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ASYMPTOTIC FERMAT’S LAST THEOREM FOR A FAMILY OF

EQUATIONS OF SIGNATURE (2, 2n, n)

PEDRO-JOSÉ CAZORLA GARCÍA

Abstract. In this paper, we study the integer solutions of a family of Fermat-
type equations of signature (2, 2n, n), Cx2 + qky2n = zn. We provide an algo-
rithmically testable set of conditions which, if satisfied, imply the existence of
a constant BC,q such that if n > BC,q , there are no solutions (x, y, z, n) of the
equation. Our methods use the modular method for Diophantine equations,
along with level lowering and Galois theory.

1. Introduction

1.1. Historical background. At the beginning of the 17th century, Fermat wrote
in the margin of a copy of Arithmetica that he had proved that the exponential
Diophantine equation

(1) xn + yn = zn

had no solutions (x, y, z, n) ∈ Z4 with n > 2 and xyz 6= 0. Fermat’s alleged proof
of this fact was never found and the resolution of (1) became one of the biggest
problems in the history of mathematics, known as Fermat’s Last Theorem.

In 1995, Wiles [28] proved the Modularity Theorem for semistable elliptic
curves, which, along with Ribet’s Level Lowering Theorem [25], finished the proof
of Fermat’s Last Theorem more than three centuries after its initial statement.

After Wiles’s proof of Fermat’s Last Theorem, several generalisations of (1)
have been studied. For example, the equation

(2) Axp +Byq = Czr,

where A, B and C are given integers, is called a Fermat-type equation of signature
(p, q, r). After the proof of Fermat’s Last Theorem, many researchers (see [2, 4, 5,
19], among many others) have used the modular methodology pioneered by Wiles
in order to study Fermat-type equations over Q.

More recently, this methodology has also been used to study (2) over number
fields K. In this setting, we are interested in solutions where x, y and z are elements
of the ring of integers of K, which we will denote by OK .

One of the most relevant results on Fermat-type equations over number fields
is due to Freitas and Siksek [12]. They showed that for 5/6 of real quadratic fields
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K = Q(
√
d), ordered by the value of d, there exists a constant BK , depending only

on K, such that if p > BK is prime, the equation

xp + yp = zp

has no solutions (x, y, z) ∈ O3
K satisfying xyz 6= 0. This is called the asymptotic

Fermat’s Last Theorem (AFLT) for K. For a general totally real number field
K, they give an algorithmically testable criterion which, if satisfied, implies the
Asymptotic Fermat’s Last Theorem for K. Shortly afterwards, Deconinck [11]
proved an analogous result for the equation

Axp +Byp = Czp,

where A,B,C ∈ OK are fixed and odd. In this situation, the constant implied by
AFLT depends on A, B and C, as well as on the number field K.

Other researchers have extended this line of work to Fermat-type equations of
signatures (p, p, 2) and (p, p, 3). For example, Işik, Kara and Özman [13, 14] have
studied the Diophantine equations

(3) xp + yp = z2, 2 | y,
and

(4) xp + yp = z3, 3 | y,
over totally real number fields K with narrow class number h+

K = 1. For these
fields, they show that there is a constant BK such that, if p > BK , there are no
solutions (x, y, z, p) ∈ O3

K × Z to either (3) or (4). Finally, this work was extended
by Mocanu [24], who showed the same results under a weaker assumption.

1.2. The main results. In this paper, we adapt these techniques to approach a
different problem. We note that all the previously mentioned literature considers
solutions of one exponential Diophantine equation over infinitely many number
fields. However, we shall consider solutions to a family of infinitely many expo-
nential Diophantine equations of signature (2, 2n, n) over the rationals. The family
of Fermat-type equations that we will consider is the following:

(5) Cx2 + qky2n = zn, gcd(Cx, qy, z) = 1, 2 | z,
where C, q and k are fixed positive integers, with C squarefree and q ≥ 3 a prime.
This equation is relevant because, to the best of our knowledge, there are no results
on AFLT for Fermat-type equations of signature (p, p, 2) unless C = 1 or C = 2
(see [15, 16, 20, 21] for some of the existing results if C = 1 or C = 2), even over
Q. Since solutions of (5) are also solutions of

Cx2 + qkyn = zn, gcd(Cx, qy, z) = 1,

studying (5) gives information about a Fermat-type equation of signature (n, n, 2)
with C 6= 1, 2.

In addition, we note that (5) is a generalisation of the Lebesgue–Nagell equa-
tion, which has been widely studied in the literature (for example, see [3, 5, 6]
or [22] for an exposition of the history of the Lebesgue–Nagell equation) to three
variables x, y and z.

We now proceed to give the definition of AFLT for (5), which is the following:



3

Definition 1. (AFLT for (5)) We say that Asymptotic Fermat’s Last Theorem
(AFLT) holds for (5) if there is a constant BC,q, depending only on C and q, such
that if p is a prime number with p > BC,q, then there are no solutions (x, y, z, n) ∈
Z4 to (5) with n = p.

We remark that Definition 1 is stronger than some of the definitions of AFLT
used in previous literature, in the sense that BC,q does not depend on k.

Remark 2. If the constant in Definition 1 exists, then there is a different constant
B′

C,q such that if n is composite and n > B′
C,q, there are no solutions (x, y, z, n) ∈ Z4

of (5). Indeed, suppose that Definition 1 holds. Let

D = {4, 6, 9} ∪ {p ≥ 5 prime | p < BC,q.}
Any solution (x, y, z, n) ∈ Z4 of (5) with n composite necessarily has m | n for
some m ∈ D, so we write n = mt for some t ≥ 1. The existence of such a solution
(x, y, z, n) of (5) clearly means that (x′, y′, z′) = (x, yt, zt) is a solution of

(6) C(x′)2 + qk(y′)2m = (z′)m.

