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Abstract. We prove the non-degeneracy of solutions to a fractional and singular Li-
ouville equation defined on the whole real line in presence of a singular term. We use
conformal transformations to rewrite the linearized equation as a Steklov eigenvalue prob-
lem posed in a bounded domain, which is defined either by an intersection or a union of
two disks. We conclude by proving the simplicity of the corresponding eigenvalue.

1. Introduction

In this work we investigate non-degeneracy properties for solutions to the one-dimensional
singular Liouville equation

(−∆)
1
2u = |x|α−1eu in R, (1.1)

with 0 < α < 2. In order to define the half-Laplacian in (1.1), we requireˆ
R

|u|
1 + x2

< +∞. (1.2)

We also assume the integrability conditionˆ
R
|x|α−1eu < +∞. (1.3)

Under conditions (1.2) and (1.3), weak solutions to (1.1) are completely classified. When
α = 1, the set of solutions contains only the two-parameter family of solutions

uµ,ξ(x) = ln

(
2µ

|x− ξ|2 + µ2

)
, (1.4)

with µ, ξ ∈ R and µ > 0. We refer to the work of Da Lio, Martinazzi and Rivière in [12]
for the proof. Due to translation and dilation invariance, it is clear that the derivatives

z0,µ,ξ(x) := ∂µuµ,ξ(x) =
1

µ

(x− ξ)2 − µ2

µ2 + (x− ξ)2
, z1,µ,ξ(x) := ∂ξuµ,ξ(x) =

2(x− ξ)

µ2 + (x− ξ)2
(1.5)

solve the linear problem

(−∆)
1
2 z = euµ,ξz in R. (1.6)

Date: April 23, 2024.
2020 Mathematics Subject Classification. 35R11 (35B33, 45G05).
Key words and phrases. Non-degeneracy, Liouville equation, Steklov problem.
The authors are partially supported by the group GNAMPA of the Istituto Nazionale di Alta Matem-

atica (INdAM). In particular, they acknowledge financial support from INdAM-GNAMPA Project 2023,
codice CUP E53C2200193000 and INdAM -GNAMPA Project 2024, codice CUP E53C23001670001. A.
DlT. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN),
through the IMAG-Maria de Maeztu Excellence Grant CEX2020-001105-M/AEI/ 10.13039/501100011033.
She is also supported by the FEDER-MINECO Grants PID2021- 122122NB-I00 and PID2020-113596GB-
I00; RED2022-134784-T, funded by MCIN/AEI/10.13039/501100011033 and by J. Andalucia (FQM-116)
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It is well known (see [13, 39, 11]) that the bubble uµ,ξ is non-degenerate up to the natural
invariances of (1.1), i.e. the two functions in (1.5) span the space of all bounded solutions
to (1.6). More precisely, if z ∈ L∞(R) is a weak solution to (1.6), then z is a linear
combination of z0,µ,ξ and z1,µ,ξ.

If α ̸= 1, problem (1.1) is not translation invariant. As we will show in Section 2, it
follows from the results obtained by Gálvez, Jiménez and Mira in [26] (see also [43]) that
for any α ∈ (0, 1)∪(1, 2), equation (1.1) only has a one-parameter family of solutions given
by:

uρ(x) = ln

(
2αρ sin πα

2

|x|2α + 2ρ|x|α cos πα
2 + ρ2

)
(1.7)

with ρ > 0. We stress that the condition α ∈ (0, 1) ∪ (1, 2) is necessary, since there exists
no solution to (1.1) when α ≥ 2 (see Proposition 2.5).

In the present work we prove the non-degeneracy of uρ. Specifically, for any α ∈
(0, 1) ∪ (1, 2) and ρ > 0, we classify all solutions to the linearized problem

(−∆)
1
2φ = |x|α−1euρφ in R, (1.8)

in the space of functions satisfying the conditions

(−∆)
1
4φ ∈ L2(R) and

ˆ

R

|x|α−1euρφ2 < +∞. (1.9)

We consider the function

zρ(x) := ∂ρuρ(x) =
1

ρ

|x|2α − ρ2

|x|2α + 2ρ|x|α cos πα
2 + ρ2

, (1.10)

and give the following result:

Theorem 1.1. Assume α ∈ (0, 1)∪ (1, 2) and ρ > 0. Let uρ and zρ be defined as in (1.7)
and (1.10). Let φ be a weak solution to (1.8) such that (1.9) holds. Then there exists
c ∈ R such that φ = c zρ.

The main idea of the proof consists in proving the equivalence between the non-local
eigenvalue problem

(−∆)
1
2φ = λ|x|α−1euρφ in R, (1.11)

and the Steklov eigenvalue problem

∆ψ = 0 in Ωα, ∂νψ = µψ in ∂Ωα, (1.12)

where Ωα is either the intersection of two disks, when α ∈ (0, 1), or the union of two
disks, when α ∈ (1, 2). We will prove that the eigenvalue λ = 1 of (1.11) corresponds to
the eigenvalue µα = 1√

1+τ2α
of (1.12), being τα := 1+cosαπ

sinαπ and it is always simple. It is

worthwhile to point out that µα is the second eigenvalue of (1.12) if α ∈ (0, 1), while it
is an higher order eigenvalue when α ∈ (1, 2). As a consequence, the Morse index of the
bubble uρ changes when α crosses the value 1. Indeed, it turns out to be equal to 1 when
α < 1, while it is greater or equal than 2 when α > 1. It would be interesting to compute
exactly the Morse index in this second case, which is equivalent to find the order of the
eigenvalue µα of (1.12).

The proof of Theorem 1.1 is based on harmonic extension techniques (see [8]). Via
convolution with the Poisson Kernel, every function satisfying (1.2) can be extended to
a harmonic function defined on the upper half-plane R2

+ := {(x, y) ∈ R2 : y > 0}. It is
simple to verify that the harmonic extensions of (1.4) and (1.7) are given respectively by

Uµ,ξ(x, y) := ln

(
2αµ

(x− ξ)2 + (y + µ)2

)
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and by

Uρ(x, y) := ln
2αρ| sin θ0|
|zα − z0|2

, z = x+ iy, z0 = ρeiθ0 , θ0 :=
πα

2
+ π. (1.13)

These functions solve the local problem

−∆U = 0 in R2
+, ∂νU = |x|α−1eU on ∂R2

+, (1.14)

respectively for α = 1 and α ∈ (0, 1) ∪ (1, 2), where ν is the outward normal to the
half-plane ∂R2

+. Similarly, if φ solves the (1.8)-(1.9), then the harmonic extension Φ of φ
satisfies

−∆Φ = 0 in R2
+, ∂νΦ = |x|α−1eUΦ on ∂R2

+, (1.15)

as well as ˆ

R2
+

|∇Φ|2 +
ˆ

R2
+

|z|2(α−1)e2UΦ2 dz +

ˆ

∂R2
+

|x|α−1eUΦ2 < +∞. (1.16)

Theorem 1.2. Assume α ∈ (0, 1)∪ (0, 2) and ρ > 0. Let Uρ be defined as in (1.13). Then
Uρ is non-degenerate. Namely, each solution to the linear problem (1.15) satisfying (1.16)
is of the form

Φ(z) = c
∂Uρ

∂ρ
(z), c ∈ R, with

∂Uρ

∂ρ
(z) =

1

ρ

|z|2α − |z0|2

|zα − z0|2
.

