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The study conducted in this research paper utilizes the f (Q, T) gravity, where Q represents non-
metricity and T represents the trace of the energy-momentum tensor, to investigate the accelerated
expansion of the universe. To complete the study, an effective EoS with one parameter α, is parame-
terized as ωe f f = − 3

α(1+z)3+3 . The linear version of f (Q, T) = −Q + σT is also considered, where σ

is a constant. By constraining the model with six BAO points, 57 Hubble points, and 1048 Pantheon
sample datasets, the parameters α and σ are determined to best match the data. The cosmological
parameters and energy conditions for the model are derived and examined. The results show that
the model is in good agreement with observations, and can serve as a valuable starting point for
analyzing FLRW models in the f (Q, T) theory of gravity.

I. INTRODUCTION

It is thought that the expansion of our universe is ac-
celerating. Dark Energy (DE), a mysterious type of en-
ergy with extremely high negative pressure, is thought
to be the cause of this. Various cosmological observa-
tions have supported the existence of this sort of energy
[1–8]. Its precise nature, however, is still an unresolved
issue that requires more research. The cosmological con-
stant is the earliest and most straightforward option for
DE, but it has two significant theoretical issues, includ-
ing coincidence and fine-tuning concerns [9]. The coin-
cidence problem arises from the fact that the energy den-
sity of DE and matter in the universe are of the same or-
der of magnitude at the present epoch, despite evolving
differently over cosmic history. The fine-tuning prob-
lem, on the other hand, relates to the extremely small but
non-zero value of the cosmological constant required to
match observations. The energy density associated with
the cosmological constant is many orders of magnitude
smaller than what would be expected based on quan-
tum field theory calculations [10]. To solve the DE prob-
lem, two methods have been proposed: One involves
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studying the dynamics of various DE models, and the
other entails modifying the Hilbert–Einstein action of
General Relativity (GR), which results in altered theo-
ries of gravity. The Equation of State (EoS) parameter
ωDE = pDE

ρDE
, where pDE is really the pressure and ρDE

is the energy density of DE, allows the DE models to be
separated from the cosmological constant (also known
as ΛCDM model). The ΛCDM model is supported by
the EoS parameter value of ω0 = −1.084 ± 0.063 and
ω0 = −1.073±0.090

0.089 from observational sources, Super-
nova data and WMAP, respectively [11, 12]. The most
well-known DE models are the interactive DE models,
such as the Chaplygin gas family, Braneworld, holo-
graphic DE (HDE), agegraphic DE models, etc [13–16].
Scalar field models, such as quintessence (−1 < ωDE <
− 1

3 ), phantom (ωDE < −1), k-essence, tachyon, and
quintom, are also well-known [17–19]. The quintessence
and phantom DE theories are also supported by the ob-
served value of the EoS parameter.

The f (R) and f (R, T) theories of gravity, where R
and T denote the curvature scalar and the trace of the
energy-momentum tensor, respectively, are crucial in
explaining the DE models among the different alterna-
tive theories. The Refs. [20–22] provide a thorough
overview of both modified theories of gravity and DE
models. In addition to f (R) and f (R, T) theories, there
has been significant research on other geometrically ex-
tended theories of gravity that aim to explain the accel-
erated cosmic expansion. For example, f (R, Lm) grav-
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ity, where Lm is the matter Lagrangian density, has
been proposed as an alternative to GR [23–26]. Simi-
larly, f (G) gravity, where G is the Gauss-Bonnet invari-
ant [27], and f (R, G) gravity, which combines modifi-
cations to the gravitational action involving both R and
G [28, 29], have also been proposed as alternative the-
ories of gravity that could explain the accelerated cos-
mic expansion. All of the aforementioned extensions of
GR share the fundamental Riemannian geometry that
forms the basis of such classical concepts, especially GR
[30]. Due to the inconsistency of these concepts at cer-
tain scales, it follows logically that if the fundamental
geometry could be replaced with a much more univer-
sal geometric framework, we might be able to elimi-
nate some of the contradictions (such as the dark mat-
ter (DM) and DE that have dogged these classical con-
cepts over the years. Weyl made such an innovative
effort, where the geometric unification of gravity and
magnetism was the primary goal [31]. We are aware that
the Levi-Civita connection, which is the fundamental
method for comparing the lengths of vectors in Rieman-
nian geometry, is compatible with the metric. The mech-
anism utilized in Weyl’s theory has two connections,
one of which contains the vector’s length information
and the other of which determines the vector’s direction
throughout parallel transport. The electromagnetic po-
tential is physically linked to the length connection. The
non-zero covariant divergence of the metric tensor i.e.
∇γgµν ̸= 0, which is a trait that leads to a additional ge-
ometric quantity called the non-metricity Q, is the most
remarkable aspect of the theory. There are two different
representations of GR that we can find in the literature:
the first one has R ̸= 0, T = 0 (here T is the torsion),
and Q = 0 (curvature representation), while the second
one has R = 0, T ̸= 0, and Q = 0 (teleparallel repre-
sentation) [32–34]. Therefore, the non-metricity Q dis-
appears in each of these representations. Geometrically,
Q depicts the variation in a vector’s length in parallel
transport. Now, a non-vanishing non-metricity Q was
thought of as the fundamental geometrical variable ac-
countable for all varieties of gravitational interactions in
a third equivalent representation of GR. The symmet-
ric teleparallel gravity (STG) is the name given to this
theory [35]. In [36, 37], the cosmology of f (Q) gravity
and its observational constraints were examined. There
have been a number of publications in the STG frame-
work during the past few decades [38–46].

