⟨.⟩ represents the aver-
age. An important property of p(I) is that its standard deviation is equal to
its average, meaning that the intensity pattern after the scattering medium
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Figure 2: The speckle correlation due to the optical memory effect decreases
rapidly if |∆ka|L ≫ 1, but for small values of |∆ka|L there is a perfect
correlation.

will fluctuate spatially from a maximum to zero, taking the shape of bright
patches (speckles) surrounded by dark patches (see fig.1). This speckle pat-
tern appears to be random, but actually encodes a lot of information about
both the scattering medium and the light illuminating it.

2.3 The optical memory effect

Despite how it appears, speckle patterns actually encode a lot of information
about both the scattering medium and the light illuminating it. Teasing out
some of this information will be the goal of the rest of this tutorial paper,
and to do so we need to investigate speckle correlation. The fact that speckle
is correlated means that the intensity at one point is not independent from
the intensity at another point, as in the simplified model we used above. So
we need a slightly better model.
We assume our scattering medium is a slab of infinite dimensions in both
x and y, and with a thickness L along z. We then define the correlation
between the intensity due to an incident plane wave with wavevector ka,
emerging in the direction kb (Ia,b) and the intensity due to an incident plane
wave with wavevector ka′ , emerging in the direction kb′ (Ia′,b′) as

CI
a,a′,b,b′ =

⟨δIa,b δIa′,b′⟩
⟨Ia,b⟩ ⟨Ia′,b′⟩

, (2)
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where δI = I − ⟨I⟩ represent the fluctuations from the average. The calcu-
lation is not difficult but it is long, so we refer the interested reader to the
literature [18, 19] and simply state the result that, if we are far away from
the Anderson localization transition, the leading term has the form

C(1)
a,a′,b,b′ = δ∆ka,∆kb

(
|∆ka|L

sinh |∆ka|L

)2

, (3)

where ∆ka = ka − ka′ , and δ is a Kronecker delta. This formula can be
interpreted as follows: if we illuminate a scattering slab with a plane wave
of wavevector ka, we produce a speckle pattern in transmission (and one in
reflection). As shown in Fig. 2, if now we change the angle of incidence by a

small amount |∆ka|, so that
(

|∆ka|L
sinh |∆ka|L

)2
∼ 1, the resulting speckle pattern

will still be highly correlated with the previous one (i.e. they will look the
same), but also rotated by |∆kb| = |∆ka|. This is known as the optical mem-
ory effect. In the other limit, if |∆ka|L ≫ 1, the correlation will be small,
and the two speckle patterns will be very different from each other. As a
rule of thumb, the angular range over which this effect is significant, is of
the order of λ/L. If we illuminate with a finite-sized beam instead of a plane
wave, the Kronecker delta in equation 3 must be replaced with the square
of the Fourier transform of the incident beam profile, which will determine
the speckle shape and extension [14]. It is worth noticing that if we look in
reflection instead of in transmission, we get the same correlation term, but
instead of L we need to use ℓs in equation 3, which leads to a much bigger
effective range for the memory effect.
This is by far not the only correlation that arises from wave scattering
through a slab, but it is the strongest (albeit short-ranged), and it will enable
us to perform non-invasive imaging through a scattering medium.

3 Speckle interferometry theory

Consider an object that either emits or reflects light with an intensity de-
scribed by the function O(r0), hidden behind a scattering screen of thickness
L. If the light coming from the object is broadband (i.e. its temporal co-
herence is too low) the speckle patterns generated by each frequency will
average out, but if the light has a long coherence length (or, equivalently, if
our detection is narrow-band enough), the light coming from the point r0 on
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the object will produce a speckle pattern S(r0, rd) at position rd [20]. If the
spatial coherence of the source O is low enough, these speckle patterns will
not interfere, but their intensities will sum, resulting in a measured intensity

I(rd) =

∫
O(ro)S(ro, rd) d

2ro, (4)

i.e. the speckle pattern S acts as a point spread function. This intensity I(rd)
can be measured, but doesn’t really resemble the shape of the object we are
interested in imaging (see fig.1). To proceed we take an autocorrelation of
the measured intensity:

[I ⋆ I](∆rd) =

∫
I(rd) I(rd +∆rd)d

2rd =

=

∫ [(∫
O(ro)S(ro, rd)d

2ro

)(∫
O(yo)S(yo, rd +∆rd)d

2yo

)]
d2rd =

=

∫∫
O(ro)O(ro)

(∫
S(ro, rd)S(yo, rd +∆rd) d

2rd

)
d2rod

2yo

=

∫
O(ro)O(yo)

(
[S ⋆ S] (ro,yo,∆rd)

)
d2rod

2yo .

