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A numerical and analytical study was conducted to in-
vestigate the bifurcation mechanisms that cause desyn-
chronization between the soliton repetition frequency
and the frequency of external pulsed injection in a Kerr
cavity described by the Lugiato-Lefever equation. The
results suggest that desynchronization typically occurs
through an Andronov-Hopf bifurcation. Additionally,
a simple and intuitive criterion for this bifurcation to
occur is proposed.
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Optical frequency combs have had a significant impact on
several fields including spectroscopy, optical ranging, metrol-
ogy, exoplanet search, microwave photonics and optical com-
munications [1–6]. A conventional approach to frequency comb
generation involves the use of optical microresonators. In partic-
ular, considerable attention has been paid to microcavity soliton
frequency combs, which have been experimentally observed in
[7]. These combs are characterised by the generation of temporal
cavity solitons (TCSs), which are stable, periodic light pulses
that maintain their shape as they propagate. In simpler setups,
TCSs are generated by injecting a continuous wave (CW) laser
into a microcavity. However, the use of pulsed injection can
be advantageous as it allows a reduction in the TCS excitation
energy, a potential improvement in their properties, and the
ability to tune the TCS repetition frequency by synchronising it
with the injection pulse repetition frequency. On the other hand,
to achieve this synchronization, the repetition frequency of the
injected pulses must be close to or a multiple of the free spectral
range of the cavity. Therefore, it is important to study the locking
range and understand how it depends on the microcavity and
external injection parameters.

A standard theoretical tool for describing TCS formation
in microcavities is the paradigmatic Lugiato-Lefever equation
(LLE) [8]. The standard LLE is unable to describe the overlap
of resonances corresponding to different cavity modes, unlike
the infinite-dimensional Ikeda map model [9, 10], the locally
injected LLE [11, 12], and the neutral delay differential equation
(DDE) Kerr cavity model [13]. Nevertheless it has proven to be a
very efficient tool for describing high-finesse microcavities used
for optical frequency comb generation. The formation of 1D

dissipative solitons in the LLE under constant injection is well
studied, see e.g. [14–17]. Theoretical studies of microcavity TCS
generation by slowly modulated and pulsed injection have been
carried out using the LLE in [18–28]. For slightly modulated
injection, an equation governing the slow time evolution of the
TCS coordinate has been derived using an asymptotic approach
[27]. This equation is applicable to describe the dynamics of the
TCS in the case of a pulsed pump source, where the injection
pulse width is much larger than that of the TCS [24–26, 28]. The
asymptotic equation for TCS motion in the presence of a small
frequency mismatch between the injection pulse repetition rate
and the cavity free spectral range (FSR), leading to TCS drift,
was investigated in [24–28]. It was shown that even with zero
frequency mismatch, a symmetry-breaking bifurcation can occur
as the pulse peak power increases, resulting in a shift of the TCS
position from the peak of the injection pulse to its periphery.

Here, using the LLE, we comprehensively investigate the bi-
furcation mechanisms leading to the unlocking between the repe-
tition rates of the injection pulse and the TCS in a synchronously
pumped optical microcavity. We show that for a sufficiently
broad injection pulse, unlocking occurs via an Andronov-Hopf
(AH) bifurcation rather than the saddle-node (SN) bifurcation
responsible for the disappearance of the stationary TCS, as pre-
dicted by the TCS drift equation. Furthermore, we introduce a
simple asymptotic criterion for the occurrence of the AH bifur-
cation, which requires only the knowledge of the injection pulse
shape and the TCS solution with homogeneous injection. This
semi-analytical criterion shows excellent agreement with results
derived from numerical simulations of the LLE.

