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Abstract—Cell-free (CF) massive multiple-input multiple-
output (mMIMO) is a promising technique for achieving high
spectral efficiency (SE) using multiple distributed access points
(APs). However, harsh propagation environments often lead
to significant communication performance degradation due to
high penetration loss. To overcome this issue, we introduce the
reconfigurable intelligent surface (RIS) into the CF mMIMO
system as a low-cost and power-efficient solution. In this paper,
we focus on optimizing the joint precoding design of the RIS-
aided CF mMIMO system to maximize the sum SE. This involves
optimizing the precoding matrix at the APs and the reflection
coefficients at the RIS. To tackle this problem, we propose
a fully distributed multi-agent reinforcement learning (MARL)
algorithm that incorporates fuzzy logic (FL). Unlike conventional
approaches that rely on alternating optimization techniques, our
FL-based MARL algorithm only requires local channel state
information, which reduces the need for high backhaul capacity.
Simulation results demonstrate that our proposed FL-MARL
algorithm effectively reduces computational complexity while
achieving similar performance as conventional MARL methods.

Index Terms—Reconfigurable intelligent surface, cell-free mas-
sive MIMO, precoding, spectral efficiency, multi-agent reinforce-
ment learning.

I. INTRODUCTION

The sixth-generation (6G) network will be a vital compo-

nent in all parts of future society, industry, and life, given its

primary mission to fulfill the communication needs of humans

and intelligent machines [1]. The integration of distributed

networks and massive MIMO confers notable advantages

upon an ultra-dense network known as cell-free (CF) massive

multiple-input multiple-output (mMIMO). In the context of CF

mMIMO networks, a substantial array of distributed access

points (APs) collectively cater to a limited user base using

concurrent time-frequency resources, while all base stations

(BSs) are linked to a central processing unit (CPU) through

backhaul wireless connections [2], [3].

To enhance the network capacity, the deployment of a

large number of distributed APs in the cell-free network is

necessary. However, this approach entails significant costs and
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power consumption. Fortunately, the authors of [4] present

a promising solution for enhancing network capacity in a

cost-effective and energy-efficient manner, which involves

using reconfigurable intelligent surfaces (RIS) to assist CF

mMIMO systems. RIS is increasingly recognized as a forward-

looking smart radio technology for advancing future 6G com-

munications [5]. Consequently, the utilization of RIS-aided

CF mMIMO systems can lead to improvements in channel

capacity, reduced transmission power, enhanced transmission

reliability, and expanded wireless coverage [6]–[10].

The utilization of joint precoding in RIS-aided CF mMIMO

systems, as opposed to conventional precoding at the APs

alone, involves the coordinated design of the beamforming

matrix at the AP and the phase shifts of the RIS elements.

This approach has been explored in recent research, such

as the joint active-and-passive precoding framework proposed

in [11] and the partially connected CF mMIMO framework

presented in [12]. Additionally, efforts towards addressing

practical implementation challenges of these techniques, such

as the creation of less complex iterative algorithms, have been

undertaken, as explored in [13]. Despite these advancements,

several challenges persist, particularly in the application of

computationally intensive algorithms and joint learning in

practical scenarios, necessitating further resolution for real-

world deployment.

As a crucial technology for future 6G-and-beyond wireless

communication systems, machine learning/artificial intelli-

gence holds the promise of resolving non-convex optimization

problems that are mathematically insoluble [14]. Specifically,

the authors in [15] proposed a meta reinforcement learning

(meta-RL)-based computation offloading policy to optimize

RIS phase shift. In [16], the authors introduced a distributed

machine learning-based approach to optimize the transmit

beamforming at the AP. The aforementioned methods solve the

computation complexity problems, however, the acquisition

of instantaneous global CSI still entails substantial front-haul

overhead [17].

To address the challenges in the RIS-aided CF mMIMO

system as mentioned above, inspired by multi-agent rein-

forcement learning (MARL), in this paper, we introduce an

innovative MARL-based downlink design for joint precoding

and phase shift to mitigate these challenges. The principal

contributions of this paper are delineated as follows:

• We investigate an RIS-aided CF mMIMO network and

formulate the optimization problem for joint precoding

and phase shift to maximize the sum-SE. In contrast

http://arxiv.org/abs/2404.14092v1
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Fig. 1. The RIS-aided CF mMIMO system and the proposed MARL precoding network.

to centralized training centralized execution approach,

such as alternating optimization (AO), we employ the

method of centralized training and distributed execution

of MARL to solve this problem.