(5)
where y0 is a dummy variable and ⋆ represents the correlation product (notice
that all functions here are real-valued, so we omit any complex conjugate).
We would now like to rewrite S ⋆ S in terms of the speckle correlation CI .
This can be done in 2 steps: first we need to specialize eq.2 to our particular
case, where the intensities to be correlated are the speckle patterns generated
by two different points (ro and yo ) and measured at two different points (rd
and rd +∆rd):

⟨δIa,b δIa′,b′⟩ → ⟨δS(ro, rd) δS(yo, rd +∆rd)⟩ . (6)

Assuming that spatial and ensemble averaging are equivalent we can then
rewrite the correlation function as

CI(ro,yo,∆rd) =
[δS ⋆ δS] (ro,yo,∆rd)

⟨S⟩2
≃ C(1) . (7)
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The second step is to write S ⋆ S in terms of δS ⋆ δS:

δS ⋆ δS = (S − ⟨S⟩) ⋆ (S − ⟨S⟩) = S ⋆ S + ⟨S⟩ ⋆ ⟨S⟩ − 2S ⋆ ⟨S⟩ =

=

∫
S(ro, rd)S(yo, rd +∆rd) d

2rd +

∫
⟨S⟩2 d2rd − 2

∫
S(ro, rd) ⟨S⟩ d2rd =

= S ⋆ S − ⟨S⟩2A ⇒ S ⋆ S = δS ⋆ δS + ⟨S⟩2A ,
(8)

where ⟨S⟩ =
∫
S(ro,rd) d

2rd
A

is the average speckle intensity, and A =
∫
d2rd is

the area covered by the speckle pattern.

We can now put together eq.5, eq.7, and eq.8 to obtain

[I ⋆ I](∆rd) =

∫
O(ro)O(yo)

(
[δS ⋆ δS] (ro,yo,∆rd) + ⟨S⟩2A

)
d2rod

2yo =

= ⟨S⟩2
∫

O(ro)O(yo)CI(ro,yo,∆rd)d
2rod

2yo + A ⟨S⟩2
∫

O(ro)O(yo)d
2rod

2yo .

(9)
This is easier to read if we make the change of variables yo = ro + ∆ro

and we identify the first set of integrals as correlations and convolution
products (which we will label with ⋆ and ⊗ respectively), and call ∥O∥2 =∫
O(ro)O(yo)d

2rod
2yo:

[I ⋆ I](∆rd) = ⟨S⟩2
(
[O ⋆ O]⊗ CI + A ∥O∥2

)
. (10)

Apart from a prefactor ⟨S⟩2, which only depends on how much light is illumi-
nating the object O, eq.10 tells us that, by taking the autocorrelation of the
intensity image I we measure, we obtain the autocorrelation of the unknown
object (convolved with the correlation CI), plus a constant background. This
is general for any speckle correlation CI , but not all correlations are equally
useful to retrieve the shape of the object O. As discussed above, we want to
exploit the optical memory effect, so we can approximate

CI ≃ C(1) = δ∆ka,∆kb

(
|∆ka|L

sinh |∆ka|L

)2

= δ∆ro,∆rd

(
2π
λ

|∆ro|
d

L

sinh 2π
λ

|∆ro|
d

L

)2

(11)

where d is the distance between the object and the scattering layer and we
made a small angle approximation (if the angles are big, the second factor in
C(1) goes to zero), so ka ∼ 2π

λ
∆ro

d
, with λ being the wavelength of the incident

beam.

