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ABSTRACT: 

The rise of electron microscopy has expanded our ability to acquire nanometer and atomically 
resolved images of complex materials. The resulting vast datasets are typically analyzed by human 
operators, an intrinsically challenging process due to the multiple possible analysis steps and the 
corresponding need to build and optimize complex analysis workflows. We present a methodology 
based on the concept of a Reward Function coupled with Bayesian Optimization, to optimize 
image analysis workflows dynamically. The Reward Function is engineered to closely align with 
the experimental objectives and broader context and is quantifiable upon completion of the 
analysis. Here, cross-section, high-angle annular dark field (HAADF) images of ion-irradiated (Y, 
Dy)Ba2Cu3O7-δ thin-films were used as a model system. The reward functions were formed based 
on the expected materials density and atomic spacings and used to drive multi-objective 
optimization of the classical Laplacian-of-Gaussian (LoG) method. These results can be 
benchmarked against the DCNN segmentation. This optimized LoG* compares favorably against 
DCNN in the presence of the additional noise. We further extend the reward function approach 
towards the identification of partially-disordered regions, creating a physics-driven reward 
function and action space of high-dimensional clustering. We pose that with correct definition, the 
reward function approach allows real-time optimization of complex analysis workflows at much 
higher speeds and lower computational costs than classical DCNN-based inference, ensuring the 
attainment of results that are both precise and aligned with the human-defined objectives.  
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Electron and scanning probe microscopy have emerged as a primary method to provide 
insights into the microstructure, composition, and properties of a wide range of materials, from 
metals and alloys to polymers and composites.1-4  These techniques generate large volumes of 
imaging data containing information on material structure that can be further connected to 
fundamental physics and chemistry, processing, etc.5 However, the large amount of imaging data 
requires consistent analysis methods.6-8 Traditionally, this has been accomplished using the 
collection of the standard image processing techniques including various forms of background 
subtraction9, 10, filtering11, and peak finding12-14, all applied by the human operator sequentially.15 
The employment of machine learning methodologies, particularly DCNN (Deep Convolutional 
Neural Network) segmentation16-20, has notably enhanced and expedited certain steps within this 
analytical framework; however, the overall progression of image analysis remains the same. This 
type of analysis is also computationally intensive21-24 and requires the ensemble networks to 
effectively manage deviations from anticipated data distributions.25 Most importantly, it is strongly 
biased by the operator’s expertise and can potentially be steered towards anticipated answers via 
decisions made at each analysis step.  

Here we present a method for image analysis that utilizes a reward function concept 26, 27. 
This involves setting a measure(s) of success that can be quantitatively established by the end of 
the analysis. With the reward function defined, the analysis workflow including the sequence and 
hyper-parameters of individual operations can be optimized via one of the suitable stochastic 
optimization frameworks. The simple image analysis workflow is optimized by Bayesian 
Optimization28-31 which allows dynamic tuning of the parameters to achieve optimal performance. 
This concept can be further adapted to more complex, multi-stage workflows via reinforcement 
learning, Monte Carlo decision trees, or more complex algorithms.32, 33 

In proposing reward-driven workflows, we note that typically human-based image analysis 
is performed to optimize certain implicit measures of the analysis quality. For example, in atomic 
segmentation, this task is to identify and classify all the atoms of a certain type, or all defects 
within the image. Here we propose that analysis can be cast as an optimization problem if the 
reward function based on the analysis results can be formulated. Then the process becomes 
optimized in the parameter space of the simple analysis functions. Here, we consider two specific 
tasks, namely atom finding in atomically resolved images and identification of amorphized regions 
within the material.  

As a model system, we chose a 1.2 µm thick YBa2Cu3O7-δ thick film, doped with Dy2O3 
nanoparticles, fabricated using a metal-organic deposition process. The sample then was irradiated 
with an Au5+ ion beam oriented along the c-axis of the Yttrium Barium Copper Oxide (YBCO), 
and the cross-sectional and plan-view TEM specimens were prepared through standard mechanical 
polishing, followed by final thinning using Xe Plasma Focused Ion Beam (Xe PFIB).34 