In [13], Dávila, del Pino and Musso studied problem (1.15) with α = 1, and proved
that it is equivalent to the study of the first nontrivial Steklov eigenspace for the unit
disk D ⊆ R2 (they use the fact that the half-plane is conformally equivalent to D). In
[39, 11] Santra as well as Cozzi and Fernández directly attacked problem (1.8) and, using
the stereographic projection of the real line on S1, they wrote problem (1.8) with α = 1
as an eigenvalue problem of the fractional Laplacian on S1. Neither of the approaches can
be followed if α ̸= 1 because of the presence of the non-autonomous term |x|α−1. In the
present paper, we find a clever change of variables which allows us to get rid of this term
and to reduce the linear problem (1.15) to a classical Steklov eigenvalue problem defined
on a Lipschitz continuous bounded domain in the plane. More precisely, we proceed
as follows. First, using a conformal change of variables, we rewrite (1.15) on a cone (see
(3.2)) so that the boundary condition does not contain the non-autonomous term anymore.
Then, using a conformal Möbius map, we rewrite (1.15) as the Steklov eigenvalue problem
(see (1.12)) with µ = µα. Finally, we conclude the proof of Theorem 1.2 by showing that
µα is a simple eigenvalue.

It is interesting to compare Theorem 1.1 with similar results in higher dimension. Equa-
tion (1.1) is a one-dimensional analog of the celebrated Liouville equation

−∆u = |x|2(α−1)e2u, (1.17)

which was introduced by Liouville [32] with α = 1. Solutions to (1.17) with |x|2(α−1) ∈
L1(R2) were classified by Chen and Li [10] for α = 1, and by Prajapat and Tarantello
[36] for a general α > 0. Non-degeneracy of solutions was proved by Baraket and Pacard
in [7] for α = 1, Esposito in [21] for α ∈ (0,+∞) \ N and del Pino, Esposito and Musso
in [18], for α ∈ N \ {0}. We also quote the paper [27], where Gladiali, Grossi and Neves
studied the Morse index of the solution of (1.17) showing that it changes and increases
whenever α crosses an integer value. In recent years, Liouville equations have been studied
also in dimension n ≥ 3 in connection to problems involving higher order notions of
curvature such as prescribed Q-curvature or prescribed fractional curvature problems (see
e.g. [28, 29, 19]). In particular in [29], Hyder, Mancini and Martinazzi consider the
problem

(−∆)
n
2 u = |x|n(α−1)enu in Rn (1.18)
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with ˆ
Rn

|x|n(α−1)enu dx < +∞.

If α = 1, solutions satisfying u(x) = o(|x|2) as |x| → ∞ are completely classified (see
[41, 33] and non-degeneracy has been proved when n is even (see [6, 34]). However, there
are also solutions to (1.18) which behave at infinity as a quadratic polynomial (see [31, 9]).
The singular case is more difficult to study. Differently from the 1d-case and 2d-case, if
n ≥ 3 and α ̸= 1, there is no explicit example of solution to (1.18). However, in [29] it
is proved that for any α > 0, (1.18) has a radially symmetric solution with logarithmic
behavior at infinity and infinitely many radially symmetric solutions with polynomial be-
havior at infinity. To our knowledge no non-degeneracy result has been obtained so far.

We point out that the one-dimensional case that we treat in Theorem 1.1 is the only one
in which a restriction on α appears. Moreover, Theorem 1.1 is the first classification result
for the linearization of (1.18) with α ̸= 1 in odd dimension, which makes (1.18) non-local.
Non-degeneracy results for non-local problems are extremely delicate to obtain. For sake
of completeness we quote some results concerning the non-degeneracy of solutions in the
fractional framework. The non-degeneracy of solutions to the non-local critical equation

(−∆)su = u
n+2s
n−2s in Rn

was studied by Dávila, del Pino and Sire in [15]. In the subcritical regime, i.e 1 < p < n+2s
n−2s ,

the non-degeneracy of least energy solution

(−∆)su+ u = up in Rn,

was completely achieved by Frank, Lenzmann and Silvestre in [25], after preliminary works
in particular cases discussed by Fall and Valdinoci [22] when s is close to 1 and by Frank
and Lenzmann [24] when n = 1. The non-degeneracy of minimizers for the fractional
Caffarelli-Kohn-Nirenberg inequality, which after multiplication by |x|−α are solutions to

(−∆)su+ τ
u

|x|2s
= |x|−(β−α)pup−1 in Rn

with p = 2n
n−2s+2(β−α) , τ ≥ 0 and −2s < α < n−2s

2 and α ≤ β < α + s, was obtained by

Ao, DelaTorre and González in [5] (see also [16]), while the non-degeneracy of minimizers
for the fractional Hardy-Sobolev inequality, namely solutions to (i.e. τ = 0 and α = 0 in
the previous equation)

(−∆)su = |x|−βpup−1 in Rn

was obtained by Musina and Nazarov in [35] and to the critical fractional Hénon equation

(−∆)su = |x|αu
N+2s+2α

N−2s in Rn

by Alarcon, Barrios and Quaas in [2].

The non-degeneracy result of Theorem 1.1 plays a role in the description of parameter-
depending problems in which concentration phenomena occur and in which (1.1) appears
as a limit problem. For example, we refer to [14, 20, 3, 4] for applications of (1.1) and
(1.14) to physical models for the description of galvanic corrosion phenomena for simple
electrochemical systems (see e.g. [17, 40] and references therein). We believe that 1.1 and
1.2 could be useful in the description of non-simple blow-up phenomena for such models.

Finally, we wish to point out that the argument used to prove our main result, can
also be applied to prove that the second eigenvalue of Steklov’s problem on the ellipse is
simple, as soon as the ellipse is not a circle (see Proposition 4.3). A similar result holds
true for the second eigenvalue of the Dirichlet problem [37] and for the Neumann problem
[38]. The result for the Steklov problem is widely expected, but since we did not find a
suitable reference we decide to write the proof here.
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This paper is organized as follows. In Section 2, we introduce the notation and we
recall some useful results. In Section 3, we introduce the changes of variable which allow
to reduce Theorems 1.1 and 1.2 to the study of a Steklov eigenvalue problem, which is
studied in Section 4 concluding the proof.

