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Abstract

The main objective of this paper is to address the mobile robot localization
problem with Triplet Convolutional Neural Networks and test their robust-
ness against changes of the lighting conditions. We have used omnidirectional
images from real indoor environments captured in dynamic conditions that
have been converted to panoramic format. Two approaches are proposed to
address localization by means of triplet neural networks. First, hierarchical
localization, which consists in estimating the robot position in two stages:
a coarse localization, which involves a room retrieval task, and a fine local-
ization is addressed by means of image retrieval in the previously selected
room. Second, global localization, which consists in estimating the position
of the robot inside the entire map in a unique step. Besides, an exhaustive
study of the loss function influence on the network learning process has been
made. The experimental section proves that triplet neural networks are an
efficient and robust tool to address the localization of mobile robots in indoor
environments, considering real operation conditions.
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1. Introduction

Nowadays, vision sensors are frequently used to address the localization
problem in mobile robotics, since they can capture a large amount of infor-
mation from the environment at a low cost. Among these sensors, omnidi-
rectional cameras stand out (Amorós et al. [1]). This type of cameras have
a field of view up to 360º, so they capture complete information from the
environment regardless of the robot orientation. Omnidirectional views can
be obtained with different alternatives, such as multicamera systems (Kneip
et al. [17]), catadioptric systems (Lin et al. [23]) or the combination of a
pair of fisheye cameras (Flores et al. [12]).

In order to describe the visual information from the scene, two main
approaches have been proposed in the related work. First, holistic or global
description consists in working with the image information as a whole (Payá
et al. [31]), whereas the description based on local features only focuses
on those points or areas easily identifiable in an image, such as borders or
corners (Murillo et al. [27]). In this work, global description is used.

Traditionally, analytical techniques have been used to create visual de-
scriptors (Se et al. [36]). However, with the huge increase of computing
power, the use of deep learning tools has increased during the past few years.
Concerning to image processing, Convolutional Neural Networks (CNNs) are
the most extended approach (Nilwong et al. [28], Cebollada et al. [5]). This
type of neural networks apply filters to the image based on the convolution
operation, and are able to extract features from the image with a high level
of abstraction.

In recent years, other works have explored the use of more complex archi-
tectures, composed of several neural networks, giving place to Siamese Net-
works (Yin et al. [46]) and Triplet Networks (Liu and Huang [25]), among
others. Siamese networks contain two identical neural networks, that is, they
have the same architecture and share their weights, and work in parallel, in
such a way that each of them receives a different input and provides a different
output. Meanwhile, Triplet Networks receive three inputs, commonly called
anchor, positive and negative, and provide three outputs. While Siamese
Networks are typically used to learn if two inputs are similar or different,
Triplet Networks are able to simultaneously learn similarities between the
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anchor and positive inputs and differences between the anchor and negative
data.

During the training process, the loss function compares the output pro-
vided by the network with the required output, and the optimization of this
function leads to more accurate predictions. As a function of the loss value,
the optimizer algorithm modifies the network weights to a greater or smaller
extent. Triplet loss functions (Hermans et al. [14]) seek to minimize the
difference between the anchor and positive inputs and also seek to maximize
the difference between the anchor and negative inputs. This type of loss
functions have some parameters that must be set before the training. The
most relevant is the margin, which permits adjusting the required similarity
and difference relationships between the data.

In this paper, a convolutional neural network model is used, which is
adapted and retrained to tackle the localization of a mobile robot in indoor
environments with panoramic images, employing a triplet network architec-
ture. The experimental section shows the robustness of such architecture
to address localization. Thanks to it, a scarce training with a limited set
of images captured under a specific lighting condition is enough to obtain a
tool which is robust against changes in the lighting conditions and capable of
adapting to different environments without the need of a data augmentation
process. In addition, an exhaustive comparative evaluation between several
triplet losses has been performed at every localization stage.

Therefore, the main contributions of the present work are:

• A hierarchical localization approach which exploits the advantages of
triplet network architectures in indoor environments is proposed.

• Triplet networks are trained and evaluated with panoramic images, ob-
tained from a catadioptric system mounted on a mobile robot. Besides,
their robustness is analyzed against defying visual phenomena such as
lighting changes or visual aliasing.

• We conduct a complete comparative evaluation of the performance of
different triplet loss functions in the global and the hierarchical local-
ization.
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The manuscript is structured as follows. Section 2 reviews the state of
the art on robot localization, holistic visual description and the use of deep
learning to perform these tasks. Section 3 presents the network architecture
and the loss functions used in this work. In section 4, the two localization
methods employed in this paper are detailed. Section 5 describes the exper-
iments conducted. Finally, in section 6 the conclusions and future works are
outlined.

2. State of the art

Nowadays, the use of vision systems in mobile robotics is very common.
Many research works make use of cameras to solve the localization and map-
ping problems. Among this type of sensors, monocular cameras are the most
extended option. For example, Xiao et al. [44] addressed the SLAM prob-
lem in dynamic environments with a monocular vision system. Other works
make use of omnidirectional vision systems as they can capture complete
information from the scenario regardless of the robot orientation. Flores et
al. [12] perform localization with omnidirectional and fisheye cameras.

With respect to visual description, there are some authors, such as Payá
et al. [31] or Cebollada et al. [6], that propose environment modeling tech-
niques with global-appearance descriptors. Moreover, some works make use
of these descriptors to tackle the loop closure problem, one of the most criti-
cal parts of SLAM algorithms (Zhang et al. [48]). Also, local descriptors are
commonly used as well to perform localization (Kallasi et al. [15]). Further-
more, other works combine the two types of descriptors to address mapping
and/or localization (Li et al. [22], Su et al. [38]).

The increase of computing power has led to the rise of Convolutional
Neural Networks in the past decade. When it comes to process visual in-
formation captured by a robot, this type of networks proved to be able to
extract features from the image and therefore solve mobile robotics problems
like visual localization. CNNs were first proposed in [20], and further devel-
oped in subsequent works, which propose more complex architectures, such
as VGG (Simonyan and Zisserman [37]), GoogLeNet (Szegedy et al. [40]) or
AlexNet (Krizhevsky et al. [19]), all of them trained to classify a thousand
different objects with the ImageNet database (Deng et al. [10]). Although
CNNs are the most extended choice, lately other architectures have been pro-
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posed to process visual information. This is the case of Visual Transformers
(Dosovitskiy et al. [11]), which are based on Transformers, commonly used
in Natural Language Processing. Besides, other works propose different net-
works that are able to process 3D point clouds (Qi et al. [33], Komorowski
[18]).

