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Abstract—In this paper, we explore the optimization of metal
recycling with a focus on real-time differentiation between alloys
of copper and aluminium. Spectral data, obtained through
Prompt Gamma Neutron Activation Analysis (PGNAA), is uti-
lized for classification. The study compares data from two
detectors, cerium bromide (CeBr3) and high purity germanium
(HPGe), considering their energy resolution and sensitivity.
We test various data generation, preprocessing, and classifi-
cation methods, with Maximum Likelihood Classifier (MLC)
and Conditional Variational Autoencoder (CVAE) yielding the
best results. The study also highlights the impact of different
detector types on classification accuracy, with CeBr3 excelling
in short measurement times and HPGe performing better in
longer durations. The findings suggest the importance of selecting
the appropriate detector and methodology based on specific
application requirements.

Index Terms—PGNAA spectral classification, maximum likeli-
hood classifier, conditional variational autoencoder, cerium bro-
mide detector, high purity germanium detector

I. INTRODUCTION

IN 2019, humankind mined 62.9 million tonnes of alu-
minium and 20.7 million tonnes of copper in the world [1].

The worldwide recycling rate of End of Life products from
copper is 45% [2], while the rate for aluminium is 70% [3].
With recycling of aluminium 95% of energy and 90% of CO2

can be saved compared with mining of aluminium [3] [4].
This shows the increasing importance of developing efficient
recycling processes.

For recycling of scrap metal into high-quality alloys, one
needs to know the atomic composition of the scrap in detail.
Currently, there are mainly sensor methods that can classify
scrap metal using traditional chemical processes or Laser
Induced Breakdown Spectroscopy (LIBS) [5]. Both methods
only consider the analysis of the scrap metal surface instead of
integrally measuring the scrap metal composition and chemical
methods even destroy the material.

Prompt Gamma Neutron Activation Analysis (PGNAA)
examines the integral metal composition without destruction.
It excites atoms by a neutron field, such that the de-excitation
leads to measurable gamma radiation, which is characteristic
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(a) Long-term measurement (1h)

(b) Short-term measurement (1s)

Fig. 1: Example prompt gamma spectra of the gamma quants
of an aluminium alloy measured with a HPGe detector as
basis for classification. The long-term measurement of 1h in
(a) can easily be classified into a specific aluminium alloy
by considering the clearly recognizable characteristic peaks.
The short-term measurement of 1s in (b) is very noisy and
statistical methods cannot recognize the characteristic peaks.
Classifying alloys by such spectra is the goal of this paper.

for the specific element [6]. As you can see in Fig. 1, we use
this spectral data for each alloy. For each measured energy
level, we can see the measured amount of gamma radiation as
”Counts”. The different elements of which the alloys consist
cause peaks in the PGNAA spectra at different energy levels,
by which it is possible to classify the different alloys using
a long-term measurement. However, short-term measurements
result in very noisy spectra without clearly detectable peaks,
as shown in Fig. 1b.

The paper [7] shows that a classification of scrap metal with
PGNAA is possible in short measurement times, based on the
assumption of 50,000 counts per second for sampling. There,
the spectrum is viewed as a categorical probability distribution
of the energy levels and this probability distribution can
be estimated reliably by a long-term measurement. Using
this distribution, one can sample more spectral data to train
machine learning algorithms and use the maximum likelihood
method for real-time scrap metal classifications.

It remains open which gamma detectors are best suited
for PGNAA-based scrap metal detection in real time and
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how machine learning methods can be improved for even
quicker classification results. Hence, this paper focuses on the
optimization of metal recycling using new sensor solutions in
combination with machine learning algorithms, with a specific
focus on the differentiation of copper and aluminum alloys in
real time.