2. Preliminaries and classification results

Throughout the paper we will denote

L 1
2
(R) :=

{
u ∈ L1

loc(R) :

ˆ
R

|u|
1 + x2

< +∞
}
.

If u ∈ L 1
2
(R), then for any s ∈ (0, 12 ] it is possible to define the fractional Laplacian (−∆)s

in the sense of tempered distribution by means of the Fourier Transform:

< (−∆)su, ψ >=

ˆ
R
u(ξ)(−∆)sψ dξ, where (−∆)sψ = F−1[|ξ|2sF [φ]].

In particular, for a function f ∈ L1
loc(R) we say that u ∈ L1

loc(R) is a weak solution to

(−∆)
1
2u = f if ˆ

R
u(−∆)

1
2ψ =

ˆ
R
fψ,

for any ψ ∈ C∞
c (R). In particular, if u ∈ L 1

2
(R) and (1.3) holds, then we say that u is a

weak solution to (1.1) if ˆ
R
u(−∆)

1
2ψ =

ˆ
R
|x|α−1euψ

for any ψ ∈ C∞
c (R).

We now state a result concerning regularity of weak solutions. We refer to [29] for the
proof.

Lemma 2.1. Assume α ∈ (0,+∞) and let u ∈ L 1
2
(R) be a weak solution to (1.1) such

that (1.3) holds. Then u ∈ C∞(R \ {0}) ∩ C0,β
loc (R) for some β ∈ (0, 1).

Condition (1.3) also allows to describe the asymptotic behavior of u as |x| → ∞.

Lemma 2.2. Assume α ∈ (0,+∞) and let u ∈ L 1
2
(R) be a weak solution to (1.1) such

that (1.3) holds. Then there exist β > α and C > 0 such that

|u(x) + β ln |x|| ≤ C,

for all x ∈ R with |x| ≥ 1.

We refer again to [29] for the proof. In fact, following the arguments of [29] one can
show that β = 2α. However, for our purposes here we only need the estimate of β > α.

To relate (1.1) with (1.14), we let

Py(x) =
1

π

y

x2 + y2

denote the Poisson kernel for the half-plane R2
+ := {(x, y) ∈ R2 : y > 0}. For a function

u ∈ L 1
2
(R), we can define the Poisson extension of u as

U(x, y) := (u ∗ Py)(x) =
1

π

ˆ
R

y u(ξ)

(x− ξ)2 + y2
dξ, (x, y) ∈ R2

+.

We recall the following standard properties of Poisson extensions:

Proposition 2.3. Assume u ∈ L 1
2
(R).

(1) If u ∈ C(a, b) for some a, b ∈ R, a < b, then U extends continuously to (a, b)×{0}
and U(x, 0) = u(x) for any x ∈ (a, b).
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(2) If u ∈ C1,s(a, b) for some s ∈ (0, 1) and a, b ∈ R with a < b, then the partial

derivatives of U extend continuously to (a, b) × {0} and ∂U
∂y (x, 0) = −(−∆)

1
2u(x)

for any x ∈ (a, b).

(3) If (−∆)
1
4u ∈ L2(R), then |∇U | ∈ L2(R2

+) and ∥∇U∥L2(R2
+) = ∥(−∆)

1
4u∥L2(R).

Lemma 2.4. Assume that u ∈ L 1
2
(R) is a weak solution of (1.1) such that (1.3) holds.

Then the harmonic extension U = u ∗ Py is a solution to (1.14). Moreover the following
properties are satisfied.

(1) U ∈ C∞(R2
+) ∪ C(R2

+) andˆ
∂R2

+

|x|α−1eU < +∞ (2.1)

(2) Let β be as in Lemma 2.2. Then, there exists C > 0 such that∣∣∣U(x, y) + β ln
√
x2 + y2

∣∣∣ ≤ C, in R2
+ \B2(0, 0). (2.2)

In particular ˆ
R2
+

|x|2(α−1)e2U < +∞. (2.3)

Proof. Thanks to Proposition 2.3, we just need to prove (2), which is a consequence of the
formula

1

π

ˆ
R

y ln |ξ|
(x− ξ)2 + y2

dξ = ln
√
x2 + y2. (2.4)

Indeed, (2.4) gives∣∣∣U(x, y) + β ln
√
x2 + y2

∣∣∣ ≤ 1

π

ˆ
R

y|u(ξ) + β ln |ξ||
(x− ξ)2 + y2

dξ ≤ C +
1

π

ˆ 1

−1

y|u(ξ) + β ln |ξ||
(x− ξ)2 + y2

dξ,

where the last inequality follows from Lemma 2.2. Finally, we observe that if
√
x2 + y2 ≥

2, then √
(x− ξ)2 + y2 = |(x, y)− (ξ, 0)| ≥ |(x, y)| − |ξ| ≥ |(x, y)|

2
,

for any ξ ∈ [−1, 1], so that

y

(x− ξ)2 + y2
≤ 4y

x2 + y2
≤ 4√

x2 + y2
≤ 2.

Then

1

π

ˆ 1

−1

y|u(ξ) + β ln |ξ||
(x− ξ)2 + y2

dξ ≤ 2

π
∥u∥L1(−1,1) +

2

π

ˆ 1

−1
| ln |ξ|| dξ = 2

π
∥u∥L1(−1,1) +

4

π
.

This proves (2.2). Since β > α, we get (2.3). □

Proposition 2.5. Assume α ∈ (0, 1)∪ (1, 2). Let U ∈ C(R2
+) be a solution to (1.14) such

that (2.1) and (2.3) hold. Then, there exists ρ > 0 such that U = Uρ where Uρ is defined

as in (1.13). Moreover, if α ≥ 2, there is no solution to (1.14) which is continuous in R2
+.

Proof. Taking

V (x, y) = 2U(x, y) + 2(α− 1) ln
√
x2 + y2

we see that V solves

∆V = 0 in R2
+, ∂νV = 2e

V
2 on ∂R2

+ \ {0}, (2.5)

with ˆ

R2
+

eV (z)dz < +∞ and

ˆ

∂R2
+

e
V (z)
2 dz < +∞. (2.6)
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Since U is continuous at 0, we further have

lim
(x,y)→(0,0)

V (x, y)− 2(α− 1) ln
√
x2 + y2 = U(0, 0). (2.7)

In [26] it is proved that all the solutions to (2.5)-(2.6) can be written in complex variable
as

V (z) = ln
4λ2γ2|z|2(γ−1)

|zγ − z0|4
, z0 = ρeiθ0 . (2.8)

where ρ > 0, γ > 0 and the parameters λ > 0 and θ0 must satisfy

λ = −ρ sin θ0 and λ = ρ sin(θ0 − πγ), (2.9)

or

V (z) = ln
π2

|z|2| ln z − z0|
,

where z0 ∈ C and Im(z0) =
π
2 . Since (2.7) holds, we must have that (2.8) hold and γ = α.

