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Neural-network models have been employed to predict the instantaneous flow close to the
wall in a viscoelastic turbulent channel flow. The numerical simulation data at the wall is
utilized to predict the instantaneous velocity fluctuations and polymeric-stress fluctuations at
three different wall-normal positions. Apart from predicting the velocity fluctuations well in
a hibernating flow, the neural-network models are also shown to predict the polymeric shear
stress and the trace of the polymeric stresses at a given wall-normal location with reasonably
good accuracy. These non-intrusive sensing models can be integrated in an experimental
setting to construct the polymeric-stress field in turbulent flows, which otherwise may not be
directly quantifiable in experimental measurements.

Key words: turbulence simulation, viscoelastic turbulent channel flow, fully convolutional
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1. Introduction
Viscoelastic fluids are widely used in industrial processes, and an understanding of complex-
fluid behaviour becomes crucial for enterprises working with non-Newtonian flows. Further,
in real-world scenarios, turbulent flows predominate, exhibiting chaotic and multi-scale
dynamics. The turbulent flows of purely viscoelastic fluids have important technological
implications due to increased mixing efficiencies at low Reynolds numbers and have also
piqued the interest in drag-reduction and flow control communities at high Reynolds numbers.
The addition of a tiny amount of polymer (parts per million) has proven efficient in reducing
friction drag in pipe flows (Virk 1971), leading to substantial energy savings in fluid-
transport applications. Drag reduction by polymers (elasticity) is related to their ability to
modify coherent structures in wall-bounded turbulence (Dubief et al. 2004, 2005). Elasticity
influences the turbulent cycle in two ways: by attenuating near-wall vortices, but at the same
time increasing the streamwise kinetic energy of the near-wall streaks. Additionally, Xi &
Graham (2010, 2012) suggested that the turbulent flow is characterized by an alternating
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sequence of active and hibernating phases. These phases are distinguished by flow structures
exhibiting strong vortices and wavy streaks during the active phase, and weak streamwise
vortices during the hibernation phase, with viscoelastic flows characterized by increased
hibernation intervals. Additional insights into the influence of polymer additives on drag
reduction are detailed in Xi (2019).

Identifying such effects of elasticity sparked an interest to detect and understand drag-
reducing behaviour in the presence of both elasticity and plasticity in the fluid. Le Clainche
et al. (2020) analysed the simulation data of Rosti et al. (2018) using high-order dynamic
mode decomposition, and compared the modes in complex fluids (non-Newtonian fluids) with
those in Newtonian fluids. Their results indicated that elasticity and plasticity of the complex
fluids have similar effects on the coherent structures; in both cases, the flow is dominated by
long streaks disrupted by rapid, localised perturbations. On the other hand, the Newtonian
flow displays short streaks and more chaotic dynamics. Izbassarov et al. (2021) found that
the largest amount of drag reduction is achieved with a combination of finite elasticity and
plasticity, and while the highly plastic flow (high Bingham numbers) relaminarizes, elasticity
affects the relaminarization in a complex and non-monotonic fashion.

However, when it comes to canonical (and practical) flows of interest, direct numerical
simulations (DNSs) of viscoelastic (and/or elasto-viscoplastic) flow face challenges due to
substantial computational costs associated with capturing the diverse physical mechanisms
driving the flow. On the other hand, experimental investigations of drag reduction in
viscoelastic flows encounter limitations stemming from near-wall measurements and the
capabilities of experimental techniques to accurately quantify the flow, without perturbing
it. While a complete description of viscoelastic turbulence would require characterization of
both velocity and polymeric stresses. However accessing such polymer deformation directly
from experimental measurements remains a challenging goal.

In recent years, machine-learning methods have provided a significant advance over prior
methodologies in various applications within the field of fluid mechanics (Vinuesa 2024).
Specifically in the domain of viscoelastic flows, researchers have explored the predictability
of polymer stress components from velocity gradient using neural networks (Nagamachi &
Tsukahara 2019). Towards estimation of fluid flow, neural-network models have demonstrated
excellent capabilities in predicting the instantaneous state of the Newtonian turbulent flow
using quantities measured at the wall (Guastoni et al. 2021). Hence in the present study,
the idea of non-intrusive sensing has been applied to viscoelastic turbulent channel flow
to predict the velocity fluctuations and polymeric stress components near the wall using
the quantities measured at the wall. To this end, the convolutional-neural-network (CNN)
models are employed to predict the two-dimensional velocity fluctuations and polymeric-
stress fluctuation fields at different wall-normal distances. The present work highlights the
capability of a data-driven approach to model turbulence in complex-fluids flows. In addition,
the developed non-intrusive sensing models will also find useful applications in experimental
settings and in closed-loop control of wall-bounded turbulence in viscoelastic flows.