We compare two different types of gamma detectors, one is
a semiconductor detector equipped with a germanium crystal,
called high purity germanium (HPGe) detector, the other a
scintillator detector based on cerium bromide (CeBr3). Select-
ing the appropriate detector requires careful consideration of
cost, measurement time, and accuracy. While the HPGe detec-
tor is very expensive, the CeBr3 detector is more affordable,
but might have a worse performance. The detectors measure a
different amount of counts per second and have a different en-
ergy resolution. In addition to the sampling methods in [7], we
test further methods for data generation (Section III-A) such
as Conditional Variational Autoencoder (CVAE). Furthermore,
we evaluate various preprocessing methods like reducing and
aggregating energy levels or weighting of different energy
levels and classification methods like a Maximum Likelihood
Classifier (MLC), XGBoost (XGB), Logistic Regression (LR)
and a Linear Support Vector Machine (Linear SVM).

We achieved the best classification results with the MLC
together with CVAE as data generation. When working with
short measurement times, the CeBr3 detector obtained better
results than the HPGe detector. At high measurement times,
this phenomenon occurred in reverse.

II. DATA AND DETECTORS

We analyse different metal alloys, which differ mainly in their
content of aluminium or copper. Two different detectors were
used to identify the materials. On the one hand the high
purity germanium detector (HPGe), where a very high energy
resolution can be achieved when detecting gamma rays [8]
and on the other hand the cerium bromide detector (CeBr3),
which has a greater sensitivity and can be used with room-
temperature [9]. The HPGe detector has a resolution of 16,384
energy levels, while the CeBr3 detector has a resolution of
2,048. The different data available to us can be seen in Table I.
For every material, we have spectra for five different alloys.

TABLE I: Overview of the recorded data for copper and alu-
minum in different states and with different types of detectors.

material state detector counts per second
copper block HPGe 30,000

aluminium block HPGe 19,000
aluminium chips HPGe 7,000
aluminium chips CeBr3 11,000

Measurements were sometimes taken using metal in block
form and other times using metal chips. Metal blocks are solid
pieces of metal formed into specific shapes or sizes, often
used as raw materials or components in manufacturing pro-
cesses. Metal chips refer to small pieces or shavings of metal
generated during machining or cutting operations, typically
considered waste material. The chips have a lower density as
they were measured in a cup with air between the different
pieces. As the block only consist of the metal, the density

and the weight of the metal are higher. This phenomenon can
be seen in Table I, as the counts per second for block are
significantly higher than for the chips.

III. METHODS

In the following, we describe our approach to determine the
best machine learning method for classifying the composition
of metal scrap using different PGNAA methodologies. For
most of the classification methods, we use the scikit-learn
library [10], except for the neural network, where we use Py-
Torch [11]. For data generation with a Conditional Variational
Autoencoder (CVAE) and data preprocessing with a Denoising
Autoencoder (DAE), we use TensorFlow [12].

A. Data Generation

We were able to achieve our results by using only one given
long-term measured spectrum S (≥ 1h) per alloy. We used
these to generate short-term spectra s (< 10s) for the training
of our machine learning methods. This is an advantage, since
real measurement data is expensive to produce and therefore
only a limited number of measurements are available. For this,
we have two different approaches which are explained below.

1) Categorical Sampling
For this data generation method, we create a categorical

probability distribution from the long-term measurement S. To
obtain this distribution, we divide the counts S = (c1, . . . , cn)
per energy level (1, . . . , n) by the sum of all counts (u =
c1 + . . . + cn). As a result of this, we get the relative
frequencies ( c1u , ..., cn

u ), which serve as an estimator for the
categorical probability distribution p(x|S) of a single gamma
quantum of energy x. We use direct independent sampling
from this distribution to generate test data, which closely
replicates real-world conditions. To ensure training and test
data diversity, the long-term measurements are divided into
six shorter measurements by using dependent sampling. With
the probability distributions generated as described above
from these six measurements the short-term training spectra
are generated. This enhances model robustness and mitigates
overfitting risks. A longer simulated measurement time leads
to more frequent sampling from the long-term spectrum, which
results in a higher number of simulated counts.