According to the authors of Ref. [47], the non-minimal
coupling between the matter Lagrangian Lm and the
non-metricity scalar Q allows for an extension of the
f (Q) theory of gravity. As would be predicted, the non-
minimal coupling between the geometry and matter sec-

tors causes the energy-momentum tensor to not be con-
served and causes an additional force to appear in the
geodesic equation of motion. Another generalization of
the f (Q) theory, known as the f (Q, T) theory, was pro-
posed by Xu et al. [48], where the gravity Lagrangian
is essentially an arbitrary function of the non-metricity
scalar Q and the trace of the energy-momentum tensor
T. The cosmic evolution was investigated while the field
equations were being developed. It was discovered that
the theory indicated an accelerated expansion of the uni-
verse culminating in a de-Sitter type evolution in all sit-
uations taken into consideration. In f (Q, T) gravity, the
late-time cosmology in the hybrid expansion law [49]
and the bouncing scenarios [50] are examined. Also,
baryogenesis in f (Q, T) gravity was studied by Bhat-
tacharjee et al. [51].

The work is structured as follows: in Sec. II, the ac-
tion of f (Q, T) gravity and fundamental field equations
are provided. In Sec. III, we discussed the parametriza-
tion of the effective EoS parameter and the energy con-
ditions. We have discussed and analyzed our model
in f (Q, T) gravity using some observational datasets in
Sec. III. In Sec. IV, the findings and conclusions are dis-
cussed.

II. f (Q, T) GRAVITY THEORY

The action used to determine f (Q, T) gravity is de-
fined as [48],

S =
∫ √

−gd4x
(

1
16π

f (Q, T) + Lm

)
. (1)

Here, f (Q, T) is an arbitrary function that correlates
the trace of the energy-momentum tensor T to its non-
metricity Q. Additionally, Lm stands for the matter La-
grangian, and g = det(gµν). The non-metricity Q is also
described as [35],

Q ≡ −gµν(Lβ
αµLα

νβ − Lβ
αβLα

µν), (2)

where Lβ
αγ is the abbreviation for the disformation ten-

sor,

Lβ
αγ = −1

2
gβη(∇γgαη +∇αgηγ −∇η gαγ). (3)

=
1
2

gβη
(

Qγαη + Qαηγ − Qηαγ

)
, (4)

= Lβ
γα. (5)

The tensor of non-metricity is denoted by,

Qγµν = −∇γgµν = −∂γgµν + gνσΓ̃σ
µγ + gσµΓ̃σ

νγ, (6)
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where Γ̃σ
µγ is the Weyl–Cartan connection [48], and the

trace of the non-metricity tensor being provided as,

Qβ = gµνQβµν, Q̃β = gµνQµβν. (7)

A superpotential or the non-metricity conjugate can
also be defined as,

Pβ
µν ≡ 1

4

[
− Qβ

µν + 2Q β

(µ ν)
+ Qβgµν − Q̃βgµν

−δ
β

(µ
Qν)

]
= −1

2
Lβ

µν +
1
4

(
Qβ − Q̃β

)
gµν −

1
4

δ
β

(µ
Qν).(8)

expressing the scalar of non-metricity as [35],

Q = −QβµνPβµν = −1
4

(
− QβνρQβνρ + 2QβνρQρβν

−2QρQ̃ρ + QρQρ

)
. (9)

As a result, by equating the variation of action in Eq.
(1) with regard to the metric tensor to zero i.e. δS = 0,
we obtain the following field equations:

− 2√−g
∇β( fQ

√
−gPβ

µν −
1
2

f gµν + fT(Tµν + Θµν)