8



3.1 Phase retrieval and the Gerchberg–Saxton algo-
rithm

Even in the most ideal case, where the object sits comfortably within the
optical memory effect range and our illumination beam is wide enough that
we can approximate it as a plane wave, the best we can directly extract from
the intensity we measure is the autocorrelation of the object, not the shape
of the object itself. In a few cases this is enough, e.g. binary stars seen from
a ground-based telescope are usually too blurred by the atmosphere inhomo-
geneities to be able to resolve their angular distance, but if one measures in a
sufficiently narrow band and for a sufficiently short time, one gets a speckly
image whose autocorrelation is the autocorrelation of two small dots [21].
And the autocorrelation of two small dots is 3 small dots, where the distance
from the side ones to the central one is exactly the same as the distance
between the two stars. While this explains why astronomers developed this
approach, in many cases the objects to be imaged are too complex for any
useful information to be gained by just looking at the autocorrelation of the
object.

What one would like to do is to invert the autocorrelation and extract O.
The problem here is that autocorrelation is a lossy operation, so it is not an
invertible operator. Thankfully, if we can make assumptions about O (e.g. in
our case O is real-valued and positive) there are well established techniques
to find an approximation to O starting from O ⋆ O. Even better, if O is at
least two-dimensional (and since here we are dealing with images, we satisfy
this criterion), the solution found by these techniques is unique [22]. We are
not going to prove why these techniques work here, but we will discuss how
they work and how to implement them.
Thanks to the Wiener–Khinchin theorem we know that the Fourier trans-
form of the autocorrelation of a function is equal to the modulus squared
of the Fourier transform of the function itself, i.e. F [O ⋆ O] = |F [O]|2, and
thus we can directly extract the modulus of the Fourier transform from the
autocorrelation. What we still need to be able to reconstruct O is the phase
of the Fourier transform, but almost all possible phases will result in a image
that violates our initial assumptions when we perform the inverse Fourier
transform, with the only exception being the correct phase.

To iteratively search for this phase, the Gerchberg–Saxton algorithm
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starts from a guess of the true object O (the better the guess the faster the
convergence, but even very bad guesses will eventually converge to the correct
solution), Fourier transform it, substitute the (wrong) amplitude with the one
extracted from the autocorrelation, and Fourier transform back. Since the
phase was wrong, what we get is not a real and positive function, but to
nudge the algorithm in the right direction we can set to zero every pixel in
the image that does not satisfy these constraints. We now have a slightly
better guess than we had before, and we can repeat the whole process again
and again, until the autocorrelation we measured and the autocorrelation
of our new best guess are close enough to satisfy us. As one can imagine,
setting to zero every pixel that doesn’t satisfy our constraints is harsh, and
while the algorithm works, it converges slowly and tends to get stuck for
long periods of time. A better solution is to nudge slightly the values of
the pixels that don’t satisfy our constraints at each iteration, but of course
there is an innumerable number of ways to do that, and choosing the best
one is not easy. Thankfully, this hard work has already been done, and it
is now generally accepted that the so-called hybrid input-output algorithm is
the best practical option. To explain the difference, in the Gerchberg–Saxton
algorithm (also known as the error reduction algorithm in this context), the
guess g at iteration k + 1 is updated to the new guess g′ at all points x that
satisfy the constraint γ and set to zero otherwise, i.e.

gk+1(x) =

{
g′(x) x ∈ γ

0 x /∈ γ
, (12)

while in the hybrid input-output algorithm

gk+1(x) =

{
g′(x) x ∈ γ

gk(x)− βg′(x) x /∈ γ
, (13)

where β is a parameter that can be freely adjusted, to optimize the conver-
gence. Empirically, the hybrid input-output algorithm is more erratic than
the error reduction one for β ≫ 1, but also tends to get in the vicinity of
the desired solution much faster. On the contrary, the error reduction algo-
rithm tends to stagnate for long periods, but once it is close to the desired
solution, it will converge to it very reliably. There is no foolproof recipes on
how to use these algorithms, but we have found that cycling some iterations
of the hybrind input-output algorithm while gradually decreasing the value
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of β tends to work in most cases. Like with most iterative methods, the
more iterations one manages to perform, the better the final result will be
(on average), but since these iterations are computationally expensive, one
has to make a judgement call and decide when to stop. Thankfully, mod-
ern GPU acceleration allows one to perform a large number of Fast Fourier
Transforms on large images relatively fast, thus making this computational
approach significantly faster than it was when it was first developed.
One final important point to discuss is what this algorithm can not do: au-
tocorrelations do not contain any information about absolute position, just
relative position between the various points composing the image, so this
algorithm can never retrieve the absolute position of the imaged object. Fur-
thermore, the autocorrelation of a real function is always centrosymmetric,
so the algorithm can not distinguish between the image of the object and the
same image flipped.