2. Methodology
2.1. Dataset

The dataset for training and evaluation of the network model is obtained through a direct
numerical simulation of turbulent channel flow of viscoelastic fluid at a Reynolds number
based on the bulk velocity of Re = 𝑈𝑏ℎ/𝜈 = 2800 (where the bulk velocity𝑈𝑏 corresponds to
the average value of the mean velocity in the whole domain, ℎ is the channel half-height and
𝜈(= 𝜇0/𝜌) denotes the kinematic viscosity of the fluid, with 𝜌 and 𝜇0 being the density and
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total viscosity of the fluid, respectively), which corresponds to a friction Reynolds number
Re𝜏 = 180 (where Re𝜏 is defined in terms of ℎ and friction velocity 𝑢𝜏) for a Newtonian
fluid. In this study, the turbulent channel flow simulations are performed at a Weissenberg
number Wi = 8, (where Wi = 𝜆𝑈𝑏/ℎ, with 𝜆 corresponding to the relaxation time of the
polymeric stresses and Wi quantifies the elastic forces with respect to the viscous forces,
thereby quantifying the degree of anisotropy in the flow). The ratio of polymeric viscosity(
𝜇𝑝

)
to the total viscosity (𝜇0), which is denoted by 𝛼, is set to 0.1, indicating that we

consider a dilute polymer concentration of the viscoelastic fluid. The polymeric-stress tensor(
𝜏𝑝

)
is modelled using the finite extensible nonlinear elastic-Peterlin (FENE-P) model, with

maximum polymer extensibility 𝐿 = 60. The difficulties associated with proper rheological
characterization of real fluids by adequate constitutive equations is an important area of
research on its own and rather, we assume that the adopted model adequately describes
the intended fluid properties. Furthermore, to circumvent the high Weissenberg number
problem, log-conformation approach (Fattal & Kupferman 2004) is utilized to ensure the
postivie-definiteness of the conformation tensor. Here, the conformation tensor provides a
macroscopic view of the polymer deformation.

Figure 1: Typical workflow representation of V-prediction using fully-convolutional
network (FCN) model. (Left) Computational domain for the channel flow and (right) FCN

model with the corresponding number of kernels in each hidden layer is indicated.
The viscoelastic turbulent channel flow is simulated using a finite-difference-based in-

house code on a computational domain of size 6ℎ × 2ℎ × 3ℎ in the streamwise (𝑥), wall-
normal (𝑦) and spanwise directions (𝑧), respectively as shown in figure 1. The readers
are referred to Izbassarov et al. (2021) for a complete description of the viscoelastic
turbulent channel simulation employed in this study. The computational domain is uniformly
discretized using 1728 × 576 × 864 grid points along 𝑥, 𝑦 and 𝑧, respectively. The spatial
resolution of Δ𝑥+ = Δ𝑦+ = Δ𝑧+ < 0.6 is chosen to fully resolve the turbulent scales in
the viscoelastic turbulent flow (Rosti et al. 2018). Here, the superscript ‘+’ denotes the
scaling in terms of friction velocity 𝑢𝜏 (=

√︁
𝜏𝑤/𝜌, where 𝜏𝑤 corresponds to the wall-

shear stress) as the velocity scale and viscous length ℓ∗ (= 𝜈/𝑢𝜏) as the length scale.
Note that the value of 𝑢𝜏 obtained with Wi = 8 is lower than that in the Newtonian
case