The paradigmatic Lugiato-Lefever equation (LLE) [8] is a
widely used tool for studying the dynamics of the electromag-
netic field in Kerr resonators with coherent external injection,
especially in microcavities used for optical frequency comb gen-
eration [29–31]. This equation can be derived from the Maxwell-
Bloch equations under the slowly varying envelope approxima-
tion [31]. Recently, it has been shown that the LLE can be ob-
tained using a multiscale approach of Ref. [32] from the neutral
delay differential equation model [13] of an externally injected
ring Kerr cavity. The resulting LLE, neglecting third and higher
order dispersion terms, can be expressed in the following form

∂A
∂t

= −V
∂A
∂ξ

+ i
∂2 A
∂ξ2 + i|A|2 A − (1 + iθ) A + η(ξ). (1)
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In this context, A(ξ, t) is the normalized electric field envelope,
t is the “slow” time, ξ is the “fast” time, and θ is the normalized
detuning of the pump laser from the nearest cavity resonant
frequency. The Kerr nonlinearity coefficient, the second-order
dispersion coefficient, and the cavity decay rate are normalized
to unity by rescaling the field amplitude, the “fast” time, and the
“slow” time variable, respectively. The drift parameter V defines
the small frequency difference between the repetition rate of
the input laser pulses and the free-spectral range of the cavity.
The parameter η represents the external coherent injection. In
numerical calculations, we use Gaussian shape of the injection
pulses η(ξ) = p0 exp

[
−(d + ic)ξ2], where p0 is the amplitude

of the pulse, The parameter d (c) determines width (chirp) of the
injection pulse.

Stationary TCS solutions computed numerically with homo-
geneous injection and relatively wide Gaussian injection pulses
with V = 0 (zero detuning between cavity FSR and pulse rep-
etition rate) are shown in Fig. 1. It can be seen that wide pulse
injection has little effect on the shape of the TCS compared to
the homogeneous case. As shown in previous studies [24, 26],
the position of the stationary TCS depends on the amplitude of
the injection pulse. When the amplitude is relatively small, the
TCS rests at the center of the pulse where the injection is at its
maximum, see Fig. 1(b). When the injection amplitude exceeds
a critical value, p0 > pc, a spontaneous symmetry-breaking bi-
furcation occurs, causing the TCS to lose stability at the center
of the pulse. As a result of this pitchfork bifurcation, two sta-
ble solutions appear whose stationary positions are shifted in
both directions towards the periphery of the injection pulse, see
Fig. 1(c). Such a difference in TCS stability is caused by a drift
due to the inhomogeneity of the injection, which pushes the TCS
towards or away from the peak of the pulse, depending on the
injection amplitude.
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Fig. 1. Stationary TCS of Eq. (1) under homogeneous η = 1.9
(a) and Gaussian pulse injection with p0 = 1.9 < pc (b) and
p0 = 2.1 > pc (c). For all panels: θ = 3.5, V = 0, d = 0.005
and c = 0. Yellow dashed lines show the injection distribution.
Black curves show TCS intensities. Here and everywhere in
calculations the length of the system is L = 100.

If the repetition frequency of the injection pulses differs from
the cavity free spectral range, the TCS experiences an additional
drift caused by the presence of the derivative term proportional
to the parameter V in Eq. (1). A stationary TCS can only exist
if the drift caused by the frequency mismatch is compensated
by the opposite drift resulting from the injection gradient. Fig-
ure 2(a,b) shows the dependence of the peak intensity and the
displacement ξs of stationary TCS excited by Gaussian pulses
on the drift parameter V when p0 < pc. As V increases, the
TCS becomes unstable and loses synchronization through an
AH bifurcation at the point V = VAH . This bifurcation leads to
the TCS oscillating in amplitude and coordinate, which exists in
a small parameter range beyond the AH point. The transition
to an oscillating TCS is illustrated in Fig. 3(a). As the drift pa-
rameter continues to increase, two unstable TCSs merge at the

SN bifurcation point V = Vsn and disappear. Another desyn-
chronization scenario is illustrated in Fig. 3(b), where an AH
bifurcation is absent and the TCS remains stable until the SN
bifurcation. The corresponding behavior of the eigenvalue spec-
trum for both scenarios can be seen in Fig. S1 (Supplement 1).
However, the range of detunings θ where this second scenario
occurs tends to zero in the limit of very broad injection pulses.
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Fig. 2. TCS peak intensity (a,c) and position ξs (b,d) as func-
tions of V. Upper (lower) panels correspond to p0 = 1.9 < pc
(p0 = 2.1 > pc). Stable and unstable solutions are indicated
by solid and dashed lines, respectively. Other parameters are
θ = 3.5, d = 0.005, c = 0.
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Fig. 3. Transition from stationary to oscillating TCS via an
AH bifurcation for θ = 3.5 (a). V = 0.053 < VAH (V =
0.0544 > VAH) for t < 2 × 103 (t > 2 × 103). TCS collapse
after a SN bifurcation for θ = 4.427 (b). V = 0.0009 < Vsn
(V = 0.001 > Vsn) for t < 103 (t > 103). Pulse parameters are
p0 = 1.9, d = 0.005 and c = 0.