Focusing on CNNs, many recent works use them to address visual local-
ization. For instance, Nilwong et al. [28] make use of local features obtained
with a CNN from RGB images captured in outdoor environments, and For-
oughi et al. [13] did the same indoors. Others, such as Xu et al. [45], make
use of feature descriptors extracted from different convolutional layers of the
network. CNNs can also be trained to obtain global-appearance descriptors
from the image (Cabrera et al. [4]). Moreover, Chen et al. [8] propose a
two-step method by combining global and local features. First, an image
retrieval phase takes place by comparing global image descriptors. Second,
the robot pose is estimated by comparing the ORB keypoints of the captured
image with the keypoints in the two most similar images. Rostkowska and
Skrzypezynski [35], Ballesta et al. [3] and Cebollada et al. [5] also perform
a hierarchical localization by identifying in first place the room where the
robot has captured the image and later estimate the robot coordinates inside
the room predicted in the first step. Besides, Wozniak et al. [43] train a
CNN to classify images among 16 rooms.

Due to the success of CNNs, other works have implemented advanced
architectures composed of several CNNs. Siamese Networks are composed of
two identical neural networks that work in parallel and share their weights.
Apart from being able to extract global features from the image, siamese net-
works can include some additional layers to evaluate the similarity between
the two inputs. This ability can be used in mobile robotics tasks such as
place recognition (Leyva-Vallina et al. [21]), loop closure (Qiu et al. [34]) or
visual localization (Oliveira et al. [30]). Other researchers have designed a
siamese architecture that is not composed of CNNs. For example, Chen et al.
[7] make use of a siamese network to evaluate LiDAR scan similarity. Each
network receives a LiDAR 3D point cloud and embeds the representation
into the euclidean space to estimate their similarity.

Likewise, Triplet Networks contain three identical networks. These ar-
chitectures receive three inputs, called anchor, positive and negative, and
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provide three different outputs. Triplet networks are trained with combina-
tions of three images, and in the case of robot localization, they can be chosen
in such a way that two of them are captured from similar positions and the
other is captured from a different position. The fact of receiving three inputs
permits the network to adjust both to positive and negative examples dur-
ing the training process. Besides, since the number of possible combinations
of three images is very large, a fairly small number of images captured by
the robot can be enough to create a complete training set. Even though,
triplet networks have barely been used in visual localization tasks, and only
few approaches can be found in recent years. Also, all of them used stan-
dard cameras or RGB-d cameras. Arandjelovic et al. [2] designed a triplet
network that aggregates the extracted local features into a single descriptor
using a VLAD layer. Yu et al. [47] also make use of a VLAD layer to address
the same problem. López-Antequera et al. [26] proposed a triplet network
architecture to carry out a visual localization under seasonal changes. Like-
wise, Olid et al. [29] make a comparative evaluation of several CNN, siamese
and triplet networks, obtaining the highest recall with triplet architectures.
Comparing to these works, in the present work we propose a hierarchical lo-
calization approach, which exploits the advantages of the triplet networks in
challenging indoor environments. Also, we explore the use of triplet networks
along with panoramic images, obtained from a catadioptric system mounted
on the robot both to train and test the architectures.

The development of triplet networks goes hand in hand with the design
of triplet loss functions. Some works have focused on creating a loss function
that optimizes the training of their triplet architecture. Hermans et al. [14]
compare different triplet loss functions used to train a network for people
recognition. Cheng et al. [9] use a variant of the Triplet Margin Loss, pro-
posed in [14], to solve the same problem. Nevertheless, there have been only
few works that designed a triplet loss function to tackle visual localization.
For example, Liu et al. [24] created a triplet loss function and compared it
with other loss functions to solve a place recognition problem. Also, Kim et
al. [16] developed a triplet loss function to undertake a room retrieval task.
Even though, triplet loss functions have not been thoroughly tested in visual
localization tasks and in the present work we perform a complete compara-
tive evaluation of the performance of such loss functions and the influence of
their parameters in the global and hierarchical localization with panoramic
images.
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3. Architecture of the neural network and triplet losses

Triplet Neural Networks consist of three identical neural networks that
work in parallel and share their weights, but each of them can receive a
different input and therefore will provide a different output. These structures
are trained with combinations of three input data vectors, commonly called
anchor, positive and negative. The network is trained to learn similarities
between the anchor and positive vectors and differences between the negative
vector and the other two inputs. In some applications, Triplet Networks
present some advantages over Siamese Networks, which are composed of a
pair of Neural Networks. First, Triplet Networks receive the same number of
positive and negative inputs, which allows the network to adjust equally to
similar and different data during the training process. This property can be
especially useful in localization tasks, especially in those indoor environments
which are prone to visual aliasing. Second, the number of possible input
combinations in the training process increases substantially compared with
Siamese Networks. This can be especially useful when just a scarce dataset
is initially available, because a reasonably high number of triplet samples can
be obtained to train the network even if no data augmentation is performed.
For these reasons, triplet neural networks can play a remarkable role to solve
the visual localization of a mobile robot, and we address this problem in the
present work.

In order to carry out localization by using a triplet convolutional net-
work architecture, we make use of the VGG16 network model [37], which
is adapted as shown in the Figure 1. In first place, given that the size of
the panoramic images in this work is 128x512x3 pixels, the first fully con-
nected layer of the feature aggregation stage must be adapted to this size (its
original size was 224x224x3 pixels). Additionally, we leave the convolutional
layers intact, which correspond to the feature extraction phase, and modify
the remaining fully connected layers so as to obtain a five-element global-
appearance descriptor, as shown in the Figure 1. With the aim of taking
advantage of the knowledge already acquired by the VGG16 model, Transfer
Learning technique is employed on the convolutional layers.
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Figure 1. Original VGG16 network model (above) and our adaptation (below). Convo-
lutional and max pooling layers have been left intact, whereas the fully connected layers
have been modified in order to adapt the architecture to the size of the input images
and obtain a five-element global descriptor. ReLU layers have not been included so as to
simplify this figure.