(
𝑢𝜏 ≈ 180/Re𝑏; since, Re𝜏, Wi=0 ≈ 180

)
due to skin-friction reduction. Variation of

the averaged wall-shear rate
(〈
𝑈𝑦

〉
𝑥,𝑧

|wall

)
obtained with Wi = 8 is compared against

the Newtonian case (Wi = 0) in figure 2. Here, 𝑈𝑦 corresponds to the wall-normal
derivative of the streamwise velocity and ⟨·⟩𝑥,𝑧 denotes the spatial averaging in 𝑥 and
𝑧 directions in the channel. The Reynolds decomposition of an instantaneous field 𝑈 is
denoted as ⟨𝑈⟩𝑥,𝑧,𝑡 + 𝑢, with 𝑢 identifying the fluctuations. From figure 2, identifying the
hibernation intervals (regions with low wall-shear stress) using area-averaged wall-shear
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rate as performed in Xi & Graham (2010) with a threshold corresponding to 10% of the
mean shear-rate, we observe the presence of such low-drag events at Wi = 8, where polymer
stretching is weakest. Note that the choice of threshold is arbitrary here and a definitive choice
of the threshold value is absent in the literature. Effectively, for the considered viscoelastic
turbulent flow at Wi = 8, we observe a drag reduction of roughly 20% for the set of considered
parameters in this study. From figure 2, it is evident that the wall-fields (which are provided
as inputs to FCN, see figure 1, §2.2) are significantly varying from the statistical mean for a
considerable fraction of the total time. Thus, in this work we aim to build a neural-network
model that can predict viscoelastic turbulence quantities of interest, not only in the mean-flow
but also in extreme wall-shear events with particular interest in hibernation intervals.
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Figure 2: Temporal variation of wall-shear-rate in a viscoelastic channel flow
corresponding to Wi = 8 and Newtonian channel flow (Wi = 0) at (top) 𝑦/ℎ = 2 and
(bottom) 𝑦/ℎ = 0. The dashed lines indicate the temporal mean and the dotted lines

indicate the 10% deviation from the temporal mean.
To this end, a database consisting of instantaneous fluctuation fields of wall-shear-stress

components, wall-pressure fluctuation, two-dimensional velocity-fluctuation and polymeric-
stress-fluctuation fields are obtained at different wall-normal locations, 𝑦+ ≈ 13.6, 26.7
and 44.2 (𝑦/ℎ ≈ 0.09, 0.17 and 0.28, respectively). Note that these wall-normal locations
correspond respectively to 𝑦+ = 15, 30 and 50 for a Newtonian turbulent channel flow and
hence, for simplicity we refer to these locations as 𝑦+ ≈ 15, 30 and 50, respectively in this
study. The simulations are run for ∼ 120ℎ/𝑢𝜏 time-units and a total of 40,600 samples is
obtained with a sampling period of Δ𝑡+𝑠 ≈ 1 for training the network model. The sampled
instantaneous two-dimensional fields are down-sampled to a resolution of 432 × 432 in 𝑥

and 𝑧, respectively. The fields at both the walls are utilized in this study, and they are split
into training and validation set with a ratio of 4 to 1. The network models are evaluated with
the samples in the test dataset which consists of 10,000 samples. The samples in the test
dataset are chosen from a time-interval (in the sampled time series) that corresponds to at
least 60 flow-through times apart from the samples in the training dataset to ensure minimal
autocorrelation between the samples in training and test dataset. The number of samples in
the test dataset is chosen to obtain convergence of second-order turbulence statistics.

2.2. Neural-network model
In this work, a fully convolutional neural network (FCN) similar to the one proposed
by Guastoni et al. (2021) is used, with increased hidden layers (see figure 1) to obtain a
more complex combination of abstract turbulent features identified by the kernels in the
network. Here, we utilize an existing architecture, acknowledging that further enhancements
could be achieved with newer architectures that require extensive datasets. Our focus is
on proposing a methodology for viscoelastic stress predictions in turbulent flows aimed
towards experimental applications and in establishing baseline performance using current
convolutional architectures. The considered FCN consists of 30 hidden layers with a total
number of trainable parameters amounting to 985, 105. The convolution operations are

Focus on Fluids articles must not exceed this page length
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followed by a batch normalization and a rectified-linear-unit (ReLU) activation function.
The inputs to the network are normalized using respective mean and standard deviation of
the fields from the training dataset and the outputs are normalized using the corresponding
standard deviation values. The choice of loss function in the network is the mean-squared
error (MSE) between the instantaneous predicted and DNS fields, which helps the network
to learn the large-scale features first and then progressively optimize the trainable parameters
to minimize the errors at finer scales (Xu et al. 2019).