− fQ(PµβαQ βα
ν − 2Qβα

µ Pβαν) = 8πTµν. (10)

Here, fQ =
d f
dQ

, fT =
d f
dT

and Tµν is the energy-

momentum tensor for the fluid of the ideal type, as de-
scribed by

Tµν = − 2√−g
δ(
√−gLm)

δgµν (11)

and

Θµν = gαβ
δTαβ

δgµν . (12)

Moreover, the variation of energy-momentum tensor
with respect to the metric tensor is,

δ g µν Tµν

δ g α β
= Tαβ + Θ α β . (13)

Now, suppose the universe can be represented by the
homogeneous, isotropic, and spatially flat FLRW metric,

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
, (14)

where a(t) is the scale factor of the universe used to esti-
mate the rate of cosmic expansion at a time t. Further, it
is presumed that the known universe matter is made up

of a perfect fluid, for which the energy-momentum ten-
sor, Tµ

ν = diag(−ρ, p, p, p). Moreover, the non-metricity
scalar Q for this type of metric is derived and given as
Q = 6H2, where H is the Hubble parameter.

The generalized Friedmann equations are given be-
low by using the metric (14) and the field equation (10),

8πρ =
f
2
− 6FH2 − 2G̃

1 + G̃
(ḞH + FḢ), (15)

8πp = − f
2
+ 6FH2 + 2(ḞH + FḢ), (16)

where, the dot (·) denotes a derivative with respect to
time, while the symbols F = fQ, and 8πG̃ = fT , respec-
tively, signify differentiation with respect to Q, and T.

Using the two Eqs. (15) and (16) mentioned above , we
can construct the equations similar to the form of stan-
dard GR,

3H2 = 8πρe f f =
f

4F
− 4π

F

[
(1 + G̃)ρ + G̃p

]
, (17)

and

2Ḣ + 3H2 = −8πpe f f =
f

4F
− 2ḞH

F
+

4π

F

[
(1 + G̃)ρ + (2 + G̃)p

]
, (18)

where the terms ρe f f , and pe f f refer to the effective pres-
sure and density, respectively.

III. PARAMETRIZATION OF THE EFFECTIVE EOS
PARAMETER

The system of field equations, discussed as Eqs. (15)
and (16), contains only two independent equations with
four unknowns: f (Q, T), ρ, p, and H. Therefore, two ad-
ditional constraint equations are required to fully solve
the system and study the temporal evolution of the en-
ergy density and pressure. The use of these equations
is supported by several justifications in the literature,
such as the model-independent way approach to study-
ing DE models [52, 53]. This approach typically in-
volves a parametrization of kinematic variables, such
as the Hubble parameter, deceleration parameter, EoS
parameter, and jerk parameter, and provides the neces-
sary supplementary equation. The primary advantage
of this method is that it allows for the examination of
cosmological models using observational data. The re-
lationship between the scale factor a(t) and the redshift
z is known to be represented by a0

a = 1 + z, where a0
is the present value of scale factor (a0 = a(0) = 1).
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From the relationship mentioned above, we may con-
clude d

dt = dz
dt

d
dz = −(1 + z)H(z) d

dz . Thus, the Hubble
parameter can be expressed mathematically as,

Ḣ = −(1 + z)H(z)
dH
dz

. (19)

In the context of this investigation, we will employ the
following functional expression: f (Q, T) = χQ + σT,
where χ and σ are model parameters. This model was
first proposed by Xu et al. [48] to describe an exponen-
tially expanding universe, where the energy density ρ

scales as exp(−H0t). It has since been constrained by
observational data related to the Hubble parameter, as
detailed in [54]. Loo et al. [55] utilized this model to
study Bianchi type-I cosmology, incorporating observa-
tional datasets such as Type Ia supernovae and the Hub-
ble parameter. In addition, [56] explored wormhole so-
lutions within this model, considering various EoS rela-
tions. Hence, we have F = fQ = χ and 8πG̃ = fT = σ.
In this scenario, setting χ = −1 and σ = 0 leads to the
well-motivated case of General Relativity (GR). In our
study, we choose χ = −1 to facilitate the derivation of
solutions corresponding to GR. In addition, it’s worth
noting that these solutions remain independent of the
parameter χ. Next, the Friedmann equations (15) and
(16) for this particular f (Q, T) model give the following
expressions for the energy density and pressure in terms
of redshift,

ρ =
3H2 + Ḣ
8π + 2σ

− Ḣ
8π + σ

, (20)

and

p = −3H2 + Ḣ
8π + 2σ

− Ḣ
8π + σ

. (21)

The EoS parameter ω = p
ρ was determined as the ef-

fective or total EoS parameter,

ω =
3H2(8π + σ) + Ḣ(16π + 3σ)

σḢ − 3H2(8π + σ)
. (22)

Now, a single assumption is necessary to solve the
system of equations, specifically Eqs. (15) and (16).