During the training, the loss function compares the output provided by
the neural network with the required output. Later, the optimizer algorithm
will modify the network weights according to the committed error to opti-
mize the value of the loss function and achieve a more accurate prediction.
Therefore, triplet losses minimize their value when the anchor and positive
inputs are predicted as similar and the negative input is predicted as differ-
ent to the other two inputs. During the network training process, the chosen
loss function is expected to have an important influence on the performance
of the trained network. In this paper, an exhaustive study is conducted to
assess the influence of the loss function in the accuracy of the network when
it is trained to solve the localization problem.

• Triplet Margin Loss (Triplet Loss): This is the most renowned
triplet loss. It returns the average value of all the batch combinations:

L =
1

N

N∑
i=1

[Di
a,p −Di

a,n +m]+
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where Di
a,p is the euclidean distance between the anchor and positive

descriptors in the i-th triplet, Di
a,n is the euclidean distance between

the anchor and negative descriptors, [...]+ is the ReLU function, m is
the margin and N is the batch size (number of triplet samples that are
taken into account before updating the internal model parameters).

• Lifted Embedding Loss: This loss, described in [14], is character-
ized by not only taking into account the distance between the anchor
and positive inputs and the distance between the anchor and negative
inputs, but also trying to maximize the distance between the positive
and negative inputs:

L =
1

N

N∑
i=1

[
Di

a,p + ln
(
em−Di

a,n + em−Di
p,n

)]
+

where Di
p,n is the euclidean distance between the positive and negative

descriptors in the i-th triplet sample.

• Lazy Triplet Loss: This loss returns the hardest example of the batch
for the network learning process:

L =
[
max

(
D⃗a,p − D⃗a,n +m

)]
+

where D⃗a,p = (D1
a,p, D

2
a,p, ..., D

N
a,p) are the euclidean distances between

each anchor-positive pair and D⃗a,n = (D1
a,n, D

2
a,n, ..., D

N
a,n) are the eu-

clidean distances between each anchor-negative pair.

• Semi Hard Loss: This loss is a Lazy Triplet Loss variant. It calculates
the average distance between the anchor and positive descriptors, and
the minimum distance between the anchor and negative descriptors. In
other words, it returns the hardest negative example of the batch:

L =
1

N

N∑
i=1

[
Di

a,p −min
(
D⃗a,n

)
+m

]
+
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• Batch Hard Loss: This loss is another variant of the Lazy Triplet
Loss. It returns the maximum distance between the anchor and pos-
itive descriptors, and the minimum distance between the anchor and
negative descriptors. Therefore, it returns the hardest positive and
negative examples of the batch:

L =
[
max

(
D⃗a,p

)
−min

(
D⃗a,n

)
+m

]
+

• Circle Loss: This loss, proposed in [39], makes use of the cosine sim-
ilarity metric instead of the euclidean distance:

L = ln

(
1 +

N∑
j=1

eγα
j
ns

j
n +

N∑
i=1

e−γαi
ps

i
p

)

where,

αi
p =

[
Op − sip

]
+
;αj

n =
[
sjn −On

]
+
;Op = 1−m;On = m

where sip is the cosine similarity between the anchor and positive de-
scriptors, sjn is the cosine similarity between the anchor and negative
descriptors and γ is a scale factor.

• Angular Loss: This loss, introduced in [42], seeks to minimize the
angle formed by the vector that connects the anchor and the negative
descriptors and the vector that connects the positive and the negative
descriptors. Thus, it minimizes the distance between the anchor and
positive inputs:

L = ln

(
1 +

N∑
i=1

ef
i
a,p,n

)

where,

f i
a,p,n = 4 tan2 α

(
xi
a + xi

p

)T
xi
n − 2

(
1 + tan2α

)
(xi

a)
Txi

p
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where xi
a is the anchor descriptor of the i-th triplet sample, xi

p is the
positive descriptor of the i-th triplet sample, xi

n is the negative descrip-
tor of the i-th triplet sample and α is an angular margin.

4. Visual Localization

With the aim of addressing the localization problem, the present work
makes use of omnidirectional images captured in indoor environments by a
catadioptric system mounted on a mobile robot. Subsequently, RGB im-
ages are converted to panoramic format with 128x512x3 pixels and split into
training, validation and test sets. Additionally, a visual model is generated
with the images used during the training process. For every image, the co-
ordinates of the capture points are known (ground truth), which allows us
to conduct a supervised training. Afterwards, we conduct the training, vali-
dation and test of the triplet network architecture proposed in section 3. In
every stage, a triplet architecture will be used to train the network, in such
a way that the model is trained with combinations of three images Ia, Ip, In,
where each of the networks that compose the architecture receives an input
image and outputs a descriptor of that image. In order to perform the val-
idation and test of the network, any of the networks that form the triplet
architecture, as they are identical, will be used to embed each test image into
a global-appearance descriptor d⃗test ∈ R5x1 that will be compared with the
rest of the image descriptors that constitute the visual map, composed of the
images used during the training process. These descriptors are normalized
and then compared using euclidean distance or cosine similarity. The nearest
neighbour among the images in the visual model will allow us to estimate the
position of the robot when it captured the test image. The next subsections
describe the two localizacion approaches: hierarchical localization and global
localization.

4.1. Hierarchical localization

Hierarchical localization involves estimating the coordinates where the
robot has captured an image in two steps. First, we carry out a coarse
localization, in which the network identifies the room where the robot is.
Second, a fine localization is performed, in which the network determines the
robot coordinates in the room that has been retrieved in the first stage.
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Figure 2. Hierarchical localization process performed in two steps. First, the test im-
age descriptor d⃗test1 is compared with representative descriptors of the rooms DIr =[
d⃗Ir1 , d⃗Ir2 , ..., d⃗IrM

]
and the nearest neighbour is considered the retrieved room k. Sec-

ond, d⃗test2 is compared with the descriptors of the images that compose the visual model

of the retrieved room DV M
Roomk

=
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
and the nearest neighbour indi-

cates the robot coordinates inside the room (xpred, ypred).