2) Conditional Variational Autoencoder (CVAE)
As an alternative for data generation, we use a CVAE, which

is a modification of the Variational Autoencoder (VAE) [13].
A VAE consists of a probabilistic encoder qϕ(z|s) and a prob-
abilistic decoder pθ(s|z), where s is a (short-term) spectrum
and z is the latent representation. The probability distributions
of the encoder and decoder are dependent on the parameters
ϕ and θ, which are learned during training. The decoder can
also be referred to as a generative model. To generate artificial
data, we sample latent variables from the prior p(z) and feed
them into the trained decoder pθ(s|z), where we sample again.
With a CVAE [14], we additionally feed a label for the long-
term spectrum S to the decoder pθ(s|z, S) in order to generate
samples for a certain class. For the encoder and decoder, we
chose fully-connected neural networks with a single hidden
layer, as in [13]. For the training of the CVAE we use 10,000
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sampled spectra. When calculating the loss, we use a β-
parameter [15] and set β = N

M with N being the size of
the input s and M being the size of the latent space z.

B. Preprocessing

1) Scaling
Initial tests indicated that using the standard scaler is

beneficial for the models XGBoost and Neural Network. For
the other models, we use unscaled data.

2) Subsetting
Subsetting involves the reduction and aggregation of energy

levels by using just a subset of the spectra. An application
could be the deletion of higher energy levels from the spectra.
This technique was applied on spectra obtained from the HPGe
detector.

3) Denoising Autoencoder (DAE)
A DAE [16] is a modification of the traditional Autoencoder

where the input is corrupted in order to achieve robustness to
small changes in input. We use a DAE to produce long-term
measurements out of short-term measurements. A classifier,
which was trained using long-term measurements, should
now be able to classify the output of the DAE. In [17],
a similar approach is used for angle-resolved photoemission
spectroscopy data. We use the fully-connected neural network
architecture from [18] and test different numbers of neurons
in each layer.

4) Escape and Double Escape Peaks (EPs and DEPs)
EPs are characteristic features in gamma spectra that occur

when measuring gamma rays. They arise due to interactions
between the gamma rays and the detector material [19]. These
are detection events where not all of the photon’s energy
is converted in the detector, but a certain, consistently sized
portion of the energy is detected. If the peak at energy E is
above 1022 keV, an Escape Peak at E − 511 keV can occur
in the spectrum [20]. This results in an additional peak in
the spectrum at a correspondingly lower energy. Similarly, a
DEP can arise from an EP at E − 1022 keV. As the location
of the EPs and DEPs depend on the material, a different
weighting of them can help classifying the different materials.
We only use this method with Maximum Likelihood Classifier
(MLC), because here the reference spectrum can be weighted
dependent on the EPs and DEPs of the alloy.

5) Unique Peaks
A possibility to improve the classification is the weighting

of peaks, which only appear at one alloy. Therefore, we
detected those peaks at the long-term measurements and
accordingly weighted the different training and test spectra.

C. Classification

We did each test five times and then reported the average
to counteract randomness. Unless otherwise stated, we used
10,000 spectra for training. In order to achieve sufficient
representativeness, we worked with 5,000 test spectra each.

1) Maximum Likelihood Classifier (MLC)
With MLC [21] we compare the categorical probability

distribution from the short-term measurement to the different
long-term measurements to find the best fitting distribution.

To classify the short-term measurement s, take the number
of short-term photons measured s = (c′1, . . . , c

′
n) per energy

level and multiply it by the appropriate log relative probability
of the long-term measurement S to obtain the log-likelihood:

log(p(s|S)) =
n∑

i=1

c′i · log
(

ci + 1∑n
i=1 (ci + 1)

)
.

Since there were difficulties in the case when ci = 0, we
add the value 1 to each number of photons of the long-term
measurements.

Instead of just using the distribution of the long-term mea-
surement, we use measurements generated by the Categorical
Sampling and vary time and amount of reference distributions.
In case of multiple distributions per alloy, the mean of the
log-likelihoods is taken and compared to classify the short-
term measurement s. The best results were achieved using
500 reference spectra per alloy, each corresponding to a
measurement time of 1,800 seconds.