A specialisation of a result of Darmon and Granville (see [10, Theorem 2]) yields
that there are finitely many solutions of (6) for any m ∈ D. Then we can define

m′ = max{s ≥ 1 | there exists m ∈ D, (x, y, z) ∈ Z3

such that (x, ys, zs) is a solution of (6)} ∪ {1}.
By our previous discussion, the set above is finite and, therefore, m′ < ∞. By
definition of m′, it follows that any solution (x, y, z, n) ∈ Z4 with n composite
satisfies

n < max{9, BC,q} ·m′,

and so it suffices to take B′
C,q = max{9, BC,q}·m′. However, we emphasise that the

constant m′ can only be made effective by explicitly resolving (5), which is beyond
the scope of this paper.

We can now present the main result of this paper, Theorem 3, which provides
a set of algorithmically testable conditions which, if satisfied, imply AFLT for (5).

Theorem 3. Let C ≥ 1 be a squarefree integer, q ≥ 3 a prime number and k ≥ 0
an integer and consider the following Diophantine equation:

Cx2 + qky2n = zn, gcd(Cx, qy, z) = 1, 2 | z.
Suppose that the Diophantine equation

(7) Ct2 + qγ = 2m

has no solutions (t, γ,m) ∈ Z3 with m > 6 and γ ≥ 0 with γ ≡ k (mod 2). Suppose
furthermore that any of the following hypotheses hold:

(a) The exponent k is odd.

(b) The exponent k is even, and −C is not a square modulo q.

(c) The exponent k is even, q 6≡ 7 (mod 8) and there are no solutions (t, γ,m) ∈ Z3

to the following equation:

(8) Ct2 + 1 = qγ2m, m > 6, γ ≥ 0.
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(d) The exponent k is even, q ≡ 7 (mod 8), (8) has no solutions and there are no
solutions (t, γ,m) ∈ Z3 to

(9) Ct2 + 2m = qγ , m > 6 even, γ > 0 odd.

Then AFLT holds for (5) and the constant BC,q can be explicitly computed.

We note that, in order to prove Theorem 3, it suffices to do so under the
assumption that 0 ≤ k < 2n. Indeed, let us write k = 2nk1 + k2, with k1 ≥ 0
and 0 ≤ k2 < 2n. Then any solution (x0, y0, z0, n0) of (5) gives rise to a solution
(x0, y0q

k1 , z0, n0) of

Cx2 + qk2y2n = zn,

and, since k ≡ k2 (mod 2), the conditions in Theorem 3 are well defined if we
replace k by k2. For this reason, we shall assume that 0 ≤ k < 2n for the remainder
of the paper.

In addition, we emphasise that the determination of whether any of the hy-
potheses in Theorem 3 are satisfied can be done in a computationally effective
manner. For this purpose, we provide the reader with Magma code in the GitHub
repository https://shorturl.at/hoxW8. We will explain the computations in Section
7, allowing us to prove the following result.

Theorem 4. Let 1 ≤ C ≤ 70 be a squarefree integer and 3 ≤ q < 100 be a prime
number. By reducing (5) modulo 8, we see that Cqk ≡ 7 (mod 8). Then AFLT
holds for 268 out of the 330 pairs in this range. In addition, Table 1 contains the
number of pairs satisfying the conditions in Theorem 3, as well as the total number
of pairs for each value of k (mod 2).

k (mod 2) #Pairs (C, q) # Pairs satisfying the conditions in Theorem 3

0 158 131
1 172 137

TOTAL 330 268
Table 1. Number of pairs satisfying the conditions in Theorem 3.

The structure of the paper is as follows. In Section 2, we present the modular
method for Diophantine equations and characterise under what conditions it fails to
prove AFLT for (5). In Sections 3 and 4, we will use “image of inertia” arguments
and Galois theory respectively to build upon this characterisation. In Section 5,
we put the previous results together to show that the failure of AFLT implies the
existence of an elliptic curve E of a particular form. In Section 6, we finish the
proof of Theorem 3 by relating the curve E to the existence of solutions to certain
Diophantine equations. Finally, on Section 7, we show that checking the conditions
in Theorem 3 is a computationally effective process and prove Theorem 4.

Acknowledgements The author would like to thank Gareth Jones, Diana Mocanu
and Lucas Villagra-Torcomián for their comments on a draft version of the paper
and for useful conversations.
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2. The Frey–Hellegouarch curve and the modular method

In this section, we present the Frey–Hellegouarch that we shall use to achieve
a bound on the exponent n. An excellent expository article on the modular method
and its applications can be found in [26].

We highlight that, due to the fact that z is even, there is only one Frey–
Hellegouarch curve to consider, allowing for a uniform treatment of all cases. If
z were odd, the number of cases to consider would grow significantly and, conse-
quently, we would not be able to get a result like Theorem 3. We refer the reader
to Remark 7 for a more detailed discussion on why this is the case.

We suppose that there exists a solution (x, y, z, p) to (5) with z even and
n = p ≥ 7 a prime number. Following Bennett and Skinner [2], we can associate
the following elliptic curve to the solution:

(10) F = F (x, z, p) : Y 2 +XY = X3 +
Cx− 1

4
X2 +

Czp

64
X.

We shall call F the Frey–Hellegouarch curve associated to (x, y, z, p). By [2, Lemma
2.1], the minimal discriminant of F is given by

(11) ∆F = −2−12C3qk(yz)2p,

and conductor given by

(12) N =

{

2C2qRad2,q(yz), if k 6= 0,

2C2 Rad2(yz), if k = 0.

where Rad2,q(yz) denotes the product of all prime numbers dividing yz except 2
and q, and similarly for Rad2(yz). By the Modularity Theorem [28], the curve
F corresponds to a rational modular form of weight 2 and level N . However, we
remark that the level N depends on our solutions and, therefore, is not explicit.