• Coarse localization: in this stage, the network must determine in
which room the test image has been taken. To do that, the triplet
network is trained with combinations of three images Ia, Ip, In chosen
randomly, in such a way that the anchor and positive images belong
to the same room and the negative image must have been captured in
a different room. The network is trained to output a descriptor per
input image, with size 5x1, as shown in Figure 1 Once trained, to test
the network, the descriptor of each test image d⃗test1 is compared with
a set of descriptors that contain a representative descriptor of every

room DIr =
[
d⃗Ir1 , d⃗Ir2 , ..., d⃗IrM

]
. The representative image of every

room is the image captured from the position which is the closest to
the geometrical centre of the room, where M is the number of rooms.
If the predicted room matches the actual room, it will be considered as
a network success.
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• Fine localization: Once a room has been retrieved, the network must
estimate the robot position inside the room. To do this part, an inde-
pendent triplet network is trained for each one of the rooms, starting
from the weights of the coarse-step network. In this case, all the train-
ing images belong to the same room and a distance threshold is defined
to consider positive or negative pairs. In this work, the distance be-
tween anchor and positive images must be smaller than 0.3 m and the
distance between anchor and negative images must be larger than 0.3 m.
This threshold has not been chosen arbitrarily, since it is the minimum
distance that permits every image to have at least one possible posi-
tive pair in the training dataset. To conduct the test, every test image
descriptor d⃗test2 is compared with the descriptor of every image that be-
longs to the visual model (VM) of the room that has been retrieved dur-

ing the coarse localization DV M
Roomk

=
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
, where n

is the number of images in the visual model of the predicted room.
The coordinates of the nearest neighbour are considered an estimation
of the position of the robot when capturing the test image.

To address hierarchically the localization, one triplet network is trained
to solve the coarse step, and one triplet network per room is trained to solve
the fine localization step. In all cases, these networks are trained to provide a
descriptor per input image. Once these networks are trained, the next steps
are followed:

1. The robot captures an image Itest from an unknown position (xtest, ytest).

2. The previously trained coarse-step network embeds the image into a
global descriptor d⃗test1 ∈ R5x1.

3. The descriptor d⃗test1 is compared with the representative descriptors

DIr =
[
d⃗Ir1 , d⃗Ir2 , ..., d⃗IrM

]
via euclidean distance or cosine similarity.

These descriptors are obtained from the representative image of each
room using the coarse-step network.

4. The nearest neighbour indicates the retrieved room k.

5. The previously trained fine-step network of the retrieved room k embeds
the image into a global descriptor d⃗test2 ∈ R5x1.

6. The descriptor d⃗test2 is compared with the descriptors of the images that

compose the visual model of the retrieved roomDV M
Roomk

=
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
.
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These descriptors are obtained using the fine-step network of the re-
trieved room.

7. The coordinates of the nearest neighbour i are an estimation of the
position of the robot inside the room (xpred, ypred) =

(
xVM
i , yVM

i

)
when

capturing the test image.

4.2. Global localization

Global localization consists in determining the robot position in the entire
map in one step. A unique network is trained for the whole environment,
including images captured in all the rooms with random combinations. As
in the fine localization, a distance threshold is set to create the positive
and negative pairs: the distance between anchor and positive images must
be smaller than 0.3 m and the distance between anchor and negative im-
ages must be larger than 0.3 m. In order to test the network, every test
image descriptor d⃗test is compared with the descriptors of the visual model

of the whole map DV M =
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
, where n is the number

of images in the complete visual model. Likewise, the coordinates of the
nearest neighbour are considered an estimation of the position of the robot
(xpred, ypred) =

(
xVM
i , yVM

i

)
.

To address globally the localization, a unique triplet network is trained.
This network is trained to provide a descriptor per input image. Afterwards,
the next steps are followed:

1. The robot captures an image Itest from an unknown position (xtest, ytest).

2. The trained network embeds the image into a global descriptor d⃗test ∈
R5x1.

3. The descriptor d⃗test is compared with the descriptors of the images that

compose the visual model of the entire mapDV M =
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
.

4. The coordinates of the nearest neighbour i are considered an estimation
of the position of the robot (xpred, ypred) =

(
xVM
i , yVM

i

)
when capturing

the test image.
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Figure 3. Global localization process performed in a unique step. Each test image descrip-
tor d⃗test is compared with the descriptors of the images that compose the visual model of

the entire map DV M =
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
and the nearest neighbour indicates the

robot coordinates (xpred, ypred).

5. Experiments

This section describes the dataset and the results of the experimental
evaluation. In this work, two experiments have been performed. Experi-
ment 1 addresses a comparative evaluation of the influence of the triplet loss
function in the performance of the network in a specific environment under
different lighting conditions. Experiment 2 analyzes the performance of the
network when different environments are considered at the same time.

5.1. Dataset

The images used in this work belong to COLD database (Pronobis and
Caputo [32]). This dataset contains omnidirectional images captured by a
mobile robot that makes use of a catadioptric vision system with a hyperbolic
mirror. The robot follows a path inside several buildings and goes through
different rooms, taking a picture every 0.08 s. Various types of rooms can
be found inside the building, such as offices, a kitchen, a printer area, or a
corridor that connects the different rooms. In this dataset, images captured
under three illumination conditions can be found: Cloudy, Night and Sunny.
Besides, some images include people moving or changes in the position of
some pieces of furniture. All of this provides a complete dataset with plenty
of defying examples due to illumination and dynamic changes. In this work,
we have made use of three different environments: Freiburg (Part A, Path 2),
Saarbrücken (Part A, Path 2) and Saarbrücken (Part B, Path 4). Despite the
fact that two sets of images have been captured in the Saarbrücken building,
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Examples of images captured under different lighting conditions (a) Cloudy, c)
Night, e) Sunny) and examples of images captured in different environments (b) Freiburg,
d) Saarbrücken A, f) Saarbrücken B).

they do not share any room, so they can be considered as two different
environments.

Figure 4 shows some examples of images under each lighting condition and
some examples of images that belong to each environment. These Figures
illustrate some challenging cases that the network can find, such as changes
of appearance caused by lighting variations or visual aliasing due to similar
rooms that belong to different environments.

According to this philosophy, only cloudy images have been used to con-
duct the network training and validation, since it is the most standard illu-
mination and it presents the lower contrast between the pixels corresponding
to information indoors and outdoors, while all the illumination conditions
are used for the test, so as to prove the network robustness against changes
in the lighting conditions. Table 1 and Table 2 show the number of images
from each image set used in Experiment 1 and Experiment 2, respectively.
Table 3 enumerates the rooms in each environment and the number of images
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Image set Illumination Freiburg
Training Cloudy 588

Validation 1 Cloudy 586
Test 1 Cloudy 2595
Test 2 Night 2707
Test 3 Sunny 2114

Table 1. Size and lighting conditions of the training, validation and test sets used in
Experiment 1.