4 A simple experimental implementation

As this is a tutorial, we will focus on a minimal implementation of the ex-
perimental apparatus, which is both cheap and easy to build and run. The
main components are:

Light source To satisfy the assumptions of eq.4 we need the temporal co-
herence of the signal to be large enough to generate a speckle pattern,
but the spatial coherence to be low enough that the speckle patterns
generated by different point will not interfere. This can be achieved in
many ways. One is to have the object itself to be fluorescent, which
automatically gives us low spatial coherence, and detect the signal
through a narrow band filter to increase the temporal coherence [8, 23].
Another, simpler, way is to start with a coherent light source (e.g. a
laser), reduce its spatial coherence with e.g. a spinning diffuser, and
use a mask as the object [9]. Depending on the specific arrangement,
you might need some optics to direct the light in the desired direction.

Object Depending on your light source you might need a fluorescent sample,
or a mask that simply allows some of the light to pass through. An
important, and often under-appreciated, point is that you want the
whole object to fit within the optical memory effect range (which, if
L ≫ λ, can be very small), otherwise you will able to measure only a
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part of the autocorrelation O ⋆ O and the iterative algorithm will fail
to reconstruct the object.

Scattering layer To make the experiment simple you want all the incident
light to be scattered, but at the same time the thickness to be small (so
that the optical memory effect range is large). The simplest solution is
to use a ground glass diffuser, which effectively acts as a random phase
mask of negligible thickness.

Detection We want to measure the speckle pattern in the far field, so po-
sition your camera such that each speckle spot is bigger than a pixel,
but not much bigger. If you have constraints in where you can put the
camera, some optics might be necessary. Since, as per eq.10, we want
to measure a relatively small signal sitting on a large background, an
8-bit camera is likely to not have enough dynamic range. We suggest to
have at least a 12-bit dynamic range, but otherwise any camera where
you can access the raw data (i.e. many smartphones are excluded) will
suffice.

4.1 A practical example

In fig.3 we show a basic implementation of the experiment, that nevertheless
contains all the features of more complex apparatuses. A laser beam with
long coherence time is expanded and roughly collimated using two lenses to
form a telescope. A spinning optical diffuser is used to reduce the spatial
coherence of the laser source, and to effectively provide uniform illumination
of the object when a single camera frame integrates over many realizations
of the disorder. The diffuser increases the divergence of the of the expanded
beam, hence perfecting the collimation of the beam expander is not crucial.
Notice that the spinning diffuser is the only piece of this experiment that
is not an off the shelf component. There are a few commercially available
speckle reducers. However, as we are not concerned with mechanical stability
and vibrations here, the simple solution of a ground glass diffuser mounted
on a small electric motor is sufficient.
The simplest possible choice for a sample is a screen that doesn’t let any
light pass through (e.g. a layer of aluminum foil) with a pattern carved into
it. Three holes arranged in a slightly irregular triangle is the simplest non
trivial pattern, and thus the one we use here.
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Figure 3: Photo of the experimental apparatus with the components high-
lighted.
a: Light source (1mW CW polarized HeNe laser).
b+c: Beam expander made from two lenses with focal length -25mm and
300mm respectively.
d: Home-made spinning diffuser to reduce the spatial coherence of the beam.
e: Sample (a piece of aluminum foil with 3 holes).
f: Scattering layer (220 grit ground glass optical diffuser).
g: Camera (Allied Vision Manta G-125B).

The distance d between the sample and the scattering layer is important
because, as per eq.11, it determines the angular size of the object as seen
from the scattering layer, and thus whether it will fit in the memory effect
range. Finally, a camera is placed after the scattering layer to collect the
(scattered) light. This distance, combined with d, will determine how large
the object will appear after the reconstruction [23].