2) XGBoost (XGB)
For its capacity to handle large datasets and model complex

patterns, we selected XGBoost, a robust ensemble classifier
using gradient boosting [22]. Initial tests favor its linear-
based [23] variant over tree-based methods in our context,
hence adopting it exclusively for our purpose.

3) Logistic Regression (LR)
It is a statistical approach for modeling binary outcomes

based on predictor variables. It extends linear regression to the
logistic function, making it suitable for categorical predictions.
The training algorithm uses the one-vs-rest (OvR) scheme for
a multiclass case.

4) Linear Support Vector Machine (Linear SVM)
The SVM obtained the best results with a linear kernel.

Therefore, we used the linear SVM to improve the run-
time [24].

5) K-nearest Neighbors (KNN)
The KNN algorithm is based on the nearest neighbor

decision rule proposed by Cover and Hart [25]. It operates
on the principle of identifying the nearest neighbor(s) of an
example and assigning the example to the same class as its
nearest neighbor(s).

6) Radius Neighbors Classifier (RNC)
The RNC, an extension of the nearest neighbor decision

rule [25], classifies examples by considering all data points
within a specified radius. By assessing the proximity of points
within the defined radius, the algorithm assigns a class label
based on local patterns.

7) Neural Network (NN)
We used the PyTorch library [11] for the implementation

of a fully connected, 4-layer network. The exact structure is
described in more detail in the appendix A.

8) Random Forest Classifier (RFC)
The RFC [26] is an ensemble learning method that combines

multiple decision trees to make predictions.
9) Extra Trees Classifier (ETC)
The ETC [27] builds an ensemble of decision trees with an

extra level of randomness in comparison to the RFC. This
randomness is used to reduce over-fitting and speeding up
training [27].
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10) Kuiper test (Kui)
It is a statistical method used to classify and compare prob-

ability distributions. Kui takes into account the largest positive
and negative differences between the cumulative distribution
functions of two samples. This was implemented using basic
Pandas operations. One short-term measurement is compared
with all long-term measurements. We determine the smallest
absolute maximum difference between the distributions of
long-term and short-term measurements respective energy lev-
els in order to assign the metal alloy. The smallest difference is
identified as the most probable assignment for the short-term
measurement.

IV. RESULTS

A. Classification

We tested the classifiers from Section III-C with various
parameters using Categorical Sampling as data generation and
the HPGe detector with block data. As you can see in Table II,
the best results could be achieved with MLC, XGB, LR and
Linear SVM.

TABLE II: Accuracy of all examined models on aluminum
and copper block measurements with Categorical Sampling
as data generation, HPGe detector and MLC achieving the
best results.

classifier aluminium copper
measurement time measurement time

0.5s 1.0s 2.0s 0.5s 1.0s 2.0s

MLC 96.32 99.03 99.87 91.87 95.18 97.96
XGB 93.93 98.19 99.65 89.42 93.48 97.09
LR 93.28 97.69 99.50 88.82 93.00 96.51
Linear SVM 91.94 97.28 99.55 88.21 92.43 96.24
NN 90.80 95.62 98.45 87.51 91.85 95.22
KNN 89.18 95.41 98.63 86.57 91.44 95.06
RFC 88.58 95.34 98.66 85.21 90.01 94.20
ETC 89.94 95.34 98.63 85.90 90.48 94.66
RNC 89.03 95.26 98.66 86.46 91.51 95.06
Kui 77.07 84.32 91.53 83.68 89.56 94.29
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Fig. 2: Accuracy of the best models on aluminium measure-
ments (Table II).
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Fig. 3: Accuracy of the best models on copper measurements
(Table II).

To see the differences of the four best classifiers, you can
see more detailed plots in Fig. 2 and Fig. 3 for aluminium
and copper. In the following experiments, we will further
examine the results of these classifiers using different data
generation and preprocessing methods, as well as different
types of detectors.

