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Abstract—Groundbreaking applications such as ChatGPT
have heightened research interest in generative artificial intel-
ligence (GAI). Essentially, GAI excels not only in content gen-
eration but also signal processing, offering support for wireless
sensing. Hence, we introduce a novel GAI-assisted human flow
detection system (G-HFD). Rigorously, G-HFD first uses the
channel state information (CSI) to estimate the velocity and
acceleration of propagation path length change of the human
induced reflection (HIR). Then, given the strong inference ability
of the diffusion model, we propose a unified weighted conditional
diffusion model (UW-CDM) to denoise the estimation results,
enabling detection of the number of targets. Next, we use the
CSI obtained by a uniform linear array with wavelength spacing
to estimate the HIR’s time of flight and direction of arrival (DoA).
In this process, UW-CDM solves the problem of ambiguous DoA
spectrum, ensuring accurate DoA estimation. Finally, through
clustering, G-HFD determines the number of subflows and
the number of targets in each subflow, i.e., the subflow size.
The evaluation based on practical downlink communication
signals shows G-HFD’s accuracy of subflow size detection can
reach 91%. This validates its effectiveness and underscores the
significant potential of GAI in the context of wireless sensing.

Index Terms—Generative AI, wireless sensing, human flow
detection,

I. INTRODUCTION

The ubiquitous penetration and inter-connectivity of trillions
of smart wireless devices are ushering us into the era of the
Artificial Intelligence of Things (AIoT) [1]. Unlike before,
in this era, the advancement in AI and wireless technologies
is revolutionizing wireless networks from mere communica-
tion mediums into pervasive sensing platforms [2]. Such a
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paradigm shift paves the way for numerous contactless appli-
cations [3]–[6], among which human flow detection stands as
a critical area of interest. Human flow detection technology
seeks to gather essential information, including the number,
location, and movement of people within a specified area,
thereby facilitating crowd monitoring [7]. Such a technology
plays a crucial role in various scenarios such as shopping malls
and transportation hubs, as shown in Fig. 1.

Traditional signal processing-based flow detection ap-
proaches are facing performance bottlenecks in distinguishing
human-relevant features from entangled irrelevant features
within the signal [8]. Therefore, AI technologies are intro-
duced to enhance the detection performance [9]–[11]. For
instance, in [9], the authors constructed the spectrogram of
Doppler shifts and then used a rotation and segmentation algo-
rithm to divide the spectrogram into the subspectrograms of its
subflows. On this basis, the number of people in each subflow
is estimated via the convolutional neural network (CNN). In
another work [10], the authors defined the sequential spatial-
temporal matrix and input it into a recurrent neural network
(RNN) to mine the spatial-temporal correlations among crowd
features, thereby achieving an estimation of target counts.
The evaluation shows it reduced the counting error rate from
22.54% to 13.44% compared with several state-of-the-art
methods. Besides, authors in [11] used the wavelet transform
based method to denoise the CSI and then extract four features
that can depict the relationship between the number of people
and data fluctuation. After that, they trained a one-vs-rest
support vector machine (SVM) model to realize the crowd
counting with the accuracy of 87.2%.

In these systems [12], [13], AI technologies focus on signal
feature analysis and classification, yet they fail to improve
the quality of signal feature parameters. Therefore, they still
face certain limitations. For instance, the array designs of the
commercial devices often do not align with the assumptions
made in existing research, particularly regarding antenna spac-
ing [14]–[18], which complicates the estimation of parameters
such as the direction of arrival (DoA). These constraints make
the obtained signal features insufficient for more fine-grained
human flow detection, such as identifying the number and
size of subflows. The key to overcome these limitations and
advancing practical human flow detection lies in enhancing
the quality of signal features, for which generative AI (GAI)
presents a promising solution [19].

Unlike traditional AI technologies for signal feature anal-
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Fig. 1. The application of flow detection and the differences between the proposed method and existing approaches. For instance, in subway stations, such
detection systems can continuously monitor the number of passengers and their flow across different areas, facilitating more effective crowd congestion control
and management. Existing systems use conventional AI models to analyze the extracted signal features for flow detection, with performance being limited
by the quality of signal features. Different from them, the proposed method uses GAI to enhance the signal features, thereby supporting fine-grained human
flow detection.

ysis and classification, GAI has stronger data processing
and inferencing capabilities [20], [21]. It can capture latent
relationships between complex distributions across various
dimensions and spaces, and then leverage relationships to
generate data that fulfills specific requirements based on given
conditions [22]. For example, the diffusion model [23] is
one of the representative GAI models. It starts with adding
Gaussian noise to disrupt the training samples and then learns
to remove this noise in the reverse process to generate new
samples [24]. This working principle makes it particularly
suitable for applications such as image denoising [25], res-
olution enhancement [26], specified content generation [27],
and so forth, where it has demonstrated impressive perfor-
mance. In this context, the given image is a dataset with
a particular distribution, which is essentially the same as
the signal features, such as frequency spectrum, used for
human flow detection [28]. Therefore, we can leverage the
powerful generative capabilities of diffusion model to denoise,
repair, and enhance the extracted signal features, under specific
conditions. This goes beyond the analysis and classification
functions of traditional AI technologies in current human flow
detection systems, paving the way for the practical deployment
of human flow detection.

Therefore, in this paper, we introduce a GAI assisted human
flow detection system (G-HFD). Specifically, G-HFD first
utilizes the channel state information (CSI) measurements
in time domain to estimate the velocity and acceleration of
propagation path length change (PPLC) of the human induced
reflection (HIR). Then, we propose a unified weighted condi-
tional diffusion model (UW-CDM) to denoise the estimation
results, facilitating the detection of the number of targets
in human flow. After that, the CSI obtained by a uniform
linear array (ULA) with the antenna spacing equal to a
wavelength is used to estimate the DoA and ToF of the HIR.
During this process, UW-CDM is used to solve the problem
of ambiguous DoA spectrum, thereby ensuring the effective
DoA estimation. Finally, the obtained signal parameters are
clustered to determine the number of subflows and the subflow
size, i.e., the number of targets in each subflow. Our evaluation
of G-HFD, using downlink signals in practical communication

scenarios, confirms its effectiveness. The contributions of this
paper are summarized as follows.

• We propose UW-CDM, which allows us to denoise the
spectrum obtained by velocity and acceleration estima-
tion. This enables the identification of the total number
of human targets and each one’s velocity and acceleration.
Such a method utilizes CSI in the time domain, and hence
the resolution is not limited by signal bandwidth or the
number of antennas.

• We employ the UW-CDM to generate the DoA spectrum
based on the CSI measurements obtained by the ULA,
where antenna spacing is one wavelength. This enables
the acquisition of HIR’s DoA when the antenna spacing
is greater than half a wavelength, strongly supporting the
practical application of the proposed G-HFD.

• We analyze the obtained DoA, ToF, and velocity of
the HIR by employing clustering techniques to achieve
human flow detection. This detection includes the number
of subflows and the subflow size (i.e., the number of
targets in each subflow), which are hard to achieve for
existing works.

• We conduct comprehensive tests in practical communica-
tion scenarios by using downlink signals. Experimental
results demonstrate that, when the user equipment (UE)
downloads files, the G-HFD’s accuracy of subflow size
detection can reach 91%, which not only validates its
effectiveness but also illustrates the potential of GAI in
enhancing wireless sensing capabilities.