In order to be able to work with newforms of an explicit level, we will need to
combine the Modularity Theorem with Ribet’s Level Lowering Theorem [25]. We
shall do so by applying [26, Theorem 13] (which is a combination of [2, Lemmas 3.2
and 3.3]). By this result, it follows that either yz = ±1, or there exists a newform
f of weight 2, trivial Nebentypus character and level given by

(13) N ′ =

{

2C2q if k 6= 0, p,

2C2 if k = 0, p,

such that

(14) ρp(F ) ∼= ρp(f),

where ρp denotes the mod-p Galois representations associated to F and f respec-
tively. We note that, since z is even, yz 6= ±1. Consequently, (14) holds.

Given a prime number ℓ, we define aℓ(F ) := ℓ + 1 − #F (Fℓ). Similarly, we
let cℓ be the ℓ−th coefficient in the Fourier cusp expansion of f , we let Kf be the
number field generated by all Fourier coefficients of f , and we let OKf

be its ring
of integers. Then, by [26, Propositions 5.1 and 5.2], (14) is equivalent to

(15)

{

aℓ(F ) ≡ cℓ (mod p) if ℓ 6= p, ℓ ∤ N,

cℓ ≡ ±(ℓ+ 1) (mod p) if ℓ 6= p, ℓ ∤ N ′, ℓ | N,
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where p is some prime ideal of OKf
above p. In addition, if f is a rational newform,

the condition ℓ 6= p can be removed in both cases. The following proposition, which
is [26, Proposition 9.1], allows us to bound p in some instances by exploiting (15).

Proposition 2.1. Suppose that (x, y, z, p) ∈ Z4 is a solution to (5) with n = p ≥ 7
prime. Let f be a newform of weight 2 and level N ′ as in (13), with field of
coefficients Kf and such that ρp(F ) ∼= ρp(f). Then, for any prime number ℓ ∤ N ′,
we define

B′
ℓ(f) = NormKf/Q

(

(ℓ+ 1)2 − c2ℓ
)

∏

|a|<2
√
ℓ

2|a

NormKf/Q(a− cℓ),

and

Bℓ(f) =

{

B′
ℓ(f) if f is rational.

ℓB′
ℓ(f) otherwise.

Then p | Bℓ(f).

Remark 5. We remark that, as long as Bℓ(f) 6= 0 for all newforms of weight 2 and
level N ′, we will be able to explicitly find a constant BC,q such that any solutions
(x, y, z, p) of (5) with n = p prime necessarily satisfy that p < BC,q, thereby proving
AFLT for (5). Consequently, our aim is to characterise those newforms f for which
Bℓ(f) = 0.

As stated in the remarks following [26, Proposition 9.1], if Bℓ(f) = 0, f is
necessarily a rational newform and therefore corresponds to an elliptic curve E via
the Modularity Theorem. In this instance, we shall write ρp(F ) ∼= ρp(E) to mean
ρp(F ) ∼= ρp(f). We also note that in this case cℓ = aℓ(E) := ℓ+ 1−#E(Fℓ).

In addition, if Bℓ(f) = 0, we know that E is isogenous to a curve E′ with a
Q−rational point of order 2. In this case, it is still true that

ρp(F ) ∼= ρp(E
′).

This fact allows us to prove the following lemma.

Lemma 2.2. Suppose that AFLT does not hold for (5). Then there exists an
elliptic curve E of conductor N ′ with a model of the form

(16) E : Y 2 = X(X2 +AX +B),

for certain integers A,B and satisfying

ρp(F ) ∼= ρp(E).

In addition, the invariants of the minimal model of E are given by

c4 = A2 − 3B,

c6 =
A(9B − 2A2)

2
,

and

(17) ∆ =
B2(A2 − 4B)

28
.
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Proof. By our discussion in Remark 5, Proposition 2.1 will succeed in bounding p
unless there is an elliptic curve E of conductor N ′ with a point of order 2 satisfying
ρp(F ) ∼= ρp(E). Up to isomorphism, we can assume that E has the following model:

(18) E : Y 2 = X(X2 +A′X +B′),

for certain A′, B′ ∈ Z. By directly applying the formulas in [27, Chapter 3], we find
that this model has invariants given by

c′4 = 16(A′2 − 3B′),

c′6 = 25A′(9B′ − 2A′2),

and

∆′ = 24B′2(A′2 − 4B′).

Suppose that ℓ 6= 2 is a prime for which the model (18) is not minimal. Therefore,

it follows that ℓ12 | ∆′ and ℓ4 | c′4. Consequently, ℓ4 | A′2 − 3B′ and either

ℓ7 | B′2 or ℓ6 | (A′2 − 4B′),

by the pigeonhole principle. In both cases, we can see that ℓ4 | B′ and ℓ2 | A′.
Then we can replace (A′, B′) by

(A,B) =

(

A′

ℓ2
,
B′

ℓ4

)

in (18) and obtain an isomorphic model. After finitely many iterations, this proce-
dure will yield a model which is minimal at ℓ.

Finally, let us consider the case ℓ = 2. Since 2 | c′4, 2 | ∆′, and 2 is a prime of
multiplicative reduction for E, it follows that (18) cannot be a minimal model at
2. Consequently, there is another model of E with invariants given by

c′′4 = c′4/2
4 = A′2 − 3B′,

c′′6 = c′6/2
6 =

A′(9B′ − 2A′2)

2
,

∆′′ = ∆′/212 =
B′2(A′2 − 4B′)

28
.

If this model is minimal at 2, we may take A = A′ and B = B′ and finish the proof.
Otherwise, we have that 26 | c′′6 and 24 | c′′4 , and by exploting a similar argument
to the case where ℓ 6= 2, we may see that 24 | B′ and 22 | A′ and iterately replace
(A′, B′) by (A′/22, B′/24) until we attain a minimal model. �

3. An image of inertia argument

If AFLT does not hold for (5), Lemma 2.2 gives the existence of an elliptic curve
E of conductor N ′ such that ρp(F ) ∼= ρp(E). In this case, we can see whether the

image of the two Galois representation agree for some inertia subgroup of Gal(Q/Q).
A very useful result in this direction is the following theorem due to Bennett and
Skinner, which is [26, Theorem 13(e)] and follows directly from [2, Theorem 2.1(d)].