The dependence of the TCS peak intensity on the drift param-
eter V looks different when the injection pulse peak intensity
exceeds the pitchfork bifurcation threshold, p0 > pc, see Fig. 2(c).
Here, in the absence of frequency mismatch (V = 0), the TCS
solution located at ξs = 0 [the highest point in Fig. 2(c)] is
destabilized by a pitchfork bifurcation, and two stable solutions
shifted from ξ = 0 appear. These solutions correspond to the
intersection of the blue and red lines in Fig. 2(c). Since two stable
TCSs are initially shifted from the origin, the effect of frequency
mismatch V and −V on them is asymmetric. With a decrease
(increase) of the frequency mismatch, right (left) shifted TCS
merges with the destabilized TCS at the SN bifurcation point
Vsn1 (−Vsn1). As it increases (decreases), such a TCS first loses
its stability through an AH bifurcation at the point VAH (−VAH)
and then merges with an unstable TCS at the SN bifurcation
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point Vsn2 (−Vsn2). As in Fig. 2(b), panel (d) shows the displace-
ment of the TCS from the center of the injection pulse. It can be
clearly seen that for both p0 < pc and p0 > pc the AH bifurca-
tion occurs when the displacement of the TCS from the pulse
center is maximal.

Note that if the frequency mismatch continues to decrease
(increase) after reaching the SN point Vsn1 (−Vsn1), the solution
drops to the nearest stable TCS branch, see Fig. S2 (Supplement
1). Since such transitions between different branches of stable
TCSs are possible without loss of synchronization, similar to the
case p0 < pc for p0 > pc the synchronization range is limited by
an AH bifurcation.

Under inhomogeneous pumping, a TCS experiences a drift
proportional to the gradient of the injection inhomogeneity. On
the other hand, if the repetition rate of the injection pulses
slightly deviates from the cavity FSR the TCS also experiences a
drift with the velocity V, which is proportional to the difference
in repetition frequencies. As reported in [25–27], when both
the inhomogeneity gradient and the drift parameter V are suffi-
ciently small, the slow evolution of the TCS position is governed
by the equation:

dξt
dt

= −V + η11

〈
Re ψ†

1

∣∣∣ζ
〉
+ η12

〈
Im ψ†

1

∣∣∣ζ
〉

, (2)

where ξt is the TCS coordinate and ζ = ξ − ξt. The function ψ†
1 =

ψ†
1(ζ) is the translational neutral mode of the operator adjoint

to the linear operator L0 (see Supplement 1) describing the TCS
stability in the LLE with homogeneous injection η = η(ξt). The
quantities η11 = Re

(
∂ξ η

)
ξ=ξt

and η12 = Im
(
∂ξ η

)
ξ=ξt

define
the injection gradient evaluated at ξ = ξt. In Ref. [33] it was
shown that for real η(ξt) one gets

〈
Im ψ†

1

∣∣ξ
〉

η(ξt) = 2 in Eq. (2).
According to Eq. (2) for a stationary TCS with the repetition

frequency locked to that of the injection pulses the right-hand
side of this equation must be equal to zero. This condition can be
used to determine the TCS trapping position ξt = ξs. Without
loss of generality, we choose the phase of the field in such a
way that η(ξs) is real. If V is sufficiently large, larger than the
maximum of the sum of the second and third terms in the right-
hand side of Eq. (2) synchronization cannot be achieved and
stationary TCS does not exist. The condition that the right-hand
side of Eq. (2) is zero gives an asymptotic estimate of the TCS
SN bifurcations at V = ±Vsn shown in Fig. 2(a,b). In Fig. 4 the
curve corresponding to this asymptotic condition appears to be
very close to the numerical TCS SN bifurcation curve.
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Fig. 4. Numerical and asymptotic synchronization boundaries
for a pulse with p0 = 1.9 < pc, d = 0.005, and c = 0 (a). The in-
set shows a zoomed-in region at the top of the synchronization
domain. Same as (a) but for p0 = 2.1 > pc (b). Solid (dashed)
lines show numerical (asymptotic) bifurcation curves: yellow
and blue for AH; red, violet, green and black for SN.