In this study, three types of predictions have been undertaken to highlight the capability
of FCN models to reconstruct the near-wall visco-elastic turbulence fields. In V-predictions
(indicating velocity predictions), the streamwise wall-shear, spanwise wall-shear and pressure
field at the wall are utilised to predict the streamwise, spanwise and wall-normal velocity-
fluctuations. This allows us to assess whether velocity fields can also be predicted in a
viscoelastic turbulence exhibiting periods of hibernation. The performance of neural-network
models in predicting the fluctuations of polymeric-shear stress (𝜏𝑝, xy) and fluctuations of
trace of polymer stress (tr(𝜏𝑝)) at a given wall-normal location using the true velocity-
fluctuation fields at the same location, and they are denoted as E-predictions (signifying
prediction of elastic stress quantities of interest). Finally in V-E-predictions, the FCN model
is used to predict the fluctuations of polymeric-shear stress and diagonal components of
polymer-stress tensor at a target wall-normal distance directly from wall inputs, with auxillary
predictions of corresponding velocity-fluctuations at the considered wall-normal location. †

The network performance is evaluated from a statistical point of view in terms of the
relative-error in predicting the corresponding root-mean-squared (RMS) quantities between
the true (DNS) fields from test dataset and predicted fields from FCN (indicated by 𝐸RMS).
The mean-absolute error between the predictions and DNS fields (denoted by MAE) is also
reported for different types of predictions. Note that the performance metrics reported in
this study are obtained from the mean of at least three different network models to include
the effects of stochasticity introduced by the random initialization of kernel weights in
FCN and random sampling of mini-batches during the training process. The instantaneous
correlation coefficient between the predicted and DNS fields, averaged over the samples
in the test dataset, is also highlighted. To evaluate the distribution of energy in different
length scales, a comparison of the pre-multiplied two-dimensional (2D) power-spectral
density (PSD) 𝑘𝑧𝑘𝑥𝜙𝑖 𝑗

(
𝜆+𝑥 , 𝜆

+
𝑧

)
between DNS fields and the predictions is performed. Here,

𝜙𝑖 𝑗 is the power-spectral density obtained for the quantity ‘𝑖 𝑗’ and 𝑘𝑥 , 𝑘𝑧 respectively denote
the wavenumbers in streamwise and spanwise directions with the corresponding wavelengths
in viscous units denoted by 𝜆+𝑥 and 𝜆+𝑧 .

3. Results
3.1. V-predictions

A qualitative prediction field for V-predictions is shown in figure 3 (corresponding to an
instant in the test dataset where the input wall-shear rate is higher than the mean wall-
shear rate). We observe the predicted velocity fields to be visually well correlated with
the DNS fields at different target wall-normal locations. The linear correlation coefficient
between the predicted and true streamwise-velocity fluctuation field exceeded 99% for
predictions at 𝑦+ ≈ 15, and gradually declining but remaining above 80% at 𝑦+ ≈ 50.
The RMS quantities of the streamwise velocity-fluctuation fields at 𝑦+ ≈ 15, 30, 50 are
predicted with less than (𝐸RMS <) 3%, 6% and 15% error, respectively. With an increasing

† The auxiliary predictions of velocity-fluctuations at a wall-normal location is utilized in V-E predictions
to obtain an increase in the accuracy of prediction of polymeric stress quantities.
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separation distance (wall-normal distance between the wall fields and the target velocity-
fluctuation fields), the fields are less-correlated and thereby the performance of the network
also decreases. Because of this, the RMS-normalized mean-absolute errors in the predicted
streamwise-velocity fluctuations are 0.14, 0.29 and 0.47 at 𝑦+ ≈ 15, 30, 50, respectively (see
also figure 4).
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Figure 3: Comparison of the instantaneous velocity-fluctuation fields in the (𝑎)
streamwise, (𝑏) wall-normal and (𝑐) spanwise direction, at different 𝑦+. In (𝑎 − 𝑐): (left)

corresponds to the DNS field and (right) shows the corresponding V-predictions from
FCN. The fields are scaled with the corresponding RMS values.