4.2 Data analysis

In fig.1 a typical raw image for both the case when the spinning diffuser is
not moving, and when it is spinning are shown. In the first case we see a very
fine-grained but high-contract speckle pattern, while in the second case, as
per eq.4, we see a relatively slow-varying but low-contrast image. This is the
convolution of the object O (in our case, three dots arranged in a triangle)
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and the unknown speckle S. This data needs to be cleaned before it can be
used.
By looking at fig.1 it is immediately visible that the raw data sits on an
uneven background. This is due to an imperfect illumination and collection
geometry, and while it can be ameliorated with a more careful alignment,
it can never be completely removed. To correct for it we can take multiple
measurements with different realizations of the scattering potential, and in
this example we took 8 separate measurements of I. For the setup shown in
fig.3 one can obtain it by rotating the diffuser (labelled as f in the figure)
by a few degrees each time. In more realistic experiments the scattering
layer might be dynamic and change in time like a biological tissue, so one
can simply take successive shots with the camera. Since the background is
constant but the signal isn’t, we can estimate the background by taking the
average of our measurements Ī, and subtract it from all the measurements
(see fig.4b). We can now proceed to autocorrelate our measurements as in
fig.4c. As expected from eq.10 we can clearly see the autocorrelation of three
dots arranged in a triangle, which is given by a central bright spot and six
dots arranged around it in a hexagon. But contrary to what we expected from
eq.10 we can see a lot of unwanted low-intensity structure in the background.
This is due to the fact that we are only measuring a finite part of the signal,
and thus the integral that gives rise to S ⋆S in eq.5 doesn’t perform a perfect
average. Since we have a number of autocorrelations (I − Ī) ⋆ (I − Ī), we

can ameliorate this problem by averaging them to obtain (I − Ī) ⋆ (I − Ī)
(fig.4d). Even after this processing the autocorrelation still suffer from a few
problems, which need to be addressed before we can start the phase retrieval
process to recover the object’s shape. First of all, since the autocorrelation
of white noise is a Dirac delta, and our measurements are unavoidably noisy,
fig.4d has a spike (a single pixel) in the very centre. As we know that this
is just an artefact we can easily remove it by changing the value of that
specific pixel to the value of a neighbour pixel. Another problem is that,
since we subtracted the average measurement, now the autocorrelation can
have negative values, which goes against our original assumption that we are
essentially measuring the autocorrelation of a positive object O. The minimal
correction we can make is to set every negative pixel to zero, or to add a
constant background such that the autocorrelation is positive everywhere.
This leads us to another, harder to solve problem: eq.10 tells us that what
we are measuring is, even in the best case scenario, proportional to the
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Figure 4: Data processing: a) Typical raw data measured by the apparatus
with the nonuniform background clearly visible. b) Raw measurement minus
the average measurements, which now sits on a flat background. c) Autocor-
relation of the raw image with the background subtracted. The autocorrela-
tion of the three dots is clearly visible. d) Average of the autocorrelations.

autocorrelation of the unknown object plus a background, but we have no
way to reliably estimate this background. Sometimes this is a major problem,
and sometimes it isn’t, depending on the data, but there is no real recipe
on how to subtract that background beyond guesstimating it and try several
values. In this example we will not subtract any further background.

4.2.1 Practical phase retrieval

In section 3.1 we introduced the Gerchberg–Saxton algorithm and its vari-
ation, the hybrid input-output algorithm. Implementing either of them as
computer code is not exceptionally difficult, but there are a few details that
is worth discussing.
Due to the finite precision of numerical evaluations, it is very likely that the
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Figure 5: Phase retrieval using the Gerchberg–Saxton algorithm. Three runs
of 30,000 iterations each, showing the initial random guess, the retrieved pat-
ter, the autocorrelation of the retrieved pattern, and the error as a function
of the iteration number.