The dependence on η(ξs) of the second term C =
η11

〈
Re ψ†

1

∣∣ξ
〉

from the right-hand side of Eq. (2) for Gaussian

pulses from Fig. 2 is shown in Fig. 5. Here the last term is
zero since the injection pulses are purely real. The maximum
value of C = Cmax in Fig. 5(a) equal to Ṽsn agrees well with the
numerically calculated SN point Vsn in Fig. 2(a,b). The maxi-
mum (minimum) value of Cmax (Cmin) in Fig. 5(b) equal to Ṽsn2
(Ṽsn1) agrees well with the numerically calculated Vsn2 (Vsn1) in
Fig. 2(c,d). Notably, the value of C calculated at the minimum
value of η(ξs) agrees well with the numerically calculated AH
bifurcation point, C(ηmin) = ṼAH ≈ VAH . Note that similar
rules work for chirped injection pulses when the third term in
the right-hand side of Eq. (2) is nonzero, see Fig. S3 (Supplement
1).

Although Eq. (2) provides a good approximation for the TCS
SN bifurcation, our simulations show that the desynchronization
threshold is typically determined by the AH bifurcation rather
than the SN bifurcation. Therefore, an asymptotic analysis of
the AH bifurcation boundary is presented below. The frequency
mismatch V shifts the stationary TCS towards the edge of the
injection pulse. This gradually reduces the injection level until it
reaches the critical value of |η| = η0 at the point ξs = ξ0, which
corresponds to the TCS SN bifurcation in the LLE with homo-
geneous injection. No stable TCS can exist under homogeneous
injection for |η| < η0.
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Fig. 5. Dependence of the quantity C on η(ξs) for an injec-
tion pulse used in Fig. 2(a,b) (left) and Fig. 2(c,d) (right). Solid
(dashed) part of the curves corresponds to C calculated with
dynamically stable (unstable) TCS under homogeneous injec-
tion.

Let us separate real and imaginary parts of the LLE (1). Then
we get two real equations for the components of the vector

A⃗ =
(

Re A Im A
)T

. Near the point ξ0 the injection vector η⃗ =
(

Re η Im η
)T

can be expanded as η⃗ ≈ η0

(
1 0

)T
+ ϵζη⃗1 +

ϵ2ζ2η⃗2 with η⃗1 =
(
∂ξ η⃗

)
ξ=ξ0

, η⃗2 =
(
∂ξξ η⃗

)
ξ=ξ0

/2 and ζ = ξ − ξ0.

The drift parameter can be written as V ≈ ϵv0 + ϵ2v1.
We look for the solution of the LLE in the form

A⃗ (ζ, t) ≈ A⃗0[ζ − ϵb(τ)] + ϵa (τ) ψ⃗0[ζ − ϵb(τ)]

+ϵA⃗1[ζ − ϵb(τ)] + ϵ2 A⃗2[ζ, τ], (3)

where the slow time is τ = ϵt and the neutral mode ψ⃗0(ζ) =
ψ⃗0(−ζ) is an even eigenfunction of the linear operator L0, de-
scribing the stability of the unperturbed solution A⃗0(ζ) of Eq. (1)
with V = 0 and constant η = η0.

Substituting Eq. (3) into the LLE and collecting the zeroth
order terms in ϵ, we obtain the equation for the unperturbed
TCS, which is automatically fulfilled. Collecting the first order
terms in ϵ and using the relations L0ψ⃗0,1 = 0, where ψ⃗1(ζ) =

∂ζ A⃗0 = −ψ⃗1(−ζ) is the odd translational neutral mode of L0,
we get the equation
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−L0 A⃗1 = ζη⃗1 − v0ψ⃗1. The solvability of this equation re-
quires that the right-hand side is orthogonal to ψ⃗†

1 . Thus, we re-
cover Eq. (2) with ξs = ξ0 and ∂tξ0 = 0 which can be used to de-
termine the drift parameter v0 = η11

〈
Re ψ⃗†

1

∣∣ζ
〉
+ η12

〈
Im ψ⃗†

1

∣∣ζ
〉
.