8 10 12
〈Uy〉x,z

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E
(u

)/
u

R
M

S

(a)

y+ ≈ 15

y+ ≈ 30

y+ ≈ 50

8 10 12
〈Uy〉x,z

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E
(v

)/
v R

M
S

(b)

8 10 12
〈Uy〉x,z

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E
(w

)/
w

R
M

S
(c)

Figure 4: Variation of the RMS-normalized mean-absolute errors of (𝑎) streamwise,
(𝑏) wall-normal and (𝑐) spanwise velocity components in V-predictions at different

wall-normal locations with respect to the wall-shear rate. The markers corresponds to the
mean absolute error in the instantaneous sample in the test dataset. Shaded region

corresponds to the hibernation interval identified with 90% of
〈
𝑈𝑦

〉
𝑥,𝑧,𝑡

.
The MAE in the wall-normal and spanwise fluctuation fields remained below 0.025 in

the different target wall-normal locations considered in the study. However, the 𝐸RMS values
in the wall-normal and spanwise velocity fluctuations are at least twice as large as those
obtained in the RMS prediction of the streamwise component at the respective wall-normal
locations. This is due to the influence of the polymers, which reduce turbulence by opposing
the downwash and upwash flows generated by near-wall vortices (Dubief et al. 2004, 2005).
Due to the absence of polymeric-stress information in the inputs to the network model for
V-predictions, an accurate representation of the turbulence statistics in the spanwise and
wall-normal fluctuation components becomes challenging.

It should be emphasized that the network model is explicitly optimized for predicting
instantaneous fields rather than reproducing the turbulence statistics. This emphasis is rooted
in the motivation for non-intrusive sensing in an experimental setting, aimed at understanding
the near-wall dynamics of viscoelastic turbulent channel flow. In addition, optimizing network
models to accurately replicate turbulence statistics obtained from DNS could lead the model
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to learn the mean-flow behavior with a lower 𝐸RMS. This may also entail a compromise, as
predictions during hibernating intervals could potentially become less accurate.

When assessing the accuracy of the instantaneous predictions based on mean-absolute
errors, as illustrated in figure 4, it becomes apparent that the MAE (in each test sample) varies
with wall-shear rate for different target wall-normal locations. Specifically, in instances of
low-wall-shear-rate, the absolute errors are notably lower, and increase with wall-shear rate.
This is due to the fact that low-drag events typically exhibit reduced fluctuation intensity and
it increases with wall-shear rate, leading to increased concentration of energy in small-scale
features. Consequently, the network encounters relative difficulty in accurately predicting
these small-scale features, resulting in higher prediction errors at large wall-shear-rate inputs.
It is worth noting that the variation of MAE (in each test sample) with wall-shear rate stems
from the selection of the loss function utilized in the network. Nevertheless, the obtained
network model exhibits superior predictive performance in capturing velocity-fluctuation
fields during low-wall-shear rate events. This observation underscores the potential utility
of such models in obtaining sufficiently accurate velocity fluctuations in an experimental
setting, more particularly for studying hibernation events in detail.

3.2. E-predictions, V-E-predictions
A sample predicted field (corresponding to the same wall inputs as in figure 3) for E-
predictions and V-E-predictions is shown in figure 5. Overall, the large-scale features in
the polymer-stress quantities of interest are visually well-corresponding. For E-predictions,
where polymeric stresses are predicted from DNS velocity fields at the same location there is
no separation distance between the input and target fields and the linear correlation coefficient
between the predicted and DNS polymer-shear stress, as well as with the trace of the polymer
stress remained more than 90% for the different target wall-normal positions. Moreover,
𝐸RMS remained below 15% for E-predictions of 𝜏𝑝,xy and tr(𝜏𝑝) at different target 𝑦+.
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Figure 5: A sample fluctuation field corresponding to (𝑎) polymer-shear-stress and (𝑏)
trace of the polymer-stress, at different-wall normal locations. In (𝑎 − 𝑏): (left)

corresponds to DNS field, (middle) shows the E-predictions and (right) corresponds to
V-E-predictions from FCN. The fields are scaled with the respective RMS values.

Note that in V-E-predictions the polymeric stresses are predicted directly from the wall
inputs, without having access to the true velocity fields at the wall-normal location where
those stresses are predicted. Instead, predicted auxiliary velocity fields at that location
(together with wall inputs) are used to predict the polymeric stress fields. The obtained
errors of around 40% indicate that a small error in predicting velocity-fluctuation fields
significantly impacts the errors in predicting the polymeric-stress fields, indicating that
the auxiliary velocity fluctuation fields in V-E-predictions lack certain information that is
connected to the polymeric activity in the small wavelengths. Nevertheless, the large-scale
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structures in the predicted polymeric-stress fields for V-E-predictions exhibit a qualitative
agreement with the reference, as observed in figure 5.