This paper is organized as follows. Section II is the system
design, including the system overview, velocity and accelera-
tion estimation, and so forth. Section III presents the imple-
mentation and evaluation, and Section IV is the conclusion.

II. SYSTEM DESIGN

A. System Overview

As shown in Fig. 2, the key objective of G-HFD is to
detect the flow via effective estimation and analysis of sig-
nal parameters across various domains. First, leveraging the
CSI data stream in the time domain, G-HFD estimates the



3

Data stream

Unified 

weighted 

conditional 

diffusion 

model

Denoise

Ambiguous to clear

ToFs

DoAs

# (targets)  & 

velocities

 

Data collection Data processing Flow detection

-1.5

-1

-0.5

0

0.5

1

1.5

-60

-40

-20

0

20

40

60

T1 T2 T3 T4 T5 T6

DoA (°) ToF (ns) v (m/s)

Signal parameter clustering

1 target

 1 target
2 targets

1 target

1 target

Subflow 1

Subflow 2
Subflow 3

Subflow 4

Subflow 5

Tx

Rx

Phase 
rotation

d =

UE

v & av & a

Phase 
rotation

Velocity-DoA 
estimator

Velocity-acceleration 
estimator

Velocity-acceleration 
estimator

Velocity-ToF 
estimator

Velocity-ToF 
estimator … … 

Phase error & 
interference elimination

v & a

Data stream

Unified 

weighted 

conditional 

diffusion 

model

Denoise

Ambiguous to clear

ToFs

DoAs

# (targets)  & 

velocities

 

Data collection Data processing Flow detection

-1.5

-1

-0.5

0

0.5

1

1.5

-60

-40

-20

0

20

40

60

T1 T2 T3 T4 T5 T6

DoA (°) ToF (ns) v (m/s)

Signal parameter clustering

1 target

 1 target
2 targets

1 target

1 target

Subflow 1

Subflow 2
Subflow 3

Subflow 4

Subflow 5

Tx

Rx

Phase 
rotation

d =

UE

v & a

Phase 
rotation

Velocity-DoA 
estimator

Velocity-acceleration 
estimator

Velocity-ToF 
estimator … … 

Phase error & 
interference elimination

v & a

Data stream

Unified 

weighted 

conditional 

diffusion 

model

Denoise

Ambiguous to clear

ToFs

DoAs

# (targets)  & 

velocities

 

Data collection Data processing Flow detection

-1.5

-1

-0.5

0

0.5

1

1.5

-60

-40

-20

0

20

40

60

T1 T2 T3 T4 T5 T6

DoA (°) ToF (ns) v (m/s)

Signal parameter clustering

1 target

 1 target
2 targets

1 target

1 target

Subflow 1

Subflow 2
Subflow 3

Subflow 4

Subflow 5

Tx

Rx

Phase 
rotation

d =

UE

v & a

Phase 
rotation

Velocity-DoA 
estimator

Velocity-acceleration 
estimator

Velocity-ToF 
estimator … … 

Phase error & 
interference elimination

v & a

Fig. 2. The framework of the proposed G-HFD. Here, the Tx is the signal transmitter, Rx is the receiver, and UE is the mobile phone. In a practical
communication scenario, the Rx first employs a ULA with the antenna spacing equal to one wavelength to capture the downlink signals and extract CSI. Then,
G-HFD utilizes the obtained CSI to estimate the signal parameters of the HIR, including acceleration, velocity, DoA, and ToF. In this process, UW-CDM
is used to denoise the velocity and acceleration estimation results and generate the clear DoA spectrum, so as to accurately estimate the signal parameters.
Finally, through clustering, G-HFD realizes the human flow detection, which includes the number of human targets and subflows, and the subflow size.

velocity and acceleration of PPLC of the reflections induced
by the moving human targets in the monitored area. This
estimation yields a two-dimensional spectrum of velocity and
acceleration (denoted as V-A spectrum). Subsequently, the
proposed UW-CDM is trained to denoise the V-A spectrum,
thereby facilitating an estimation of the number of moving
human targets. Following this, G-HFD estimates the DoA and
ToF for each HIR based on the CSI collected by a ULA
with the antenna spacing equal to one wavelength. In this
process, UW-CDM is employed again to address the issue of
ambiguous DoA spectrum caused by antenna spacing greater
than half a wavelength. Finally, the clustering is conducted on
the obtained velocity, DoA, and ToF, thereby identifying the
number of subflows and the subflow size.

B. Velocity and Acceleration Estimation
Consider a real-world communication scenario shown in

Fig. 2. Here, a user’s mobile phone connects to an access
point (AP), denoted as Tx, to access the Internet, forming a
communication link. At the same time, another AP, denoted
as Rx, is deployed to receive and process the downlink signal
for the human flow detection. The Rx is equipped with M +1
antennas, with one of them designated for receiving the direct
signals from Tx to Rx, which are the reference signals. The
remaining M antennas form a ULA, with an antenna spacing
of one wavelength, to receive signals in free space, which
are treated as surveillance signals. Therefore, the CSI of
surveillance signal corresponding to the k-th subcarrier and
m-th antenna of the ULA can be denoted as

hm,k =

B∑
b=1

α
[b]
m,ke

−j2πfkτ
[b]
m e−j2πε + nm,k, (1)

where B is the total number of propagation signals, including
the direct signals (from Tx to Rx) and reflection signals,
m = 1, . . . , M , α[b]

m,k is the attenuation, fk is the frequency of

the k-th subcarrier, τ [b]m is the signal ToF, e−j2πε is the phase
error introduced by the timing jitter during synchronization
between Tx and Rx, and nm,k is the noise. Similarly, the
CSI of reference signal corresponding to the k-th subcarrier
is denoted as

hre,k =

B′∑
b′=1

α
[b′]
re,ke

−j2πfkτ
[b′]
re e−j2πε + nre,k, (2)

where B′ is the total number of propagation signals, α[
b′]
re,k is

the attenuation, τ [
b′]

re is the signal ToF, and nre,k is the noise.
To accurately estimate the velocity and acceleration of the
PPLC corresponding to the each HIR, the complex conjugate
multiplication is first conducted to remove the phase error

hmē,k = hm,kh̄re,k=

R∑
r=1

α
[r]
mē,ke

−j2πfkτ
[r]
mē + Γ + Γ′ + nmē,k,

(3)

where h̄re,k represents the conjugate of hre,k, R = BB′,

α
[r]
mē,k = α

[b]
m,k × α

[b′]
re,k, τ [r]mē is the ToF difference, nmē,k

is the product of two noise terms, Γ and Γ′ are the results
of cross-multiplication of signal and noise. In hmē,k, the
product of the direct signals from hm,k and hre,k, denoted
as the direct component, has the strongest amplitude. Then,
the product of the direct signals and the reflection signals,
denoted as a cross component, has a lower amplitude than that
of the direct component. Besides, hmē,k includes the product
of the reflection signals from hm,k, and hre,k (denoted as the
reflection component), and the product of noise and the signal
(denoted as the noise component). These two components
have smaller amplitudes than those of the direct and cross
components. As can be seen, except for the noise component,
the signals contained in the other components no longer
contain phase errors, laying the foundation for velocity and
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acceleration estimation. Hence, let hmē,k be the observation
at time 0 and the r-th signal is the HIR with the velocity and
acceleration of vr and ar, respectively, then at time ∆t, the
PPLC can be calculated as

d (∆t) = vr∆t+
1

2
ar(∆t)

2
, (4)

which causes a phase shift of

Phk,r = e−j2πfk
d(∆t)

c = e
−j2πfk

(
vr∆t

c +
ar(∆t)2

2c

)
. (5)

Therefore, at time ∆t, the signal contained in the cross
component1 in hmē,k can be expressed as

h′mē,k (∆t) =

R′∑
r′=1

α
[r′]
mē,ke

−j2πfk

[
τ
[r′]
mē +

v
r′∆t

c +
a
r′ (∆t)2

2c

]
, (6)

where R′ represents the total number of signals contained in
the cross component.