Based on the proposed MARL algorithm, we design a

two-layer network to address the joint optimization of AP

precoding and RIS phase shift separately. Each AP in our

approach only requires local CSI for precoding design,

reducing the burden and overhead on the backhaul link.

Additionally, we introduce fuzzy logic (FL) to enhance

the convergence speed of MARL and further reduce

computational complexity. The results demonstrate that

our proposed algorithm outperforms AO-based precoding

regarding SE performance in a limited training time.

Notation: The mathematical notation (·)H is employed to

denote the conjugate transpose operation. Boldface uppercase

letters such as X are utilized to represent matrices, while

boldface lowercase letters such as x are employed to denote

column vectors. Furthermore, the complex Gaussian random

variable x with variance σ2 is represented by x ∼ CN
(

0, σ2
)

.

II. SYSTEM MODEL

In this section, we focus on an RIS-aided CF mMIMO

system, as represented in Fig. 1, which utilizes several dis-

tributed APs and RISs to serve all UEs, simultaneously. For

centralized control and training, a CPU is employed. All

APs are connected to the CPU by optical cables or wireless

fronthaul/backhaul links [18], [19]. This design enables the

distributed APs to obtain important user-specific CSI and

cooperatively service all UEs. The control of all RISs is

overseen by the CPU, and facilitated by wired connections.

Specifically, we assume the network consists of L APs,

K UEs, and R RISs. We assume that each AP and UE

are equipped with M antennas, U antennas, respectively.

Also, each RIS consists of N elements. We use the sets

N = {1, 2, . . . , N}, L = {1, 2, . . . , L}, K = {1, 2, . . . ,K},
and R = {1, 2, . . . , R} to represent the index sets for RIS

elements, APs, UEs, and RISs, respectively.

A. Channel Model

The utilization of RISs enables directional reflection,

thereby structuring the channel between each AP and UE

into distinct constituents. Specifically, the channel comprises

an AP-UE link and R AP-RIS-UE links, with each AP-RIS-

UE link further divisible into an AP-RIS link and a RIS-

UE link. The architectural framework, which is facilitated by

RISs, delineates the communication channels within wireless

systems, offering enhanced control and optimization of signal

propagation.

A phase shift matrix to the incident signal, followed by

the transmission of the phase-shifted signal to the user, is

applied to represent on the RISs. Consequently, the resulting

equivalent channel, denoted as hH
l,k, originating from the l-th

AP to the k-th UE, is represented as

ĥH
l,k = HH

l,k +

R
∑

r=1

FH
r,kΘ

H
r Gl,r, (1)

where Gl,r ∈ CN×M , FH
r,k ∈ CU×N denote the frequency-

domain channel from the AP l to RIS r, and from RIS r to UE

k,respectively; ΘH
r ∈ CN×N denotes the phase shift matrix

as the RIS r, which is written as

ΘH
r , diag(θr,1, . . . , θr,N ), ∀r ∈ R, (2)

where θr,n ∈ F . Note that F is the feasible set of the reflection

coefficient at RIS. For simplicity but without loss of generality,

here we assume F is the ideal case, i.e.,

F , {θr,n|θr,n| ≤ 1}, ∀r ∈ R, ∀n ∈ N . (3)

Besides, HH
l,k ∈ CU×M denote the frequency-domain channel

from the AP l to the UE k, which can be written as

HH
l,k = βH

l,k|h
H
l,k|

2, (4)

where βH
l,k denotes the large-scale factor, hH

l,k is the Rayleigh

fading vector composed of the small-scale fading coefficients

between AP l and UE k.

B. Transmitters and Receivers

Our proposed RIS-aided CF mMIMO system establishes

synchronization among all APs, a prerequisite for facilitating

coherent joint transmission to cater to all users. Let s ,

[s1, s2, . . . , sK ]T ∈ CK denote the vector of symbols, where

each sk corresponds to the symbol transmitted to the k-th user.

It is ensured that the transmitted symbols adhere to power
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normalization, implying that E{ssH} = I, with I denoting

the identity matrix.