Furthermore, in order to have V well defined on R2
+, it is necessary that α = γ ∈ (0, 2).

Since we are also assuming α ̸= 1, (2.9) yields

θ0 =
πα

2
+ π.

Then we have proved that U is given by

U(x, y) =
1

2
ln

(
4α2ρ2 sin2 θ0
|zα − ρeiθ0 |4

)
= Uρ(x, y)

for any (x, y) ∈ R2
+. □

As a straightforward consequence of Proposition 2.5 and Lemma 2.4 we get the following
classification result for (1.1).

Proposition 2.6. Assume α ∈ (0, 1)∪(1, 2) and let u ∈ L 1
2
(R) be a weak solution to (1.1)

such that (1.3) holds. Then there exists ρ > 0 such that u = uρ where uρ is defined as in
(1.7).

We now briefly discuss the equivalence of the linarized problems (1.8) and (1.15). Let
us fix ρ > 0 and α ∈ (0, 1) ∪ (1, 2). To simplify the notation, in the following we write
u = uρ, without writing explicitly the dependence on ρ. We consider the space

H := {φ ∈ L1
loc(R) : |x|α−1euφ2 ∈ L1(R), (−∆)

1
4φ ∈ L2(R)}.

We observe that the condition |x|α−1euφ2 ∈ L1(R) implies φ ∈ L 1
2
(R). Indeed, we have

ˆ

R

|φ(x)|
1 + x2

=

ˆ

R

|x|
α−1
2 e

u
2

1

|x|
α−1
2 e

u
2

|φ(x)|
1 + x2

≤

ˆ
R

|x|α−1euφ2

 1
2
ˆ

R

1

|x|α−1eu
1

(1 + x2)2

 1
2

,

where, since |x|α−1eu ∼ 1
|x|α+1 as |x| → +∞, |x|α−1eu ∼ |x|α−1 as |x| → 0, and α ∈ (0, 2),

ˆ

R

1

|x|α−1eu
1

(1 + x2)2
≤ C

(ˆ 1

−1

1

|x|α−1
+

ˆ
|x|≥1

1

|x|3−α

)
< +∞.

We now show that φ can grow at most logarithmically as |x| → +∞.

Lemma 2.7. Assume that φ ∈ H is a weak solution to (1.8). Then, there exists C1, C2 > 0
such that |φ(x)| ≤ C1 + C2 ln |x| for any x ∈ R with |x| > 1.
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Proof. We define

v(x) =
1

π

ˆ
R
ln

(
1 + |y|
|x− y|

)
|y|α−1euφ(y)dy.

Then

|v(x)| ≤ |C|+ 1

π

ˆ
R
ln(1 + y)|y|α−1eu(y)φ(y) dy +

1

π

ˆ
R
| ln |x− y|||y|α−1eu(y)|φ(y)| dy.

By Holder’s inequality we haveˆ
R
ln(1 + y)|y|α−1eu(y)|φ(y)| dy

≤
(ˆ

R
ln2(1 + y)|y|α−1eu(y) dy

) 1
2
(ˆ

R
|y|α−1eu(y)φ2(y) dy

) 1
2

.

Moreover,ˆ
|x−y|≥1

ln |x− y||y|α−1eu(y)|φ(y)| dy

≤
ˆ
|x−y|≥1

ln |x||y|α−1eu(y)|φ(y)| dy +
ˆ
|x−y|≥1

ln

(
1 +

|y|
|x|

)
)|y|α−1eu(y)|φ(y)| dy

≤ ln |x|
ˆ
R
|y|α−1eu(y)|φ(y)| dy +

ˆ
R
ln (1 + |y|) |y|α−1eu(y)|φ(y)| dy ≤ C(1 + ln |x|),

and ˆ
|x−y|≤1

|ln |x− y|| |y|α−1eu(y)|φ(y)| dy

≤

(ˆ
|x−y|≤1

ln2 |x− y||y|α−1eu(y) dy

) 1
2
(ˆ

|x−y|≤1
|y|α−1eu(y)φ2(y) dy

) 1
2

≤ C

(ˆ
|x−y|≤1

ln2 |x− y| dy

) 1
2

≤ C.

We can so conclude that there exist C1, C2 > 0 such that

|v(x)| ≤ C1 + C2 ln |x|. (2.10)

In particular v ∈ L 1
2
(R). Moreover, v is a weak solution to (−∆)

1
2 v = |x|α−1euφ. Since

h = φ − v is 1
2−harmonic in R and h ∈ L 1

2
(R), by Liouville’s theorem for the fractional

Laplacian (see e.g [23, Theorem 4.4]), we find that h is constant. Then the conclusion
follows by (2.10). □

Lemma 2.8. Assume that φ ∈ H and let Φ be the harmonic extension of φ. Then, there
exists C1, C2 > 0 such that

|Φ(x, y)| ≤ C1 + C2 ln(x
2 + y2) ∀(x, y) ∈ R2

+ \B1((0, 0)).

Proof. Indeed, by Lemma 2.7 we know that

−C1 − C2 ln |ξ| ≤ ϕ(ξ) ≤ C1 + C2 ln |ξ|,

for any ξ ∈ R with |ξ| ≥ 1. Then, the conclusion follows by formula (2.4). □

Let us now consider the linearized problem (1.15). We consider the space

H(R2
+) :=

{
Z ∈ L1

loc(R2
+) : |∇Z| ∈ L2(R2

+) and |x|2(α−1)eUZ2 ∈ L1(R2
+)
}
.
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We say that a function Z ∈ H(R2
+) is a weak solution to (1.15) ifˆ

R2
+

∇Z · ∇χ =

ˆ
∂R2

+

|x|α−1eUZχ, ∀χ ∈ C∞
c (R2

+). (2.11)

Remark 2.9. A function Z ∈ H(R2
+) is a weak solution to (1.15) iffˆ

R2
+

∇Z · ∇χ =

ˆ
∂R2

+

|x|α−1eUZχ, ∀χ ∈ H(R2
+)∩L∞(R2

+). (2.12)

Proof. Assume that χ ∈ H(R2
+)∩L∞(R2

+). Let η be a cut-off function such that η ≡ 1 for
|x| ≤ 1, η ∈ C∞

c (B2(0, 0)), and 0 ≤ η ≤ 1. Given R > 0, consider the functions ηR(x) =
η( xR) and χR(x) = χ(x)ηR(x). Then, χR ∈ H1(B2R(0, 0) ∩ R2

+). A standard density
argument (see e.g. [1, Theorem 3.22]) shows that there exists a sequence of functions
ψn ∈ C∞

c (R2) such that ψn → χR in H1(B2R(0, 0) ∩ R2
+). For any n ∈ N, we have the

identity ˆ
R2
+

∇Z · ∇ψn =

ˆ
∂R2

+

|x|α−1eUZψn.