The analysis above reveals that the phase of the reflection
signal introduced by the moving human target is a function
of the PPLC velocity and acceleration, as well as ∆t. This
relationship allows us to estimate the velocity and acceleration
based on the CSI data stream in time domain. However,
as previously mentioned, in hmē,k, the direct component,
with the velocity and acceleration of zero, has the strongest
amplitude. This causes the cross component to be easily
submerged in the direct component, causing interference to
the estimation. Moreover, the velocity and acceleration of the
reflection component are also zero, exacerbating such effect.
Therefore, it is necessary to eliminate the interference before
estimation. Given that the phase of the signals in direct and
reflection components does not change over time, implying a
frequency of zero, we first obtain W observations from the CSI
stream in the time domain to construct the following matrix

Hmē,k = [hmē,k (0) , hmē,k (∆t) , . . . , hmē,k ((W − 1)∆t)] .
(7)

Through the Fast Fourier Transform (FFT), the Hmē,k is
converted into the frequency domain, yielding H′

mē,k. After
that, we nullify the values at the frequency of 0 in H′

mē,k to
eliminate interference. Subsequently, the Inverse Fast Fourier
Transform (IFFT) is employed to revert it to the time domain
for the estimation.

Let Sm,k = [sm,k (0) , sm,k (∆t) , . . . ,sm,k ((W − 1)∆t)]
be the data stream transformed back to the time domain, which
contains cross component, Γ, Γ′, and noise. Among these, the
cross component exhibits the largest amplitude and is free from

phase errors. Hence, we simplify α
[r′]
mē,k to α

[r′]
k and derive

the estimation of velocity and acceleration based on the cross
component. More concretely, we first calculate the parametric

1The signals in direct component and reflection component do not include
terms related to ∆t, therefore, we do not discuss them here.

symmetric instantaneous auto-correlation function of Sm,k as

AC
sm,k

(∆t, τ) = sm,k

(
∆t+

τ + td
2

)
s̄m,k

(
∆t− τ + td

2

)
=

R′∑
r′=1

(
α
[r′]
k

)2

e−j2π(τ+td)
fk
c (vr′+ar′∆t)

︸ ︷︷ ︸
auto term

+

R′−1∑
r′=1

R′∑
r′′=r′+1

[
AC

s
[r′]
m,ks

[r′′]
m,k

(∆t, τ) +AC

s
[r′′]
m,k s

[r′]
m,k

(∆t, τ)

]
︸ ︷︷ ︸

cross term

,

(8)

where the second row is the auto term, the third row is the
cross term, and td is the constant time-delay corresponds
to a scaling operator. One can see from the AC

sm,k
(∆t, τ)

that the time variable ∆t and lag variable τ are coupled in
the terms of the exponential phase. Therefore, the keystone
transformation [29] is used to re-scale the time axis for each
lag. Specifically, the transformation is defined as

Ψ
[
AC

sm,k
(∆t, τ)

]
= AC

sm,k

(
g

z (τ + td)
, τ

)
. (9)

Leveraging this definition, we perform the transformation
on the auto term and cross term in (8), yielding (10) and (11),
shown in the bottom of next page, respectively, where Re (·)
indicates the operation of taking the real part.

After de-coupling, the two-dimensional FFT transformation
is applied to Ψ

[
AC

sm,k
(∆t, τ)

]
with respect to g and τ ,

obtaining

Gsm,k
(v, a) = Fτ

(
Fg

(
Ψ
[
AC

sm,k
(∆t, τ)

]))
=

R′∑
r′=1

G
s
[r′]
m,k

(v, a)︸ ︷︷ ︸
auto term

+

R′−1∑
r′=1

R′∑
r′′=r′+1

G
s
[r′]
m,ks

[r′′]
m,k

(v, a)︸ ︷︷ ︸
cross term

, (12)

where the second and third rows present the transformation
result of the auto term and cross term, respectively. Specifi-
cally, let τ ′ = τ + td and conduct Fourier transform of the
r′-th auto term in (10) with respect to g, we have

Gsm,k
(τ, a) = Fg

[(
α
[r′]
k

)2

e−j2π
fk
c [vr′ (τ+td)+

a
r′
z g]

]

=

(
α
[r′]
k

)2

e−j2π
fk
c vr′τ

′

×
∫ ∞

−∞
e−j2π

fk
c (a+

a
r′
z )gdg

=

(
α
[r′]
k

)2

e−j2π
fk
c vr′τ

′
δ
(
a+

ar′

z

)
, (13)

where δ (·) is the Dirac delta function. On this basis, perform-
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ing the Fourier transform on (13) with respect to τ leads to

Gsm,k
(v, a) = Fτ

[(
α
[r′]
k

)2

e−j2π
fk
c vr′τ

′
δ
(
a+

ar′

z

)]

=

(
α
[r′]
k

)2

δ (v + vr′) δ
(
a+

ar′

z

)
× exp

(
−j2πfk

c
tdvr′

)
. (14)

In (14), each auto term in (10) can be modeled as a Dirac
delta function, resulting in an impulse on the generated V-A
spectrum, and the velocity and acceleration can be obtained
from the coordinates of the impulse. Figure 3 presents an
estimation result based on the CSI collected in a real-world
scenario when different numbers of moving targets appear in
the monitored area. As can be seen, for instance, when two
moving targets appear, two distinct peaks can be observed
from the V-A spectrum. Through these peaks, we can identify
the number of moving human targets and obtain their corre-
sponding velocities and accelerations. However, the Fourier
transform results of the cross terms cause interference in the
V-A spectrum. As the number of moving targets increases, the
interference makes it challenging to identify peaks correspond-
ing to moving human targets in the V-A spectrum. Therefore,
we introduce UW-CDM to reduce the noise in the V-A
spectrum, facilitating the estimation of velocity, acceleration,
and the number of the moving targets.

C. Unified Weighted Conditional Diffusion Model

The diffusion model includes the forward process and
reverse process [19]. During the forward process, it adds
noise to disturb the training data. In the reverse process,
it predicts the noise to train the denoising network [30].
Once completed, it can generate new data via the denoising
network. The generative diffusion model has demonstrated
powerful capabilities in image denoising [25], restoration [31],
synthesis [32], and even channel estimation [33]. Inspired by
this, we propose UW-CDM. The core of UW-CDM is to
constrain the diffusion model by adding conditions, forcing
it to generate desired data, such as the V-A spectrum with
less noise, to support human flow detection.