8 PEDRO-JOSÉ CAZORLA GARCÍA

Theorem 6. (Bennett-Skinner) Let (x, y, z, p) be a solution to (5) with n = p ≥ 7
prime. Let F be the Frey–Hellegourch curve (10), and let E be an elliptic curve
such that

ρp(F ) ∼= ρp(E).

Then the denominator of the j−invariant of E is not divisible by any odd primes
ℓ | C except possibly ℓ = p.

With the use of Theorem 6, we are able to expand on the result of Lemma 2.2,
giving rise to the following characterisation. For this, we let ℓ be a prime number
and we let νℓ(·) denote the standard ℓ−adic valuation.

Proposition 3.1. Suppose that AFLT does not hold for (5) and let E be the elliptic
curve given in (16). Then, for all primes r | C, we have that νr(B) = νr(A

2− 4B).

Proof. By Lemma 2.2, the j−invariant of E is given by

j(E) =
c34
∆

=
28(A2 − 3B)3

B2(A2 − 4B)
.

Let r | C be a prime satisfying that νr(B) 6= νr(A
2 − 4B). If r = p, we have that

p < C, and so AFLT holds for (5) with BC,q = C. If r 6= p, r does not divide the
denominator of j(E) by Theorem 6. Consequently

(19) 3νr(A
2 − 3B) ≥ 2νr(B) + νr(A

2 − 4B).

Since νr(B) 6= νr(A
2 − 4B), standard properties of r−adic valuations yield that

νr(A
2 − 3B) = νr((A

2 − 4B) +B) = min{νr(B), νr(A
2 − 4B)},

while

2νr(B) + νr(A
2 − 4B) > 3min{νr(B), νr(A

2 − 4B)}.

This gives a contradiction with (19). Consequently, νr(B) = νr(A
2 − 4B) and the

proposition follows. �

4. Using Galois theory to provide local information

Our aim in this section is to find conditions under which Proposition 2.1 can
be refined. A key ingredient about the Frey–Hellegouarch curve F that we use in
the proof of Lemma 2.2 is the fact that F (Q) always has a point of order 2, (0, 0)
and, consequently, F (Fℓ) has a point of order 2 for all primes ℓ of good reduction.
For a subset of these primes, it happens that F (Fℓ) has a subgroup of order 4 and
this fact can be exploited to improve upon Proposition 2.1 in order to obtain a
bound for p.

Our aim is to characterise under what conditions such a prime ℓ fails to exist,
and we shall do so in this section. In order to do this, we need to prove certain facts
about the Frey–Hellegouarch curve F , and we do so in the following subsection.
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4.1. Some computations on the Frey curve. Let F ′ be any curve which is
isogenous to F via a rational isogeny of degree 2m (note that the case m = 0
means that F (Q) and F ′(Q) are isomorphic). The aim of this subsection is to show
that F ′(Q) can never have a subgroup of order 4. We shall do that in three steps,
corresponding to Lemmas 4.1 and 4.2, where we show that this fact is true for F ,
and Lemma 4.3, where we show the same for all F ′ 6∼= F .

Lemma 4.1. The Frey-Helleguarch curve F never has full 2−torsion over Q.

Proof. Following [27, Exercise 3.7] and the expression for F given in (10), we see
that the roots of the 2−division polynomial of F are given by the expression

2Y +X = 0,

or, equivalently,

X = −2Y.

Substituting into (10) and simplifying, we get

−8Y 3 + CxY 2 − Czp

32
Y = 0.

The root Y = 0 corresponds to the 2−torsion point (0, 0). If F (Q) had additional
2−torsion points, there would be other rational roots. This would mean that

C2x2 − Czp ≥ 0.

But since (x, y, z, p) is a solution to (5), we see that

C2x2 − Czp = −Cqky2p,

which is clearly negative. Consequently, the only point of order 2 in F (Q) is (0, 0).
�

Lemma 4.2. The group F (Q) never has a point of order 4.

Proof. Suppose that there exists a point (X0, Y0) ∈ F (Q) of order 4. By Lemma
4.1, the only Q−rational point of order 2 is (0, 0), so it follows that

[2](X0, Y0) = (0, 0).

Consequently, the tangent line to F at (X0, Y0) passes through (0, 0). Algebraically,
this condition is equivalent to

(20) 2(Y 2
0 +X0Y0) = 3X3

0 +
Cx− 1

2
X2

0 +
Czp

64
X0.

Since (X0, Y0) ∈ F (Q), the left-hand side of the previous expression can be replaced
by

2

(

X3
0 +

Cx − 1

4
X2

0 +
Czp

64
X0

)

,

and, consequently, it can be seen that (20) amounts to

X0(X
2
0 − Czp/64) = 0.

Since (X0, Y0) has order 4, it is clear that (X0, Y0) 6= (0, 0) and, consequently

X2
0 =

Czp

64
,
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but this is not possible since C is squarefree and gcd(C, z) = 1, so
√
Czp is not a

rational number. �

These two lemmas show that F (Q) does not have a subgroup of order 4. We
can use them to prove that the same is true for curves which are isogenous to F
via a rational 2m−isogeny in the following lemma.

Lemma 4.3. Let F be the Frey–Hellegouarch curve (10) and let m ≥ 1 be an
integer. Let F ′ be an elliptic curve which is isogenous to F via a rational isogeny
of degree 2m. Then F ′(Q) does not have a subgroup of order 4.