Using that ψn → χR in H1(B2R(0, 0) ∩ R2
+) , we easily getˆ

R2
+

∇Z · ∇χR =

ˆ
∂R2

+

|x|α−1eUZχR

By dominated convergence, we have thatˆ
∂R2

+

|x|α−1eUZχR →
ˆ
∂R2

+

|x|α−1eUZχ, as R→ +∞.

Moreover, we have thatˆ
R2
+

∇Z · ∇χR =

ˆ
R2
+

(∇Z · ∇χ)ηR + (∇Z · ∇ηR)χ,

with ˆ
R2
+

(∇Z · ∇χ)ηR →
ˆ
R2
+

∇Z · ∇χ, as R→ +∞.

xby dominated convergence, and∣∣∣∣∣
ˆ
R2
+

(∇Z · ∇ηR)χ

∣∣∣∣∣ ≤ ∥χ∥L∞(R2
+)∥∇η∥L∞(R2)

1

R

ˆ
R2
+∩(B2R(0,0)\BR(0,0))

|∇Z|

≤
√

3

2
π ∥χ∥L∞(R2

+)∥∇η∥L∞(R2)

(ˆ
R2
+∩(B2R(0,0)\BR(0,0))

|∇Z|2
) 1

2

→ 0,

as R→ +∞. □

Remark 2.10. Using the changes of variables given in Section 3, one can actually show
that for any χ ∈ H(R2

+),
´
∂R2

+
|x|α−1euχ2 < ∞. Moreover, a function Z ∈ H(R2

+) is a

weak solution to (2.11) iff (2.12) holds for any χ in H(R2
+).

Proposition 2.11. Assume that φ ∈ H and let Φ be the harmonic extension of φ. Then
Φ is a weak solution to (1.15), and (1.16) holds.

Proof. By Proposition 2.3, we know thatˆ
R2
+

∇Φ · ∇χ =

ˆ
∂R2

+

|x|α−1eUΦχ, ∀χ ∈ C∞
c (R2

+ \ {(0, 0)}).

We use a cut-off argument to show that (2.11) holds. Fix χ ∈ C∞
c (R2

+), and let η ∈
C∞
c (B2(0, 0)) be such that 0 ≤ η ≤ 1 and η ≡ 1 on B1(0, 0). For any ε > 0 we denote



10 AZAHARA DELATORRE, GABRIELE MANCINI, AND ANGELA PISTOIA

ηε(x) = (1− η(xε )). If χ ∈ C∞
c (R2

+), then χε := χηε ∈ C∞
c (R2

+ \ {0}). Then, for any ε > 0,
we have ˆ

R2
+

∇Φ · ∇χε =

ˆ
∂R2

+

|x|α−1eUΦχε .

Noting that ∇χε = ηε∇χ+ χ∇ηε and that∣∣∣∣∣
ˆ
R2
+

(∇Φ · ∇ηε)χ

∣∣∣∣∣ ≤ ∥χ∥L∞(R2
+)∥∇η∥L∞(R2)

1

ε

ˆ
R2
+∩(B2ε(0,0)\Bε(0,0))

|∇Φ|

≤ ∥χ∥L∞(R2
+)∥∇η∥L∞(R2)

√
3

2
π

(ˆ
R2
+∩(B2ε(0,0)\Bε(0,0))

|∇Φ|2
) 1

2

→ 0,

as ε → 0, we can use dominated convergence theorem, since ηε → 1 pointwise on R2
+ \

{(0, 0)}, to get ˆ
R2
+

∇Φ · ∇χ =

ˆ
∂R2

+

|x|α−1eUΦχ .

Now (2.12) follows by Remark 2.9. Finally, we observe that (1.16) is a consequence of
Lemma 2.8 and Proposition 2.3. □

Remark 2.12. Proposition 2.11 shows, in particular, that Theorem 1.1 follows by Theo-
rem 1.2.

3. Proof of Theorem 1.2

In this section, we will transform our problem into an equivalent one via conformal
transformations. First, from the upper half-space to a cone, and then to a bounded
domain which will be determined by an intersection or union of balls depending on the
values of α ∈ (0, 1) ∪ (1, 2). In the cone we will obtain a linear problem with Neumann-
type boundary conditions which, in the bounded domain, will become a Steklov eigenvalue
problem. This will allow us to prove the main result of the paper.

For sake of simplicity we rewrite (1.13) as

U(z) = ln
2α|ξ2|

|zα − ξ|2
, with ξ = ξ1 + iξ2, ξ2 < 0,

ξ1
ξ2

=
1 + cosαπ

sinαπ
.

3.1. An equivalent problem on a cone. Let us consider the cone

Cα := {(r cos θ, r sin θ) : r > 0, θ ∈ [0, πα)} . (3.1)

Let Fα : R2
+ → Cα be the complex power zα, which using polar coordinates is written as

Fα(x, y) := (rα cosαθ, rα sinαθ), x = r cos θ, y = r sin θ.

It is known that Fα is a conformal diffeomorphism between R2
+ and Cα. A straightforward

computation shows that a function Φ solves the linear problem (1.15) if and only if the
function ϕ = Φ ◦ F−1

α solves the linear problem

−∆ϕ = 0 in Cα, ∂νϕ = eWαϕ on ∂Cα, (3.2)

where

Wα(x, y) := U
(
F−1
α (x, y)

)
− lnα = ln

2|ξ2|
(x− ξ1)2 + (y − ξ2)2

. (3.3)

In fact, for sake of completeness we give a brief proof of the claim. If Φ solves (1.15) for
any χ ∈ H(R2

+) ∩ L∞(R2
+), we haveˆ

R2
+

∇Φ · ∇χ =

ˆ

∂R2
+

|x|α−1eUΦχ.
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First, we point out thatˆ

R2
+

∇Φ · ∇χdxdy

(setting x = r cos θ, y = r sin θ, Φ̂(r, θ) := Φ(r cos θ, r sin θ) and χ̂(r, θ) := χ(r cos θ, r sin θ))

=

∞̂

0

π̂

0

(
r∂rΦ̂∂rχ̂+

1

r
∂θΦ̂∂θχ̂

)
drdθ

(setting ρ = rα, γ = αθ, Φ̃(ρ, γ) := Φ̂
(
ρ

1
α , γα

)
and χ̃(ρ, γ) := χ̂

(
ρ

1
α , γα

)
)