Recent studies have investigated various parametriza-
tions of the EoS. The Chevallier-Polarski-Linder (CPL)
parametrization, which is based on a simple Taylor
expansion of the EoS with respect to the scale fac-
tor, is the most widely used parametrization. It is
represented by ω = ω0 + ω1

z
1+z [57, 58]. Other

popular parametrizations include the Jassal-Bagla-
Padmanabhan (JBP) parametrization, which permits the
transition from a DE-dominated universe to a matter-
dominated universe, and is expressed as ω = ω0 +
ω1

z
(1+z)2 [59], and the Ma-Zhang (MZ) parametrization,

which is based on a logarithmic and oscillating form of
the EoS. Specifically, the MZ parametrization has two
forms: ω = ω0 + ω1(

ln(2+z)
1+z − ln 2) and ω = ω0 +

ω1(
sin(1+z)

1+z − sin(2)) [60]. The paper under considera-
tion examines the following parametric form of the ef-
fective (or total) EoS as a function of redshift z [61],

ωe f f = − 3
α(1 + z)3 + 3

, (23)

where α is a constant parameter. This specific form of
ωe f f is motivated by many studies in the literature that
utilize single-parameter EoS, which are commonly used
in cosmology and astrophysics for their simplicity and
effectiveness in capturing key aspects of the system [61–
63]. These models have proven successful in describing
a variety of phenomena, highlighting their importance
in theoretical and observational studies of the universe.
Also, we chose this form because it shows interesting
behavior during the early stages of the universe’s evo-
lution. At large values of z, ωe f f is close to zero, resem-
bling the EoS of non-pressurized fluid like DM. As the
universe evolves, ωe f f becomes increasingly negative,
indicating negative pressure. Setting α to zero results in
ωe f f being -1, equivalent to a cosmological constant. For
α less than -1, the model shows phantom behavior, with
ωe f f dropping below -1. Unlike traditional DE models
that are limited to the early stages and later dominate
over DM, this model behaves like pressureless DM in its
early stages, when ωe f f approaches zero [61].

The differential equation for H (z) is given by Eqs.
(19) and (22) with the assumed ansatz of ωe f f as shown
in Eq. (23),

−3(8π + σ)H2 + (16π + 3σ)(1 + z)H(z) dH
dz

σ(1 + z)H(z) dH
dz + 3(8π + σ)H2

= − 3
α(1 + z)3 + 3

(24)

Thus, the solution derived for the Hubble parameter H (z) as a function of redshift z is,

H (z) = H0

[
12σ + 3ασ(z + 1)3 + 16πα(z + 1)3 + 48π

3(α + 4)σ + 16π(α + 3)

] σ+8π
3σ+16π

, (25)
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where H0 represents the present value (i.e. at z = 0)
of the Hubble parameter. Specifically, in the case where
σ = 0, the solution simplifies to f (Q, T) = −Q. This di-
rectly corresponds to the Λ CDM model. Consequently,
the Hubble parameter equation H (z) can be expressed
as

H (z) = H0

[
Ωm0 (1 + z)3 + ΩΛ

] 1
2 (26)

where Ωm0 = α
3+α and ΩΛ = (1 − Ωm0) = 3

3+α denote
the present density parameters for matter and the cos-
mological constant, respectively. Therefore, the model
parameter σ serves as a reliable indicator of the current
model’s deviation from the ΛCDM model, arising from
the inclusion of the trace of the energy-momentum ten-
sor terms.

As a dimensionless representation of the second order
time derivative of the scale factor of the universe, the de-
celeration parameter is defined as, q = −

..
a

aH2 . Moreover,
it can be expressed using the Hubble parameter and its
derivative in terms of the cosmological redshift as [48],

q (z) = −1 + (1 + z)
1

H (z)
dH (z)

dz
. (27)

The deceleration parameter q (z) establishes the rate
of expansion of the universe. The value of q (z) affects
the expansion of the universe. In other words, the uni-
verse exhibits acceleration if q (z) < 0 or deceleration

if q (z) > 0 whereas q (z) = 0 denotes expansion at a
constant rate. For the present parametrization of the ef-
fective EoS, the expression of the deceleration parameter
obtained by including Eq. (25) into Eq. (27) as,

q (z) = −1 +
3α(σ + 8π)(z + 1)3

3σ
(
α(z + 1)3 + 4

)
+ 16π

(
α(z + 1)3 + 3

) .