In the diffusion model, the forward process is defined as
a Markov chain. Let x0 be the original data, in the forward

diffusion process, T rounds of the Gaussian noise are added
to x0, yielding xt, which can be represented as

q (x1:T |x0) =

T∏
t=1

q (xt|xt−1)

=

T∏
t=1

N
(
xt;

√
1− βtxt−1, βtI

)
, (15)

where

q (xt|xt−1) = N
(
xt;µt =

√
1− βtxt−1, βtI

)
, (16)

βt is the variance, and I is the identity matrix. Building on this,
we first add the condition u to the forward process. Given that
the diffusion model is inherently a Markov chain, the value at
any step t depends solely on its previous state. This implies
that the forward diffusion conditional probability at any step
t is independent of u. Hence, we have

q′ (xt|xt−1,u) = q (xt|xt−1) . (17)

On this basis, we can further obtain that

q′ (xt|xt−1) =

∫
u

q′ (xt,u|xt−1) du

=

∫
u

q′ (xt|u,xt−1) q
′ (u|xt−1) du

=

∫
u

q (xt|xt−1) q
′ (u|xt−1) du

= q (xt|xt−1) = q′ (xt|xt−1,u) . (18)

Following a similar way, the joint distribution can be obtained

q′ (x1:T |x0) =

∫
u

q′ (x1:T ,u|x0) du

=

∫
u

q′ (u|x0) q
′ (x1:T |x0,u) du

=

∫
u

q′ (u|x0)

T∏
t=1

q′ (xt|xt−1,u)du

=

T∏
t=1

q′ (xt|xt−1) = q (x1:T |x0) . (19)

From (15) to (19), the derivation process proves that the
condition u has no effect on the forward diffusion process.
However, it is completely different with the reverse diffusion

Ψ

 R′∑
r′=1

(
α
[r′]
k

)2

e−j2π(τ+td)
fk
c (vr′+ar′∆t)

 =

R′∑
r′=1

(
α
[r′]
k

)2

e−j2π
fk
c [vr′ (τ+td)+

a
r′
z g] (10)

Ψ

R′−1∑
r′=1

R′∑
r′′=r′+1

[
AC

s
[r′]
m,ks

[r′′]
m,k

(∆t, τ) +AC

s
[r′′]
m,k s

[r′]
m,k

(∆t, τ)

]
= 2α

[r′]
k α

[r′′]
k e−j2π

fk
c [(vr′+vr′′ )(τ+td)−(ar′+ar′′ )

g
z ]Re

[
e
−j2π

fk
c

2g(vr′−v
r′′ )

z(τ+td) × e
−j2π

fk
c

[
(ar′+a

r′′ )t
2

z2(τ+td)
2 +

(ar′−a
r′′ )(τ+td)

2

4

] ]
(11)
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Fig. 3. The V-A spectra extracted via the velocity and acceleration estimation when different numbers of moving human targets appear in the monitored area.

process. In the reverse process, the diffusion model starts
with Gaussian noise and generates samples through T de-
noising steps. If the reverse distribution q (xt−1 |xt ) can be
obtained, then we can effectively execute the reverse diffusion
process and obtain samples from q (x0). However, obtaining
q (xt−1 |xt ) involves computing the data distribution, which
is, in practice, intractable. Thereby, in the reverse process,
q (xt−1 |xt ) is estimated using the parametric model

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (20)

Following this, the trajectory from xT to x0 is denoted as

pθ (x0:T ) = pθ (xT )

T∏
t=1

pθ (xt−1|xt), (21)

and the loss function can be expressed as

L (θ)=Ex0,ε∼N(0,I),t

[∥∥∥∥εθ ( √
ᾱtx0

+
√
1−

√
ᾱtε, t

)
− ε, t

∥∥∥∥2
]
,

(22)

where ᾱt =
t∏

i=0

(1− βi). Here, L (θ) is a weighted form of

the evidence lower bound (ELBO) −Lθ (x0) ≤ log pθ (x0),
where Lθ (x0) is shown in (23) at the bottom of this page and
LT (x0) = DKL (q (xT |x0) ∥p (xT ) ).

On this basis, we incorporate u as input for the reverse
process to obtain

pθ (x0:T |u ) = pθ (xT )

T∏
t=1

pθ (xt−1|xt,u), (24)

where

pθ (xt−1|xt,u) = N (xt−1;µθ (xt, t,u) ,Σθ (xt, t,u)) .
(25)

This converts 20 into a conditional model, thereby control-
ling the reverse diffusion process to generate the desired data.
Meanwhile, in this paper, the data dimension is large and the
valuable data points are scattered. For example, when W = 80,
a single V-A spectrum comprises 6561 data points. However,
only some specific points, associated with moving human
targets, carry the essential information, while the remaining

ones do not offer much valuable information. Therefore, to
guarantee that these important points play a more significant
role during the training, we further introduce a matrix ψ to
weight different points. Specifically, ψ includes two weight
factors, one is ψ1 = 50, which is assigned to the data points
that contain the vital information we need. The other one is
ψ0 = 1, which corresponds to the remaining points. Through-
out the training, the values of these two parameters remain
unchanged to ensure that important points can always receive
more attention. Therefore, based on the weighting matrix ψ
and condition u, the loss function is further optimized to

Ex0,ε∼N(0,I),t

[∥∥∥∥( εθ
(√
ᾱtx0 +

√
1− ᾱtε, t

)
−ε, t,u

)
⊙ψ

∥∥∥∥2
]
,

(26)
where ⊙ is the Hadamard product operator.
Based on the aforementioned principles, we use the noisy

V-A spectrum as u and the denoised V-A spectrum as the
generation target to train the UW-CDM. Specifically, the
model training process is illustrated in Fig. 4, which includes
five steps:

1) The first step is to obtain the paired V-A spectra with
significant noise and less noise, and then convert them
into the vectors2. During the training process, the noisy
vector is used as a condition (i.e., u in the UW-CDM),
while the spectrum with less noise is used as the expert
spectrum, i.e., the one we want UW-CDM to produce
during the data generation process.

2) The second step is to generate the Gaussian noise and
time. This time will be used to adjust the process of
adding noise to the data.

3) The third step involves adding the generated noise to the
expert spectrum, so as to disturb it.

4) The fourth step is to feed the noisy V-A spectrum,
generated time, and the disturbed expert spectrum into
the diffusion model to train the denoising network.

5) Finally, we compute the loss based on (26) and update
the parameters of the denoising network according to

2Paired spectra are generated via simulation, with target counts, velocities,
and accelerations assigned randomly. Target counts range from 1 to 7,
velocities span -2 to 2 m/s, and accelerations from -3 to 3 m/s². Noise spectra
are produced at a signal-to-noise ratio (SNR) of -10 dB , while expert spectra
are generated at an SNR of 10 dB.

Lθ (x0) = Eq

[
LT (x0)− log pθ (x0|x1) +

∑
t>1

DKL (q (xt−1|xt,x0) ∥pθ (xt−1|xt) )
]

(23)
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Fig. 4. The training process of the proposed UW-CDM for denoising V-A spectrum. First, the V-A spectrum with less noise serves as the expert spectrum,
while the noisy V-A spectrum acts as the condition, and both are converted into vectors.Then, Step 2 generates the Gaussian noise with intensity controlled by
network hyperparameters and the steps for adding noise. Based on this, the Gaussian noise is added to the expert spectrum as the step requirements, thereby
disrupting the expert spectrum, as illustrated in Step 3. Subsequently, the contaminated expert spectrum is fed to Step 4 for denoising, which involves learning
how to reduce noise at each step to generate the spectrum. Here, the goal of the loss function, which is based on denoising score matching, is to reduce the
gap between the added noise that disrupts the expert spectrum and the noise estimated by the model, while considering the step t and the current condition u.
After training, the UW-CDM is capable of generating the V-A spectrum with less noise using the spectrum obtained from velocity and acceleration estimation,
thereby achieving the denoising.

the results.
Once trained, the UW-CDM can generate the V-A spectrum

with less noise based on the given condition, i.e., the noisy V-A
spectrum obtained by the velocity and acceleration estimation,
thereby achieving V-A spectrum denoising. In the generated
V-A spectrum, the peak points corresponding to the moving
human targets become more distinct and are easier to spot.
Therefore, by setting a threshold, the number of peak points
and their coordinates can be identified, enabling us to detect
the number of moving human targets and obtain their velocities
and accelerations.