=

∞̂

0

απˆ

0

(
ρ∂ρΦ̃∂ρχ̃+

1

ρ
∂γΦ̃∂γχ̃

)
dρdγ

(setting s = ρ cos γ, t = ρ cos γ, ϕ(s, t) := Φ̃(ρ, γ) and υ(x, y) := χ̃(ρ, γ))

=

ˆ

Cα

∇ϕ∇υdsdt

Next, since on ∂R2
+

eU(x,0) =
2α|ξ2|

(xα − ξ1)2 + |ξ2|2
, if x ≥ 0,

and

eU(x,0) =
2α|ξ2|

(|x|α cosαπ − ξ1)2 + (|x|α sinαπ − ξ2)2
, if x ≤ 0,

we also haveˆ

∂R2
+

|x|α−1eUΦχ

=

ˆ

{(x,0):x≥0}

2α|ξ2||x|α−1

(|x|α − ξ1)2 + |ξ2|2
Φχ+

ˆ

{(x,0):x≤0}

2α|ξ2||x|α−1

(|x|α cosαπ − ξ1)2 + |ξ2|2
Φχ

=

∞̂

0

2|ξ2|
(σ − ξ1)2 + |ξ2|2

ϕυdσ +

∞̂

0

2|ξ2|
(σ cosαπ − ξ1)2 + (σ sinαπ − ξ2)2

ϕυdσ

=

ˆ

∂−Cα

eWα(s,t)ϕυ +

ˆ

∂+Cα

eWα(s,t)ϕυ =

ˆ

∂Cα

eWα(s,t)ϕυ,

because
∂Cα := {(σ, 0) : σ ≥ 0}︸ ︷︷ ︸

:=∂−Cα

∪{(σ cosπα, σ sinπα) : σ ≥ 0}︸ ︷︷ ︸
:=∂+Cα

. (3.4)

Finally, we deduce that for any υ ∈ L∞(Cα) and thus, such that
´

∂Cα
eWυ2 < +∞, if v

satisfies ˆ

Cα

|∇υ|2 < +∞, (3.5)

then,

0 =

ˆ

Cα

∇ϕ∇υ −
ˆ

∂Cα

eWα(s,0)ϕυ,

that is, ϕ solves (3.2).
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3.2. An equivalent problem on a bounded domain. Let us consider the map

Gα(x, y) =

(
|ξ|2 − x2 − y2

(x− ξ1)2 + (y − ξ2)2
,

2(yξ1 − xξ2)

(x− ξ1)2 + (y − ξ2)2

)
, (x, y) ∈ R2 \ {ξ}. (3.6)

Lemma 3.1. The function Gα given by (3.6) satisfies the following properties:

(1) G is a conformal diffeomorphism between R2 \ {ξ} and R2 \ {(−1, 0)}.
(2) The Jacobian of G is given by (see (3.3))

JGα(x, y) =
4|ξ|2

((x− ξ1)2 + (y − ξ2)2)
2 =

|ξ|2

|ξ2|2
e2Wα(x,y). (3.7)

(3) The image of the cone (3.1), i.e., Gα(Cα) is
Ωα := D−

α ∩ D+
α if α ∈ (0, 1) or Ωα := D−

α ∪ D+
α if α ∈ (1, 2),

where

D±
α :=

{
(x, y) ∈ R2 : x2 + (y ± τα)

2 ≤ 1 + τ2α
}
, τα :=

1 + cosαπ

sinαπ
. (3.8)

Proof. First of all, we remind that ξ1
ξ2

= τα and |ξ|
|ξ2| =

√
1 + τ2α.

Now, (1) follows from the complex representation of Gα as

Gα(x, y) = g(z) = −z + ξ

z − ξ
.

Property (2) follows from a direct computation:

JGα(x, y) = |g′(z)|2 = 4|ξ|2

|z − ξ|4
.

To prove (3), first we note that if Πα := {(x, y) ∈ R2 : −x sinπα + y cosπα ≤ 0}, the
cone is given by

Cα = Πα ∩ R2
+, if 0 < α < 1 and Cα = Πα ∪ R2

+, if 1 < α < 2. (3.9)

The claim follows once we prove that

Gα(R2
+) = D−

α and Gα(Πα) = D+
α . (3.10)

Next, we observe that Gα maps the boundary of the half-spaces R2
+ and Πα into the

boundary of the two disks of radius |ξ|
|ξ2| centered at the points ξ1

ξ2
and − ξ1

ξ2
, respectively.

Indeed a direct computation shows that∣∣∣∣Gα(x, 0) +

(
0,
ξ1
ξ2

)∣∣∣∣2 = (x+ ξ1)
2 + ξ22

(x− ξ1)2 + ξ22
− 4ξ1x

(x− ξ1)2 + ξ22
+
ξ21
ξ22

= 1+
ξ21
ξ22

=
|ξ|2

ξ22
, for any x ∈ R,
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and ∣∣∣∣Gα(r cosπα, r sinπα)−
(
0,
ξ1
ξ2

)∣∣∣∣2 = 1 +
ξ21
ξ22

=
|ξ|2

ξ22
, for any r > 0.

Finally, we point out that Gα maps the point ξ at ∞. Moreover ξ ̸∈ R2
+ because ξ2 < 0

and ξ ̸∈ Πα because

−ξ1 sinπα+ ξ2 cosπα = ξ2

(
−1 + cosαπ

sinαπ
sinπα+ cosπα

)
= −ξ2 > 0.

Therefore, by (3.9) together with the fact that Gα maps the boundary of the half-spaces
into the boundary of the disks, we deduce (3.10).

□

Let ψ(x, y) = ϕ
(
G−1

α (x, y)
)
. Thanks to Lemma 3.1 we see that ϕ solves the linear

problem (3.2) if and only if ψ is a solution to the Steklov problem

∆ψ = 0 in Ωα, ∂νψ =
1√

1 + τ2α
ψ in ∂Ωα. (3.11)

For the sake of completeness, let us prove the claim. If ϕ solves (3.2), for any υ ∈ L∞(Cα)
satisfying (3.5), it holds

0 =

ˆ

Cα

∇ϕ∇υ −
ˆ

∂Cα

eWα(s,0)ϕυ.