(28)

In addition, the third-order time derivative of the
scale factor of the universe is represented without di-
mensions by the jerk parameter j, which is defined as,
j =

...
a

aH3 . The deceleration parameter and its deriva-
tive with respect to the cosmological redshift can also
be used to express the jerk parameter as,

j (z) = (1 + z)
dq (z)

dz
+ q (z)

(
1 + 2q (z)

)
. (29)

According to popular belief, a cosmic jerk caused the
transition from the decelerating state to the accelerating
state of the universe. For various models with a positive
value for the jerk parameter and a negative value for the
deceleration parameter, the universe transitions in this
way [64, 65]. For instance, the ΛCDM models have a
fixed jerk of j (z) = 1. Moreover, the expression for the
current model is

j (z) =

8

(
9σ2

(
α(z + 1)3 + 2

)
+ 3πσ

(
α(z + 1)3

(
α(z + 1)3 + 28

)
+ 48

)
+ 32π2

(
α(z + 1)3 + 3

)2
)

(
3σ
(
α(z + 1)3 + 4

)
+ 16π

(
α(z + 1)3 + 3

))2 . (30)

We are aware that certain physical parameters, in-
cluding the EoS parameter, the jerk parameter and the
deceleration parameter, are crucial in the study of the
universe. An important new study in contemporary cos-
mology is on the energy conditions derived from the

Raychaudhuri equation [66]. Further, we have inves-
tigated the evolution of the most fundamental energy
conditions used in GR [67]. These conditions, place fur-
ther constraints on the validity of the proposed cosmo-
logical model, which are specified as follows:

WEC : ρ =

6H2
0

(
α(z + 1)3 + 3

)(
3σ(α(z+1)3+4)+16π(α(z+1)3+3)

3(α+4)σ+16π(α+3)

)− σ
3σ+16π

3(α + 4)σ + 16π(α + 3)
≥ 0 (31)

NEC : ρ + p =

6αH2
0(z + 1)3

(
3σ(α(z+1)3+4)+16π(α(z+1)3+3)

3(α+4)σ+16π(α+3)

)− σ
3σ+16π

3(α + 4)σ + 16π(α + 3)
≥ 0 (32)
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DEC : ρ − p =

6H2
0

(
α(z + 1)3 + 6

)(
3σ(α(z+1)3+4)+16π(α(z+1)3+3)

3(α+4)σ+16π(α+3)

)− σ
3σ+16π

3(α + 4)σ + 16π(α + 3)
≥ 0 (33)

SEC : ρ + 3p =

6H2
0

(
α(z + 1)3 − 6

)(
3σ(α(z+1)3+4)+16π(α(z+1)3+3)

3(α+4)σ+16π(α+3)

)− σ
3σ+16π

3(α + 4)σ + 16π(α + 3)
≥ 0 (34)

where, WEC, NEC, DEC, and SEC represent weak en-
ergy conditions, null energy conditions, dominant en-
ergy conditions, and strong energy conditions, respec-
tively. The null energy condition violation leads to the
remaining energy condition violation, which symbol-
izes the universe expanding as its energy density is be-
ing depleted. Also, the strong energy condition viola-
tion symbolizes the acceleration of the universe [68].

To study the evolution of the cosmological parame-
ters of the model, we will need to constrain the model’s
parameters i.e. α and σ using some recent observational
data.

IV. OBSERVATIONAL CONSTRAINTS FROM BAO,
HUBBLE, AND SNE DATASETS

The estimate of the parameter values from the obser-
vational data is a critical element of the parametrization
method. The model has two parameters: the parame-
ter given by the ωe f f equation i.e. α and the coupling
constant of model σ. In this part, we examine the obser-
vational features of our present parametrization of the
effective EoS. To determine the model parameters α and
σ ranges that best suit the data, we analyze six points
of the baryonic acoustic oscillations datasets (BAO), 57
points of the Hubble datasets, and 1048 points from the
Pantheon supernovae Ia sample datasets (SNe). We use
the MCMC (Markov Chain Monte Carlo) approach in
the emcee python library [69] together with the stan-
dard Bayesian method and likelihood function to con-
strain the model parameters.

A. BAO datasets

The BAO distance datasets consists of BAO measure-
ments at six different redshifts for the 6dFGS, SDSS, and

WiggleZ surveys. The comoving sound horizon rs at the
photon decoupling epoch z∗, which is defined by the fol-
lowing relation, governs the characteristic scale of BAO:

rs(z∗) =
c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3Ωb0/4Ωγ0)a
. (35)

where Ωγ0 represents the photon density parameter at
the moment and Ωb0 represents the baryon density pa-
rameter at the moment.