D. DoA and ToF Estimation

After obtaining the number of moving human targets, the
next step is to determine the number of subflows and the size
of each subflow. As illustrated in Fig. 1, a subflow is composed
of one or more human targets, which are closely spaced
and moving toward the same direction with similar walking
velocities. Therefore, this section estimates the DoA and ToF
of HIR, which unveil the spatial information of moving human
targets, crucial for subsequent human flow detection.

1) DoA Estimation: In practical communication scenarios,
the antenna spacing in the ULA might exceed half a wave-
length. Hence, in G-HFD, we consider that the antenna spacing
of the ULA is one wavelength (i.e., λ) and estimate the DoA
based on the obtained CSI. Specifically, equation (6) gives the
CSI of the cross component at time ∆t from the m-th antenna.
Then, the cross component of the CSI from the m + 1-th
antenna is

h′(m+1)r̄,k (∆t) =

R′∑
r′=1

(
α
[r′]
(m+1)r̄,k e

−j2πfk

[
τ
[r′]
(m+1)r̄

+
d sin(φr′ )

c

]

× e
−j2πfk

[
v
r′∆t

c +
a
r′ (∆t)2

2c

])
, (27)

where d = λ is the antenna spacing and φr′ is the signal DoA.
From (6), (7), and Sm,k, we can see that after eliminating the
interference, (27) is included in sm+1,k (∆t). When d ≤ λ/2,
the MUSIC algorithm [34] can effectively estimate the signal
DoA based on [s1,k (∆t) , s2,k (∆t) , . . . ,sM,k (∆t)]. How-
ever, when d > λ/2, the estimated DoA spectrum becomes
ambiguous3 due to the periodicity of the phase.

To accurately extract the true DoA of HIR, G-HFD needs
to eliminate ambiguous peaks. At the same time, for effective
subsequent subflow analysis, the estimated DoA must be
associated with the obtained velocity. Hence, we first use the
obtained velocity and acceleration to rotate the phase of CSI
and perform joint velocity and DoA estimation to generate
the ambiguous DoA spectrum. Then, the proposed UW-CDM
method is used to generate the clear spectrum by using the
ambiguous spectrum as the condition, thereby realizing the
DoA estimation when d = λ. Concretely, W CSI observations
from M antennas are used to build

SM−W =

 s1,k (0) , . . . , s1,k ((W − 1)∆t)
...

sM,k (0) , . . . , sM,k ((W − 1)∆t)

 . (28)

Then, based on (28) and the estimated velocity and accelera-
tion, the rotation matrix is constructed as

PM−W =


1, . . . , e

j2πfk

[
(W−1)

(
v̂
r′∆t

c +
â
r′ (∆t)2

2c

)]
...

1, . . . , e
j2πfk

[
(W−1)

(
v̂
r′∆t

c +
â
r′ (∆t)2

2c

)]

 ,
(29)

3When a single signal arrives at the ULA, the antenna spacing exceeding
half the wavelength can result in multiple peak points in the spectrum obtained
via DoA estimation. This effect, caused by the periodicity of the phase,
prevents the system from identifying the true DoA of the signal from the
estimated results.
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Fig. 5. The joint velocity and DoA estimation results under different cases when there are six reflections.

where v̂r′ and âr′ are the estimated velocity and acceleration
corresponding to the r′-th HIR, respectively. After that, the
phase rotation is realized by multiplying (28) with (29) to
obtain S′

M−W = SM−W ⊙ PM−W . This multiplication
operation eliminates the phase accumulation caused by v̂r′

and âr′ , so that in S′
M−W the velocity and acceleration of

r′-th HIR are zero.

After that, the two-dimensional MUSIC (2D-MUSIC) al-
gorithm is performed on S′

M−W for joint velocity and DoA
estimation. As the velocity and acceleration corresponding to
r′-th HIR have been rotated to zero, during the parameter
search process, we fix the velocity at zero and search for the
DoA within the range of -90 degrees to 90 degrees to achieve
the estimation. Figure 5 gives a set of simulation estimation
results, including those before and after phase rotation. At
the same time, the estimation results when d = λ/2 are also
provided for reference. From Fig. 5, we can see that:

1) Compared with the result when d = λ/2, the joint
estimation yields an ambiguous DoA spectrum when
d = λ, that is, a single HIR triggers two peaks with
different DoAs.

2) After phase rotation, the velocity corresponding to the
reflection changes from 1.6 m/s to 0 m/s. This allows
for the DoA search by fixing the velocity to 0 m/s
during the estimation process, which not only reduces
the computational load but also matches the estimated
velocity with the DoA.

Based on the ambiguous DoA spectrum, the proposed UW-
CDM is employed to generate the true DoA. We train the
UW-CDM with paired clear and ambiguous DoA spectra,
which are obtained by simulation under the condition of
d = λ/2 and d = λ, respectively. The training process is the
same as that presented in Fig. 4. However, here, the expert
spectrum and condition u are the clear DoA spectrum and
ambiguous DoA spectrum, respectively. After training, the
UW-CDM can generate the clear DoA spectrum based on the
provided ambiguous one, thereby achieving DoA estimation.
The overall estimation process is summarized in Algorithm 1.

2) ToF Estimation: Similar to DoA, we use the phase
rotation combined with joint estimation to obtain the ToF
of each HIR. Specifically, the W CSI observations from K
subcarriers, v̂r′ , and âr′ are used to construct matrices

SK−W =

 sm,1 (0) , . . . ,sm,1 ((W − 1)∆t)
...

sm,K (0) , . . . ,sm,K ((W − 1)∆t)

 (30)

Algorithm 1 DoA Estimation When Antenna Spacing d = λ

1: for r′ = 1 : R′ do
2: Construct the PM−W based on estimated v̂r′ and âr′
3: Phase rotation via S′

M−W = SM−W ⊙PM−W

4: Calculate the auto-correlation matrix of S′
M−W and

perform singular value decomposition to obtain the noise
vector

5: Construct the steering matrix based on (27) and (28),
and combine it with the noise vector to formulate the
spectrum function

6: Fix v = 0 and search for DoA within the range of -90
to 90 degrees to produce the ambiguous DoA spectrum

7: Use the ambiguous spectrum as condition u and em-
ploy the trained UW-CDM to produce the corresponding
clear spectrum

8: Extract the DoA of r′-th signal from the clear spectrum
9: return DoAs of R′ signals

and

PK−W =


1, . . . ,e

j2πf1

[
(W−1)

(
v̂
r′∆t

c +
â
r′ (∆t)2

2c

)]
...