In the downlink, the frequency-domain symbol sk under-

goes precoding using the precoding matrix wl,k ∈ CM at the

l-th AP. The initial precoding operation yields the precoded

symbol xl and can be mathematically represented as

xl =

K
∑

k=1

wl,ksk. (5)

Let’s represent the baseband frequency-domain signal re-

ceived by UE k as yk ∈ CU

yk =
L
∑

l=1

ĥH
l,kxl + zHk . (6)

C. Problem Formulation

Based on the system model above, the aim in this subsection

is to enhance the overall SE gain realized over the network’s

operational duration. At first, the signal-to-interference-and-

noise ratio (SINR) for the transmitted symbol sk at UE k is

calculated as

γk =
|
∑L

l=1 ĥ
H
l,kwl|

2

∑

j 6=k |
∑L

l=1 ĥ
H
l,kwj |

2 + σ2
. (7)

Thereby, the SE of UE k Rk is given by

Rk = log2(1 + γk). (8)

Finally, the optimization problem of maximizing SE gain

can be originally formulated as

P0 max
wk,Θ

sum-SE =

K
∑

k=1

log2 (1 + γk),

s.t.

K
∑

k=1

‖wk‖
2 ≤ Pl,max, ∀k ∈ K, l ∈ L,

θr,n ∈ [0, 2π] , ∀r ∈ R, n ∈ N,

(9)

where the objective function pertains to an optimal problem

with a multi-timescale horizon, Pl,max denotes the maximum

transmit power of the AP l, and θrn denotes the reflection

coefficient at the RISs, respectively.

Given the complex characteristics of the non-convex objec-

tive function (9), the concurrent optimization of both the phase

shift matrix and the precoding matrix presents a significant

challenge. Nevertheless, drawing inspiration from MARL, we

have proposed an innovative joint precoding network to tackle

the optimization problem P◦, as detailed in Section III.

III. PROPOSED JOINT PRECODING AND PHASE SHIFT

OPTIMIZATION FRAMEWORK

A. Overview of the Framework

Within the context of a multi-agent architecture, every

individual agent is constituted by two discrete components:

an actor, which is responsible for the execution of actions,

and a critic, which plays a pivotal role in the evaluation and

refinement of the policy, respectively. MARL with central-

ized training decentralized execution (CTDE) has emerged

as a viable alternative, streamlining centralized learning to a

more computationally manageable extent. Consequently, the

optimization problem denoted as P0 in equation (9) can

be reformulated within the framework of MARL-CTDE as

follows:

P1 max
wlk,Θ

sum-SE=

K
∑

k=1

log2













1+

∣

∣

∣

∣

L
∑

l=1

ĥH
lk,dwlk

∣

∣

∣

∣

2

K
∑

i=1,i6=k

∣

∣

∣

∣

L
∑

l=1

ĥH
lkwli

∣

∣

∣

∣

2

+σ2













,

s.t.

K
∑

k=1

‖wlk‖
2 ≤ Pl,max, ∀k ∈ K, l ∈ L,

θr,n ∈ [0, 2π] , ∀r ∈ R, n ∈ N.
(10)

We transfer P0 to P1 for convenience in a MARL scenario.

Each AP l, instead of UE k, is considered an agent, which is

discussed in the following subsection.

B. Fuzzy Logic

Given the MARL policy in our network, it is evident that the

RIS-aided CF mMIMO system, with a substantial number of

APs and users, results in a large matrix calculation dimension

and heightened complexity. Consequently, the conventional

MARL necessitates simplification to ensure real-time inter-

action capability and scalability of the algorithms developed.

Motivated by the integration of FL in a seminal work [20],

we propose an innovative two-layer MARL-based downlink

joint precoding method. This method strategically employs FL

to formulate a correlation between fuzzy agents and entities,

whose network is shown in Fig.1.

The precoding problem P1 and FL are described in this

case, along with a MARL tuple < S(t),A(t), r(t) > at slot

t. The state space S(t) =
(

S
(t)
1 , . . . ,S

(t)
n

)

, action space

A(t) =
(

A
(t)
1 , . . . ,A

(t)
n

)

, and reward r(t) =
(

r
(t)
1 , . . . , r

(t)
n

)

are designed as follows.