Note, that similar to ψ⃗1, the first order correction A⃗1 is an odd
function of ζ. Then, collecting the second-order terms in ϵ we
get:

−L0 A⃗2 = −ψ⃗0∂τ a + ψ⃗1∂τb + ζ2η⃗2 − v1∂ζ A⃗0 − (v0 + 1) ∂ζ A⃗1

−av0∂ζ ψ⃗0 + η⃗1b + N⃗, (4)

where the two components of the vector N⃗ are quadratic forms
of ∆⃗A = aψ⃗0 + A⃗1 given in the Supplement 1.

Solvability conditions of this equation give two equations
(here we have used the properties of evenness of the functions
A⃗0, ψ⃗0 and ζ2 and oddness of the functions A⃗1 and ψ⃗1):

∂τ a = g0 + g1b + g2a2

∂τb = v1 + g3a. (5)

The expressions for g0,1,2,3 are given in the Supplement 1.
The characteristic equation of the system (5) reads:

λ2 − 2ag2λ − g1g3 = 0.

The AH bifurcation occurs at the steady state solution with a = 0,
which corresponds to v1 = 0 in Eqs. (5). This means that the
AH bifurcation occurs at V = ϵv0 corresponding to the point
ξ = ξ0 with η = η0. For the parameters taken from Fig. 2(a,b)
AH bifurcation occurs with λ ≈ ±0.2113i (see the corresponding
values of g0,1,2,3 in Supplement 1). The eigenvalues of the nu-
merically calculated TCS at the AH point are λnum ≈ ±0.2059i,
which is in good agreement with the asymptotic prediction. In
our simulations, when the TCS reaches the injection level η = η0,
it undergoes an AH bifurcation. Subsequently, with a further
increase in the drift parameter V, the resulting unstable TCS is
shifted back to larger injection levels, η > η0. The asymptotic
prediction of VAH agrees well with the numerically performed
stability analysis of TCS solutions, see Fig. 4. Besides, numer-
ical analysis shows the presence of a Bogdanov-Takens (BT)
bifurcation, where the AH bifurcation curve meets the SN one.
However, in a limit of the infinitely wide pulse (ϵ → 0), BT point
shifts to the top of the synchronization region at V = 0, see
Fig. S4 (Supplement 1). This is consistent with the fact that the
stationary state of Eqs. (5) has a double zero eigenvalue with
geometric multiplicity one when v1 = 0 and η⃗1 = 0 (and, hence,
g1 = 0) since zero injection gradient must correspond to zero
drift parameter V.

In conclusion, we conducted a comprehensive study of the bi-
furcation mechanisms that cause the TCS repetition rate to desyn-
chronize from that of the injection pulses in a synchronously
pumped optical microcavity modeled by the LLE. Both the mod-
erate and large injection peak power cases are considered. As
previously demonstrated for moderate power, the TCS remains
at the top of the injection pulse at zero repetition rate detuning.
However, for large injection peak power, the TCS shifts to the
periphery of the injection pulse [24–28]. Our study shows that
desynchronization usually occurs through an AH bifurcation,
which limits the locking range of the TCS when the injection
pulse is wide enough. We have presented a straightforward and
easy-to-understand criterion for identifying this bifurcation. It
occurs when the TCS shift reaches a maximum and coincides
with the point at which the amplitude of the injection pulse

decreases to a level equivalent to the TCS SN bifurcation ob-
served in LLE with homogeneous injection η = η0.Therefore,
to determine the soliton displacement ξ0 at the desynchroniza-
tion threshold, it is necessary to know only the injection pulse
profile and η0. The critical mismatch V can then be determined
from Eq. (2). Numerical and asymptotic evidence is presented
to substantiate the reliability of this criterion.
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Desynchronization of temporal
solitons in Kerr cavities with pulsed
injection: supplement

1. ASYMPTOTIC ANALYSIS

The linear operator L0 used in the asymptotic analysis is given by:

L0 =


 −1 − 2X0Y0 −∂ζζ + θ − X2

0 − 3Y2
0

∂ζζ − θ + 3X2
0 + Y2

0 −1 + 2X0Y0


 ,

where X0 = Re A0 and Y0 = Im A0 are two components of the vector A⃗0(ζ) =
(

X0 Y0

)T
of

the unperturbed temporal cavity soliton (TCS) solution obtained under homogeneous injection
η(ζ) = η0.