As a first model task, we consider the semantic segmentation,35-38 or “atom finding” of 
atomically resolved images.39 Traditionally this has been accomplished using the peak finding 
procedures, correlative filtering, Hough transforms40, 41, or versions of Laplacian of Gaussian 
(LoG) approaches42, 43. These approaches require extensive tuning of the parameters of the image 
analysis function with the human assessment of the results as feedback. The introduction of 
DCNNs has resulted in broad interest in deep learning segmentation of images44-46, with multiple 
efforts utilizing versions of U-Nets47, 48, masked RCNNs49, and other architectures reported 
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recently. The use of simple analysis methods requires careful manual tuning of parameters and 
tends to be very brittle – the contrast variations even within a single image can result in measurable 
differences of performance. Comparatively, DCNN methods are more robust, but require 
supervised training and can be sensitive to out-of-distribution drift effects.50-52 

Taking atom detection as an initial instance of the reward-driven process, we demonstrate 
optimization of the conventional Laplacian of Gaussian (LoG) algorithm. This approach is 
characterized by a set of control parameters including min_sigma (σmin), max_sigma (σmax), 
num_sigma (σnum), threshold (T), and overlap (θ), which define its parameter space, as illustrated 
in Fig. 1(A). 

To cast the image analysis as an optimization problem, we define possible physics-based 
reward (or objective) functions. One such function can be defined based on the expected number 
of atoms within the field of view, readily available from image size and lattice parameter of 
material. The LoG algorithm's effectiveness in relation to its hyper-parameters is determined by a 
metric we refer to as Quality Count (QC), which is defined as the normalized difference between 
the number of atoms found by Laplacian of Gaussian (LoG) and the physics-based reward 
standard, formulated as: 

 

𝑄𝐶 =
𝐿𝑜𝐺	𝑏𝑙𝑜𝑏𝑠 − 𝑃ℎ𝑦𝑠𝑖𝑐𝑠_𝑏𝑙𝑜𝑏𝑠

𝑃ℎ𝑦𝑠𝑖𝑐𝑠_𝑏𝑙𝑜𝑏𝑠  

 
(1) 

To avoid reward hacking in this context, we also recognize that the total count of atoms is 
an overarching characteristic, and for a segmentation algorithm to be effective, it should adhere to 
more specific requirements. The second constraint is that atoms need to be spaced at distances that 
are physically plausible. To incorporate this aspect, we introduce a second component to the 
reward function, which we call the Error function.  

The Error function (ER) will be applied to measure the incidence of atoms in regions that 
are not aligned with the structural configuration of the YBCO lattice. As shown in Fig. 1(B), any 
atom with a cumulative interaction value less than DS (summation of distances) with its four 
nearest neighbors will be regarded as not having physical significance, and thus, categorized as an 
error within this context. 
 

𝐸𝑅 = 	
#	𝑎𝑡𝑜𝑚𝑠	𝑤𝑖𝑡ℎ	cumulative	interaction	value	less	than	𝐷𝑆

𝑃ℎ𝑦𝑠𝑖𝑐𝑠_𝐵𝑙𝑜𝑏𝑠  (2) 

 
In this setting, the optimization of LoG analysis that we will further refer to as LoG*, becomes 
that of the multi-objective Bayesian Optimization in the image processing parameter space, where 
objectives QC and ER are minimized jointly.  
In this case, we can further define a benchmark for accuracy, which we designate as "Oracle" in 
this context. A possible way to create an Oracle for the atomic segmentation task can be performed 
using the pre-trained DCNN, providing near-ideal identification of all atomic positions. These can 
be further classified (with human tuning) into specific types. We refer to the DCNN analysis as 
“Oracle” comparable to human-based analysis and use Oracle to verify the results of the reward-
driven workflows accomplished with much simpler tools.  
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We employed the Skopt library53, 54 to implement hyper-parameter optimization, specifically 
focusing on adjusting the threshold and overlap parameters of the Laplacian of Gaussian (LoG) 
function. As represented in Fig. 1(C), a set of optimal solutions, or Pareto front, where no 
objective can be improved without degrading the other was obtained. Through this framework, a 
delicate balance between the dual objectives has been established, leading to the discovery of an 
optimal hyper-parameter configuration for the LoG function. Two common metrics to identify 
the "best" solutions within the Pareto Frontier are the Euclidean and Chebyshev distances.  

 

 
Figure 1. A) Laplacian of Gaussian Hyper-parameters, min_sigma (smin), max_sigma (smax), 
num_sigma (snum), threshold (T), and overlap (q), B) Error function definition based on the 
presence of atoms in areas that deviate from the structural arrangement of the YBCO lattice, C) 
Pareto Frontier solutions with respect to Oracle-A, and Oracle-B). Each point represents an optimal 
trade-off point such that improving one objective would compromise another. This balance 
delineates the optimal hyper-parameter settings for the Laplacian of Gaussian (LoG) function, 
achieved by finely tuning the competing objectives. 