1) Agent: We consider each AP as an agent.

2) State space: States are characterized as comprehensive

representations of the entire system. To encompass the states of

UEs dispersed across diverse locations, we employ an obser-

vational approach comprising both partial state variables and

global state variables. In this framework, the agent is equipped

to observe the relative positions of all UEs concerning all APs,

denoted as D. Specifically, local state is contemplated for AP

l at slot t.

S
(t)
l =

(

H
(t)
l,k,F

(t)
r,k,Θ

(t)
r ,G

(t)
l,r ,Dl,w

(t)
l ,Θ(t), γ

(t)
l,k

)

. (11)

3) Initialization: Initially, every fuzzy agent’s fuzzy state

is denoted as Ŝ(t) =
(

Ŝ
(t)
1 , . . . , Ŝ

(t)
n

)

, with each S
(t)
i being a

random selection from the observed state, and n representing

the total number of fuzzy agents. Subsequently, we divide each

dimension of the state space into n unique fuzzy sets. For

any given j-th dimension, the fuzzy state set is expressed as
(

ŝ
(t)
1,j , ŝ

(t)
2,j , . . . , ŝ

(t)
K,j

)

. The corresponding membership func-
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tion is denoted as ξ
(t)
ŝi,j(s)

= exp(− 1
da∗n
|s(t) − ŝ

(t)
i,j |),where

da represents the dimension of the action space [21].

4) Fuzzy Action space: Each fuzzy agent in a fuzzy system

is assigned a policy based on the perceived fuzzy state,

which is represented as S(t). Subsequently, defuzzification

is employed to establish a mapping from the fuzzy action

Â(t) =
(

Â
(t)
1 , . . . , Â

(t)
n

)

to the specific action A(t). The

mapping relationship between the p-th agent and the i-th fuzzy

agent is denoted as Ξ
(t)
i,p =

∏da

i=j ξ
(t)
ŝi,j(sk,j)

. Here we define the

relationship as A
(t)
p =

∑m

i=1 Ξ̄
(t)
i,p×Â

(t)
i , where Ξ̄i,p represents

the normalized mapping relationship.

5) Reward space: Subsequent to the reception of the spe-

cific action A(t) by the agents, the corresponding reward

r is ascertained in accordance with the predefined reward

function. In the context of interacting with the environment,

it is essential to employ fuzzy agents rather than entities.

This necessitates the process of fuzzification to derive the

fuzzy reward r̂(t) =
(

r̂
(t)
1 , . . . , r̂

(t)
n

)

within the framework

of reinforcement learning. The fuzzy reward can be expressed

as r̂
(t)
i =

∑K

k=1 Ξ̄
(t)
i,k × r

(t)
k . Therefore, the incorporation of

fuzzification is imperative for the successful completion of

the reinforcement learning model.

C. FL-MARL Algorithm

In the context of FL-MARL, individual fuzzy agents in-

dependently calculate the policy gradient for their respective

local actor networks, utilizing the collective abstract state

and action as a basis. Additionally, the objective function

for the i-th policy, denoted as πi, can be formulated as

L(πi) =
∑

Ŝ
(t)
i

pπ

(

Ŝ
(t)
i

)

∑

Â
(t)
i

π
(

Â
(t)
i | Ŝ

(t)
i

)

r̂
(t)
i .

The i-th fuzzy reward, symbolized as ri, is correspondingly

linked with a universal fuzzy action, denoted as A, and a state,

represented as S. This association results in a consolidated

global behavior value, Qπ

(

Ŝ(t), Â(t)
)

, which is the output

of the i-th critic network’s computation. In the context of πi,

the policy gradient of the local actor network can be articulated

as follows:

∆J(θπi
)=

Â
(t)
i

∑

Qπ

(

Ŝ(t), Â(t)
)

∆πi

(

Â
(t)
i |Ŝ

(t)
i ;θπi

)

, (12)

where ∆πi

(

Â
(t)
i | Ŝ

(t)
i ; θπi

)

is the output by the local policy

network.

In accordance with Algorithm 1, the soft update procedure

is implemented concurrently with the existing network con-

figuration. The target actor network undergoes modification

according to the expression θπ′

i
← τθπ′

i
+(1− τ)θπi

, whereas

the target critic network is adjusted based on the formula

θQπ′
← τθQπ′

+ (1 − τ)θQπ
.