1, . . . ,e
j2πfK

[
(W−1)

(
v̂
r′∆t

c +
â
r′ (∆t)2

2c

)]

 ,
(31)

where fK = f1 + (K − 1)∆f , ∆f is the frequency inter-
val between two adjacent subcarriers, and f1 is the mini-
mum frequency. Then, multiplying (30) and (31) results in
S′

K−W = SK−W ⊙ PK−W . On this basis, using the 2D-
MUSIC algorithm, the ToF of each HIR can be estimated.
Unlike the DoA estimation, here the search range of ToF dur-
ing the estimation is determined by ∆f , thereby guaranteeing
a clear ToF spectrum and effective estimation.

E. Flow Detection

Based on the aforementioned calculations, we obtain the
total number of moving human targets, along with their ve-
locities, DoAs, and ToFs. Given that human targets within the
same subflow are close and maintain similar velocities, their
corresponding parameters tend to cluster together. Therefore,
this section conducts two-stage clustering to determine the
number of subflows and the subflow size.

Specifically, we first use the parameters obtained from
multiple calculations to build a set Y = (yi |i = 1, . . . , I ),
where I is the total number of data points, yi = (v̂i, φ̂i, τ̂i),
v̂i, φ̂i, and τ̂i are the estimated velocity, DoA, and ToF,
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Fig. 6. The affinity propagation clustering process.

respectively. Then, in the first stage, the adaptive affinity
propagation clustering [35] is conducted on Y to determine the
total number of subflows. The key idea in affinity propagation
clustering is to transmit and iterate responsibility and avail-
ability among the data points in Y to generate several cluster
centers. On this basis, the rest of data points are assigned to the
respective cluster based on these centers, thereby completing
the clustering. The overall flow is given in Fig. 6. During this
process, the similarity between the two data points is defined
as

sim (yi,yi′) = −∥yi − yi′∥2, (32)

where ∥·∥2 is the second norm operator, and the responsibility
can be calculated as

res (yi,yi′) = sim (yi,yi′)

− max
i′′ ̸=i′

{ava (yi,yi′′) + sim (yi,yi′′)} . (33)

Meanwhile, the availability used in (33) is defined as

ava (yi,yi′) = min

{
0, res (yi′ ,yi′)
+

∑
i′′′ /∈{i,i′}

max {0, res (yi′′′ ,yi′)}

}
,

(34)

when i ̸= i′. Otherwise we have

ava (yi,yi′) =
∑

i′′′ ̸=i′

max {0, res (yi′′′ ,yi′)}. (35)

Here the res (yi,yi′) indicates the accumulated evidence
that sample yi′ is the cluster center of sample yi, while
ava (yi,yi′) represents the accumulated evidence that sample
yi selects sample yi′ as its cluster center. After several
iterations, if the selected cluster centers remain unchanged,
then we sum up the responsibility and availability and output
the clustering results. These results include the number of
clusters and the data points contained in each cluster, where
the number of clusters represents the number of subflows.

After determining the number of subflows, G-HFD further
needs to identify how many moving targets are within each
subflow. Therefore, in the second stage, we perform K-means
clustering on Y to divide it into Υ clusters, where Υ is
the obtained total number of human targets. The clustering
process is presented in Algorithm 2. After that, by comparing
the outcomes of the two-stage clustering, we can determine
the number of clusters that are covered by the data points
in each subflow, therefore determining the number of human
targets contained in each subflow. It is worth noting that
data points corresponding to a single human target may span
across multiple subflows. In such instances, the target is finally
assigned to the subflow that contains the majority of the data
points. Figure 7 shows the flow detection process based on the
data collected from real world scenario.

Algorithm 2 Clustering for Subflow Size Detection
1: Input the set Y and parameter Υ as the number of classes.
2: Find out Yp that has the minimum sum of the squared

error (SSE) in Y
3: Utilize the K-means algorithm (K = 2) to perform Φ

times of classification on the class Yp to obtain C =
{C1, . . . , CΦ}, where Cϕ= {Yϕ1, Yϕ2}

4: Single out the class Cϕ= {Yϕ1, Yϕ2}, which has the min-
imum SSE

5: Add Cϕ= {Yϕ1, Yϕ2} to Y and remove Yp from Y
6: Repeat the above steps until Υ clusters are obtained
7: return cluster label of each data point

III. IMPLEMENTATION AND EVALUATION

In this section, we build a platform based on the commercial
routers and conduct tests to evaluate the proposed system
in practical communication scenarios. The evaluation mainly
includes three aspects: (i) the effectiveness of the proposed
UW-CDM network in V-A spectrum denoising and DoA spec-
trum generation; (ii) the performance in detecting the number
of human targets; and (iii) the performance in detecting the
number of subflows and the size of each subflow.
A. Experimental Configurations

1) Experimental Scenarios: We choose a representative
corridor and a meeting room as our experimental scenario,
depicted in Fig. 8. This corridor is characterized by two
elevator exits, one emergency exit, and two intersections con-
necting to two separate corridors. Compared with corridors,
the conference room is more enclosed and contains many
tables and chairs, resulting in a greater number of reflected
signals. Hence, the conference room presents a more complex
environment than the corridor. In typical office environment,
these areas often experience dense pedestrian movement with
unpredictable patterns, marking them the key areas for flow
monitoring.

2) Hardware Configuration: In this paper, two commercial
ASUS APs and one UE are used to complete the experiments,
as shown in Fig. 8. Specifically, one AP acts as Tx to provide
network services, while the other one, equipped with the
Nexmon toolbox, acts as the Rx to capture signals and extract
CSI. This Rx has four radio-frequency channels, one with a
directional antenna for direct signal reception from the Tx,
and the other three form a ULA with the antenna spacing of
one wavelength to capture multipath signals. The Tx uses an
omnidirectional antenna to offer Internet services. Throughout
the experiment, the signal frequency is fixed at 5.805 GHz,
with a bandwidth of 80 MHz.

3) Experimental Method: During the experiments, the UE
connects to the Tx and performs three Internet activities, in-
cluding downloading files, online games, and watching videos.
According to the activities, the Tx transmits the data to the
UE with varying packet transmission rates. In these three
cases, the Rx captures the downstream signals to evaluate
the system’s performance without affecting the communication
between the UE and Tx. In the experiment of detecting the
total number of human targets, a variable number (up to ten) of
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human targets randomly form subflows and walk through the
monitored area to facilitate data collection. For the subflow
detection, ten human targets randomly form some subflows
and walk through the detection area for data collection. All the
gathered data is then processed offline on a server, which is
installed with the Ubuntu 20.04 operating system and equipped
with an AMD Ryzen Threadripper PRO 3975WX 32-core
processor and an NVIDIA RTX A5000 graphics processing
unit (GPU). It is worth noting that we train the proposed
UW-CDM network by using the paired data generated through
simulations. Subsequently, the trained model is employed to
process the collected data to complete the evaluation.

4) Evaluation Metrics: We employed detection accuracy
(DA) as the metric for assessing the system’s performance
in human flow detection. This metric is defined as the ratio
of the number of correct detections to the total number of
experiments conducted. Taking the detection of the number of
subflows as an example, if out of 100 experiments, G-HFD
correctly detects 90 times, then the DA is 90%. For subflow
size detection, a correct detection means that the number
of human targets in each subflow is accurately detected.
Meanwhile, we also use the confusion matrix to analyze the
flow detection performance under different conditions.