The last term N⃗ in the right-hand-side of Eq. (4) can be written in the form :

N⃗ =
1
2


 ∆⃗A

TH1∆⃗A

∆⃗A
TH2∆⃗A


 ,

where ∆⃗A = aψ⃗0 + A⃗1 and H1,2 are Hessian 2 × 2 matrices of second-order partial derivatives
for two equations obtained by separating the real and imaginary parts of The Lugiato-Lefever
equation and are given by the following matrices:

H1 =


 −2Y0 −2X0

−2X0 −6Y0


 , H2 =


 6X0 2Y0

2Y0 2X0


 .

Alternatively, this term can be written in the form N⃗ = N0Q⃗, where N0 is a 2 × 3 matrix:

N0 =
1
2


 ∂X0L1,1

0 ∂Y0L1,1
0 + ∂X0L1,2

0 ∂Y0L1,2
0

∂X0L2,1
0 ∂Y0L2,1

0 + ∂X0L2,2
0 ∂Y0L2,2

0


 =


 −Y0 −2X0 −3Y0

3X0 2Y0 X0




and

Q⃗ =




∆⃗A
2
1

∆⃗A1∆⃗A2

∆⃗A
2
2




with ∆⃗Ak = aψ0k + A1k. The index k = 1 (k = 2) denotes the real (imaginary) component of the
corresponding vector.

The expressions for the coefficients in Eq. (5) are

g0 =
〈

ψ⃗†
0

∣∣∣ζ2η⃗2

〉
−

〈
ψ⃗†

0

∣∣∣∂ζ A⃗1

〉
(v0 + 1) +

〈
ψ⃗†

0

∣∣∣N0n⃗0

〉
,

g1 =
〈

ψ⃗†
0

∣∣∣η⃗1

〉
,

g2 =
〈

ψ⃗†
0

∣∣∣N0n⃗1

〉
,

g3 =
〈

ψ⃗†
1

∣∣∣∂ζ ψ⃗0

〉
v0 −

〈
ψ⃗†

1

∣∣∣N0n⃗2

〉
,
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where

n⃗0 =




A2
11

A11 A12

A2
12


 , n⃗1 =




ψ2
01

ψ01ψ02

ψ2
02


 , n⃗2 =




2A11ψ01

A12ψ01 + A11ψ02

2A12ψ02




and the neutral modes satisfy the biorthogonality conditions
〈

ψ⃗†
j

∣∣∣ψ⃗k

〉
=

∫ L/2
−L/2

(
ψ†

j1ψk1 + ψ†
j2ψk2

)
dξ =

δj,k with k, j = 0, 1.
Numerical example. For the injection pulse with d = 0.005, p0 = 1.9, and θ = 3.5, which

corresponds to the parameters of Eq. (1) from Fig. 2(a,b), the values of numerically calculated
coefficients are:

g0 = 1.7347, g1 = −2.9365, g2 = −0.36937, g3 = 0.015204.

2. NUMERICAL ANALYSIS
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Fig. S1. Two types of desynchronization transition. TCS is destabilized by AH bifurcation
before SN one (a). TCS is destabilized by SN bifurcation (b). Panels 1a-4a show the behavior
of two discrete TCS eigenvalues on the complex plane responsible for the desynchronization
scenario shown in panel (a). Panels 1b-4b show the behavior of two discrete TCS eigenvalues
responsible for the desynchronization scenario shown in panel (b). In (a,b) the blue (red) curve
shows stable (unstable) solutions. Parameters are: p0 = 1.9, d = 0.005, c = 0.