In this work, to measure BAO, the following relation-
ships are used,

△θ =
rs

dA(z)
, dA(z) =

∫ z

0

dz′

H(z′)
, △z = H(z)rs. (36)

Here, △z is the observed redshift separation of the
BAO measurements in the two-point correlation func-
tion of the galaxy distribution on the sky along the line
of sight, △θ denotes the observed angular separation,
and dA is the angular diameter distance. Six-point BAO
datasets for dA(z∗)/DV(zBAO) are obtained from the
Refs. [70–75], where dA(z) denotes the co-moving an-
gular diameter distance together with the dilation scale

DV(z) =
[
dA(z)2z/H(z)

]1/3
. Also, the Planck measure-

ments show that the redshift value for the photon de-
coupling epoch is z∗ ≈ 1091. The chi-square function
for the BAO sets of data is defined as [75],

χ2
BAO = XTC−1X , (37)

where
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X =



dA(z⋆)
DV(0.106) − 30.95

dA(z⋆)
DV(0.2) − 17.55
dA(z⋆)

DV(0.35) − 10.11
dA(z⋆)

DV(0.44) − 8.44
dA(z⋆)

DV(0.6) − 6.69
dA(z⋆)

DV(0.73) − 5.45


,

and,

C−1 =



0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738
−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751
−0.164945 −2.454987 9.55916 −0.128187 −0.410404 −0.447574
−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437
−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441
−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022


.

is the inverse of the covariance matrix [75].

1.0 1.4 1.8

0.00

0.05

0.10

= 1.32+0.32
0.29

0.00 0.05 0.10

= 0.049+0.048
0.046

FIG. 1. The 1− σ and 2− σ likelihood contours are depicted in
this figure, which represents the model parameter space con-
strained by the BAO datasets

By minimizing the chi-square function for the BAO,
we were able to determine the parameter α and σ ranges
for the effective EoS model that best suited the data. Fig.
1 presents the 1 − σ and 2 − σ likelihood contours for
the model parameters α and σ using the BAO datasets.
The best-fit values that correspond to observations are

1.1 1.2 1.3

0.00

0.05

0.10

= 1.187+0.080
0.075

0.00 0.05 0.10

= 0.048+0.048
0.046

FIG. 2. The 1− σ and 2− σ likelihood contours are depicted in
this figure, which represents the model parameter space con-
strained by the BAO+Hubble+SNe datasets.

α = 1.32+0.32
−0.29, and σ = 0.049+0.049

−0.046.
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B. Hubble datasets

Here, the Hubble parameter H(z) has been measured
by several teams. By measuring the differential of cos-
mological redshift z with regard to cosmic time t, it
is possible to estimate the value of H(z) as H(z) =
−dz/[dt(1 + z)]. The model-independent value of the
Hubble parameter may be determined by measuring the
quantity dt since dz is obtained from a spectroscopic sur-
vey. We used an updated dataset of 57 Hubble measure-
ments in the 0.07 ≤ z ≤ 2.41 range of redshift [76]. The
differential age approach and line of sight BAO are two
generally accepted methods for determining the values
of H(z) at a particular redshift. Further, we have con-
sidered H0 = 69 km/s/Mpc in our research [12]. To cal-
culate the mean values of the model parameters α and
σ, the chi-square function is defined as,

χ2
Hubble(α, σ) =

57

∑
i=1

[Hth(α, σ, zi)− Hobs(zi)]
2

σ2
H(zi)

, (38)

where, Hobs is the observed value of the Hubble param-
eter, Hth is the predicted value of the Hubble parameter,
and σH(zi)

is the standard error in the observed value of
H.

C. SNe datasets

The most popular data sample for studying the late-
time evolution of the universe is data from SNe observa-
tions. 1048 type Ia supernovae with redshifts z between
0.01 and 2.3 make up the Pantheon samples, which were
assembled by Scolnic et al [77]. It includes data from the
PanSTARSS1 Medium Deep Survey, SDSS, SNLS, and
several low-z and HST samples. The difference between
the apparent magnitude (mB) and absolute magnitude
(MB) of the B band of the measured spectrum is the dis-
tance modulus of type Ia SNe. It’s described as,

µ(z) = 5log10dL(z) + µ0, (39)

where the luminosity distance, or dL(z), is defined in a
spatially flat FLRW universe as,

dL(z) = (1 + z)
∫ z

0

cdz′

H(z′)
, (40)

and

µ0 = 5log(1/H0Mpc) + 25, (41)

where c represents the speed of light.
The theoretical distance modulus is correlated with

the χ2
SNe function for SNe as,

χ2
SNe(α, σ) =

1048

∑
i=1

[
µobs(zi)− µth(α, σ, zi)

]2
σ2(zi)

, (42)

where µobs is the observed value, µth is the theoretical
value of the distance modulus, and σ2(zi) is really the
standard error of the observed value.