We set Υ = υ ◦ G−1
α . On the one hand, via the change of variables G−1

α (x, y) = (s, t)
(taking into account that Gα is a conformal map), we haveˆ

Cα

∇ϕ(s, t) · ∇υ(s, t)dsdt =
ˆ

Ωα

det(DG−1
α )(x, y)∇ϕ

(
G−1

α (x, y)
)
· ∇υ

(
G−1

α (x, y)
)
dxdy

=

ˆ

Ωα

DG−1
α (x, y)∇ϕ

(
G−1

α (x, y)
)
dG−1

α (x, y) · ∇υ
(
G−1

α (x, y)
)
dxdy

=

ˆ

Ωα

∇ψ(x, y) · ∇Υ(x, y)dxdy.

On the other hand, we can assert thatˆ

Cα

∇ϕ(s, t) · ∇υ(s, t)dsdt =
ˆ

∂−Cα

eWα(s,t)ϕυ +

ˆ

∂+Cα

eWα(s,t)ϕυ

=
1√

1 + τ2α

ˆ

∂D−
α ∩∂Ωα

ψΥ+
1√

1 + τ2α

ˆ

∂D+
α ∩∂Ωα

ψΥ

=
1√

1 + τ2α

ˆ

∂Ωα

ψΥ,

because of (3.7), (3.8), (3.4) and

Gα (Cα) = Ωα, Gα (∂+Cα) = ∂D+
α ∩∂Ωα and Gα (∂−Cα) = ∂D−

α ∩∂Ωα.

Therefore,

0 =

ˆ

Ωα

∇ψ∇Υ− 1√
1 + τ2α

ˆ

∂Ωα

ψΥ, (3.12)

for any Υ ∈ H1(Ωα) ∩ L∞(Ωα). Since H1(Ωα) ∩ L∞(Ωα) is a dense subspace of H1(Ωα),
(3.12) holds for any Υ ∈ H1(Ωα), namely ψ solves (3.11).
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3.3. Proof of Theorem 1.2: conclusion. It is immediate to check that µα := 1√
1+τ2α

is an eigenfunction of the Steklov problem (3.11) and also that

ψ(x, y) = x,

is an associate eigenfunction.
In Section 4 and, in particular, in Proposition 4.1 (i.e. α ∈ (0, 1)) and Proposition 4.2

(i.e. α ∈ (1, 2)) we prove that µα is simple. Thus, using all the previous arguments, we
deduce that all the solutions to (1.15) are a scalar multiple of the function

Φ(x, y) = (ψ ◦Gα ◦ Fα)(x, y) =
|ξ|2 − (x2 + y2)α

|(x+ iy)α − ξ1 − iξ2|2
,

concluding the proof of Theorem 1.2.

4. On the simplicity of the eigenvalue of the Steklov problem

This last section is devoted to the study of the Steklov eigenvalue problem (3.11) and, in
particular, to proving the simplicity of a given eigenvalue, which will allow us to conclude
the proof of Theorem 1.2, as anticipated in Section 3.3. We also include a more general
result showing that the second eigenvalue of the Steklov problem is always simple, when
it is posed on an ellipse with different axes. For simplicity of notation, we omit here the
underscore index α. Let us consider the disks D± as defined in (3.8), and denote by Ω
either their intersection or their union, i.e.,

Ω := D+ ∩ D− or Ω := D+ ∪ D−,

whose boundary is
∂Ω := γ+ ∪ γ−,

where
γ± :=

{
(x, y) ∈ ∂Ω : x2 + (y ± τ)2 = 1 + τ2

}
.

Let us also consider the Steklov eigenvalue problem

∆u = 0 in Ω, ∂νu = µu on ∂Ω. (4.1)

A direct computation shows that µ = 1√
1+τ2

is an eigenvalue and an associate eigenfunction

is u(x, y) = x. We will show that µ is simple.
We have to distinguish two cases corresponding to Ω being the union or the intersection
of the two disks:

Proposition 4.1. If Ω := D+ ∩ D−, then µ = 1√
1+τ2

is the second Steklov eigenvalue of

(4.1), and it is simple.

Proof. First of all, we prove that µ is exactly the second eigenvalue using the lower bound
found by Kuttler and Sigillito in [30]. More precisely, we observe that the domain Ω is a
piecewise smooth bounded domain with two axes of symmetries whose boundary ∂Ω can
be represented as

y = ±g(x), g(x) :=
(√

1 + τ2 − x2 − τ
)
, −1 ≤ x ≤ 1,

or

x = ±f(y), f(y) =


√

1 + τ2 − (y + τ)2 if 0 ≤ y ≤
√
1 + τ2 − τ,√

1 + τ2 − (y − τ)2 if −
√

1 + τ2 + τ ≤ y ≤ 0.

Therefore the second eigenvalue Λ2 must satisfy

1

Λ2
≤ max

{
max
0≤x≤1

g(x)
√
1 + |g′(x)|2, max

0≤y≤
√
1+τ2−τ

f(y)
√
1 + |f ′(y)|2

}
=
√
1 + τ2,
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because straightforward computations show that

max
0≤x≤1

g(x)
√
1 + |g′(x)|2 =

√
1 + τ2 − τ,

and

max
0≤y≤

√
1+τ2−τ

f(y)
√

1 + |f ′(y)|2 =
√
1 + τ2.

Since µ = 1√
1+τ2

, it must be the second eigenvalue.

Finally, we prove that it is simple. Assume φ is an eigenfunction associated with µ. Since
µ is the second eigenvalue, we know that the nodal line of φ is an axis of symmetry (see
[30]). Without loss of generality, we can assume that φ is positive in the first quadrant.
Therefore two cases can be distinguished.

(i) φ is even in x and odd in y and its nodal line is the x−axis. Then φ solves the
mixed Dirichlet-Neumann-Steklov problem

∆φ = 0 in D := {(x, y) ∈ Ω : x ≥ 0, y ≥ 0} ,

∂νφ =
1√

1 + τ2
φ on ΓS := {(x, y) ∈ ∂Ω : x > 0, y > 0} ,

φ = 0 on ΓD := {0 ≤ x ≤ 1, y = 0} ,

∂νφ = 0 on ΓN :=
{
x = 0, 0 ≤ y ≤

√
1 + τ2 − τ

}
.

We test this problem by the function v(x, y) = y, and we get

0 =

ˆ

∂D

(v∂νφ− φ∂νv)dσ =
1√

1 + τ2

ˆ

ΓS

yφdσ − 1√
1 + τ2

ˆ

ΓS

(y + τ)φdσ,

which leads to contradiction since τ ̸= 0 and φ > 0 on ΓS .
(ii) φ is odd in x and even in y and its nodal line is the y−axis. In particular, it satisfies

an orthogonality condition with the eigenfunction u(x, y) = x, which reads as

0 =

ˆ

∂Ω

xφ(x, y)dσ = 4

ˆ

ΓS

xφ(x, y)dσ.

Hence we deduce that φ must change sign on ΓS and a contradiction arises.