The behavior of the eigenvalues illustrating two possible scenarios of TCS desynchronization
with increasing V is shown in Fig. S1. The first scenario shown in panel (a), where the TCS
is first destabilized by an Andronov-Hopf (AH) bifurcation, is as follows: two negative real
eigenvalues collide (panel 1a) and form a complex conjugate pair. Then this pair approaches the
imaginary axis (panel 2a) and crosses it, causing an AH bifurcation. After that, the complex pair
collides again in the right half of the complex plane (panel 3a) and forms two real eigenvalues
(panel 4a), one of which crosses zero and provides the saddle-node (SN) bifurcation. In the
second scenario shown in Fig. S1(b), there is no AH bifurcation and the second collision of the

2



eigenvalues takes place in the left half of the complex plane (panel 3b), eventually leading to a SN
bifurcation. A case where the second collision takes place on the imaginary axis corresponds to
a Bogdanov-Takens bifurcation. It is important to note that both eigenvalues shown in Fig. S1
have their counterparts in the case of homogeneous injection. The eigenvalue closest to zero [in
panels (1a) and (1b)] corresponds to the zero eigenvalue associated with the translational neutral
mode in the homogeneous case. The second eigenvalue is responsible for the SN bifurcation of
the TCSs in Eq. (1) with homogeneous injection. Thus, in the homogeneous case, two eigenvalues
correspond to the neutral modes ψ⃗0,1 with different evenness.
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Fig. S2. Transition between different parts of the TCS branch obtained by numerical integra-
tion of Eq. (1) with parameters taken from Fig. 2(c,d) (p0 = 2.1, d = 0.005, c = 0) (a). This
transition is indicated by arrow in Fig. 2(d). The value V is slightly larger than Vsn1 (V = 0.007)
and an initial condition corresponds to the shifted TCS at V = Vsn1. Panel b) shows the profiles
of the initial condition (red), the resulting TCS (blue), and the injection pulse (yellow).

The transition between two branches of the TCS with sufficiently large p0 > pc is illustrated in
Fig. S2. This figure shows the results of numerical integration of Eq. (1) with V > Vsn1 and the
TCS corresponding to Vsn1 as initial condition. In panel (a) one can see how the TCS, initially
shifted to the left of the injection pulse peak, passes through the pulse center and ends up at the
right tail of the pulse. Panel (b) shows the initial and final field distributions and the shape of the
injection pulse. Such a transition corresponds to a jump from the SN point with V = Vsn1 to the
other branch of stable TCSs, see the arrow in Fig. 2(c) in the main text.
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Fig. S3. Same as Fig. 2(a, b), but with chirped injection pulse (c = 0.01) (a,b). Dependence of
the quantity C on the local pump η(ξs) for the chirped pulse (c).

Synchronization by a chirped injection pulse is illustrated in Fig. S3. In this case, the last term
on the right-hand side of Eq. (2) is nonzero and, together with the term proportional to η11,
contributes to the compensation of the drift V. Comparing Fig. S3(a) and Fig. 2(a), where the
same form of a pulse is used without chirp, it can be seen that the synchronization range increases
with the chosen form of the chirp function (ϕ = −cξ2). It is obvious that the opposite sign of the
coefficient c would decrease the synchronization range. Panel (b) shows the dependence of the
TCS stationary position on V. Comparing this panel with Fig. 2(b) obtained in the absence of
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chirp and remembering that the chirp does not affect the injection pulse amplitude, one can see
that the values of the maximum dislocations are close. Therefore we can conclude that the AH
bifurcation occurs at a similar injection value η(ξs). Panel (c) shows the dependence of the sum
of the last two terms in Eq. (2) C = η11

〈
ψ†

11

∣∣ξ
〉
+ η12

〈
ψ†

12

∣∣ξ
〉

on η(ξs).
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Fig. S4. Bogdanov-Takens bifurcation points for seven different values of the injection pulse
width: d = 0.005, d = 0.0075, d = 0.01, d = 0.0125, d = 0.015, d = 0.0175, d = 0.02. Calculations
performed for p0 = 1.9.

Fig. S4 shows the dependence of the numerically calculated position of the Bogdanov-Takens
bifurcation on the width of the injection pulse. The value d = 0 corresponds to the homogeneous
case and the width of the pulse is inversely proportional to the value d. In the limit d → 0 the
Bogdanov-Takens bifurcation point moves to V = 0 and θ = θmax, where θmax corresponds to the
maximum value of detuning above which no soliton exists.
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