D. BAO+Hubble+SNe datasets

In addition, we use the BAO, Hubble and SNe
datasets to obtain joint constraints for the parameters
α and σ using the total likelihood function. From this
point forward, the appropriate probability and Chi-
square functions are provided by,

Ltot = LBAO ×LHubble ×LSNe, (43)

and

χ2
tot = χ2

BAO + χ2
Hubble + χ2

SNe. (44)

Fig. 2 depicts the 1 − σ and 2 − σ likelihood con-
tours for the model parameters α and σ using the
BAO+Hubble+SNe datasets. The best-fit values that
correspond to observations are α = 1.187+0.080

−0.075, and
σ = 0.048+0.048

−0.046.
Fig. 3 compared our model with the well-known

ΛCDM cosmology model while taking into account the
value matter density parameter Ωm0 = 0.315 [12]. The
Hubble dataset findings, which total 57 data points and
their associated error, are also shown in the figure, al-
lowing for an easy comparison of the two models.

A comparison between our f (Q, T) model and the
well-known ΛCDM model in cosmology is shown in
Fig. 4. The Pantheon experimental findings, 1048 data
points, and their error are also shown in the graphic, al-
lowing for a direct comparison between the two models
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0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

H(
z)

From effective EoS parameter
CDM model

From Hubble datasets

FIG. 3. The graph illustrates a satisfactory correspondence between our f (Q, T) theory and the 57 data points from the Hubble
datasets, as depicted by the red curve (in units of km/s/Mpc), in comparison to the black dashed line representing ΛCDM, in a
plot of H(z) against the redshift z.

0.0 0.5 1.0 1.5 2.0 2.5
z

32

34

36

38

40

42

44

46

(z)

From effective EoS parameter
CDM model

From Pantheon datasets

FIG. 4. The graph illustrates a satisfactory correspondence between our f (Q, T) theory and the 1048 points from the Pantheon
datasets, as depicted by the red curve, in comparison to the black dashed line representing ΛCDM, in a plot of µ(z) against the
redshift z.

V. DISCUSSION AND CONCLUSION

The parametrization approach has been extensively
examined in the literature as a method to address var-
ious cosmological challenges. These challenges include
the initial singularity problem, the issue of all-time de-
celerating expansion, the horizon problem, Hubble ten-
sion, and more [52, 53]. In our investigation, we intro-
duce a parametric representation for the effective EoS
parameter ωe f f , as a fundamental aspect of constructing
the model within the framework of f (Q, T) gravity the-
ory. This theoretical framework is based on the interplay
between the energy-momentum trace T and the non-

metricity scalar Q. The use of a parametric form for ωe f f
allows for a more flexible and nuanced exploration of
the dynamic relationship between these key variables,
providing a comprehensive understanding of their in-
terdependence within the context of f (Q, T) gravity
theory.

We specifically examine the functional form
f (Q, T) = −Q + σT, where σ is a free parameter.
To solve the field equations for H (z), we employ a
parametric form of the ωe f f parameter as a function of
redshift z. Furthermore, by utilizing BAO datasets and
combined BAO+Hubble+SNe datasets, we determine
the best-fit values of the model parameters. The results
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FIG. 5. The graph above shows the relationship between the
deceleration parameter (q) and redshift (z).
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FIG. 6. The graph above shows the relationship between the
energy density (ρ) and redshift (z).
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FIG. 7. The graph above shows the relationship between the
pressure (p) and redshift (z).
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FIG. 8. The graph above shows the relationship between the
effective EoS parameter (ω) and redshift (z).
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FIG. 9. The graph above shows the relationship between the
DEC condition and redshift (z).
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FIG. 10. The graph above shows the relationship between the
NEC condition and redshift (z).
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FIG. 11. The graph above shows the relationship between the
SEC condition and redshift (z).
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FIG. 12. The graph above shows the relationship between the
jerk parameter (j) and redshift (z).

of the best fit are α = 1.32+0.32
−0.29, and σ = 0.049+0.049

−0.046
for the BAO datasets and α = 1.187+0.080

−0.075, and
σ = 0.048+0.048

−0.046 for the BAO+Hubble+SNe datasets.
In addition, we investigate the behavior of the decel-
eration parameter, energy density, pressure, effective
EoS parameter, and jerk parameter for the constrained
values of the model parameters.

