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Abstract

In quantum sensing of magnetic fields, ensembles of NV centers in diamond offer high sensitivity, high

bandwidth and outstanding spatial resolution while operating in harsh environments. Moreover, the ori-

entation of defect centers along four crystal axes forms an intrinsic coordinate system, enabling vector

magnetometry within a single diamond crystal. While most vector magnetometers rely on a known bias

magnetic field for full recovery of three-dimensional field information, employing external 3D Helmholtz

coils or permanent magnets results in bulky, laboratory-bound setups, impeding miniaturization of the de-

vice. Here, a novel approach is presented that utilizes a fiber-integrated microscale coil at the fiber tip to

generate a localized uniaxial magnetic field. The same fiber-tip coil is used in parallel for spin control by

combining DC and microwave signals in a bias tee. To implement vector magnetometry using a uniaxial

bias field, we preselect the orientation of the diamond crystal and then fully characterize it by rotating a

static magnetic field in three planes of rotation. We demonstrate the measurement of vector magnetic fields

in the full solid angle with a shot-noise limited sensitivity of 19.4nT/Hz1/2 and microscale spatial resolution

while achieving a cross section of the fiber sensor head below 1 mm2.

1 Introduction

In recent years, the negatively charged nitrogen-vacancy center (NV center) in diamond has been established

in the field of quantum sensing, finding its way from laboratory to field-tested applications. Amongst other

promising quantum magnetometer candidates, e.g. SQUIDs and alkali vapour cells, NV centers are particularly

attractive in situations, where high spatial resolution ranging down to atom size [1, 2, 3], room temperature

operation or high bandwidth [4, 3, 5] is required, while surpassing the sensitivity of classical magnetometers

like Hall sensors. Sensitivities in the range of pT/Hz1/2 have been demonstrated [6, 7, 8]. Furthermore, the

solid-state material platform offers a potential high degree of integration and miniaturization of the sensor

device [9, 10], as well as operation under extreme conditions like high temperature [11, 12, 13] and high pressure

[14, 15]. Numerous of these experiments were performed in the laboratory using bulky and cost-intensive setups.

Consequently, efforts have been made to integrate the setup into a portable in miniaturized device such as a

fiber tip sensor [16, 17, 18, 19, 20], which allows versatility and a wide range of applications due to the spatial

separation of sensor material and optical and electronic components.
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The NV center is an optically active crystal defect in the diamond lattice that consists of a substitutional

nitrogen atom and an adjacent vacancy. Its magnetic sensing capability is given by the interaction of a magnetic

field with the electron spin known as the Zeeman effect. This shift of the electron spin sublevels in the NV ground

state can be read out in optically detected magnetic resonance (ODMR) experiments. Here, manipulation of the

electron spin with microwave (MW) frequencies resonant to the mS = 0 → mS = ±1 electron spin transitions in

the ground state 3A2 will decrease the photoluminescence intensity (PL) emitted by the NV centre by increased

non-radiative decay via the 1A1 singlet state (see Fig. 1).

Figure 1: A) Energy level diagram of the negatively charged nitrogen-vacancy (NV) center in diamond. The
spin dependent fluorescence will decrease when the ground state electron spins are driven in resonance to the
mS = 0 → mS = ±1 transitions with D = 2.87 GHz in zero field. The degeneracy of the mS = ±1 spin states
is lifted with a magnetic field parallel to the NV symmetry axes B∥. B) NV center in the diamond crystal
lattice, with the NV symmetry axes emphasized in red. Since the nitrogen atom N can occupy each of the
four lattice sites surrounding the vacancy V, all four NV orientations will be equally present in NV ensembles.
C) NV ensemble on the tip of a fiber aligned in the z−axis. The NV axes NVi form an inherent tetrahedral
coordinate system. D) Optically Detected Magnetic Resonance of the NV ensemble shown in C. The frequency
shifts of the resonances corresponding to NVi strongly depend on their angle to the magnetic field Bbias. E)
Experimental setup with fiber-integrated microscale magnetic coil. The NV diamond is attached to the fiber
facet of a multimode optical fiber. The magnetic coil is simultaneously used for active field biasing and spin
control using a bias tee combining the signals.

The ground state of the NV center exhibits a zero field splitting of D = 2.87 GHz between the mS = 0 and

mS = ±1 electron spin states. When subjected to a (low) magnetic field, the mS = ±1 spin states undergo a

splitting denoted by ∆f ≈ 2
√

(γB∥)2 + E2, where B∥ = B cosϑ is the field component along the NV symmetry

axis (see Fig. 1B), γ = 28 MHz/mT is the gyromagnetic ratio and E is a strain-dependent parameter that

can lift the degeneracy of the mS = ±1 electron spin states in zero field conditions due to local crystal strain.

The dependence of the shift on the axial field component B∥ introduces the directionality that enables vector

magnetometry. Note that, as discussed in Appendix A, in higher magnetic fields, the influence of the non-axial

component B⊥ of the magnetic field on the transitions frequencies becomes non-negligible.

Due to the C3v symmetry of the diamond crystal lattice, the orientation of a single NV center can align

along one of four possible axes that correspond to the Miller indices [111], [1̄1̄1], [1̄11] and [11̄1]. In the following,

these four orientations will be denoted as NVi, represented by the unit length vectors n̂i, i ∈ {1, 2, 3, 4} (see
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Fig. 1C). In a sufficiently high external magnetic field, the magnetic field projection B∥ along these four NV

axes Bi can be extracted from a total of eight resonances, in pairs of two due to transitions to the mS = −1

and mS = +1 spin states, in the ODMR signal as can be seen in Figure 1D.