B. Experimental Results

1) V-A Spectrum Denoising: We first assess the denois-
ing performance of UW-CDM in a practical communication
scenario where the UE is downloading files, and compare
it with two CNN-based denoising models proposed in [36]
and [37], which are denoted as PMRID and DPIR, respec-
tively. Using five human targets walking at a normal speed as
examples, Figs. 9(a) and (b) present the input noisy spectrum
and the output of UW-CDM, respectively. As can be seen,
after ten inference steps, UW-CDM can effectively produce
the denoised V-A spectrum. Compared with the input noisy
V-A spectrum, two observations stand out. First, without
denoising, identifying the peak points corresponding to the
targets is challenging due to the interference introduced by
signal noise, cross terms, etc. After denoising, the peak points
corresponding to the human targets become more discernible,
which facilitates a straightforward and accurate detection
of the number of moving human targets. Second, after the
denoising, the positions of the peak points corresponding to
the human targets are nearly the same as before denoising.
This consistency indicates that the denoising does not affect
the coordinates (i.e., the acceleration and velocity) of the peak
points in the spectrum, verifying the effectiveness of UW-
CDM in V-A spectrum denoising. Note that with our platform,
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(a) The input noisy V-A spectrum. (b) The denoising result of UW-CDM.
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(d) The denoising result of DPIR.

Fig. 9. The denoising performance comparison of different models.
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Fig. 10. The denoising results at various noise intensities. (a) and (c) are the noisy V-A spectra when there are two and eight targets, respectively, and (b)
and (d) are the corresponding denoising results.

ten inference steps require about 2.1 seconds, which may not
be able to support applications that require low response delay.
Fortunately, many methods were proposed to accelerate the
inference in diffusion models [38], which can significantly
reduce the response delay of the proposed model, thereby
enabling real-time applications.

Meanwhile, as depicted in Figs. 9(c) and (d), PMRID and
DPIR also demonstrate denoising capabilities while keeping
the positions of the target peaks, as indicated by the boxes
in the figure. However, compared with UW-CDM, their de-
noising is not as thorough. Specifically, in the denoised V-
A spectrum, besides the peaks corresponding to the targets,
there are still some other noise peaks with relatively strong
energy, as marked by circles in Figs. 9(c) and (d). These noise
peaks could be mistakenly recognized as target peaks and
hence affect the detection accuracy. Therefore, the denoising
performance of the proposed diffusion model-based UW-CDM
is superior to that of the CNN-based PMRID and DPIR,
offering more thorough noise cancellation and ensuring the
detection performance of the number of targets.

Upon validating the effectiveness, we analyze its denoising
performance when a different number of targets appear, i.e.,
under varying noise intensities, with the results provided in
Fig. 10. As can be seen, with two targets, UW-CDM effectively
eliminates noise in the V-A spectrum so that the peaks of
the targets can be easily and accurately detected. As the
number of targets increases to seven, the interaction among
targets intensifies, causing an increase in noise within the V-A
spectrum, as shown in Fig. 10(c). Under these conditions, the
performance of UW-CDM exhibits a slight decline, evidenced
by the incomplete cancellation of some noise points, as marked

in Fig. 10(d). However, overall, UW-CDM remains effective
in eliminating strong noise peaks, making the peaks corre-
sponding to targets more pronounced and thereby ensuring
their efficient and accurate detection.

2) DoA Spectrum Generation: Following V-A spectrum
denoising, we evaluate UW-CDM’s performance in gener-
ating the clear DoA spectrum. During the tests, a single
human target walks along predetermined routes while the UE
downloads files, so that the ground truth for DoA can be
obtained for accuracy analysis. Figure 11 shows the DoA
spectrum generation process. From the figures, we can see
that, starting with Gaussian noise, the trained UW-CDM can
effectively generate the clear DoA spectrum based on the given
ambiguous DoA spectrum, by leveraging the reverse diffusion
process. Unlike the input ambiguous spectrum, the generated
one contains only one peak point corresponding to the single
moving human target, enabling the proposed G-HFD to extract
the DoA of the HIR when the antenna spacing of ULA is λ.

After that, we analyze the accuracy of DoA in the generated
spectrum when the UE performs different activities, and com-
pare it with the DoA estimation accuracy when the antenna
spacing is half a wavelength (i.e., d = 0.5λ). The cumulative
distribution function (CDF) presented in Fig. 11 reveals that
the median DoA estimation error is about 5.2 degrees when
the UE downloads files and d = 0.5λ. Meanwhile, the median
DoA errors of UW-CDM are 6.1, 6.3, and 6.7 degrees, when
UE performs downloading files, online games, and watching
videos, respectively, which are comparable to the accuracy
obtained when d = 0.5λ. These results further demonstrate
the effectiveness of UW-CDM in clear DoA spectrum gener-
ation when d = λ, providing reliable parameter support for
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subsequent human flow detection.
3) Clustering Analysis: Using the obtained signal parame-

ters, we perform the clustering analysis. For instance, with six
targets forming three subflows with the sizes of 3, 2, and 1,
Fig. 12 shows the clustering outcomes and each target’s signal
parameter distribution. As can be seen, through the first stage
of clustering, G-HFD can first divide the signal parameters into
three clusters to get the number of subflows. Then, through the
second stage of clustering, G-HFD divides the parameters into
6 clusters. Combining these clustering results, the size of each
subflow can be identified. Additionally, as shown in Fig. 12(d),
different subflows display significant differences in DoA and
velocity, but less in ToF. This is reasonable, as subflows can
move toward different directions at various locations, resulting
in more distinct DoAs and velocities. However, their distances
relative to the Rx and Tx may be similar, resulting in smaller
differences in ToF.

4) Detecting the Number of Human Targets: Based on
the denoised V-A spectrum, we investigate the system’s per-
formance in detecting the number of targets. During the evalu-
ation, we compare the proposed system with those in [10], [9],
and [11] (denoted as WSTM, WiFlowCount, and SFCC,
respectively) and present the results through DA and confusion
matrices. Here, the reason for selecting them as comparison
systems is that they are all CSI based systems. Moreover, a
common feature among them is their utilization of traditional
AI techniques for target detection in a typical manner, i.e.,
signal feature extraction and classification. Specifically, Wi-
FlowCount and SFCC utilize CNN and SVM as classifiers,
respectively, to realize detection by classifying extracted signal
features. WSTM employs the RNN to capture the spatial-
temporal correlations among crowd features for detection. By
comparing our system with them, the differences in usage

and performance between GAI and traditional AI models in
detecting the number of targets can be highlighted.

Figure 13 presents the performance comparison of detecting
the number of targets in two scenarios. For instance, as shown
in Fig. 13(a), when the UE is engaged in downloading files,
online games, and watching videos, the DA of the proposed
G-HFD is 92%, 87%, and 79%, respectively, which is better
than WSTM’s 89%, 81%, and 72%, WiFlowCount’s 88%,
77%, and 68%, and SFCC’s 88%, 71%, and 65%. From the
results, we can see that first the G-HFD performs best when
UE downloads files, with online games and watching videos
following in order. This is because the packet transmission
rate of the Tx reaches the highest when UE downloads files,
averaging 488 packets per second. This transmission rate
decreases to 299 packets per second during online games and
further to 249 during watching video. Given the fixed duration
covered by W in equation (7), 0.2 seconds in this paper4,
higher transmission rate results in more data for the velocity
and acceleration estimation, which boosts the V-A spectrum’s
resolution and finally enhances the detection accuracy. Similar
observations can be made in Fig. 13(b). For example, when
the UE downloads files, the DA of G-HFD can reach 91%,
better than 86% and 79%, achieved during online games and
watching videos, respectively. Second, for all activities, G-
HFD offers better DA than those of the other systems. For
example, in a meeting room, the DA of G-HFD can reach
91% when the UE downloads files, which is better than
WSTM’s 87%, WiFlowCount’s 85%, and SFCC’s 84%. The
reason is that each moving human target has unique velocity

4According to the existing research [39], [40], in indoor environments, the
channel coherence time is approximately 0.2 seconds. Within this time span,
the channel parameters can be considered stable.
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(b) The detection performance comparison in the meeting room.