B. Data Generation

Table III shows the results of the four best classifiers with
CVAE data generation as well as the increase or decrease in
accuracy compared to Categorical Sampling data generation.
CVAE led to a slight increase in the accuracy of MLC
while the accuracy of the other classifiers decreased. Thus,
in the following experiments, we use MLC in combination
with CVAE and the other classifiers in combination with
Categorical Sampling.

TABLE III: Accuracy of best models on aluminum and copper
block measurements with CVAE data generation and HPGe
detector. Only MLC improves using the CVAE data generation.

classifier measurement time
aluminium 0.5s 1.0s 2.0s

MLC 96.52 (+0.20) 99.12 (+0.09) 99.91 (+0.04)
LR 86.37 (-6.91) 94.09 (-3.60) 98.32 (-1.18)
Linear SVM 84.38 (-7.56) 93.32 (-3.96) 98.10 (-1.45)
XGB 51.61 (-42.32) 62.67 (-35.52) 76.14 (-23.51)

copper 0.5s 1.0s 2.0s

MLC 92.09 (+0.22) 95.27 (+0.09) 98.07 (+0.11)
LR 81.59 (-7.23) 89.19 (-3.81) 94.30 (-2.21)
Linear SVM 77.04 (-11.17) 87.12 (-5.31) 93.62 (-2.62)
XGB 51.21 (-38.21) 60.92 (-32.56) 73.78 (-23.31)

C. Preprocessing

In Table IV, a subset of the entire spectra was selected as
described in Section III-B2. For each, training and testing,
a dataset of 1,000 spectra per material with a simulated
measurement time of one second were created via Categorical
Sampling and CVAE. The number of energy levels describe
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TABLE IV: Accuracy decrease of the best models with
decreased amount of energy levels for aluminium and copper
blocks with HPGe detector and a simulated measurement time
of one second.

classifier aluminium copper
number of energy levels number of energy levels
4000 8000 16384 4000 8000 16384

MLC 98.29 98.69 99.04 93.83 94.23 95.32
LR 96.65 97.66 97.93 91.40 91.74 92.69
Linear SVM 96.04 96.98 97.38 91.24 92.37 92.87
XGB 97.03 97.47 98.08 92.73 92.52 93.35

the upper boundary from which on features were deleted. A
reduction in the number of features diminishes the overall
performance of the respective model. However, this reduction
does not exhibit a linear relationship with the number of fea-
tures. This observation suggests that there is not a substantial
information gain in the last energy levels of the spectra. It is
the case because the first energy levels have a considerably
higher count-value. In the higher energy levels, oftentimes
no count is measured, resulting in no information gain. The
initial energy levels are considerably more crucial, proving
sufficient for achieving a relatively high level of accuracy.
However, because using all the features leads to the overall
best results, and the prediction runtime is very quick in any
case, we decided to keep the original energy level count for
our further experiments.

Using a DAE to convert the short term measurements to 60
seconds measurements and classifying those led to a decrease
in accuracy. For aluminium, the accuracy decreased by approx.
6% and for copper by approx. 7% on average for the best four
classifiers respectively.

The preprocessing with EPs and DEPs was only tested
with MLC and mostly brings small improvements for the
accuracy. The results can be seen in Table V. For these
experiments, we used 1,000 spectra for training and five long-
term measurements as reference spectra.

The preprocessing with Unique Peaks brings slight positive
and negative variations in the accuracy. In total, it is difficult
to say whether the variations in the accuracy are due to the
randomness of the data or due to the preprocessing with
Unique and Escape Peaks.