D. Complexity comparison

We compare the computational complexity of different

algorithms. We assume that Qa and Qc denote the output size

of the a-th and c-th layer or the input size of the next layer, and

QSE represents the computational complexity of calculating

SE expressions, respectively. Note that as observed from Table

Algorithm 1 FL-MARL Algorithm for Maximizing sum-SE

1: Initialize AP agent states S
(t)
1 , . . . ,S

(t)
n by randomly

sampling fuzzy agent states: Ŝ
(t)
1 , . . . , Ŝ

(t)
n

2: count = 0

3: while count ≤ N do

4: Evaluate the network actor to decide the downlink

precoding and phase shift design: Â
(t)
i = πi

(

S
(t)
i

)

5: Calculate actual actions A
(t)
i =

∑m

i=1 Ξ̄
(t)
i,k × Â

(t)
i

6: Get actual rewards ri with reward function

7: Use fuzz function: r̂
(t)
i =

∑K

k=1 Ξ̄
(t)
i,k×r

(t)
k to calculate

fuzzy rewards r̂i
8: Update environment

9: Get next actual states S
(t)
i

10: Get next fuzzy states Ŝ
(t)
1 by fuzz function: Ŝ

(t)
i =

∑K

k=1 Ξ̄
(t)
i,k × Ŝ

(t)
k

11: Update membership function with ξ
(t+1)
ŝi,j(ŝk,j)

12: Store fuzzy experience < S(t),A(t), r(t) > in replay

buffer Di

13: for each training step do

14: Randomly sample a mini-batch of Bi transitions

uniformly from Di

15: Update weights of joint precoding and phase shift

critic network

16: Calculate policy gradient of the two layer actor

network ∆J(θQπ
) and update target network

17: count += 1

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

FL-MADDPG
MADDPG
AO-based

Fig. 2. Average reward against the training step with step = 100, L = 4, K
= 4, R = 4, M = 8, U = 1, and N = 16.

I, the computational complexity of MADDPG exhibits an

exponential increase with the number of APs L increasing.

In contrast, upon integrating FL, the computational complexity

increases linearly with the number of APs L. Correspondingly,

the introduction of FL makes the computational complexity of

FL-MADDPG linearly related to the number of fuzzy agents

NF , thus reducing the need for high backhaul capacity for
(

NF

L

)2
.
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY.

Parameters Computational Complexity

MADDPG

{

O(L2MKN2
∑AL

a=1 Q
2
a+L

2MK
∑CL

c=1 Q
2
c)
}

×

{

O(L2MKN2
∑AH

a=1 Q
2
a+LN

∑CH
c=1 Q

2
c+L

3QSE)
}

FL-MADDPG

{

O(LNFMKN2
∑AL

a=1 Q
2
a+LNFMK

∑CL
c=1 Q

2
c)
}

×

{

O(LNFMKN2
∑AH

a=1 Q
2
a+LN

∑CH
c=1 Q

2
c+L

2NFQSE)
}

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14
MMSE
MADDPG
FL-MADDPG
AO-based
ZF

Fig. 3. Sum-SE against the number of AP antennas with L = 4, K = 4, R
= 4, U = 1, and N = 16.

0 0.5 1 1.5 2 2.5 3 3.5 4
4

5

6

7

8

9

10
MADDPG with Continuous phase
MADDPG with Discrete phase
FL-MADDPG with Continuous phase
FL-MADDPG with Discrete phase

Fig. 4. Sum-SE against the number of RISs with L = 4, K = 4, M = 8, U
= 1 and N = 16.

IV. SIMULATION RESULTS

A. Simulation Setup

In the proposed RIS-aided cell-free network simulation,

we consider a 50 m × 50 m region served by a cell-free

network with all APs simultaneously serving all UEs. Each AP

divides the area into four equal squares, and UEs are randomly

deployed within these squares. To enhance network capacity,

RISs are strategically placed at the center of each of the four

equal squares that the APs divide the area into. We assume

that the maximum transmit power for APs is Pl,max = 0 dBm,

and the initial number of antennas per AP is M = 4, with

a noise power of δ2 = −96 dBm. Considering the limited

antennas and low transmit power of APs in cell-free networks,

we adopt the channel model from [22]. For the performance

enhancement of sum SE, we consider a proper experience pool

size in the simulation to improve the generalization ability of

10 20 30 40 50 60
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12
MMSE
MADDPG
FL-MADDPG
AO-based

Fig. 5. Sum-SE against the number of RIS elements with L = 4, K = 4, R
= 4, M = 8, and U = 1.