However, the employment of this intrinsic tetrahedral coordinate system with the base vectors n̂i for vector

magnetometry is challenging due to the symmetries in n̂i. To assign a pair of resonances to one of the NV axes,

a known bias field is essential. By applying the bias field in an axis that is at a different angle to each of the

four NV orientations, the NV axes NVi can be encoded with their angle to the bias field vector ϑi. Previous

implementations have used three-dimensional Helmholtz coils [4, 21, 22, 23, 24], permanent magnets [25, 26]

or Halbach arrays [27, 28] to apply the bias field, leading to a bulky and lab-bound setup and hindering the

miniaturisation of the sensor device.

In this paper, we present a novel approach where the bias field is generated by microscale wire coil wrapped

around a diamond microcrystal that is placed on the tip of a multimode optical fiber (MMF) for optical access.

This fiber-tip coil is simultaneously also used for spin manipulation at microwave frequencies. The sensor

setup involves a two-step process: First, to employ the uniaxial bias field for vector magnetometry, the crystal

orientation is defined in the bias field by preselection of diamond microcrystals via ODMR. However, with a

single axis as reference, the exact crystal orientation remains unresolved in laboratory coordinates as there

is still a rotational degree of freedom. Hence, as a second step, the exact crystal orientation, namely the

NV unit vectors n̂i, need to be determined in the laboratory coordinate system. As one of the fundamental

challenges when using NV diamond particles such as diamond microcrystals or nanodiamonds for magnetic

field sensing as opposed to bulk diamond, several methods have been proposed in the past to overcome this

problem [29, 30, 31, 32]. Here, we use an approach in which a static, controlled magnetic field is scanned in

three planes of rotation. Finally, we demonstrate fully fiber-integrated vector magnetometry in the full solid

angle for static external magnetic fields with high dynamic range, as well as three-dimensional measurements

of small and alternating changes in the external magnetic field. This development is a step towards robust and

versatile application of three-dimensional, broadband, highly sensitive and spatially resolved NV magnetometry

in confined spaces and extreme conditions.

2 Sensor Setup

As illustrated in Figure 1E, on the 50 µm core of a cleaved multimode optical fiber with a numerical aperture

NA = 0.22 (Thorlabs FG050UGA), a diamond microcrystal is positioned and fixed with optical adhesive

(Norland NOA81). The diamond crystal has a size of ∼ 15 µm and a NV− concentration of 3.5 ppm and was

supplied by Adamas Nanotechnologies (MDNV15umHi30mg). The fiber tip is positioned inside a copper wire

coil that is used for simultaneously generation of MW and DC fields and is later described in detail. The two

signals are generated in a signal generator (Rigol DSG836A) and a power supply in constant current mode

(Rhode & Schwarz NGE100), respectively, and combined in a bias tee (Minicircuits ZFBT-352-FT+). The

signals are transmitted to the wire coil via coaxial cable.
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The diamond is optically addressed through the MMF by a 520 nm diode laser that is reflected by a long

pass dichroic mirror (Thorlabs DMLP550) and coupled to the fiber with a standard 10×, NA = 0.25 microscope

objective. The PL from the diamond passes through the dichroic mirror and a bandpass filterset with a cut-on

wavelength of 550nm (Thorlabs FES0570) and a cut-off wavelength of 750nm (Thorlabs FES0750). It is focused

onto an amplified PD (Thorlabs PDA26A2) that is set to a gain of 60 dB.

The MW signal generated by the signal generator is modulated in either its amplitude (AM) or frequency

(FM). The modulation frequency fLF is generated by a lock-in amplifier (LI) (Zürich Instruments MFLI), which

also demodulates the PD signal at the same frequency. The LI output is then transmitted to a computer for

data acquisition. This method effectively reduces noise, including 1/f noise, and is commonly employed in

magnetometry with NV centers [20, 33, 34, 4, 27, 10]. It is particularly advantageous when optical signals

are transmitted through a fiber, as it mitigates artifacts such as fiber vibration and motion. In the following

experiments, we primarily use AM modulation unless otherwise specified.

2.1. Fiber Coupling of Pre-Selected Diamond Microcrystals

The goal of preselecting the diamond microcrystal for coupling to the fiber is to define the angles ϑi of the NV

axes NVi in the bias field. Because the uniaxial bias field B⃗bias is fixed to the fiber axis is terms of orientation,

we determine the diamond lattice orientation before fixating it to the fiber tip with optical adhesive. We see

this technique of identifying single NV diamonds and picking them from a substrate with a fiber tip potentially

being used for diamond of various sizes, e.g. nanodiamonds.

Figure 2: A),B) Individual diamond microcrystals containing NV centers are optically addressed through the
MMF by scanning its tip laterally over the substrate. The crystal orientation is assessed by ODMR measure-
ments in a magnetic field along the fiber axis with a PCB MW antenna [35] (I). The diamond is fixed to the fiber
tip with UV adhesive while the centering of the diamond microcrystal is monitored via the detected fluorescence
(II, III, IV). C) The separation of the resonances in the magnetic field along the fiber axis ensures that the
NV centers can be labeled based on their respective angles in the bias field ϑi (top). After the fixation on the
fiber tip (IV), the angles remain unchanged (bottom). D) Diamond microcrystal with 15µm diameter attached
to the tip of a dcore = 50µm MMF with UV adhesive. The red NV fluorescence is clearly visible through a long
pass filter (550 nm cut-off).