Proof. By Lemmas 4.1 and 4.2, F (Q) has only one subgroup of order 2m with
m ≥ 1, and this is the subgroup generated by the point (0, 0). Consequently, there
is only one possible isogenous curve F ′ to consider. By [27, Example III.4.5], this
curve has a model given by

F ′ : V 2 = U3 − Cx

2
U2 − Cqky2p

16
U,

and so it suffices to see that F ′(Q) does not have a subgroup of order 4. Firstly,
we see that it does not have full 2−torsion, as this would imply that

C2x2 + Cqky2p

4
=

Czp

4

is a rational square. But this is not true since C is squarefree and gcd(C, z) = 1 by
assumption.

Finally, we can see that F ′(Q) has no point of order 4 by mimicking the
approach in Lemma 4.2. Indeed, we recall that (0, 0) is the unique rational point of
order 4 in F ′(Q). Consequently, if (U0, V0) ∈ F ′(Q) is a point of order 4, it follows
that [2](U0, V0) = (0, 0), and, after performing some computations, we find that

U2
0 +

Cqky2p

16
= 0,

which clearly has no solutions since Cqky2p > 0. Consequently, F ′(Q) has no
subgroup of order 4. �

With this lemma, we can prove the following corollary, which will be useful in
Section 4.2.

Corollary 4.4. Suppose that AFLT does not hold for (5), and let E the elliptic
curve given in Lemma 2.2. Then no curve isogenous to E(Q) has a subgroup of
order 4.

Proof. Assume for contradiction that some curve in the isogeny class of E(Q) has a
subgroup of order 4, and let F be the Frey–Hellegouarch curve (10). By Lemma 4.3,
it follows that no curve isogenous to F via a rational 2m−isogeny has a subgroup
of order 4. Then, by [18, Problem I (bis) and Theorem 1], there exists a prime
number ℓ such that ℓ ∤ N , 4 ∤ #F (Fℓ) and 4 | #E(Fℓ). If we define the sets

(21) Aℓ = {a ∈ Z | |a|< 2
√
ℓ, a ≡ ℓ+ 3 (mod 4)},
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and

(22) Bℓ = {b ∈ Z | |b|< 2
√
ℓ, b ≡ ℓ+ 1 (mod 4)},

then the Hasse–Weil bounds, along with the previous discussion, yield that

aℓ(F ) ∈ Aℓ and aℓ(E) ∈ Bℓ.

By (15), we have that

(23) p |
∏

a∈Aℓ

b∈Bℓ

(a− b)
∏

b∈Bℓ

(b2 − (ℓ + 1)2).

Since Aℓ and Bℓ are clearly disjoint, a− b 6= 0 for any a ∈ Aℓ, b ∈ Bℓ. In addition,
we also have that ±(ℓ+1)− b 6= 0 for any b ∈ Bℓ by the Hasse–Weil bounds. Thus,
(23) means that p divides a non-zero number. This is a contradiction with the fact
that AFLT does not hold and, consequently, it follows that no curve in the isogeny
class of E(Q) has a subgroup of order 4. �

4.2. A Galois theory sieve. After Corollary 4.4, we are left with the case where
E(Q) has no subgroup of order 4. In order to find a bound BC,q for the exponent in
this situation, it is sufficient to find a prime number ℓ ∤ N satisfying the following
two properties:

• The group F (Fℓ) has a subgroup of order 4.

• The group E(Fℓ) does not have a subgroup of order 4.

In this case, a similar argument to that of the proof of Corollary 4.4 allows
to find an upper bound BC,q for p, therefore proving AFLT for (5). Consequently,
if AFLT does not hold, such a prime ℓ cannot exist. In Proposition 4.5, we find
necessary conditions for the non-existence of these primes.

Proposition 4.5. Suppose that AFLT does not hold for (5), let F be the Frey-
Hellegouarch curve (10) and E be the elliptic curve given by Lemma 2.2. Let s ∈
{0, 1} satisfy k ≡ s (mod 2). Then all primes ℓ ∤ N satisfy at least one of the
following conditions:

(i) −Cqs is not a square modulo ℓ.

(ii) A2 − 4B is a square modulo ℓ.

(iii) B is a square modulo ℓ.

The proof of Proposition 4.5 uses the following proposition, which is proved in
[6, Proposition 6.4] and [7, Proposition 6.4].

Proposition 4.6. Let E be an elliptic curve defined over Q with discriminant ∆,
and let ℓ be a prime of good reduction for E. Furthermore, assume that E has at
least one Q−rational point of order 2. Then the reduced curve has full 2-torsion
over Fℓ, if, and only if,the reduced discriminant ∆ is a square mod ℓ.

Proof of Proposition 4.5. Suppose for contradiction that there is a prime ℓ not sa-
tisfying any of the three conditions (i), (ii) or (iii). By (11), the discriminant of the
Frey–Hellegouarch curve F is

∆ = −2−12C3qk(yz)2p,
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which, up to multiplication by rational squares, is equivalent to −Cqs. Similarly,
(17) yields that, up to multiplication by a rational square, the discriminant of E is
equivalent to A2 − 4B. Then, Proposition 4.6, along with the fact that conditions
(i) and (ii) are not satisfied, yields that F (Fℓ) has full 2−torsion while E(Fℓ) does
not.

In order to apply the methodology that we outlined at the beginning of this
subsection, it remains to see that E(Fℓ) has no points of order 4. Let (x0, y0) ∈
E(Fℓ) be a point of order 4. Since the only Fℓ−rational point of order 2 is (0, 0),
we have that [2](x0, y0) = (0, 0). By the duplication formula for elliptic curves (see
[27, Group Law Algorithm 2.3]), we have that

(24) (x0, y0) ∈
{(√

B,±
√
B

√

A+ 2
√
B

)

,

(

−
√
B,±

√
B

√

A− 2
√
B

)}

.