That concludes the proof. □

Proposition 4.2. If Ω := D+ ∪D−, then µ = 1√
1+τ2

is not the second Steklov eigenvalue

of (4.1), but it is simple.

Proof. First of all, we point out that µ is not the second eigenvalue, because by the
isoperimetric inequality (see [30, 42])

Λ2 ≤
2π

L
<

1√
τ2 + 1

= µ,

where L is the length of ∂Ω. The proof carried out in the previous case cannot work in
this framework. We will use a different argument.
Let u be an associated eigenfunction to µ. First of all, we point out that since the domain
D has two axes of symmetry, every eigenfunction u can be assumed to have one of these
symmetries (see [30]):

(i) u is even-even if u(x, y) is even in both x and y,
(ii) u is odd-even if u(x, y) is odd in x and even in y,
(iii) u is even-odd if u(x, y) is even in x and odd in y,
(iv) u is odd-odd if u(x, y) is odd in both x and y.
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We are going to show that the nodal lines of u must coincide with one of the axes of
symmetries. Assume u has a nodal line ΓD which is not entirely contained in the axes of
symmetries. We choose a connected component N of the set {(x, y) ∈ D : u(x, y) ≥ 0}
whose boundary is ∂N := ΓS ∪ ΓD where ΓS is the part of the boundary of D where u
satisfies the Steklov boundary condition. We also observe that, up to a change of sign,
the function u solves the problem 

∆u = 0 in N,

∂νu = µu on ΓS ,

u = 0 in ΓD,

u > 0 in N.

(4.2)

We consider the function w(x, y) = x which solve the Steklov problem in the domain D,
i.e.,

∆w = 0 in D, ∂νw = µw on ∂D := ∂D+ ∪ ∂D−.

Next, we test problem (4.2) by the function φ, and we get

0 =

ˆ

∂N

(u∂νw − w∂νu)dσ

=

ˆ

ΓS

(u∂νw − w∂νu)dσ

︸ ︷︷ ︸
=0

+

ˆ

ΓD

(u∂νw − w∂νu)dσ,

which implies ˆ

ΓD

x∂νudσ = 0. (4.3)

Now, Hopf’s Lemma ensures that ∂νu(x, y) < 0 on ΓD, because u > 0 in N and u = 0
on ΓD. If ΓD is entirely contained in the set {(x, y) ∈ D : x ≥ 0}, by (4.3) and Hopf’s
Lemma a contradiction immediately arises. As this happens for sure when u is odd-even
or odd-odd, since u vanishes on the y−axis, we exclude those possibilities. When u is
even-odd or even-even instead, it may happen that the nodal line ΓD crosses the y−axes,
but in this case using the symmetry (namely the eveness in the x variable), we getˆ

ΓD

x∂νudσ =

ˆ

ΓD∩{x≥0}

x∂νudσ +

ˆ

ΓD∩{x≤0}

x∂νudσ = 2

ˆ

ΓD∩{x≥0}

x∂νudσ > 0,

and again a contradiction arises by Hopf’s Lemma.
Therefore, the nodal line of u must coincide with one of the axes of symmetries. We can
assume that u is positive in the first quadrant. We will show that u is a multiple of x.

Let us denote Γx := Ωα ∩ {(t, 0) : t ∈ R, t > 0} and Γy := Ωα ∩ {(0, t) : t ∈ R, t > 0}.
We have to distinguish two cases.

(i) if u = 0 on Γx then u has to be even-odd. In fact, if it were odd-odd, it should
vanish on both axes, but this is not possible because of the previous discussion.
Moreover, if it is even in the y−variable, the partial derivative ∂yu vanishes on Γx

so that ∇u = 0 on Γx and this is not possible because because of Hopf’s Lemma.
Finally, we get a contradiction arguing as in (i) of Proposition 4.1.

(ii) if u = 0 on Γy then u has to be odd-even. In fact, if it were odd-odd, it should
vanish on both axes, but this is not possible because of the previous discussion.
Moreover, if it is even in the x−variable, the partial derivative ∂xu vanishes on Γy

so that ∇u = 0 on Γy and this is not possible because of Hopf’s Lemma. Now, we
can prove that u cannot be orthogonal at the eigenfunction x arguing as in (ii) of
Proposition 4.1.
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That concludes the proof.
□

Finally, we apply the argument used in the proof of Proposition 4.1 to prove the sim-
plicity of the second eigenvalue for the Steklov problem in an ellipse.

Proposition 4.3. Let Ω :=
{
(x, y) ∈ R2 : a2x2 + b2y2 = 1

}
. The second eigenvalue of

the Steklov problem is simple if a ̸= b.

Proof. Without loss of generality, we can assume b < a. Therefore, if µ denotes the second
eigenvalue, it satisfies the following lower bound (see [30])

µ ≥ min{a, b} = b. (4.4)

Now, assume φ is an eigenfunction associated with µ. Since µ is the second eigenvalue
we know that the nodal line of φ is an axis of symmetry. Without loss of generality, we can
assume that φ is positive in the first quadrant. Therefore two cases can be distinguished.

(i) φ is even in x and odd in y and its nodal line is the x−axis. Then φ solves the
mixed Dirichlet-Neumann-Steklov problem

∆φ = 0 in D := {(x, y) ∈ Ω : x ≥ 0, y ≥ 0} ,
∂νφ = µφ on ΓS := {(x, y) ∈ ∂Ω : x > 0, y > 0} ,
φ = 0 on ΓD := {0 ≤ x ≤ 1/a, y = 0} ,
∂νφ = 0 on ΓN := {x = 0, 0 ≤ y ≤ 1/b} .

We test this problem by the function v(x, y) = y, and taking into account that

∂νv =
b2y√

a2 − b2(a2 − b2)y2
on ∂Ω,

we get

0 =

ˆ

∂D

(v∂νφ− φ∂νv)dσ =

ˆ

ΓS

yφ

(
µ− b2√

a2 − b2(a2 − b2)y2

)
dσ

≥

(
µ− max

0≤y≤1/b

b2√
a2 − b2(a2 − b2)y2

)ˆ
ΓS

yφdσ ≥ 0

because of (4.4). Finally a contradiction arises since φ ≥ 0 on ΓS .
(ii) φ is odd in x and even in y and its nodal line is the y−axis. Assume by contradiction

that there exist two eigenfunctions φ1 and φ2 with such properties, then they have
to satisfy an orthogonality condition which reads as

0 =

ˆ

∂Ω

φ1φ2dσ = 4

ˆ

ΓS

φ1φ2dσ,

where ΓS := {(x, y) ∈ ∂Ω : x > 0, y > 0}. Hence we deduce that φ1φ2 must
change sign on ΓS and a contradiction arises.

That concludes the proof. □
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