The diamond microcrystals are suspended in isopropyl alcohol and drop cast onto a glass substrate. After

evaporation of the suspension liquid, individual diamond microcrystals can be identified by measuring the

fluorescence through the MMF during lateral movement of the sample under the fiber tip (see Fig. 2B). We
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acquire ODMR signals from the NV ensembles by manipulating the electron spin using a broadband PCB

microwave resonator that has a sufficiently high field even at a few millimieters from the PCB [35]. A custom-

built Helmholtz coil is used to apply a magnetic field along the MMF, in the same axis as that generated by

the fiber-tip wire coil. The main selection criterion is the measurement of eight frequency-separated resonances.

This ensures that each of the four NV orientations can be distinguished by its angle to the bias field B⃗bias

generated by the fiber-tip coil.

Once a diamond microcrystal with suitable orientation has been identified, a drop of optical UV adhesive is

applied to the fiber tip, which is lowered until the liquid adhesive comes into contact with the particle. Lateral

positioning can be fine-tuned by maximizing the fluorescence detected through the MMF (see inset of Fig.

2AIII). The adhesive is polymerized using a UV lamp to secure the position of the diamond microcrystals.

Figure 2C) shows ODMR measurements for the diamond microcrystal used in this work. From the measured

ODMR signal during positioning (see Fig. 2AI), we compute the angles ϑi of the NV axes NVi in the bias

field Bbias, as described in Appendix B, and find ϑ1 = 14.9 ◦, ϑ2 = 57.9 ◦, ϑ3 = 71.2 ◦ and ϑ4 = 83.6 ◦.

In the course of this, the ODMR signal is fitted with the sum of eight Gaussians in order to determine the

resonance frequencies. Note that a traditional method is the fit with a Lorentzian profile [6, 29, 36], however,

in these experiments, fitting both profiles to the data showed that a Gaussian profile more closely resembled

the measured data. We interpret this observation as inhomogeneous broadening of the lines which arises from

different local environments of the individual NV spins [37].

In an ODMR measurement, after the diamond is fixed on the tip of the MMF, the angles are estimated as

ϑ1 = 15.5◦, ϑ2 = 57.3◦, ϑ3 = 71.5◦ and ϑ4 = 84.0◦. This indicates a rotation of the diamond microcrystal

of only 0.6 ◦ during the positioning process. In our experiments, we did not observe any significant change of

orientation of the diamond microcrystal unless the tip of the MMF comes into physical contact with the crystal.

In the following, the four NV axes are denoted according to their angle in the bias field in ascending order,

i.e. NV1 represents the NV orientation with the smallest angle ϑ1 to the bias field Bbias.

2.2. Fiber-Integrated Magnetic Field Bias Coil

For simultaneous generation of a microwave field at around 2.87GHz and a localized DC bias magnetic field in

the diamond vicinity, a microscale wire coil is used (see Fig. 3A). The single layer windings of this coil consist

of a 100 µm diameter enamelled copper wire. It is manually wound around a 150 µm copper wire which is

kept under tension to ensure straightness of the coil. The coil is then removed from the wire by cutting it and

sliding the coil off with a pair of tweezers, using some isopropyl alcohol as a lubricant. The stripped MMF has

a cladding diameter of 125µm and can thus be inserted into the coil with a manual XYZ translation stage. The

diamond is positioned inside the coil at the 9th of a total of 13 windings. The magnetic coil is finally secured

with UV curing adhesive. The wire ends with a length of roughly 5 cm are connected to the inner and outer

conductor of a coaxial cable.

To calibrate the generated magnetic field of the wire coil, ODMR measurements are recorded while varying

the current fed to the fiber-tip magnetic coil (see Fig. 3B). The magnetic field magnitude is derived from
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nonlinear fitting as described in Appendix B. In the low field regime, where γBi ≲ E, the resonances overlap

which leads to an inaccuracy of the fit. Therefore, we discard measurements for Ibias < 150mA and find a slope

of dBbias/dIbias = 10.46 mT/A, which is consistent with FEM simulations (see Fig. 3C).

Figure 3: A) Magnetic field bias coil on the fiber tip. The diamond microcrystal is positioned inside the coil. B)
ODMR measurements for different DC currents Ibias. In the low field regime < 1.5 mT, the degeneracy of the
mS = ±1 spin states is lifted due to internal crystal strain by 2E ≈ 11.9 MHz. C) From these measurements,
the magnetic field magnitude Bbias is deduced. Measurements in the low field regime are not taken into account
due to the overlap of the resonances. The measured values are consistent with FEM simulations. D) Simulated
DC magnetic field distribution inside the fiber-tip coil.

These simulations were conducted with a wire diameter of 100 µm and an inner coil radius of 80 µm to

account for the 5 µm film thickness of the isolation. The wire windings are spaced at a distance of 119 µm

from center to center, considering imperfect spacing and film thickness of the isolation. The simulated field

distribution is not entirely homogeneous along the fiber axis, as the coil diameter has similar dimensions to the

wire diameter. However, considering the 15 µm size of the diamond crystal, the field distribution within the

diamond volume can be assumed to be homogeneous. Inhomogeneous field distribution on the other hand would

lead to an increase of linewidth with higher field magnitudes, since individual NV centers experience different

local field strengths, which we did not observe in our measurements. Moreover, as evident from the simulation,

the generated static field is well confined within the fiber-tip coil. This is very advantageous in situations where

the measurement in an unconfined bias field would cause undesired interactions with the samples or devices

under test.

2.3. Determination of Crystal Orientation

The next step in the sensor setup is the determination of the NV axes in the laboratory coordinate system

(herein lab frame). As stated in the introduction, the magnetic field components Bi directed along the four

NV axes n̂i, can be measured with ODMR. A crucial missing link is the 3 × 4 transformation matrix K, that

transforms the magnetic field vector B⃗NV = (B1, B2, B3, B4) in the non-orthogonal NV coordinate system with

the unit vectors n̂i (herein NV frame, denoted with NV subscript) to the vector B⃗ in the lab frame,

B⃗ = K · B⃗NV . (1)
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The columns of this matrix K simply contain the x−, y− and z− components of n̂i in the lab frame. Note

that once this matrix K is determined, the lab frame is fixed to the fiber tip, and it can be moved and rotated

just like conventional 3D Hall sensors. To derive n̂i, we take ODMR measurements while scanning B⃗ in three

planes of rotation.