Image set Illumination Freiburg Saarbrücken A Saarbrücken B TOTAL
Training Cloudy 588 586 321 1495

Validation 1 Cloudy 586 582 301 1469
Validation 2 Cloudy 199 198 112 509

Test 1 Cloudy 867 758 281 1906
Test 2 Night 905 759 292 1956
Test 3 Sunny 707 X 291 998

Table 2. Size and lighting conditions of the training, validation and test sets used in
Experiment 2 (X indicates that the original Cold dataset contains no image in this set).

per room that shape the training set. The first row contains the id. of each
room.

Additionally, the training set has also been employed as a visual map
during the validation and the test. The training images have been captured
roughly 20 cm apart from each other. The validation sets keep the same
proportion of images per room as the training set. The test has been done
for each illumination condition individually. Besides, training, validation
and test sets do not share any of their images, that is, the validation and
the test are carried out with images that the network has not seen during
the training process. In Experiment 1, only Freiburg images have been used,
whereas in Experiment 2 three different sets have been employed (Freiburg,
Saarbrücken A and Saarbrücken B). While only one validation set has been
used in Experiment 1, two different validation sets have been employed in

Training set 1PO 2PO (1) 2PO (2) CNR CR KT LO PA RL ST TL TR TOTAL
Freiburg 44 47 40 X 235 45 40 57 X 40 40 X 588

Saarbrücken A 40 41 X 80 190 X X 40 40 X 40 115 586
Saarbrücken B 40 X X X 129 44 X 40 X X 68 X 321

Table 3. Number of images per room used during the training process.

17



Experiment 2. Validation 1 set has been used during the fine localization
process to avoid having a too scarce number of validation images per room.
Since that is not a problem in the rest of stages, Validation 2 set has been
used to conduct the coarse localization and the global localization.

5.2. Experiment 1. Influence of the loss function.

In this experiment, a comparative evaluation has been done amongst
different triplet loss functions (described in section 3). For all localization
stages, a complete network training has been conducted with each triplet
loss, giving different values to the parameters of the loss function with the
purpose of finding their optimal value for each task. This experiment has
been performed with the Freiburg set.

5.2.1. Hierarchical localization

a) Coarse localization

The aim of this stage is that the trained network is able to perform
a room retrieval task. We have trained a network for each loss function
and parameter setting, with a training length of 5 epochs and 50000 triplet
samples per epoch. In the Table 4 the best results obtained with each loss
function are shown.

Loss function
Optimal

parameters
Cloudy

Accuracy(%)
Night

Accuracy(%)
Sunny

Accuracy(%)
Global

Accuracy(%)
Triplet Margin m=1.25 99.23 97.04 95.08 97.12

Lifted Embedding m=0.25 99.11 97.12 93.52 96.58
Circle g=1,m=1 98.84 96.53 92.34 95.90

Lazy Triplet m=1.25 99.23 97.34 94.56 97.04
Semi Hard m=1 99.27 97.19 95.55 97.34
Batch Hard m=0.75 99.04 97.41 94.18 96.88
Angular a=30º 99.23 97.19 95.41 97.28

Table 4. Test accuracy for each loss function in the coarse localization.

This label shows that, in general terms, all the loss functions have led to
a high accuracy in this stage. The best global accuracy is obtained with the
Semi Hard Loss, which has output slightly better results than the Angular
Loss and the Triplet Margin Loss. Moreover, the trained networks have been
able to perform the localization task under every lighting condition, even
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Sunny, which is the illumination that causes the largest change of appearance
of the scenes compared with Cloudy, the condition used during the training
process.

To verify the correctness of the results, confusion matrices will be pre-
sented, which show the network predictions, as well as its right and wrong
predictions for each room. In the Figure 5 the confusion matrices of the
network that provided the best results in the coarse localization are shown.

(a) (b)

(c)

Figure 5. Confusion Matrices obtained in the test of the network trained with the Semi
Hard Loss (m=1) for a) Cloudy, b) Night and c) Sunny.
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These matrices indicate that most wrong predictions have occurred in
the corridor (CR-A). That is logical, since it is the room with the largest
dimensions and therefore much more images have been taken, and because
the corridor is connected to five rooms. In fact, almost all wrong predictions
happened between connected rooms as they share part of visual information
in the transition areas. If only mistakes between non-connected rooms are
considered, the network trained with the Semi Hard Loss would reach a
100% Cloudy accuracy, 99.96% Night accuracy and 99.72% Sunny accuracy.
Besides, some of these mistakes are between resembling rooms like offices
(1PO-A, 2PO1-A, 2PO2-A, LO-A). Another relevant number of errors take
place between the stairs area (ST-A) and the toilet (TL-A), that can be
caused by a small number of images from these rooms seen by the network
during its training, which led to a network underfitting.

b) Fine localization

In this phase, a network is trained in order to estimate the robot position
inside the room retrieved in the previous stage. For every room, a network
has been trained with each loss function and its optimal parameters obtained
in the coarse localization stage, with a training length of 5 epochs and 10000
triplet samples per epoch. Table 5 and Figure 6 reveal the average geometric
error made by the network and the recall for the K nearest neighbours, re-
spectively. The first row of table 5 also includes the minimum error that can
be obtained in each experiment, given the distribution in the floor plane of
the images in the visual model and the test images. Recall@K can be defined
as the proportion of test images that the network can locate amongst the K
nearest neighbours.

These results demonstrate that, in general terms, loss functions had a
similar performance under Cloudy conditions. However, a larger difference
can be appreciated under conditions that the network has not seen during
the training process. The loss functions that provided the best results are the
Semi Hard Loss and the Batch Hard Loss. In general terms, the errors are
small for every lighting condition, especially Cloudy and Night. The errors
obtained under Sunny conditions are larger because the mistakes committed
during the coarse localization penalize the network performance in this stage.

Figure 7 shows the geometric error made in each room with the loss
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(a) (b)

(c)

Figure 6. Average recall@K obtained in the fine localization with each loss function with
a) Cloudy, b) Night and c) Sunny.