Displayed in Fig. 2(A) is the workflow development utilized for Multi Objective-Bayesian 
Optimization. This workflow outlines the order of steps throughout the analysis procedure. We 
note that this approach can be readily applied to the scenarios when the image quality or acquisition 
conditions vary across the image, e.g., due to the mis-tilt or presence of non-crystalline 
contaminates, etc. For these tasks, the algorithm can be implemented in the sliding window setting 
where the parameters are optimized for each. Further, this workflow can be customized to focus 
on different rewards such as the identification of the amorphous regions or other objectives of the 
study as presented in Fig. 2(B).  

As a next step, we explore the robustness of the proposed approach with respect to the 
noise in the image. To accomplish this, Gaussian noise levels from 0 to 1, where 0 is the image 
without noise have been applied to a specific set of images. Upon noise addition, the number of 
atoms is identified both by DCNN and optimized (LoG*) algorithm. Fig. 3(A) depicts the variation 
in optimal hyperparameters of the LoG model in response to different levels of added noise. 
Correspondingly, Fig. 3(D) demonstrates that the best Pareto front solutions, which represent the 
objectives (QC and ER), adapt in a manner that fulfills the reward requirements. 

In DCNN models, elevating the noise level leads to the introduction of artifacts that mimic 
the appearance of new atoms in the images, thereby generating false positives as depicted in Fig. 
3(C). In contrast, the LoG function demonstrates resilience when subjected to comparable 
increases in noise, avoiding the misidentification of these artifacts as new atoms, as evidenced in 
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Fig. 3(B).  This stability can be attributed to the implementation of the ER function within the LoG 
framework, which effectively prevents the function from mistakenly identifying features caused 
by noise as real atomic points.  

 

 
Figure 2. A) Workflow for reward-driven methodology in TEM images, Data preparation, 
Optimization of the LoG function based on two objectives using Multi-objective Bayesian 
Optimization, and Processing, B) Workflow for reward-driven methodology in TEM images, task 
specified version. 

Fig. 3(F) illustrates the detection capability of the DCNN model regarding Gaussian noise 
levels. The number of detected atoms increases significantly with the Gaussian noise level after a 
certain point (Noise level of 0.6), which implies that the DCNN begins to mistakenly identify noise 
artifacts as atoms, thereby detecting false positives. Fig. 3(E) represents the detection results of 
the LoG method under the same conditions. In contrast to the DCNN, the LoG detection exhibits 
a much lower variability in the number of detected atoms across noise levels, maintaining a 
relatively consistent count. This implies that the LoG approach is more selective, mainly 
identifying actual atomic points and not creating false positives by noise-related distortions. 
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Figure 3. A) Optimal hyper-parameter space changes verses noise level in the LoG* optimized 
method, B) Detected atoms using the LoG* optimized method on the image with a moderate noise 
level, C) Detected atoms using a (DCNN) model scattered on the image, D) Optimal objective 
space change verses noise level in the LoG* optimized method, E) Number of detected atoms 
versus Gaussian noise level using the LoG* optimized method, F) Number of detected atoms 
versus Gaussian noise level using a (DCNN) model. 

We have further explored the applicability of this approach towards more complex tasks 
of identification of the amorphous regions. Here, the complexity of analysis is that the damage 
introduces amorphization and change of observed image contrast on oxygen and copper lattices, 
whereas the bright atoms remain visible. Correspondingly, manual construction of the workflow 
combining segmentation, multiple possible clustering and dimensionality reduction algorithms can 
be a very time-consuming and operator-dependent step. Here we illustrate that the use of the 
reward function approach allows us to solve this problem via workflow combining window size 
selection and automated parameter tuning of a specific clustering method, namely the Gaussian 
Mixture Model (GMM). 

Considering the workflow in Fig. 2(B), initially, we implemented GMM clustering 
techniques to identify the diverse atomic configurations within the YBCO structure. Fig. 4(A) 
displays the categorization of all atomic types present in the YBCO structure. We organized these 
into four distinct clusters corresponding to the CuO2 (Planes), CuO (Chains), Ba (Barium), and Y 
(Yttrium) components, respectively. Given that certain atomic varieties can dominate the 
clustering outcomes, we refined our approach by reducing the number of cluster types to 
specifically focus on barium (Ba) atoms. This was achieved by conducting two separate (GMM) 
clustering analyses on patches centered exclusively on Ba atoms. As illustrated in Fig. 7(B), two 
distinct clusters were identified, corresponding to the orientation of barium (Ba) atoms. These 
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clusters are categorized based on their orientation: Ba1 is aligned along a principal axis, while Ba2 
is configured to exhibit two-fold rotational symmetry with respect to Ba1. By concentrating solely 
on Ba1 or Ba2 atoms, (GMM) clustering enables us to detect the variations in Ba atoms.  