Figure 4: A) ODMR measurements for a full rotation of the field vector with a magnitude of B = 2.95 mT in
the xy−, xz− and yz−plane (left to right). From the fit, depicted in dotted red lines, B) the four NV axes
NVi in unity vector representation are obtained. C) The resulting NV axes, projected into the xy−, xz− and
yz−planes in cartesian coordinates. The transition frequencies to the mS = +1 spin states, as shown in A),
are depicted in polar coordinates for a full rotation of the field vector (dashed lines). The transition frequency
corresponding to NVi in a given plane is maximized when the field vector is parallel or anti-parallel to the
projection of n̂i onto that plane (arrows).

The fiber tip is positioned in the center of a custom-built 3D Helmholtz coil so that the fiber axis is aligned

with e⃗z in the lab frame. ODMR measurements are taken from the fiber-coupled diamond microcrystal while

the field vector is rotated about the azimuth angle ϕ so that

B⃗xy = B0 (cosϕxy, sinϕxy, 0),

B⃗xz = B0 (cosϕxz, 0, sinϕxz) and

B⃗yz = B0 (0, cosϕyz, sinϕyz).

(2)

The results depicted in Figure 4A) illustrate the frequency-dependent normalized PL in pseudocolor across a

full rotation of the magnetic field vector. Eight curves emerge in four pairs, corresponding to the spin transitions

to the mS = ±1 states for the four NV axes. The progression of resonances for a single NV axis for a complete

rotation qualitatively resembles two half sine waves, with resonance frequency minima (maxima for mS = −1

transitions) occurring when B⃗ ⊥ n̂i, and maxima (minima for mS = −1 transitions) occurring when B⃗ is parallel

or antiparallel to the projection of n̂i onto the rotation plane (see Fig. 4C). Consequently, the azimuth angle of

each NV axis within the rotation plane can be inferred from the measurement. Furthermore, the elevation angle

from the rotation plane determines the maximum resonance frequency (minimum for mS = −1 transitions) as

it constrains the minimal angle between B⃗ and n̂i. However, since only the absolute value of B∥ influences the
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transition frequency, the transition frequencies behave identically for both half rotations of the magnetic field

vector. This introduces an ambiguity with respect to the sign of the elevation angle, specifically whether the

NV axis is positioned above or below the reference plane, rendering it impossible to unambiguously determine

the NV axes from a measurement in a single rotation plane.

As described in more detail in Appendix C, by parameterizing the resonance frequencies with the rotation

angle ϕ derived from equation (2), we obtain a expression in which the resonance frequencies depend on ϕ,

the two in-plane components of the NV axes n̂i (e.g. nx, ny for rotation in the xy−plane), the external field

magnitude B0 and the constants of the NV ground state γ,D and E. Thus, fitting this expression to the

measured ODMR datasets lets us directly identify the in-plane components of n̂i in each rotation plane. By

defining the transformation matrix as

K = R · 1
3


0 2

√
2 −

√
2 −

√
2

0 0
√
6 −

√
6

3 −1 −1 −1

 (3)

where R = Rx(χ) ·Ry(ψ) ·Rz(ω) are rotations around e⃗x, e⃗y and e⃗z with the rotation angles χ, ψ and ω, we

can optimize the rotation angles so that the root-mean-square error of the matrix elements of K and the vector

components of n̂i from the fit is minimized. We find χ = −2.19◦, ψ = −8.36◦ and ω = 149.67◦. The vectors

n̂i depicted in Figure 4B are represented as the columns of K, where n̂1 is the first column and n̂4 is the last

column of the matrix. Note that for equation (1) to be equal, a correction factor c = 3/4 accounts for the extra

element in BNV and the corrected matrix is Kc = 3
4K.

3 Measurements

3.1. Vectormagnetometry of Static Fields

To demonstrate NV vectormagnetometry, the fiberized NV-ensemble is placed in the center of a 3D Helmholtz

coil for controlled field generation. A static magnetic field of B⃗ = (5.2, 0, 3) mT is applied. We measure a

ODMR signal as displayed in Figure 5. With no other information that the transition frequencies derived from

the measurement, the assignment of the four NV axes to the transition frequencies is ambiguous. While this

data is sufficient to determine the field magnitude, randomly assigning the NV axes to infer the azimuth angle

φ and polar angle ϑ would yield 24 possible permutations due to the inherent ambiguity. This count is doubled

since both +B⃗ and −B⃗ have the same influence on the transition frequencies (see Fig. 5A).

To resolve these ambiguities, we introduce an additional field B⃗bias using the fiber-tip coil. Since the

orientation of the NV ensemble in the bias field has been previously determined, the frequency shifts ∆fi

resulting from the bias field can be utilized to associate the resonances with the NV axes. Notably, the frequency

shift ∆fi depends on the angle ϑi between the NV axes n̂i and the bias field B⃗bias = Bbiase⃗z. Specifically,

according to the definition in Section 2.1, the highest measured frequency shift corresponds to NV1, followed

by NV2, NV3, and NV4 in descending order (see Fig. 5).
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Figure 5: A) Measured ODMR signal for a applied magnetic field B⃗ = (5.2, 0, 3) mT (upper) and −B⃗ =
−(5.2, 0, 3) mT (lower). B) The shift of the resonance frequencies is dependent on the orientation of the NV
axes in the bias field B⃗bias. Therefore, the frequency shift indicates the transition frequencies associated with
each NV axis, as well as the field polarity.