inverse Fourier transform will produce a small imaginary part even when it
should be zero, and if we implement naively the constraint that O must be
real, no element in the matrix representing the image will satisfy this con-
straint. One could impose a (arbitrary) threshold on the imaginary part to
check if a given pixel satisfy the constraint or not, but in most cases it is
easier to just set the imaginary part to zero and only select the pixel that do
not satisfy the positivity of O.
Fig.5 shows three different runs of 30,000 iterations of the Gerchberg–Saxton
algorithm defined in eq.12 starting from 3 different initial guesses. In this
case we assumed we had no information about the object, and used random
numbers uniformly distributed between 0 and 1 as the guesses; a better ini-
tial guess will result in a faster convergence. We can track how the retrieval
is proceeding by comparing the autocorrelation of the image at the kth itera-
tion with the measured autocorrelation and define an error function estimate
as

error =

∑
pixels

∣∣∣gk ⋆ gk − (I − Ī) ⋆ (I − Ī)
∣∣∣

number of pixels
. (14)
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By looking at how this error function decreases with the iterations we can
get an idea about how much progress we are making. From fig.5 we can
see that Gerchberg–Saxton algorithm progresses very quickly in the first few
iterations, but then the improvement becomes negligible, and only one of
the three random initial guesses resulted in the recovery of the 3 dots after
30,000 iterations. By looking carefully at the error function we can see that
the main difference between the successful one and the unsuccessful ones is
that the successful one, after no appreciable improvement for roughly 15,000
iterations, had another relatively fast (albeit small) decrease, before flatten-
ing out again. These long stretches of no progress are a common feature of
this algorithm, and are due to the fact that there are many very different
false solutions that produce almost identical autocorrelations, and the algo-
rithm can take a long time to jump from one to a better one. A practical
trick is to run the algorithm multiple times with different initial guesses for
a reasonable amount of iterations each time, and than choose the run that
resulted in the smallest error, instead of a single very long run. Another
important feature clearly visible in fig.5 is that, since the autocorrelation of
a real and positive function is always centrosymmetric, the algorithm is not
able to distinguish between O and its mirror image. Similarly, an autocor-
relation doesn’t contain information about absolute position, so the position
of the reconstructed image is essentially random.
The hybrid input-output algorithm, defined in eq.13, is designed to reduce
the convergence time. The parameter β decides how much each iteration is
nudged in the right direction, so a reasonable strategy is to start with a rela-
tively large value of β, so that the solution space can be sampled faster, and
then gradually reduce it to zero. Fig.6 shows three different runs of 1,000 it-
erations of the hybrid input-output algorithm starting from 3 different initial
guesses, and with β being linearly decreased from 2 to 0 with the number
of iterations. Despite being 30 times shorter than the runs with the Gerch-
berg–Saxton algorithm, all three runs correctly converged to the three dots
pattern, and all show a clear transition around 400 iterations (i.e. β ∼ 1.2).
There is no agreed best way to choose β or to combine these algorithms, but
what we discussed here is an approach that tends to work fine for most cases.
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Figure 6: Phase retrieval using the hybrid input-output algorithm while lin-
early decreasing β from 2 to 0. Three runs of 1,000 iterations each, showing
the initial random guess, the retrieved patter, the autocorrelation of the re-
trieved pattern, and the error as a function of the iteration number.

5 Conclusions

Non-invasive imaging in strongly scattering media is unlikely to be a solvable
problem in its generality, but different approaches that work under different
conditions and in different cases are constantly being developed. Here we
discussed a technique based on the optical memory effect, that allows non
invasive imaging through a scattering layer. The autocorrelation of the ob-
ject can be measured with a resolution given by the speckle correlation (CI

acts as a point spread function in eq.10), and this autocorrelation numer-
ically inverted using a phase retrieval algorithm. The main advantages of
this approach is its simplicity, and the fact that it works even for extremely
strongly (and/or dynamic) scattering layers. It can also work in a reflection
geometry [9] or to image a fluorescent medium with a microscope [23]. The
phase retrieval is computationally expensive, but since it largely amounts to
Fourier transforms and operations on a matrix elements, it can be sped up
significantly by exploiting modern GPUs.
The main limitations of this approach is that the angular range of the optical
memory effect is usually very small (see fig.2), and thus the objects to be
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imaged will need to be either very small or very far away from the scattering
layer, or only the central part of the autocorrelation will be measured.
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