In any cosmological model, the deceleration param-
eter q is a crucial parameter used to characterize the
periods of decelerated expansion (q > 0) and acceler-
ated expansion (q < 0) of the universe. As shown in
Eq. (28), it is evident that q approaches -1 as the red-
shift z approaches -1. The relationship between the de-
celeration parameter q and the redshift z is illustrated
in Fig. 5. To further investigate the nature of the cos-
mological parameters, we have incorporated the val-
ues of the pair (α, σ) obtained from observational data
into all our analyses and graphs. It is observed that q

exhibits a transition from early positive values to cur-
rent negative ones. In this way, the constructed model
of the universe develops from an early decelerated pe-
riod to the present accelerated period. With the ob-
servational data, this characteristic is in strong accord.
According to the values of the model parameters con-
strained by BAO, and the combined BAO+Hubble+SNe
datasets, the transition redshift are ztr = 0.6589 and
ztr = 0.7259, respectively [78, 79]. Furthermore, the cur-
rent value of the deceleration parameter is q0 = −0.534
for the BAO datasets and q0 = −0.581 for the combined
BAO+Hubble+SNe datasets [80, 81].

The evolution of energy density and pressure, respec-
tively, versus redshift z is depicted in Figs. 6, and 7. It
has been shown that the energy density increases posi-
tively with redshift z. In addition, from the early era to
the present, pressure p has negative values. The current
acceleration of the universe may be caused by the neg-
ative cosmic pressure. We also examined the behavior
of the effective EoS parameter, which is depicted in Fig.
8. The relationship between the previous energy den-
sity and pressure is established by the EoS parameter as
a whole i.e. ω = p

ρ . The matter phase at ω = 0 is one
of the typical phases that may be identified using the
EoS parameter. The radiation-dominated phase is then
shown by ω = 1

3 , while ω = −1 represents the ΛCDM
model. In addition, the recently discussed accelerating
period of the universe, which contains the quintessence
(−1 < ω < − 1

3 ) and phantom era (ω < −1), is shown
when ω < − 1

3 . According to the constrained values of α

and σ, the effective EoS parameter in Fig. 8 exhibits be-
havior like quintessence. Also, the value of effective EoS
parameter at z = 0 is ω0 = −0.7106 for the BAO datasets
and ω0 = −0.7268 for the combined BAO+Hubble+SNe
datasets, which is a definite indication of an accelerating
phase [82–84].

The primary objective of energy conditions in cos-
mology is to assess the expansion behavior of the uni-
verse. These conditions serve as crucial indicators of the
energy-momentum content of the universe and its im-
pact on cosmic dynamics. Specifically, the violation of
the NEC (ρ + p ≥ 0) implies a violation of the weak
(ρ ≥ 0), dominant (ρ − p ≥ 0), and strong energy con-
ditions (ρ + 3p ≥ 0). This violation indicates a de-
crease in energy density as the universe expands, re-
flecting the phenomenon of energy dissipation or dilu-
tion over cosmic time. Moreover, the violation of the
SEC (ρ + 3p ≥ 0) is particularly significant as it signifies
the acceleration of the universe. In our analysis of the
energy conditions for the physical model, as shown in
Figs. 9-11, we have observed a consistent fulfillment of
the WEC (ρ ≥ 0), NEC (ρ + p ≥ 0), and DEC (ρ − p ≥ 0)
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throughout the cosmic evolution. These conditions play
a crucial role in characterizing the energy-momentum
content of the universe and are indicative of its stability
and behavior. Notably, the SEC (ρ + 3p ≥ 0) is found to
be violated at late cosmic times, suggesting the presence
of exotic forms of energy or modifications to the grav-
itational theory in these regimes. This violation opens
up intriguing possibilities for understanding the nature
of DE and the dynamics of the universe at large scales.
The relationship between the jerk parameter j and the
redshift z is seen in Fig. 12. The graphic shows that
throughout cosmic history, j(z) has remained positive.
According to Sahni et al. [65], the jerk parameter for the
ΛCDM model has a value of j (z) = 1. According to Eq.
(III), j (z) ̸= 1 at currently, meaning that the model is

currently deviating from ΛCDM. The resultant model,
however, behaves in the future as a standard ΛCDM,
i.e. j(z) → 1 as z → −1. With current observational
data, the results of the model are in strong agreement.
The established model is regarded as a helpful reference
point for the analysis of FLRW models that include a
parametric form of the effective EoS parameter in the
f (Q, T) theory of gravity.
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