From the measurements, the resonance frequencies are determined by a Gaussian fit. As shown in Ap-

pendix B, from the resonance frequencies, we derive the magnetic field vector in the NV frame B⃗NV =

(2.2,−5.5,−0.7, 4) mT and B⃗NV = (−2.1, 5.4,−0.7, 4) mT. The signs of the vector components are derived

from the tetrahedral geometry of the NV ensemble and the direction of the frequency shift (see Fig. 5B).

The magnetic field in the lab coordinate system B⃗ is given by matrix multiplication with Kc. The vectors

B⃗ = (5.4, 0.1, 3.0)mT and B⃗ = (−5.4, −0.1, −2.9)mT can be determined with acceptable agreement with the

applied magnetic field of B⃗ = (5.2 , 0 , 3) mT and B⃗ = (−5.2 , 0 ,−3) mT. The respective angular discrepancies

of 1.5◦ and 2.0◦ between the applied and the measured vectors can be attributed to a suboptimal centering of

the NV diamond microcrystal in the Helmholtz coil.

3.2. Special Case of Overlapping Resonances

In certain field configurations, components of B⃗NV may coincide, which has previously been considered as „dead

zones“ of the sensor, since the reconstruction of the applied field vector B⃗ is particularly challenging in these

cases [24, 23]. To demonstrate the absence of dead zones in the proposed setup, we apply a field such that the

components |B1| = |B2| = |B3| = |B4| of B⃗NV are equal, causing the resonances to overlap. Considering the

tetrahedral geometry of the NV ensemble, the field vector can be oriented in six different directions to achieve

equal absolute values for all components of B⃗NV as discussed in Appendix D.

When feeding a current to the fiber-tip coil, the resonances seperate as depicted in Figure 6. The frequency

shifts of the transitions to the mS = ±1 spin states exhibit distinct behavior. Notably, for at least one of

the four NV orientations, the shift direction will invert for any of the six possible orientations of B⃗ as shown
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Figure 6: A) ODMR measurement when |B1| = |B2| = |B3| = |B4|. The magnetic field has a 6-fold ambiguity
in this case in terms of its orientation. B) The overlapping resonance lines can be seperated by applying a
Bbias in the fiber-tip coil. C) The direction of the frequency shifts ∆fi corresponding to NVi has a signature
behaviour for any of the six possible orientations of magnetic field.

in Appendix D. Thus, B⃗ can be unambiguously reconstructed from the measurement. We determine a vector

B⃗ = (3.8, 2.6, 4.0) mT, which deviates from the applied field B⃗ = (3.7, 2.6, 3.9) mT by a margin of 0.5◦ in

angular deviation. Note that while not being a dead zone, the sensor is less sensitive to angular changes in the

external field for a case like this, as the resonances will overlap in a frequency range that corresponds to the

linewidth of the transitions.

3.3. Vectormagnetometry of Dynamic Fields by Frequency Modulated ODMR

While the measurement of the magnetic field via a sweep of MW frequency has a high dynamic range up to

several tens of milliteslas [38, 17, 39], it relies on the external field being fully static during the acquistion time.

In order to retrieve real time measurements, methods have been presented in the past that utilize frequency

modulation (FM) of the microwave frequency in order to individually interrogate ODMR features in a bias field

of several mT [6, 4, 27, 10, 40]. When sweeping a frequency modulated microwave frequency, the demodulated

signal is a derivative of the lineshapes that would be acquired from CW-ODMR acquisition techniques as can

be seen in Figure 7A. At the frequency of the zero crossing, the LI signal is a directly related to changes in

the magnetic field, as it scales with the gyromagnetic ratio γ, the component of the external field Bi along the

respective NV axis NVi and the slope of the zero crossing in units of V/Hz. Thus, a small change in the external

field B⃗ will detune the resonance frequency which is detected in a increase or a decrease of the LI signal. This

method enables real-time measurements of the magnetic field vector B⃗ when performed in parallel [4] or scalar

fields when only one transition frequency is interrogated [10, 40].

In order to demonstrate the three-dimensional measurement of dynamic changes in the magnetic fields, a

square wave signal with a period of T = 2 s is applied to the x− and z− of the 3D Helmholtz coils in series,

which generates an external magnetic field with an amplitude of B⃗ = (49.9, 0, 50.4) µT. The MW frequency is

modulated with a modulation depth of f∆ = 500 kHz and a modulation frequency of fLF = 3 kHz. For each
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Figure 7: A) FM-ODMR measurement in a bias field with the fiber-tip coil of Bbias = 5.2mT. At the frequencies
the zero crossings of the derivatives of the resonances, the LI signal is magnetically sensitive and small changes in
Bi along NVi can be directly read out. B) 4× averaged time traces of the demodulated signal in each frequency
band when applying a square wave external magnetic field with an amplitude of B = 70.7 µT and a frequency
of f = 0.5 Hz.

of the four transitions to the mS = +1 spin states, the time trace of the LI signal is acquired sequentially over

20 seconds. Figure 7B) shows the offset corrected four times average of the LI signal with a filter bandwidth

of 5 Hz. By fitting a 11th-order fourier series of a square wave signal to the data, the amplitudes of the LI

signal at each frequency is obtained. With the gyromagnetic ratio γ and the slope at the zero crossing, derived

from Figure 7A), the resulting vector in the NV frame is B⃗NV = (38.1,−67.5,−20.9, 20.8)µT. Here, the sign of

each component Bi is derived from the direction of the frequency shift and the known orientations of NVi and

B⃗bias. Matrix multiplication with K yields B⃗ = (46.9, 0, 52.9) µT which is in good agreement with the applied

external field vector. The deviation from the expected values may arise from a noisy signal and a suboptimal

centering of the fiber tip in the 3D Helmholtz coils.