Since condition (iii) is not satisfied, none of these points are Fℓ−rational. Conse-
quently, E(Fℓ) has no subgroup of order 4 while F (Fℓ) does and so, by defining Aℓ

and Bℓ as in (21) and (22) respectively, we may exploit a similar argument to that
of the proof of Corollary 4.4 to obtain an upper bound for p. Consequently, AFLT
holds for (5), which is a contradiction with our hypotheses. �

5. Finding all possibilities for E

In order to prove Theorem 3, we want to exploit Lemma 2.2 and Propositions
3.1 and 4.5 to find a list of possibilities for the coefficients A and A2 − 4B in the
curve E. To do this, we need the following lemma, which is a consequence of
Chebotarev’s Density Theorem.

Lemma 5.1. Let x, y, z ∈ Q be rational numbers satisfying the following conditions:

• Neither x nor y are rational squares.

• The number z is not equivalent to either x or y up to multiplication by
rational squares.

Then there exists a prime number ℓ such that x and y are non-squares modulo ℓ
and z is a square modulo ℓ.

Proof. Let K = Q(
√
x,

√
y,
√
z). Then our conditions on x, y and z show that

there exist an element σ ∈ Gal (K/Q) with σ(
√
x) = −√

x, σ(
√
y) = −√

y and
σ(
√
z) =

√
z.

By Chebotarev’s density theorem [8] (also stated in Section 3 of [23]), there is
a positive density of primes ℓ such that the Frobenius of K/Q at ℓ is equal to σ.
This condition is equivalent to x and y being non-squares modulo ℓ and z being a
square modulo ℓ, as desired. �

The possible values for B and A2−4B will be different depending on the parity
of k. For simplicity, we separate our argument in two propositions.

Proposition 5.2. Suppose that k is odd in (5). Suppose furthermore that there
does not exist an elliptic curve E given by

E : Y 2 = X(X2 +AX +B),
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where A,B ∈ Z satisfy one of the following conditions:

(A) Either we have that

B = −qγ1

∏

r|C prime

rβr ,

A2 − 4B = 2α2

∏

r|C prime

rβr ,

with α2 > 8, βr = 1, 3 for all r | C prime and γ1 odd, or

(B) We have that

B = 2α1

∏

r|C prime

rβr ,

A2 − 4B = −qγ2

∏

r|C prime

rβr ,

with α1 > 4, βr = 1, 3 for all r | C prime and γ2 odd.

Then AFLT holds for (5).

Proof. Suppose that AFLT does not hold for (5). Then Lemma 2.2 yields the
existence of a curve E of conductor N ′ as in (13). First, let us suppose that p 6= k,
so that N ′ = 2C2q. Then it follows that only 2, q and the primes dividing C can
divide the discriminant ∆ given in (17), so B and A2 − 4B can be supported only
on these primes.

In addition, since 2 || N ′ and q || N ′, both 2 and q are primes of multiplicative
reduction for E and therefore divide ∆ while not dividing c4. On the other hand,
C2 | N ′ and so all primes r dividing C have additive reduction. Consequently,
any such r will divide both c4 and ∆. Since the expressions for c4 and ∆ are
given in Lemma 2.2, we see that 2 and q divide precisely one of A2 − 4B and B
while any prime r | C divides both. In addition, by Proposition 3.1, we have that
νr(B) = νr(A

2 − 4B) for all r | C prime.

Suppose that there exists a prime ℓ ∤ N such that A2 − 4B and B are non-
squares modulo ℓ, while −Cq is a square modulo ℓ. Then Proposition 4.5 gives that
AFLT holds for (5), which is a contradiction. By Lemma 5.1, such a prime ℓ will
exist unless one of the following conditions are satisfied:

(a) The number B is a rational square.

(b) The number A2 − 4B is a rational square.

(c) The number B is equivalent, up to rational squares, to −Cq.

(d) The number A2 − 4B is equivalent, up to rational squares, to −Cq.

Let us consider each condition separately. If (a) is satisfied, this would mean that√
B ∈ Fℓ for every prime number ℓ. In addition, by the multiplicativity of the

Legendre symbol, we have that
(

A+ 2
√
B

ℓ

)(

A− 2
√
B

ℓ

)

=

(

A2 − 4B

ℓ

)

.
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Consequently, at least one of the three previous Legendre symbols is equal to 1. If
A2 − 4B is a square modulo ℓ, the discriminant of the curve E is a square modulo
ℓ by (17) and so E(Fℓ) has full 2−torsion by Proposition 4.6.

If either A+2
√
B or A+2

√
B are squares modulo ℓ, at least two of the points

of order 4 in (24) are defined over Fℓ. In any case, E(Fℓ) has a subgroup of order
4 for all ℓ ∤ N ′. By [18, Theorem I], this means that there exists an elliptic curve
E′ isogenous to E and such that E′(Q) has a subgroup of order 4. Then Corollary
4.4 yields that AFLT holds for (5).

Suppose now that condition (b) is satisfied. Then the discriminant ∆ of E is
a square modulo ℓ for every prime number ℓ. By Proposition 4.6, it follows that
4 | #E(Fℓ) for every prime number ℓ ∤ N ′. Then [18, Theorem I] yields that there
exists a curve E′ isogenous to E and such that E′(Q) has a subgroup of order 4.
Therefore, Corollary 4.4 gives that AFLT holds for (5).

Now, if condition (c) is satisfied, it follows that either

B = −2α1qγ1

∏

r|C prime

rβr ,

A2 − 4B =
∏

r|C prime

rβr ,
(25)

with α1 > 4 even, βr odd for all r | C prime and γ1 ≡ k ≡ 1 (mod 2), or

B = −qγ1

∏

r|C prime

rβr ,

A2 − 4B = 2α2

∏

r|C prime

rβr ,
(26)

where α2 > 8, βr odd for all r | C prime and γ1 ≡ k ≡ 1 (mod 2). We remark
that α1 > 4 and α2 > 8 because 2 needs to divide the discriminant ∆ given in (17).
Now, the set of conditions (25) yield that A2 < 0, while the set of conditions (26)
correspond to case (A) in the statement of the Proposition.