Loss function
Cloudy Error (m)
Min. error=0.128m

Night Error (m)
Min. error=0.126m

Sunny Error (m)
Min. error=0.120m

Global
Error (m)

Triplet Margin 0.257 0.281 0.468 0.335
Lifted Embedding 0.252 0.310 0.667 0.410

Circle 0.292 0.373 0.746 0.470
Lazy Triplet 0.238 0.268 0.562 0.356
Semi Hard 0.249 0.275 0.398 0.307
Batch Hard 0.233 0.263 0.440 0.312
Angular 0.260 0.300 0.471 0.344

Table 5. Average geometric error (m) for each loss function in the fine localization.
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function that provided the best results in the hierarchical localization and
the minimum errors that can be reached (this is the piece of information that
also appears in the first row of table 5). The error cannot be zero, because
in order to happen that, the training and test sequences should be the same.
The minimum reachable error is the one that would be obtained if the network
had a 100% accuracy with K=1, in other words, if the predicted closest image
always matches with the actual closest image. This is graphically shown in
fig. 8.

Figure 7. Geometric error (m) in every room with the Semi Hard Loss (m=1) in the fine
localization.

From Figure 7 we notice that the error is very variable depending on the
room, since an independent network has been trained for each room. The
error depends as well on the difference between the paths followed by the
robot in the training and test sequences. By comparing these results with
the confusion matrices obtained from the coarse localization (Figure 5), we
realize that the rooms where the geometric error is bigger are the rooms where
more mistakes had been committed during the coarse localization. This can
be observed more clearly in the room 1PO-A under Sunny conditions. The
geometric error made in this room is 0.702 m, while the Sunny average error
is 0.398 m.
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Figure 8. Error (m) and minimum reachable error (m) for the image Itesti . Error e(m)
is the geometric distance between the capture point of the image Itesti and the image of
the visual model retrieved as the closest by the network IVM

pred, whereas minimum error
emin(m) is the geometric distance between the capture point of the image Itesti and the
actual closest image of the visual model IVM

min .

5.2.2. Global localization

To address the global localization problem, an exhaustive study of the
influence of the loss function and its parameters in the performance of the
network has been done, as in the case of the coarse step of the hierarchical
localization. A network has been trained for each loss function and parame-
ters setting, with a training length of 5 epochs and 50000 triplet samples per
epoch. Table 6 and Figure 9 reveal the average geometric error for each loss
function and the recall for the K nearest neighbours, respectively.

23



(a) (b)

(c)

Figure 9. Average recall obtained in the global localization with each loss function under
a) Cloudy, b) Night and c) Sunny conditions.

Table 6 shows that the average errors tend to increase in the global local-
ization in every lighting condition, comparing to the hierarchical localization.
This is logical, since in this case the network tries to locate each image in-
side the entire map in a single step, and this environment is prone to visual
aliasing, so the hierarchical process is able to better retain the features that
characterize and distinguish every room. In general terms, comparing to
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Loss function
Optimal

Parameters
Cloudy Error (m)
Min. error=0.128m

Night Error (m)
Min. error=0.126m

Sunny Error (m)
Min. error=0.120m

Global
Error (m)

Triplet Margin m=1 0.303 0.324 0.633 0.420
Lifted Embedding m=0.25 0.292 0.344 0.639 0.425

Circle γ=1,m=1 0.428 0.547 1.219 0.731
Lazy Triplet m=1.25 0.266 0.286 0.766 0.439
Semi Hard m=1.25 0.287 0.287 0.736 0.437
Batch Hard m=0.75 0.262 0.288 0.823 0.458
Angular α=30º 0.338 0.413 0.734 0.495

Table 6. Average geometric error (m) for each loss function in the global localization and
optimal parameters.

hierarchical localization, the performance is slightly worse for Cloudy and
Night, but the error is larger for Sunny. This can be observed clearly by
comparing Figures 6 and 9. Under Cloudy and Night conditions, the net-
work is able to locate a similar number of test images amongst the 8 closest
neighbours. However, the recall is significantly lower in the global localiza-
tion under Sunny. The loss functions that output the best results are the
Triplet Margin Loss (m=1) and the Lifted Embedding Loss (m=0.25).

In the Figure 10, a comparison between the two proposed localization
methods has been done by using maps with the predictions of the networks
that had the best results: Semi Hard Loss, m=1, for the hierarchical lo-
calization and Triplet Margin Loss, m=1, for the global localization. The
blue points represent the visual map, whilst the rest of points represent the
test images. If the test image is located correctly amongst the K=1 nearest
neighbours, the point will be green, if the image is located amongst K=2,
the point will be light green, and so on until K=8 (please refer to the leg-
ends in Figure 10). If the image cannot be located amongst K=8, the point
will be painted red. The lines connect every test image with the image of
the visual map retrieved as the closest by the network. Moreover, Table 7
compares the average geometric error obtained with every loss function in
the two proposed localization approaches: hierarchical and global.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Network prediction for every test image in the hierarchical localization (a)
Cloudy, c) Night, e) Sunny) and in the global localization (b) Cloudy, d) Night, f) Sunny).

26



Loss function
Average Error (m)

Hierarchical localization
Average Error (m)
Global localization

Triplet Margin 0.335 0.420
Lifted Embedding 0.410 0.425

Circle 0.470 0.731
Lazy Triplet 0.356 0.439
Semi Hard 0.307 0.437
Batch Hard 0.312 0.458
Angular 0.344 0.495

Table 7. Average geometric error (m) for each loss function in the hierarchical localization
and in the global localization.

Table 7 shows that the hierarchical method permits performing a more ac-
curate localization. For every loss function, the error made with the hierarchi-
cal localization is lower than the error made with the global localization. The
maps represented in Figure 10 lead to the same conclusion. These maps also
show very clearly that the number of errors between non-connected rooms
is smaller in the hierarchical method, especially under Sunny conditions. In
both methods, the errors take place more frequently in the transition zones
or in junctions, as well as in zones where the robot turns, which means that
the network is sensitive to changes in the orientation. Finally, we can observe
that in both methods the networks have a better performance under Cloudy
and Night conditions than Sunny. That is logical, since the network has been
trained only with Cloudy images and Sunny is the lighting condition with
the biggest change of appearance with respect to Cloudy. This could be fixed
by training the network also with Sunny images, but the aim of this work is
to prove the robustness of Triplet Networks against lighting changes and the
results can be considered satisfactory.

Table 8 includes the localization time of each method. Localization time
can be defined as the time gap since an image is captured until the coordinates
of the image are obtained. In the conducted experiments, the hierarchical
localization time is larger than global localization time. This difference is due
to the fact that in the global localization, the image coordinates are retrieved
in a single step by one network, whereas in the hierarchical localization two
steps are needed. In this case, a single network is used during the coarse
localization step and one network for every room is used during the fine
localization step. However, in both cases the time is sufficiently low as to
enable the robot to perform localization with a reasonable frequency.
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Hierarchical localization Global Localization
Localization time (ms) 36.07 3.28

Table 8. Localization time (ms) for each localization method.