3.4. Fiber Tip Sensor Characteristics

A main figure of merits for a magnetic sensing device is the magnetic sensitivity. Here, we assess the shot-noise

limited sensitivity which is a theoretical lower limit when neglecting all technical noise sources. It is calculated

for a single resonance with

ηB = PG
1

γ

∆ν

C
√
R
, (4)

where PG =
√
e/8 ln 2 is a factor for a gaussian lineshape, ∆ν is the full width half maximum (FWHM)

linewidth, C is the ODMR contrast of the resonance and R is the detected count rate [41]. It has been shown

that for NV centers, both linewidth and contrast depend on the MW field strength, with both quantities

generally increasing with rising field strength [41]. However, the broadening of the resonance lines becomes

more pronounced with high MW powers, outweighing the increase in ODMR contrast in terms of magnetic

sensitivity. This counteracting behaviour leads to a region of MW field strength where the shot-noise limited

sensitivity is minimized. There are also reports of decreasing linewidth with very efficient optical pumping [42],

which we did not observe in our experiments.
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To find the optimum in sensitivity, the MW power PMW of the signal generator is varied while maintaining a

constant laser power PL = 100mW. From the ODMR measurements in a bias field, we fit eight Gaussians to the

data, as described in Appendix B, and consequently obtain the contrast and linewidth of all eight resonance lines.

In other implementations of NV magnetometers where only single orientations of NV centers are interrogated,

it may be purposeful to optimize single resonances and only estimate the sensitivity of that resonance, i.e. via

the orientation of the respective NV axis in the MW field. Here on the other hand, since the magnetic fields

along all four NV axes Bi are observed, we average the ODMR contrast and the linewidth and find a optimum

of shot-noise limited sensitivity of ηB = 19.4 nT/Hz1/2 for PMW = 12.5 dBm with a count rate R = 5.9× 1012,

a contrast of C = 1.2% and a FWHM linewidth of ∆ν = 11.9 MHz.

Figure 8: A) Estimated shot-noise-limited sensitivity of the NV magnetometer with a laser power of PL =

100 mW. With an optimum of ηB = 19.4 nT/Hz1/2 at PMW = 12.5 dBm, the sensitivity degrades for higher
values of PMW due to power broadening of the resonances. B) Zero field ODMR measurements for different
values of PL. The degeneracy of the mS = ±1 is lifted due to internal crystal strain by 2E = 11.9 MHz. From
the shift of the zero field splitting parameter D = 2.87 GHz, the diamond temperature for PL = 100 mW is
estimated to be 109.7 K above room temperature.

Furthermore, we evaluate the temperature at the fiber tip, which can be observed by a shift of the zero field

splitting parameter D = 2.87 GHz towards lower frequencies with a coefficent of dD/dT = −74.2 kHz/K [43].

This is done by varying the laser power during zero-field ODMR measurements, as shown in Figure 8B). At

a laser power of PL = 100 mW, a shift of ∆D = 8.14 MHz is measured which corresponds to a temperature

increase of ∆T = 109.7 K. We find a linear dependence of the temperature on the laser power, and did not

observe any additional heating effects from the MW power or the current flowing through the fiber-tip coil.

Even at higher currents up to Ic = 500 mA, the diamond temperature remains stable over time. In addition,

within the investigated range of laser power, the fluorescence scales linearly with the laser power which leads to

the conclusion that the intensity at the fiber tip is still far below the saturation intensity of the NV diamond

microcrystal.

The laser heating of the diamond can be partially attributed to the mismatch between the diamond mi-

crocrystal size of 15 µm to the core diameter of the multimode fiber 50 µm and a resulting suboptimal optical

pumping efficiency of the NV centers. Although heating effects are known to counteract a straightforward

increase of pump light power to achieve higher count rates and consequently better sensitivities in integrated

diamond sensors [10, 20], we expect that a better matching of the diamond size to the fiber core diameter should

reduce the requirement for high laser powers and thus improve the usability of the fiber sensor in temperature
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critical applications e.g. life science. Furthermore, the fluorescence collection efficiency is currently limited by

the numerical aperture NA = 0.22 of the MMF and may be improved by using a MMF with a higher numerical

aperture and implementing additional optical elements on the fiber facet. With a reliable control over the

diamond temperature, the presented sensor design could also be used for temperature sensing.

4 Conclusion and Outlook

In conclusion, we have presented a fully fiber-integrated vector magnetic field sensor based on NV ensembles by

the generation of a localized bias field on the fiber tip with a fiber-tip coil. A major advancement is the usage

of this fiber-tip coil is used simultaneously for the bias field generation and the spin control by combining DC

and MW signals with microwave frequency in a bias tee.

A novel preselection method is implemented to utilize the one-dimensional bias field for vectormagnetometry,

in the course of which the orientation of the diamond microcrystal is interrogated. Subsequently, the NV axes

of the ensemble are accurately determined by data sets of ODMR measurements while scanning a controlled

static field in three planes of rotation, and a matrix is obtained for the transformation from the four-element

vector in the NV frame to the three-dimensional vector in laboratory coordinates.