Finally, suppose that condition (d) is satisfied. By a similar argument to the
one in condition (c), case (B) in the proposition follows. In both situations, we
have that the model for the curve E in (18) is isomorphic to one where βr = 1 or
βr = 3, and hence the proposition follows for p 6= k.

Assume now that p = k. In this case, we would have that N ′ = 2C2. We deal
with conditions (a) and (b) exactly as before. We note that, since q ∤ N ′, it follows
that q ∤ B and q ∤ A2 − 4B and so conditions (c) and (d) cannot hold.

�

Remark 7. A key ingredient in the proof of Proposition 5.2 is that 2 is a prime of
multiplicative reduction for the Frey–Hellegouarch curve F and therefore can only
divide either A2−4B or B. In addition, as opposed to the rest of primes of additive
reduction, it would be impossible to adapt Proposition 3.1 to relate ν2(A

2 − 4B)
and ν2(B).

If we allow z to be odd in (5), and as we mentioned at the beginning of Section
2, we would need to consider many more Frey–Hellegouarch curves. For some of
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these, 2 is a prime of additive reduction and, therefore, it is impossible to use the
same arguments as in this paper.

If k is even, the following proposition gives the possible values of A2 − 4B and
B. Its proof is almost identical to that of Proposition 5.2, and we shall omit it.

Proposition 5.3. Suppose that k is even in (5). Suppose furthermore that there
does not exist an elliptic curve E given by

E : Y 2 = X(X2 +AX +B),

where A,B ∈ Z satisfy one of the following conditions:

(A’) We have

B = −2α1

∏

r|C
rβr ,

A2 − 4B = qγ2

∏

r|C prime

rβr ,

with α1 > 4 even, βr = 1, 3 for all r | C prime and γ2 ≥ 0, or

(B’) We have

B = −qγ1

∏

r|C prime

rβr ,

A2 − 4B = 2α2

∏

r|C prime

rβr ,

with α2 > 8, βr = 1, 3 for all r | C prime and γ1 ≥ 0 even, or

(C’) We have

B = −
∏

r|C prime

rβr ,

A2 − 4B = 2α2qγ2

∏

r|C prime

rβr ,

with α2 > 8, βr = 1, 3 for all r | C prime and γ2 ≥ 0, or

(D’) We have

B = 2α1qγ1

∏

r|C prime

rβr ,

A2 − 4B = −
∏

r|C prime

rβr ,

with α1 > 4, βr = 1, 3 for all r | C prime and γ1 ≥ 0, or

(E’) We have

B = 2α1

∏

r|C prime

rβr ,

A2 − 4B = −qγ2

∏

r|C prime

rβr ,

with α1 > 4, βr = 1, 3 for all r | C prime and γ2 ≥ 0 even, or
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(F’) We have

B = qγ1

∏

r|C prime

rβr ,

A2 − 4B = −2α2

∏

r|C prime

rβr ,

with α2 > 8 even, βr = 1, 3 for all r | C prime and γ1 ≥ 0.

Then AFLT holds for (5).

6. Proof of Theorem 3

In this section, we prove Theorem 3 by studying the values for B and A2 − 4B
given in Propositions 5.2 and 5.3. We shall do this by relating the existence of
these curves to the existence of solutions to certain Diophantine equations. This is
compiled in the following proposition.

Proposition 6.1. Suppose that AFLT does not hold for (5). Then one of the
following three alternatives hold:

(i) There is a solution (t, γ,m) ∈ Z3 to the equation

Ct2 + qγ = 2m, with m > 6 and γ ≥ 0 with γ ≡ k (mod 2),

(ii) The exponent k is even, q ≡ 7 (mod 8) and there is a solution (t,m, γ) ∈ Z3

to the equation

(27) Ct2 + 2m = qγ ,with m > 6 even and γ > 0 odd.

(iii) The exponent k is even and there is a solution (t,m, γ) ∈ Z3 to the equation

(28) Ct2 + 1 = 2mqγ ,with m > 6 and γ ≥ 0.

Proof. First, let us suppose that either k is odd or k is even and alternatives (B′)
or (E′) in Proposition 5.3 hold. Then we have that either

A2 = 22



2α2−2
∏

r|C prime

rβr −
∏

r|C prime

rβrqγ1



 ,

or
A2 = 2α1+2

∏

r|C prime

rβr −
∏

r|C prime

rβrqγ2 ,

where α1 > 4, α2 > 8, βr = 1, 3 for all r | C prime, and γ1, γ2 ≥ 0 with γ1 ≡ γ2 ≡ k
(mod 2). Since C is squarefree, both expressions can be rewritten as

A2 = Cw2(2m − qγ),

for certain integers w > 0, m > 6 and γ ≥ 0 with γ ≡ k (mod 2). Thus, it follows
that

2m − qγ = Ct2,

for certain integer t > 0. This corresponds to case (i) in the proposition. Suppose
now that k is even and that we are in cases (A′) or (F ′) of Proposition 5.3. Then
we have that either

A2 =
∏

r|C prime

rβr
(

qγ2 − 2α1+2
)

,
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or

A2 = 22
∏

r|C prime

rβr
(

qγ1 − 2α2−2
)

,

with βr = 1, 3 for all r | C prime, γ1, γ2 > 0, α1 > 4 even and α2 > 8 even. Hence,
by similar reasoning, there is a solution (t,m, γ) ∈ Z3 of

(29) Ct2 + 2m = qγ ,

with m > 6 even. Note that, in order for (5) to have a solution with z and k even,
it follows that C ≡ 7 (mod 8). From (29), we see that this implies that q ≡ 7
(mod 8) and γ is odd. This proves (27) and alternative (ii) of the proposition.