5.3. Experiment 2. Study of the performance of the network in different
environments simultaneously.

In this experiment, the same procedure has been followed than in Exper-
iment 1, with the difference that in this case, three image sets corresponding
to different environments have been jointly used: Freiburg, Saarbrücken A
and Saarbrücken B. Although the images in Saarbrücken A and Saarbrücken
B have been captured in the same building, they do not share any rooms and
therefore any visual information, so they must be considered as two differ-
ent environments. Therefore, the networks to be trained are facing a more
challenging task. The objective is to prove the ability of the networks in
larger and different environments, and to explore the limits of the proposal.
A network is retrained for each loss function with the optimal parameters
obtained in Experiment 1.

5.3.1. Hierarchical localization

a) Coarse localization

In this stage, a network is trained for each loss function with combinations
of three images Ia, Ip, In chosen randomly, in such a way that anchor and
positive images belong to the same room and the negative image belongs to a
different room. Therefore, in this case, the coarse step tries again to retrieve
the room where the test image was captured, among the rooms present in
the three environments to test. However, the negative image can belong to
the same environment than the anchor or not. The training length for this
part is 5 epochs and 50000 triplet samples per epoch.

We study first the ability of the network to retrieve the correct environ-
ment and second the ability to retrieve the correct room. In the Table 9 and
Table 10 the best results obtained with each loss function are shown.

Table 9 proves that the trained network can retrieve the environment
where an image has been captured in almost every case. Table 10 shows the
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Loss function
Cloudy

Accuracy (%)
Night

Accuracy (%)
Sunny

Accuracy (%)
Global

Accuracy(%)
Triplet Margin 99.90 99.69 99.70 99.76

Lifted Embedding 99.32 98.57 98.70 98.86
Circle 99.06 98.26 98.70 98.67

Lazy Triplet 99.74 99.23 99.90 99.62
Semi Hard 99.63 99.44 99.90 99.66
Batch Hard 99.90 97.96 100 99.28
Angular 97.64 95.50 98.30 97.15

Table 9. Environment retrieval accuracy with each loss function in the coarse localization.

Loss function
Cloudy

Accuracy (%)
Night

Accuracy (%)
Sunny

Accuracy (%)
Global

Accuracy(%)
Triplet Margin 94.55 91.82 88.88 91.75

Lifted Embedding 96.75 93.61 92.59 94.31
Circle 94.28 89.52 88.38 90.73

Lazy Triplet 97.90 92.84 93.89 94.88
Semi Hard 97.85 95.30 91.48 94.88
Batch Hard 97.90 91.10 92.79 93.93
Angular 92.08 89.93 88.18 90.06

Table 10. Room retrieval accuracy with each loss function in the coarse localization.

accuracy of the network in the room retrieval task. As expected, the accu-
racy is lower than in Experiment 1, since now the network must distinguish
amongst 22 rooms instead of 9. It should be noted that the accuracy obtained
under Sunny conditions is higher than under Night because Sunny test set
only contains images captured in two different environments (Freiburg and
Saarbrücken B) and only 14 rooms are considered. This is due to the fact
that the dataset does not contain any images captured under Sunny condi-
tions in Saarbrücken A. In this stage, Semi Hard Loss and Lazy Triplet Loss
have output the best results.

Figure 11 shows the confusion matrix obtained with the Semi Hard Loss
in the environment retrieval task. This matrix reveals that the network is
able to retrieve the environment as well as the room where an image has been
captured, in general terms. The most wrong predictions between environ-
ments happened betweeen Saarbrücken A and Saarbrücken B. Although the
confusion matrix in the room retrieval task is not showed in this manuscript,
the study of that matrix reveals leads to the conclusion that many of the net-
work mistakes happened between similar rooms such as the corridors. If only
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confusions between rooms of the same environment are considered, the er-
rors mostly happen in the corridors, and some rooms such as the printer area
(PA-A), the stairs (ST-A) or the toilet (TL-A) in Freiburg or the terminal
room (TR-A) in Saarbrücken A contain a significant part of the errors.

Figure 11. Confusion matrix obtained with the Semi Hard Loss in the environment re-
trieval. Cloudy, Night and Sunny tests are included in this matrix.

b) Fine localization

In this stage, a network per room is trained in order to determine the robot
coordinates inside the room retrieved in the coarse localization. For every
room, a network has been trained with each loss function, with a training
length of 5 epochs and 10000 triplet samples per epoch. Table 11 and Figure
12 show the average geometric error made by the network and the recall for
the K nearest neighbours, respectively. Network mistakes when retrieving
the environment where an image has been captured have not been considered
to calculate the average geometric error, because in this experiment, if the
coarse-step network fails to retrieve the correct environment, no geometric
error can be defined.

From these graphics we can observe that the error made by the network
is larger than in Experiment 1. This is logical, since the network had a
worse performance in the room retrieval as the number of rooms increased.
In this case, the error committed under Cloudy conditions is substantially
lower than under Night or Sunny. However, the errors are reasonable given
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Loss function
Cloudy Error (m)
Min. error=0.136m

Night Error (m)
Min. error=0.153m

Sunny Error (m)
Min. error=0.108m

Global
Error (m)

Triplet Margin 0.499 1.045 0.925 0.823
Lifted Embedding 0.399 0.869 0.490 0.586

Circle 0.623 1.327 1.081 1.010
Lazy Triplet 0.379 1.431 0.517 0.775
Semi Hard 0.379 0.848 0.504 0.577
Batch Hard 0.328 1.306 0.771 0.802
Angular 0.461 0.766 0.841 0.689

Table 11. Average geometric error made with each loss function in the fine localization.

Figure 12. Average recall obtained in the hierarchical localization with each loss function.

the difficulty of the task. The loss functions that output the best results are
the Semi Hard Loss and the Lifted Embedding Loss.