Active field control using coils, as opposed to a field bias with permanent magnets, allows versatile vector-

magnetometry in the full solid angle. We demonstrate the measurement of static fields with a high dynamic

range by sweeping the microwave frequency and then use a small bias field to unambiguously assign the reso-

nances to the NV axes of the ensemble. By the vector addition of the bias field and the external field, certain

dead zones that arise from the overlap of resonances due to the geometry of the diamond crystal lattice can be

resolved. Moreover, using a high bias field in the range of several milliteslas enables measurements of AC signals

with a limited dynamic range by detecting small changes in the magnetic field along the four NV axes. As an

outlook, separating the detection channels in the frequency domain would enhance the acquisition time and

lead to real-time measurements of the magnetic field vector. Potential applications of the presented fiber sensor

could include power monitoring and efficiency enhancement in electric motors, wind turbines, transformers or

photovoltaic inverters by providing precise measurements of vector magnetic fields within narrow gaps, thus

contributing to advancements in the energy transition.

For the presented sensor, we estimate a shot-noise limited magnetic sensitivity of 19.4nT/Hz1/2 with a sensor

cross section below 1mm2 and a spatial resolution of 15µm. A limiting factor is the detected count rate and laser

heating of the diamond which can be improved by matching the diamond size to the core diameter of the optical

fiber, increasing the fiber NA or by using additional optical elements to increase the pumping efficiency as well

as the fluorescence collection efficiency. Further improvements in terms of sensitivity include the optimization

of the diamond samples purity, which would lead to a reduced linewidth at comparable microwave powers.
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Appendix

A. Zeeman Shift of the Electron Spin Levels

In this section, we describe the behaviour of the resonance frequencies f± in order to derive an expression used

for the evaluation of the measurements. The contents of this section are closely adapted from reference [44].

The approximate eigenstates of the ground state spin-Hamiltionian, expressed as frequencies, are

f± = D +
(γB⊥)

2

D
± ξ

√
(γB∥)2 + E2 (5)

with the dimensionless correction factor

ξ =

√
1 +

γ4B4
⊥

4D2(γ2B2
∥ + E2)

(6)

where D is the zero field splitting parameter, γ is the gyromagnetic ratio, B∥ and B⊥ are the axial and non-axial

magnetic fields and E is the non-axial electric-strain field parameter. The axial electric-strain field parameter

E∥ is included in D as in D = D′ + E∥, since in our experiments, D is temperature shifted and therefore must

be calibrated as the effective zero field splitting parameter D. Furthermore, a term in ξ is omitted that includes

the expression cos(2ϕB + ϕE) where, in a local coordinate system in which e⃗z is directed along the NV axes,

ϕB = arctan(Bx/By) and ϕE = arctan(Ex/Ey) are the azimuth angles of the non-axial magnetic and electric-

strain field components. Since the strain in diamond is believed to arise from local impurities and dislocations

[37], we assume ϕE to be random for every NV center in the ensemble which results in 1
n

∑n
i cos(2ϕB,i+ϕE,i) ≈ 0

when averaged over n NV centers.
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B. Evaluation of Magnetic Field Magnitude and Field Angles

To find field information from ODMR measurements such as the field magnitude, the field angles in the NV

frame ϑi and the field vector in the NV frame B⃗ first, the resonance frequencies of NVi must be determined.

For this, the sum of eight Gaussian profiles is fitted to the measured normalized ODMR data in the form of

G(f) = 1−
8∑
i

Cie

(
−4 ln 2

(
f−f±,i

∆νi

)2
)
, (7)

where C is the ODMR contrast, ∆ν is the FWHM line width and f± are the resonance frequencies.

We assume a locally defined coordinate system x′y′z′ in the crystal lattice, in which the z-Axis is oriented

along n̂1 and the y-component of n̂2 is zero. In this coordinate system, the matrix K′ that transform B⃗NV

according to

B⃗′ = K′ · B⃗NV (8)

is

K′ =
1

3


0 2

√
2 −

√
2 −

√
2

0 0
√
6 −

√
6

3 −1 −1 −1

 . (9)

The columns of the matrix K′ correspond to the unit length NV axes in vector representation n̂i. This local

coordinate system x′y′z′ is related to the laboratory coordinate system xyz via the rotation matrix R:

K = R ·K′. (10)

For a given magnetic field vector in spherical coordinates B⃗ = (B0, ϕ, θ), all eight resonance frequencies f±,i

are calculated from equation (5). Here, the axial field component B∥,i and the non-axial field component B⊥,i

for each NV axis NVi are calculated via B∥,i = B0 cosϑi and B⊥,i = B0 sinϑi, where cosϑi = (n̂i · B⃗)/B0. With

the constants of the NV ground state D,E, and γ, we can optimize the parameters B0, ϕ and θ of the resulting

expression f±,i(B0, ϕ, θ) to the resonance frequencies derived from the fit of the Gaussians to the measured data

to determine B⃗. Note that D has to be calibrated for a given laser power as it shifts with temperature [43] and E

is calibrated once for the diamond microcrystal, as it depends on the local crystal strain [45]. For optimization,

either nonlinear least-squares fitting or minimization of the root mean square error with dual annealing [46] is

used, where the latter seemed to perform better with discontinuous functions.

However, if the transformation matrix R is unknown, the resulting vector B⃗ is defined in x̂′ŷ′ẑ′ and only

the magnetic magnitude B0 as well as the angles ϑi relative to n̂i can be derived from this vector, where the

angles ϑi are shuffled randomly when the resonance frequencies are not assigned to the NV axes in the right

order. Also, the polarity of B⃗′ remains unresolved.
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C. Finding the Rotation Matrix from ODMR in Planes of Rotation

To describe the behaviour of the resonance frequencies while rotating the magnetic field vector B⃗ in a plane of

rotation, we need to parameterise equation (5) with the rotation angle ϕ.