Fig. 13. The performance comparison of detecting the number of targets
under two test scenarios.

and acceleration. Using the denoised V-A spectrum, G-HFD
can distinguish human targets based on the velocity and
acceleration, offering a better differentiation than traditional
spatial-temporal matrices or Doppler based methods.

From the confusion matrix in Fig. 14 and Fig. 15, we can
see that in both scenarios, the DA decreases with an increase
in the number of human targets. Specifically, in the corridor,
taking the downloading files as an example, the DA of G-
HFD decreases from 98% to 81% as the number of targets
increases from 1 to 10. This deterioration is more severe for
the Internet activities with a lower packet transmission rate,
such as watching videos. For instance, in the meeting room,
when the UE is engaged in watching videos, G-HFD’s DA
decreases from 96% to 57% as the number of targets increases
from 1 to 10. The decline is attributed to the increased mutual
interference among more dynamic targets, which introduces
additional noise into the V-A spectrum, adversely affecting
detection performance. Furthermore, the system’s performance
is more significantly affected when the packet transmission
rate is lower. More fundamentally, G-HFD’s detection of
human targets relies on the V-A spectrum, which means
the maximum number of targets that can be detected is
bounded by both the resolution and the noise level of the V-
A spectrum. Here, the resolution is determined by the packet

transmission rate, while the noise level is influenced by various
factors, including the physical environment and the presence
of human targets. For a specific number of targets, a lower
transmission rate results in lower V-A spectrum resolution
and DA. Similarly, with fixed transmission rate (i.e., V-A
resolution), the detection performance is mainly affected by
the noise level. Therefore, increasing the packet transmission
rate appropriately can enhance the detection capacity for the
maximum number of targets.

5) Subflow Detection : Finally, we evaluate the G-HFD’s
performance in detecting the number of subflows and the size
of each subflow in two test scenarios involving ten dynamic
targets. Figure 16 illustrates the performance of detecting the
number of subflows. For instance, in the corridor, the DAs of
G-HFD are 93%, 87%, and 80%, respectively, outperforming
WiFlowCount’s 89%, 82%, and 70%, when UE performs three
different activities. This implies that G-HFD can effectively
separate target induced signals through clustering in the space
formed by velocity, DoA, and ToF, thereby accurately identi-
fying the number of subflows. In comparison to WiFlowCount
based on the Doppler effect, G-HFD characterizes the signal
parameters of HIR from multiple dimensions, which is more
comprehensive, thereby performing better. On this basis, the
confusion matrices reveal that G-HFD’s DA drops when there
are fewer subflows. Concretely, as can be seen in Figs. 16(b)
and (c), when the number of subflows decreases from 7 to 2,
the DA declines from 97% to 86% in the corridor. Similarly,
in the meeting room, the DA decreases from 97% to 84%,
further demonstrating the effect of reducing the number of
subflows on the detection performance. This can be interpreted
by that, with fixed number of targets, fewer subflows mean
more targets in each subflow, resulting in more data points
corresponding to each subflow. These points cover wider range
across three dimensions, making them likely to be wrongly
clustered into multiple groups, which finally reduces the DA.

Figure 17 presents the subflow size detection performance
of G-HFD. As can be seen, for the three different UE activities,
the DAs of G-HFD in the corridor are 91%, 87%, and 73%,
respectively, better than WiFlowCount’s 87%, 79%, and 62%.
In the meeting room, G-HFD’s DA can reach 90%, 87%,
and 72%, while WiFlowCount can reach 86%, 77%, and
61%, respectively. These results demonstrate the effectiveness
of G-HFD in subflow size detection. Meanwhile, they also
reveal that G-HFD provides higher DA. This superiority
fundamentally stems from G-HFD’s reliance on analyzing
features of the target induced reflections across time, space,
and frequency domains for detection. Compared with the
Doppler spectrum, these features depict the spatial distribution
and dynamic characteristics of the target more accurately and
comprehensively, thereby enhancing its performance.

Additionally, the confusion matrices show a decrease in
DA as subflow size increases. For instance, in the corridor,
the DA decreases from 94% to 86% when the subflow size
increases from 1 to 6. Similarly, for the meeting room, we
can see that the DA drops from 94% to 85%. This occurs
because fewer subflows with fixed number of targets means
more targets per subflow, causing two negative impacts. First,
the mutual influence among dynamic targets within the same
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Fig. 14. The confusion matrix of detecting the number of targets in the corridor when UE performs three Internet activities.
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Fig. 15. The confusion matrix of detecting the number of targets in the meeting room when UE performs three Internet activities.
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Fig. 16. The performance comparison of detecting the number of subflows. (a) shows the comparison of overall detection accuracy. (b) and (c) display the
confusion matrices for detecting the number of subflows in the corridor and meeting room, respectively, when the UE downloads files.

subflow becomes more significant, which amplifies the noise
in the V-A spectrum, affecting the detection of the number
of the targets. Second, the range of signal parameters covered
by each subflow expands, resulting in potential overlaps of
signal parameters from different subflows, which impacts the
recognition of the number of subflows. Consequently, this
degradation in detecting the number of targets and subflows
adversely affects subflow size detection performance. For such
performance degradation, the fundamental solution lies in en-
hancing the differentiation between data points corresponding
to different targets, which depends on the signal parameter
estimation accuracy. Hence, we can mitigate such degradation

by increasing the signal bandwidth, packet transmission rate,
and adding more antennas to improve parameter estimation
performance.

IV. CONCLUSION

This paper proposes G-HFD, which, unlike current tra-
ditional AI model-based systems, leverages GAI to extract
and enhance the signal parameters, enabling fine-grained flow
detection, including the total number of human targets and
subflows, as well as subflow sizes. Within G-HFD, we propose
the diffusion model-based UW-CDM, which can denoise the
velocity and acceleration estimation results, thereby improve
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Fig. 17. The performance comparison of subflow size detection. (a) shows the comparison of overall detection accuracy. (b) and (c) display the confusion
matrices for detecting the subflow size in the corridor and meeting room, respectively, when the UE downloads files.

the system’s ability to detect the number of human targets.
Additionally, the UW-CDM can also generate the clear DoA
spectrum based on a given ambiguous one, which enables
the DoA estimation when the antenna spacing exceeds half
a wavelength and facilitates the subflow detection. Using the
downlink signals in practical communication, the evaluations
show that G-HFD’s human subflow size detection accuracy
can reach 91%, when the UE downloads files. This not only
validates G-HFD’s effectiveness in fine-grained flow detection,
but also demonstrates the crucial potential of GAI in wireless
sensing. In the future, we will further explore the applications
of GAI models in signal processing and their potential support
for wireless sensing.
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