5.3.2. Global localization

In this part, a unique network is trained to localize the robot inside the
entire map (containing the three environments considered in this section).
A network has been trained for each loss function, with a training length
of 5 epochs and 50000 triplet samples per epoch. Table 12 and Figure 13
show the average geometric error for each loss function and the recall for
the K nearest neighbours, respectively. As in the fine localization, network
mistakes when retrieving the environment where the robot is have not been
considered to calculate the average geometric error.
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Loss function
Cloudy Error (m)
Min. error=0.136m

Night Error (m)
Min. error=0.153m

Sunny Error (m)
Min. error=0.108m

Global
Error (m)

Triplet Margin 0.570 1.010 0.970 0.850
Lifted Embedding 0.741 1.010 1.459 1.070

Circle 1.175 2.174 1.846 1.732
Lazy Triplet 0.696 0.903 1.235 0.945
Semi Hard 0.503 0.756 0.816 0.691
Batch Hard 0.453 0.830 0.812 0.698
Angular 0.786 1.390 1.703 1.293

Table 12. Average geometric error committed with each loss function in the global local-
ization.

Figure 13. Average recall obtained in the global localization with each loss function.

As expected from the results of subsection 5.2.2, the performance of the
network decreases in the global localization. In this case, the loss functions
that output the best results are the Semi Hard Loss and the Batch Hard
Loss.

Figure 14 shows the accuracy of the network in the environment retrieval
task. In this stage, the network still retrieves the correct environment with
high accuracy. Likewise, most errors take place between Saarbrücken A and
Saarbrücken B.

If the two methods are compared, hierarchical localization enables us
to do a more accurate localization. Table 13 reveals that every loss function
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Figure 14. Confusion matrix obtained with the Semi Hard Loss in the environment re-
trieval task in the global localization. Cloudy, Night and Sunny tests are included in this
matrix.

Loss function
Average Error (m)

Hierarchical localization
Average Error (m)
Global localization

Triplet Margin Loss 0.823 0.850
Lifted Embedding Loss 0.586 1.070

Circle Loss 1.010 1.732
Lazy Triplet Loss 0.777 0.945
Semi Hard Loss 0.577 0.691
Batch Hard Loss 0.802 0.698
Angular Loss 0.689 1.293

Table 13. Average geometric error (m) for each loss function in the hierarchical localization
and in the global localization.

except the Batch Hard Loss presents a better performance in the hierarchical
method.

5.4. Comparison with other works

Finally, the proposed method is compared with similar approaches that
used global-appearance descriptors obtained with analytical techniques, such
as gist or HOG ([31]), and with CNNs models that are adapted and retrained
in order to tackle hierarchical localization in indoor environments. All the ex-
periments have been conducted under similar conditions. All the approaches
used a training set composed of images captured under cloudy conditions and
tested their models under three different lighting conditions (cloudy, night
and sunny). Table 14 shows the geometric error made in the hierarchical
localization with each method. In the case of our method, the Semi Hard
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Global-Appearance
Descriptor Technique

Cloudy
Error (m)

Night
Error (m)

Sunny
Error (m)

Global
Error (m)

SVM + K-NN [6] 0.051 0.527 0.773 0.450
Alexnet [4] 0.293 0.288 0.690 0.424

EfficientNet [35] 0.240 0.330 0.440 0.337
Triplet Network with
Semi Hard (ours)

0.249 0.275 0.398 0.307

Triplet Network with
Batch Hard (ours)

0.233 0.263 0.440 0.312

gist [5] 0.052 1.065 0.884 0.667
HOG [5] 0.163 0.451 0.820 0.478

Table 14. Comparison with other methods in the complete hierarchical localization.

Loss and the Batch Hard Loss are considered, as they are the loss functions
that have lead to the best global results.

Table 14 shows that the error made by our approach with the Batch Hard
Loss under Cloudy conditions is slightly smaller to the error made by other
approaches, which was already very small. In this case, some works such as
[5] or [6] are not directly comparable to our method, since they used a denser
visual map. Therefore, the error made in their method is lower than the
minimum reachable error in our work (to see the minimum error that can be
made with our method, please refer to the first row of Table 5).

Moreover, our approach outperforms the rest of works under lighting
conditions that the networks have not seen during the training process, which
proves that triplet architectures are accurate and robust tools to tackle visual
localization problem in challenging environments without the need of a large
dataset or a data augmentation.

6. Conclusions

Throughout the present work, two different localization approaches have
been tackled (hierarchical and global) in indoor environments, with the use
of triplet neural networks along with panoramic images. In the hierarchical
method, a room retrieval task is performed in first place. Afterwards, the
coordinates of the image inside the retrieved room in the first stage are
determined. Meanwhile, in the global localization, the coordinates of the
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image are estimated in a single step. The experiments demonstrate that the
hierarchical approach performs a more accurate localization.

Triplet Networks are proposed to address both localization approaches.
The VGG16 network model is adapted and retrained in such a way that the
proposed architecture receives three different panoramic images and outputs
three global appearance descriptors.

In order to test their robustness against significant changes of appear-
ance, the networks have been trained with images captured under Cloudy
conditions and tested under different lighting conditions. As expected, the
trained networks tend to work better under Cloudy conditions, whereas the
error made is larger under Night and especially Sunny.

Moreover, experiment 1 has addressed an exhaustive comparative evalu-
ation of the influence of the triplet loss function in the performance of the
network in every localization stage. In general terms, all the loss functions
tend to output a high accuracy under Cloudy conditions. However, the re-
sults obtained with each loss function differ when the network is facing a
more challenging task such as global localization or lighting conditions that
the network has never seen during the training process. The loss function
that showed the best performance is the Semi Hard Loss, and other losses
such as the Batch Hard or the Triplet Margin also showed a good performance
in difficult tasks.

Besides, experiment 2 considers three different environments simultane-
ously in order to evaluate the robustness of the proposed architecture in
larger and repetitive environments and to explore the limits of the proposal.
In this part, the accuracy is lower than in Experiment 1 as expected, since
the trained network is facing a more challenging task. However, the errors
made under every lighting condition are reasonably small given the difficulty
of the problem. In this case, the Semi Hard Loss has also output the best
results, which proves that it is a robust loss function to address different
visual localization tasks.

Finally, our method has been compared with similar approaches that ad-
dressed a hierarchical localization. Under Cloudy conditions, our method has
led to a similar error than other works, which was already small. However,
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the error made by our approach is lower under Night and Sunny condi-
tions (those that the networks have not seen during the training process).
Therefore, triplet networks have proved to be a robust tool to address visual
localization in challenging indoor environments.

In future works, the proposed architecture will be extended to outdoor
environments, which are more challenging and show bigger changes of appear-
ance. Furthermore, we will explore the use of more complex architectures to
tackle visual localization in larger indoor environments.
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