Finally, let us consider the remaining cases (C′) and (D′) of Proposition 5.3.
In these cases, we have that

A2 = 22
∏

r|C prime

rβr
(

2α2−2qγ2 − 1
)

,

A2 =
∏

r|C prime

rβr
(

2α1+2qγ1 − 1
)

,

with βr = 1, 3 for all r | C prime, α1 > 4, α2 > 8, γ1 ≥ 0 and γ2 ≥ 0. Once more,
this is equivalent to the existence of an integral solution (t,m, γ) ∈ Z3 of

Ct2 + 1 = 2mqγ ,

where m > 6 and γ ≥ 0, which proves (28) and alternative (iii) in the proposition.
�

Theorem 3 is a direct consequence of the previous proposition, and the proof
is immediate.

Proof of Theorem 3. In order to see that AFLT holds for (5), it suffices to see that
none of the conditions (i), (ii) or (iii) in Proposition 6.1 are satisfied.

By the hypotheses in the Theorem, (7) does not have any solutions and so
alternative (i) does not hold. Similarly, hypotheses (a), (b), (c) and (d) in Theorem
3 directly imply that alternatives (ii) and (iii) in Proposition 6.1 are not safisfied.
Consequently, AFLT holds for (5), as we wanted to show.

�

7. Checking the conditions in Theorem 3

In order to computationally verify whether the conditions in Theorem 3 are
met, we need to resolve three Diophantine equations ((7), (8) and (9)). This can
be done by means of the Magma code available in https://shorturl.at/hoxW8, which
we will briefly explain in this section.

For (7), the methods outlined by the author in [6] could be used to achieve a
complete solution for the more general equation

(30) Ct2 + qγ = wm.

https://github.com/PJCazorla/Asymptotic-Fermat-s-Last-Theorem-for-a-family-of-equations-of-signature--n--2n--2-/tree/main
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These methods involve the use of the modular methodology, along with lower
bounds for linear forms in three logarithms and the resolution of Thue–Mahler
equations.

However, solving (7) is, in practice, significantly easier than solving (30) since
w is restricted to be a power of 2. We note that (7) is a particular case of (5), and,
therefore, we may then adapt the Frey–Hellegouarch curve (10) to (7) by setting
x = t, y = 1 and z = 2. Then we realise that, by (12), F has conductor equal
to N = 2C2q if γ 6= 0 and equal to N = 2C2 if γ = 0. In addition, the minimal
discriminant is equal to

∆ = −22m−12C3qγ .

If N < 500, 000, we may get all elliptic curves of conductor N from Cremona’s
tables ([9]) and recover γ,m and subsequently t, just by inspecting its minimal
discriminant.

If N ≥ 500, 000, the curve is not in Cremona’s database. However, we let
m = 3a+ b, where a ≥ 0 and b ∈ {0, 1, 2}. We also let γ = 6c+ d, where c ≥ 0 and
d ∈ {0, . . . , 5}. Then it can then be checked that the point (U, V ) given by

(U, V ) =

(

C · 2a+b

q2c
,
C2 · 2b · t

q3c

)

is a rational point on the elliptic curve Eb,d given by the expression

Eb,d : V 2 = U3 − C322bqd.

Furthermore, it is clear that the only prime which can occur in the denominators
of U and V is q and, consequently, (U, V ) is a {q}−integral point. Therefore,
it is sufficient to determine all {q}−integral points on the 18 curves Eb,d, where
b = 0, 1, 2 and d = 0, . . . , 5. In our code, we do this with a combination of [17,
Algorithm 4.2] and the built-in Magma function for computing S−integral points on
elliptic curves.

An identical approach can be used for (9). For this, we let m = 6a′+ b′, where
a′ ≥ 0 and b′ ∈ {0, . . . , 5} and we let γ = 3c′ + d′, with c′ ≥ 0 and d′ ∈ {0, 1, 2}.
Then the pair (U ′, V ′) given by

(U ′, V ′) =

(

C · qc′+d′

22a′
,
C2 · qd′ · w

23a′

)

,

is a {2}−integral point on one of the 18 Mordell curves Fb′,d′ given by

Fb′,d′ : (V ′)2 = (U ′)3 − C3 · 2b′ · q2d′

.

These points can be computed in precisely the same way as before. Finally, for (8),
it is sufficient to resolve the Ramanujan-Nagell type equation

u2 + C = Cv,

where u ∈ Z and v ∈ Z is only supported on the primes 2 and q. This can be done
by directly employing [17, Algorithm 6.2].

Finally, by combining all the aforementioned techniques, we can finish the
proof of Theorem 4.
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Proof of Theorem 4. If there are any solutions (x, y, z, n) to (5), it is elementary to
check that Cqk ≡ 7 (mod 8) by reducing (5) modulo 8. If k is even, this condition
is equivalent to C ≡ 7 (mod 8) while if k is odd, it is equivalent to Cq ≡ 7 (mod 8).

For each suitable pair in the range 1 ≤ C ≤ 70 and 3 ≤ q < 100, our Magma
program uses the techniques in this section to check whether the conditions in
Theorem 3 are satisfied. The results are shown in Table 1. �
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einer gegebenen substitutionsklasse gehören, Mathematische Annalen, 95, 191–228, 1926.

[9] J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press (1997),

https://homepages.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/index.html.
[10] H. Darmon and A. Granville. On the equations zm = F (x, y) and Axp + Byq = Czr. Bull.
London Math. Soc., 27(6):513–543, 1995.

[11] H. Deconinck, On the generalized Fermat equation over totally real fields, Acta Arithmetica
173(3), 2016, 225–237.

[12] N. Freitas and S. Siksek, The Asymptotic Fermat’s Last Theorem for Five-Sixths of Real
Quadratic Fields, Compositio Mathematica 151 (2015), 1395–1415.
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