TABLE V: Accuracy of MLC with CVAE as data generation,
HPGe detector, block data and EPs and DEPs as preprocess-
ing.

material measurement time
0.5s 1.0s 2.0s

aluminium 96.67 (+0.15) 99.15 (+0.03) 99.92 (+0.01)
copper 91.78 (-0.31) 95.39 (+0.12) 98.28 (+0.21)

D. Detectors

In our analysis so far, we have evaluated the accuracy of four
top classifiers - MLC, XGB, Linear SVM and LR - using
aluminium and copper data in block form, with the MLC

achieving the best results. In this section of the investigation,
we turn to aluminium chips data, as only data in this form
is available for the CeBr3 detector. In order to examine the
results, we will restrict ourselves to the MLC in the following,
as it shows better results compared to other methods. With a
measurement time of 0.5 seconds, the CeBr3 detector has a
maximum accuracy of 62.58%, which is significantly higher
than HPGe detector with 50.40% using Categorical Sampling
to generate the data. When using CVAE, the accuracy barely
increases, 62.88% for CeBr3 detector and 50.69% for HPGe
detector.

In Fig. 4 we have determined the accuracy as a function
of time from 0.2 to 10 seconds measurement time in steps
of 0.2 seconds. While the CeBr3 delivers the best results for
measurement times up to 1.3 seconds, the HPGe achieves
better accuracy for longer measurement times. Both detectors
converge to 100% over time, with HPGe converging much
faster. The analysis of the results shows that the HPGe detector
only needs 10 seconds to reliably distinguish all aluminium
alloys, while the CeBr3 detector takes significantly longer for
the same task. As shown in the corresponding figure, the curve
for the HPGe detector ends at 10 seconds, at which point a
classification accuracy of 100% is achieved. In contrast, the
CeBr3 detector achieves full classification accuracy of 100%
only after about 80 seconds.
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Fig. 4: Comparison of the accuracy over time of the two
detectors with aluminium chips data using CVAE and MLC.

V. DISCUSSION

As the Linear SVM and Logistic Regression achieve good
results on our data, it seems that the data is linear seperable in
a high dimension. In addition to the linear separability of the
spectra, the regularization techniques provided by XGBoost
in the form of L1 and L2 are the reason why the classifier
generalizes well and thus achieves very good accuracy.

The good results of MLC could be attributed to its ability
to model the data distribution more accurately. In scenarios
where the underlying data distribution is complex and doesn’t
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Fig. 5: Section of an example spectrum of an aluminium alloy
generated with different methods.

conform strictly to linear relationships, like our spectral data,
MLC can capture the nuances better than the other classifiers.

Using CVAE as data generation, we see that the results
of MLC can be improved while for the other classifiers,
the accuracy decreases. A reason could be that the CVAE
generated spectra contain less noise and thus are more suitable
as a probability distribution for MLC. A comparison of the
spectra generated by the different methods is shown in Fig. 5.
Thanks to this characteristic, MLC requires less CVAE spectra
than spectra generated by Categorical Sampling to achieve
good results, because for the latter it needs more data to build
a mean representing the data adequately. This reduces the
prediction runtime and thus allows a faster classification. For
the other classifiers, the accuracy decreases using CVAE as
data generation. This could be due to the fact that the CVAE
data is not as similar to the test data in its variance as the
Categorical Sampling data. Thus, the Categorical Sampling
data is more suitable for training.

The CeBr3 data results are better than the HPGe data results,
because the higher number of counts at short measurement
times has a greater influence on the determination due to a
higher probability of detector response. This is important when
measuring very low levels of gamma radiation.

The high resolution of the HPGe detector leads to fewer
counts per channel when the same number of counts is dis-
tributed across more channels, increasing relative uncertainty
of each count rate. This makes it more challenging to identify
significant patterns between the aluminium alloys.

The results from the chip data are worse than the block data
because the mass of the sample is significantly reduced and
therefore fewer nuclei are irradiated and fewer gamma rays
are counted.

The HPGe detector shows its strengths at longer measure-
ment times, which could be due to its very high resolution
to precisely detect even fine energy differences. Peaks car-
rying relevant information regarding classification are thus

emphasised more clearly. Otherwise, the number of counts in
the CeBr3 is not sufficient at longer measurement times for
the compensation that would be necessary to distinguish the
aluminium alloys.