Exemplary for a rotation of B⃗ in the xy−plane, the magnetic field vector is

B⃗ =


B0 cosϕ

B0 sinϕ

0

 . (11)

For a given NV axes n̂, the axial component B∥ and the non-axial component B⊥ are

B∥(ϕ) = n̂ · B⃗ = B0(nx cosϕ+ ny sinϕ) (12)

and

B⊥(ϕ) =
√
B2

0 −B2
∥ = B0

√
1− (nx cosϕ+ ny sinϕ)2 (13)

where nx and ny are the x− and y−component of n̂. The term (nx cosϕ+ny sinϕ) will be referred to as nij(ϕ),

where i and j are the in-plane components of n̂.

With these expressions, according to (5) the resonance frequencies for a rotation in the ij−plane are given

by

f±(ϕ) = D +
(γB0)

2

D
(1− n2ij(ϕ))± ξ

√
(γB0nij(ϕ))

2
+ E2 (14)

where

ξ =

√√√√1 +
γ4B4

0(1− n2ij(ϕ))
2

4D2
[
(γB0nij(ϕ))

2
+ E2

] .

In this representation, all parameters are known except nij which are the in-plane components of n̂. Thus,

doing the measurements in different rotation planes, namely the xy−, xz− and yz−planes, the complete vector

n̂ can be determined.

To fit equation (14) to the measured data, a sum of eight Gaussians is fitted to the data via nonlinear

optimization as described in Appendix B to extract the resonance frequencies. The result is a N×8 dimensional

array of resonance frequencies where N is the number of rotation angles in the dataset, making it non-trivial

to fit a model function in the form of f± = f(ϕ) to the data.

Hence, we employ an algorithm that is very similar to Dijkstra’s path finding [47]. First, all resonance

frequencies are reshaped to a point set with the point coordinates p = (x, y) = (ϕ, f±). Secondly, from a

starting point p0 = (x0, y0), weights are assigned to all points with y > y0 based on their Euclidean distance

d1 =
√

(x− x0)2 + (y − y0)2 to p0 and their distance d2 =
√

(x− x0)2 + (f(x)− y0)2 to a model function f(x).

The weight of each point is wp =

√(
c1

min(d1)
d1,p

)2

+
(
c2

min(d2)
d2,p

)2

, where min(d1) and min(d2) is the minimum
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of the resulting values for all points. The highest weighted point is appended to the path and will treated as

p0 in the next iteration. The constants c1 and c2 are used to fine tune the performance of the algorithm. In

our experiments, for units of radiants for the rotation angle and units of megahertz for the frequency, c1 = c2

showed good results. Because of computational cost, we use a model function f(x) = a + b| sin(x − c)| for the

algorithm, which closely resembles equation (14) but is less complex. The parameters of this model function are

fitted to the existing path after each iteration of this algorithm. By setting reasonable bounds to the parameters

a, b and c for the fit and repeating the algorithms for different starting points, we are able to find eight distinct

paths through the point set corresponding to the mS = ±1 spin transitions for each of the four NV symmetry

axes.

Thirdly, equation (14) is fitted to each path, and we directly obtain the in-plane components of n̂i from the

fit, e.g. nx and ny for rotation in the xy−plane. The results od this fit are depicted in the main text in Figure

4A in red dotted lines. The out-of-plane component, e.g. nz for rotation in the xy−plane, can be retrieved from

the in-plane components and the unit-length nature of the vector, however, in our experiments, the out-of-plane

component has a notably higher standard deviation compared to the in-plane components, which is why it is

set to zero. Consequently, from rotation of B⃗ in the three planes, we obtain a total of 24 vectors, two for the

mS = ±1 spin transitions for each of the four NV symmetry axes.

Lastly, we define a rotation matrix R = Rx(χ)Ry(ψ)Rz(ω) where Rx(A) (Ry(B), Rz(Γ)) is a rotation

around e⃗x (e⃗y, e⃗z) with an angle of χ (ψ, ω). This matrix R transforms the local coordinate system x′y′z′

relative to the crystal lattice to the laboratory coordinate system xyz, as defined in equation (9). To find the

angles χ,ψ and ω, we multiply the matrices according to (10) and treat these vectors as predictions, while

treating the vectors given by the fit as observables. By minimizing the quadratic mean of the residuals of each

vector component (root-mean-square error) with dual annealing [46], the angles χ, ψ and ω of the rotation

matrix R are derived.

D. Overlap of the Resonances

Figure 9: All cases of B⃗ (gray) where the projections of B⃗ onto the NV axes (colored) are equal. The resonance
frequencies of the mS = +1 spin states, associated with NVi, are depicted on the left and right with varying
values the magnitude of B⃗bias = −Bbiase⃗z and B = 6 mT. The resonance frequencies show distinct behaviour
for every of the six cases of B⃗.

The overlap of the resonances originate from equal field projections along the four NV axes |B1| = |B2| =

|B3| = |B4|. This condition is met only when B⃗ lies in the plane spanned by two NV axes, while simultaneously
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lying in the perpendicular plane spanned by the other two NV axes. In this configuration, two components of

B⃗NV , corresponding to those spanning one of the planes, must be negative. This problem is a permutation

with repetition and we can find the amount of possible vectors B⃗ by calculating 4!/(2! · 2!) = 6. The vectors

are depicted in Figure 9, along with the expected frequencies of the mS = 0 → mS = +1 spin transitions when

applying a bias field anti-parallel to the z− axis. These exhibit a distinct behavior, which is due to the vector

addition of B⃗ + B⃗bias giving different results for different B⃗. When comparing Figure 9 from the main text to

the measurement in the main text (Fig. 6), it is evident that the vector B⃗a was applied in the experiment.
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