TABLE II
THE MODEL STRUCTURE AND EXPERIMENTAL DETAILS.

Parameters Size

Hidden layer of AP Precoding 512, Leaky Relu (0.01)

Hidden layer of RIS Phase Shift 256, Leaky Relu (0.01)

Mini-batch 32

Discounted factor γp and γ
f 0.99

Experience pool size D
p and D

f 4096 and 2048

Soft update rate τ
p and τ

f 0.0001 and 0.001

the model. The experimental details of MARL are given in

Table II.

B. Convergence of the proposed algorithm

To demonstrate the convergence of the proposed algorithms,

we present a plot of the reward as a function of training time

in Fig. 2. The outcomes depicted in Fig. 2 show that the

MARL method can converge faster in the same number of

training steps than the traditional AO-based method [23]. It

is worth noting that in the initial stage of algorithm training,

MADDPG showed a more stable upward trend compared with

FL-MADDPG. However, FL-MADDPG has a faster conver-

gence rate, about 30% faster than MADDPG, allowing FL-

MADDPG to reach a stable state earlier due to its combination

of fuzzy logic mechanisms to complete the agent-to-fuzzy

agent mapping. Therefore, FL-MADDPG is more stable in

comparison, demonstrating that the integration of FL into

MADDPG yields substantial savings in computing resources.
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C. Impact of key system parameters

We evaluate the sum-SE of the proposed RIS-aided cell-free

network in this subsection.

1) SE against the number of antennas per AP: We illustrate

the average sum-SE in relation to the number of AP antennas

in Fig. 3. The figure reveals a notable increase in the sum-SE

across all instances as the number of AP antennas increases.

Notably, FL-MADDPG demonstrates a performance closely

aligned with MADDPG, which is near MMSE. SE has a 42%

gain compared to ZF and 18% over the AO-based algorithm,

signifying that our proposed FL-MADDPG framework can

approximate the performance of MADDPG with a relatively
2) SE against the number of RISs: We depict the sum-

SE relative to the number of RISs in Fig. 4. It is easy to

find that with the increase in RIS, the sum-SE shows an

increasing trend. The gap between the continuous phase and

the discrete phase gradually decreases with the increase in

the number of RISs, which is because there are blind areas

in CF-mMIMO. These blind areas need RIS to provide and

enhance communication services. It is worth noting that the

percentage gap between FL-MADDPG and MADDPG under

continuous is smaller than the gap under discrete, indicating

that FL-MADDPG is more suitable for a broader continuous

scenario.

3) SE against the number of RIS elements: We depict the

sum-SE relative to the number of RIS elements in Fig. 5.

As the number of RIS elements increases, the sum SE of

the RIS-aided cell-free network shows a notable improvement.

Compared with alternate optimization, the MARL we adopted

has more than 10% performance improvement, which can

quickly approach the theoretical value in a limited training

time. However, this enhancement is accompanied by height-

ened implementation complexity of the RIS. Furthermore, this

state underscores the robustness of our proposed algorithm

across a broader spectrum of application scenarios, approach-

ing performance levels indicative of optimality.

V. CONCLUSIONS

In this paper, we investigated the maximization of downlink

SE in a RIS-aided CF mMIMO system through joint precoding

and phase shift design. To achieve this goal, we proposed a

MARL-based method incorporating fuzzy logic. The method

presented leverages parallel computing to diminish compu-

tational time, rendering it highly suitable for deployment in

expansive networks. Our simulation findings substantiate that

the MARL method, underpinned by fuzzy logic, significantly

curtails computational complexity by approximately 42%,

thereby enhancing reliability in practical settings relative to

traditional AO-based algorithms in a limited training time. In

future work, it is interesting to investigate the simultaneous

transmitting and reflecting (STAR)-RIS-aided CF mMIMO

systems and design joint precoding with imperfect CSI to

enhance the network.
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