In this context, following the logic that atoms in crystalline regions are well-organized and 
show minimal deviations from their expected lattice positions, resulting in a tightly packed 
clustering. However, any observed dispersity within these clusters serves as a clear indicator of 
deviations from the expected lattice positions, which is characteristic of atoms in amorphous areas. 
This distinction allows for the differentiation of crystalline and amorphous structures based on the 
spatial arrangement and variability of atomic positions.  

Fig. 4(C) demonstrates that the clustering of atomic points can be controlled through the 
adjustment of two hyper-parameters of GMM: threshold and covariance type. According to our 
hypothesis, atomic points that surpass a predetermined threshold, when analyzed using a specific 
covariance type, should be classified as amorphous. This classification is substantiated by the 
observed dispersity of these points away from the core cluster, which is predominantly associated 
with crystalline regions. In this instance, the effectiveness of (GMM) clustering depends primarily 
on hyper-parameter selection and can be improved by devising a customized reward system that 
better aligns with desired outcomes. 

To direct (GMM) clustering toward not only pinpointing the location but also assessing the 
area occupied by atoms deviating from their predicted positions, the compactness of these 
identified regions should be considered a valuable metric for rewards. Given that compactness is 
a critical characteristic, the second component of the reward should focus on regions with minimal 
perimeter. By integrating both compactness and perimeter as objectives in our analysis, we 
establish a workflow that is both practical and dependable.  

As depicted in Fig. 4(D), a set of optimal solutions was identified, demonstrating that no 
objective can be enhanced without adversely affecting another. By employing metrics to pinpoint 
the "best" solutions on the Pareto Frontier, the analysis effectively determined the optimal 
threshold and covariance type for Gaussian Mixture Model (GMM) clustering, as presented in Fig. 
4(E). The deployment of the clustering map on the image of the YBCO substrate, as demonstrated 
in Fig. 4(F), effectively reveals areas within the YBCO structure where there is a higher likelihood 
of atoms deviating from their predicted positions. 

To summarize, here we introduce an approach for the development of complex image 
analysis workflows based on the introduction of a reward function aligned with experimental 
objectives. This reward function is a measure of the success of analysis, and can be built based on 
simple physical consideration, comparisons to the oracle functions, or any other approach imitating 
human perception. With the reward function being defined, the image analysis problem reduces to 
that of the optimization in the combinatorial space of image operations and corresponding hyper-
parameters, taking advantage of the immense volume of knowledge in his field. 

Here, this approach has proven to be effective in a case study involving in situ ion irradiated 
YBa2Cu3O7-δ layer images, where it facilitated the accurate identification of atomic positions and 
detection of amorphous regions. We propose the physics-based multi-objective reward functions 
for finding atom positions and classification of the amorphous regions and demonstrate the 
Bayesian optimization in the parameter space of multi-step simple image analysis functions to 
yield robust identification.  
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Figure 4: A) GMM clusters based on all the patches, providing 4 clusters with respect to 4 types 
of strong atoms in the YBCO structure. B) GMM clusters based on the patches centered on Ba 
atoms, presenting two types of Ba in the YBCO structure, C) GMM clusters based on only one 
type of Ba atoms, introducing some variety, which it can be differentiated by different values of 
threshold and covariance type in GMM clustering, D) Pareto Frontier solutions with respect to 
reward possession), E) Optimal threshold and covariance type achieved by MOBO for GMM 
clustering, and F) Uncovered amorphous areas in the substrate 

We believe that this approach has three significant impacts on microscopy. First, the 
introduction of a reward-function-based optimization approach makes the construction of analysis 
pipelines automated and unbiased, taking advantage of the powerful optimization approaches 
available today. Secondly, these analyses can be implemented as a part of automated experiments 
and real-time data analytics. Thirdly, the integration of reward functions across the domains offers 
a far more efficient approach for community integration than creation of disparate experimental 
data databases, contributing to the development of the open and FAIR experimental community.  
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