VI. CONCLUSION

In conclusion, the research demonstrates the potential of
applying advanced classification methods and data generation
techniques to improve metal alloy differentiation in recycling
processes based on PGNAA measurements. The MLC was
found to be the most effective classification method combined
with CVAE data generation technique.

The study shows that the CeBr3 detector excels in scenarios
requiring very short measurement times, but overall the HPGe
detector generally remains the preferable choice to deliver
accurate results. The choice of detector depends on the specific
needs of the application.

Because real short-term measurement data is lacking, it is
necessary to perform and study short-term measurements in
detail in the future to verify the applicability of our findings
in the real world.

APPENDIX

HYPERPARAMETERS

A. Data Generation

Conditional Variational Autoencoder Value
library TensorFlow
scaling MinMaxScaler1

hidden units 100
latent variables 10
loss −ELBO2

optimizer Adam3

learning rate 0.001
batch size 32
epochs 100

B. Preprocessing

Denoising Autoencoder Value
library TensorFlow
scaling MinMaxScaler1

hidden units 10
latent variables 100
loss MeanSquaredError
optimizer Adam3

learning rate 0.001
batch size 32
epochs 100

1implementation of the scikit-learn [10] library
2Negative ELBO as in [13] using MSE, a β-parameter and KL divergence
3Adam optimization algorithm [28]
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C. Classification

XGBoost Value
booster gblinear
device cpu
verbosity 1
lambda 0.25
alpha 0
updater shotgun
feature selector cyclic
learning rate 0.45

Logistic Regression Value
penalty L2
dual False
tol 0.0001
C 1.0
fit intercept True
intercept scaling 1
class weight None
solver lbfgs
max iter 150
multi class auto
verbose 0

Linear Support Vector Machine Value
penalty L2
loss squared hinge
dual True
tol 1
C 3
multi class ovr
fit intercept True
intercept scaling 1
class weight None
verbose 0
random state None
max iter 100

K-nearest Neighbors Value
n neighbors 8000
weights distance
metric euclidean
algorithm brute
leaf size 30
p 2

Radius Neighbors Classifier Value
radius 500
weights distance
metric euclidean
algorithm brute
leaf size 30
p 2
outlier label most frequent

Neural Network Value Blocks Value Chips
library PyTorch
n layers 4
layer fully connected
activation function relu
criterion CrossEntropyLoss
optimizer Adam3

num epochs 2 5
n batch size 500 1000
learning rate 0.0001

3Adam optimization algorithm [28]

Random Forest Classifier Value
n estimators 4000
min samples split 50
criterion gini
max depth None
min samples leaf 1
min weight fraction leaf 0.0
max features sqrt
max leaf nodes None
min impurity decrease 0.0
bootstrap True
oob score False
max samples None

Extra Trees Classifier Value
n estimators 4000
min samples split 50
criterion entropy
max depth None
min samples leaf 1
max features sqrt
min weight fraction leaf 0.0
max leaf nodes None
min impurity decrease 0.0
bootstrap False
verbose 0
max samples None
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M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[13] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes.”
[Online]. Available: https://arxiv.org/pdf/1312.6114

[14] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation
using deep conditional generative models,” in Advances in Neural
Information Processing Systems, C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates,
Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

[15] I. Higgins, L. Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, M. Botvinick, S. Mohamed,
and Alexander Lerchner, “beta-vae: Learning basic visual
concepts with a constrained variational framework,” 2016.
[Online]. Available: https://www.semanticscholar.org/paper/beta-
VAE%3A-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/
a90226c41b79f8b06007609f39f82757073641e2

[16] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in ICML
2008 : proceedings of the twenty-fifth International Conference on
Machine Learning, A. K. McCallum, S. Roweis, and W. Cohen, Eds.
[Place of publication not identified]: ACM, 2008, pp. 1096–1103.