Examining the accuracy of instantaneous predictions based on mean-absolute errors, as
depicted in figure 6 for E-predictions and V-E-predictions, reveals a similar trend in MAE
(in each test sample) with respect to wall-shear rate as observed in V-predictions. Overall,
the absolute errors increase with wall-shear rate. Further, the magnitude of such absolute
errors in the field is nearly doubled for V-E-predictions (figure 6𝑏, 𝑑) compared to E-
predictions (figure 6𝑎, 𝑐). Moreover, the MAE in predicting polymer-stress quantities of
interest remains relatively constant across various target wall-normal positions with respect
to the corresponding RMS quantities for both E-predictions and V-E-predictions.
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Figure 6: Variation of the RMS-normalized mean-absolute errors of polymer-shear stress
in (𝑎) E-predictions, (𝑏) V-E-predictions and trace of polymer stress in (𝑐) E-predictions
and (𝑑) V-E-predictions with respect to the wall-shear rate. The markers corresponds to
the mean absolute error in the instantaneous sample in the test dataset. Shaded regions
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Figure 7: Comparison of RMS-scaled (𝑎) streamwise velocity fluctuation field with
(𝑏) tr(𝜏𝑝) from test dataset at 𝑦+ ≈ 50. The corresponding (𝑐) E-prediction and

(𝑑) V-E-prediction are shown. Strong anti-correlation zones are contoured.
The RMS of the trace of the polymer stress decreases as we move away from the wall for

the considered 𝑦+ locations and consequently the absolute errors in predicting tr(𝜏𝑝) decrease
as the wall-normal distance increases. One plausible explanation for this phenomenon lies
in the increased presence of energetic large-scale structures in the diagonal components
of polymer stress tensor with respect to the wall-normal distance (see figure 8𝑏). Further,
the trace of the polymer stress exhibits an increasing anti-correlation with the streamwise
velocity fluctuation as the wall-normal position increases as observed from figure 7, which
is related to the polymers extracting turbulent kinetic energy (Dubief et al. 2005).

3.3. Power-spectral density
The distribution of energy in the predicted and DNS data across different scales are
compared through the spectral analysis as illustrated in figure 8𝑎. The results show that
the neural-network models successfully reproduce the energy content in the streamwise
velocity component (denoted by 𝜙𝑢𝑢) at different wavelengths. However, for the wall-normal
velocity fluctuations (𝜙𝑣𝑣) and spanwise velocity fluctuations (𝜙𝑤𝑤), the network models
exhibit limitations in reconstructing energy at the smallest wavelengths and specifically such
errors in the smallest scales increase with increasing target wall-normal position.
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The power-spectral density obtained for the polymeric-shear stress (denoted by 𝜙𝜏𝑝, xy𝜏𝑝, xy)
and the trace of polymer stress (𝜙tr(𝜏𝑝 )tr(𝜏𝑝 ) ) are depicted in figure 8𝑏 for different wall-
normal positions. We observe that the energetic structures correspond to wavelengths that are
almost one order of magnitude smaller than those observed in the velocity fluctuations (refer
to figure 8𝑎). This reveals that the polymer activity is predominantly concentrated in small-
scale structures compared to the flow scales. Consequently, this suggests that the employed
neural network model needs to reconstruct fine-scale polymer stress fields from coarse
energy-containing features in the velocity fluctuations.
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Figure 8: Pre-multiplied two-dimensional power-spectral densities of (𝑎, left) the
streamwise, (𝑎, center) wall-normal, (𝑎, right) spanwise velocity components and (𝑏,

left) polymer shear-stress, (𝑏, right) trace of polymer stress at (top) 𝑦+ ≈ 15,
(middle) 𝑦+ ≈ 30 and (bottom) 𝑦+ ≈ 50. The contour levels contain 10%, 50% and 80% of
the maximum power-spectral density. Shaded contours refer to DNS data, while contour

lines correspond to (𝑎) V-predictions, (𝑏, orange) E-predictions and (𝑏,
green) V-E-predictions.