[17] Y. Kim, D. Oh, S. Huh, D. Song, S. Jeong, J. Kwon, M. Kim, D. Kim,
H. Ryu, J. Jung, W. Kyung, B. Sohn, S. Lee, J. Hyun, Y. Lee, and
Y. K. C. Kim, “Deep learning-based statistical noise reduction for
multidimensional spectral data,” 2021.

[18] S. Dobilas, “Denoising autoencoders (dae) — how to
use neural networks to clean up your data,” Towards
Data Science, 04.04.2022, accessed: 2023-06-23. [Online].
Available: https://towardsdatascience.com/denoising-autoencoders-dae-
how-to-use-neural-networks-to-clean-up-your-data-cd9c19bc6915

[19] R. Tanaka, K. Yuge, J. Kawai, and H. Alawadhi, “Artificial peaks in
energy dispersive x-ray spectra: sum peaks, escape peaks, and diffraction
peaks,” X-Ray Spectrometry, vol. 46, no. 1, pp. 5–11, 2017. [Online].
Available: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/
abs/10.1002/xrs.2697

[20] W. A. Metwally, C. W. Mayo, X. Han, and R. P. Gardner, “Coincidence
counting for pgnaa applications: Is it the optimum method?” Journal of
Radioanalytical and Nuclear Chemistry, vol. 265, no. 2, pp. 309–314, Jul
2005. [Online]. Available: https://doi.org/10.1007/s10967-005-0826-2

[21] R. B. Millar, Maximum likelihood estimation and inference: with exam-
ples in R, SAS and ADMB. John Wiley & Sons, 2011.

[22] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[23] “Xgboost parameters,” https://xgboost.readthedocs.io/en/stable/
parameter.html, accessed: 2023-06-24.

[24] S. Suthaharan, Support Vector Machine. Boston, MA: Springer US,
2016. [Online]. Available: https://doi.org/10.1007/978-1-4899-7641-3

[25] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[26] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[27] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, pp. 3–42, 2006.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
[Online]. Available: https://arxiv.org/pdf/1412.6980

https://www.sciencedirect.com/science/article/pii/S0168900209013771
https://www.sciencedirect.com/science/article/pii/S0168900209013771
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/
https://arxiv.org/pdf/1312.6114
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://www.semanticscholar.org/paper/beta-VAE%3A-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/a90226c41b79f8b06007609f39f82757073641e2
https://www.semanticscholar.org/paper/beta-VAE%3A-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/a90226c41b79f8b06007609f39f82757073641e2
https://www.semanticscholar.org/paper/beta-VAE%3A-Learning-Basic-Visual-Concepts-with-a-Higgins-Matthey/a90226c41b79f8b06007609f39f82757073641e2
https://towardsdatascience.com/denoising-autoencoders-dae-how-to-use-neural-networks-to-clean-up-your-data-cd9c19bc6915
https://towardsdatascience.com/denoising-autoencoders-dae-how-to-use-neural-networks-to-clean-up-your-data-cd9c19bc6915
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/xrs.2697
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/xrs.2697
https://doi.org/10.1007/s10967-005-0826-2
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://doi.org/10.1007/978-1-4899-7641-3
https://arxiv.org/pdf/1412.6980

	Introduction
	Data and Detectors
	Methods
	Data Generation
	Categorical Sampling
	Conditional Variational Autoencoder (CVAE)

	Preprocessing
	Scaling
	Subsetting
	Denoising Autoencoder (DAE)
	Escape and Double Escape Peaks (EPs and DEPs)
	Unique Peaks

	Classification
	Maximum Likelihood Classifier (MLC)
	XGBoost (XGB)
	Logistic Regression (LR)
	Linear Support Vector Machine (Linear SVM)
	K-nearest Neighbors (KNN)
	Radius Neighbors Classifier (RNC)
	Neural Network (NN)
	Random Forest Classifier (RFC)
	Extra Trees Classifier (ETC)
	Kuiper test (Kui)


	Results
	Classification
	Data Generation
	Preprocessing
	Detectors

	Discussion
	Conclusion
	Appendix
	Data Generation
	Preprocessing
	Classification

	References