For the E-predictions shown in figure 8𝑏, we observe the ability of the model to reconstruct
the features containing energy at different wavelengths more accurately with minimal errors
observed in the smallest scales. However in the case of V-E-predictions, where the wall
inputs to the network feature large-scale energy-containing features (not shown here), the
performance of the network is reduced in reconstructing the energy distribution of features at
smaller scales, and rather the model tends to predict the large-scale features in the polymer-
stress fields.

4. Conclusions
The present work highlights the capability of a data-driven approach to perform non-intrusive
sensing in viscoelastic turbulent flows. Here we demonstrate the ability of CNN-based
models to accurately reconstruct the velocity fluctuations in viscoelastic turbulence close the
wall, utilizing the two wall-shear fluctuation components and the wall-pressure fluctuations
as inputs. Additionally, the network models successfully reproduce the polymeric-stress
fluctuation fields from the DNS velocity-fluctuation fields. Moreover, the feasibility of
these network models to extract polymer stress fluctuation fields of interest solely from
wall input fluctuations and predicted velocity-fluctuations is explored. Overall, the network
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effectively reconstructs the large-scale features of the polymer-stress fields using wall inputs
and predicted velocity fields. Furthermore, the developed models exhibit enhanced accuracy
in predicting quantities of interest during the hibernation intervals, facilitating a deeper
understanding of the underlying physics during low-drag events when the model is deployed
in a practical application. These non-intrusive-sensing models hold valuable applications in
experimental settings (Vinuesa et al. 2023), enabling the construction of polymeric stresses
in turbulent flows from velocity fields or wall-inputs, which otherwise would be challenging
or impossible to quantify experimentally.
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Guastoni, L., Güemes, A., Ianiro, A., Discetti, S., Schlatter, P., Azizpour, H. & Vinuesa, R. 2021
Convolutional-network models to predict wall-bounded turbulence from wall quantities. J. Fluid
Mech. 928, A27.

Izbassarov, D., Rosti, M.E., Brandt, L. & Tammisola, O. 2021 Effect of finite weissenberg number on
turbulent channel flows of an elastoviscoplastic fluid. J. Fluid Mech. 927, A45.

Le Clainche, S., Izbassarov, D., Rosti, M., Brandt, L. & Tammisola, O. 2020 Coherent structures in
the turbulent channel flow of an elastoviscoplastic fluid. J. Fluid Mech. 888, A5.

Nagamachi, A. & Tsukahara, T. 2019 Predictability Study of Viscoelastic Turbulent Channel Flow Using
Deep Learning. In Fluids Eng. Div. Sum. Meet., p. V002T02A077. American Society of Mechanical
Engineers.

Rosti, M.E., Izbassarov, D., Tammisola, O., Hormozi, S. & Brandt, L. 2018 Turbulent channel flow of
an elastoviscoplastic fluid. J. Fluid Mech. 853, 488–514.

Vinuesa, R. 2024 Perspectives on predicting and controlling turbulent flows through deep learning. Phys.
Fluids 36 (3).

Vinuesa, R., Brunton, S. L. & McKeon, B. J. 2023 The transformative potential of machine learning for
experiments in fluid mechanics. Nat. Rev. Phys. 5 (9), 536–545.

Virk, P.S. 1971 Drag reduction in rough pipes. J. Fluid Mech. 45 (2), 225–246.
Xi, L. 2019 Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Phys. Fluids

31 (12).
Xi, L. & Graham, M.D. 2010 Active and hibernating turbulence in minimal channel flow of Newtonian

and polymeric fluids. Phys. Rev. Lett. 104 (21), 218301.
Xi, L. & Graham, M.D. 2012 Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic

minimal channel flows. J. Fluid Mech. 693, 433–472.
Xu, Z.-Q.J., Zhang, Y. & Xiao, Y. 2019 Training behavior of deep neural network in frequency domain. In

NeurIPS (ed. T. Gedeon, K.W. Wong & M. Lee), pp. 264–274. Springer International Publishing.

Rapids articles must not exceed this page length

https://github.com/orgs/KTH-Complex-fluids-group

	Introduction
	Methodology
	Dataset
	Neural-network model

	Results
	V-predictions
	E-predictions, V-E-predictions
	Power-spectral density

	Conclusions

