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In metals containing magnetic impurities, conduction electrons screen the magnetic impurities
and induce the Kondo effect, i.e., the enhancement of the electrical resistance at low temperatures.
Motivated by recent advances in manipulating quantum materials by cavity confinement, we study
how the ultrastrong light-matter coupling can affect the Kondo effect. We show that the ultrastrong
coupling can enhance the Kondo temperature and give rise to several notable phenomena, includ-
ing universal scalings of the cavity-modified Kondo effect, the photon occupation number, and the
entanglement entropy between the cavity and electrons. The origin of the cavity enhancement can
be understood from the mass renormalization due to the cavity-mediated nonlocal electron-electron
interaction, which is akin to the polaronic mass enhancement. We combine the unitary transforma-
tions and the Gaussian variational states to analyze the quantum impurity system confined in the
cavity. Our nonperturbative framework can be applied to a variety of quantum impurity problems
influenced by structured quantum electromagnetic environment.

I. INTRODUCTION

The Kondo effect is arguably one of the most funda-
mental themes in condensed matter physics [1–3]. When
a localized impurity spin is embedded in a Fermi gas, an
antiferromagnetic exchange interaction occurs between
the impurity and the conduction electrons. This inter-
action causes nonmonotonic temperature dependence in
transport, leading to the minimum in electrical resistiv-
ity around the Kondo temperature TK [1, 4, 5]. At low
temperatures T < TK, the impurity spin is screened by
the surrounding electrons through the antiferromagnetic
exchange interaction. The effective interaction strength
diverges in the low-energy limit, which gives rise to the
singlet ground state called the Kondo singlet state [6–10].
The size of the screening cloud around the impurity, the
Kondo cloud, is characterized by the Kondo length ξK,
which is typically an order of micrometer [11] and can
be related to the Kondo temperature by ξK = ℏvF/kBTK
with the Fermi velocity vF.
Understanding of the Kondo effect has played a central

role in many areas of solid-state physics, such as heavy
fermions [2], mesoscopic physics [12–15], and dynamical
mean-field theory [16]. In particular, the internal struc-
tures of the Kondo cloud, such as the quantum correla-
tions or entanglement therein, are still under investiga-
tions in both theory [17–20] and experiments [11, 21, 22].
Controlling and emulating the Kondo effect have also
been widely explored in a variety of setups, including
tunable quantum dot systems with an external magnetic
field [12] or finite-volume confinement called the Kondo
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box [23, 24], defects in a graphene [25, 26], periodically
driven materials [27–33], and ultracold atoms [34–40].

On another front, the field of cavity quantum electro-
dynamics (QED) has long played an important role in
quantum technology and quantum information. Cavity
QED has traditionally strived to study interaction be-
tween electromagnetic fields and matter mainly in few-
body regimes. Recently, there have been significant ef-
forts in understanding the possibility of employing the
idea of cavity QED to control quantum many-body sys-
tems in a stable manner without any external driving [41–
44]. Instead of using electromagnetic fields as classical ex-
ternal field, this emerging area of research, namely cavity
QED materials aims to exploit strong couplings between
materials and vacuum fluctuations of the quantized elec-
tromagnetic field in the cavity.

So far, a number of experiments have realized the so-
called ultrastrong coupling regime in a variety of se-
tups [45–48], where the light-matter coupling strength
is comparable to elementary excitation energies. Previ-
ous studies have explored the possibility of employing
such ultrastrong light-matter coupling to control exci-
tations [49–61] and certain material properties, such as
superconductivity [62–65], ferroelectricity [66–69], band
topology [70–75], transport [70, 76], and chemical reac-
tivity [77–80]. There, excited states and even ground-
state electronic properties can be modified due to vir-
tual processes in which both matter and cavity photons
are excited. At terahertz frequencies, which are typically
relevant to excitations in real materials, the ultrastrong
coupling regime has been so far achieved with the col-
lective enhancement, where the light-matter coupling is
enhanced by a factor

√
N with N being the number of el-

ements coupled to the cavity mode. In such regime, com-
mon simplifications in cavity QED fail, rendering theo-
retical analysis challenging. For instance, rotating wave
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approximations and/or an effective description based on
projection onto low-energy manifold, such as the two-
level approximation and a tight-binding description, can
in general no longer be justified. Thus, to accurately an-
alyze cavity QED materials in the ultrastrong coupling
regime, one needs to employ a nonperturbative method
that does not rely on uncontrolled simplifications.

Motivated by these developments, in this paper we
study how the Kondo effect can be influenced by the ul-
trastrong coupling to the quantum electromagnetic field
confined in the cavity (Fig. 1). To analyze the prob-
lem in an efficient and accurate way, we employ the two
unitary transformations to firstly asymptotically decou-
ple the electronic system from cavity photons [81, 82]
and secondly completely disentangle the localized impu-
rity and the conduction electrons [37, 83, 84]. We then
obtain an effective model that can capture low-energy
physics of the cavity Kondo effect, where the leading con-
tribution due to the cavity confinement emerges as the
nonlocal electron-electron interaction mediated by cavity
photons. We analyze the ground-state properties of this
effective model by using fermionic Gaussian variational
states. The results indicate that the nonlocal interac-
tion effectively increases the density of states near the
Fermi sea, thus enhancing the Kondo temperature TK,
which is akin to the polaronic mass enhancement. We
also find that the ultrastrong coupling leads to univer-
sal scalings of the cavity-modified Kondo temperature,
the photon occupation number, and the entanglement
entropy between the cavity and electrons as a function of
the light-matter coupling strength g scaled by TK.

We note that our study makes a contrast to existing
studies on the related topics. The effect of cavity confine-
ment has been discussed in the setup of a quantum dot
connected with external reservoirs [85]. There, the cav-
ity field does not couple to conduction electrons, but only
couples to impurity sites in the quantum dot. It has been
argued that the cavity field, which directly perturbs the
localized impurity, inhibits the formation of the Kondo
state and suppresses the Kondo effect in this case. In
contrast, our work focuses on the setup relevant to recent
experiments of cavity QED materials, namely, solid-state
material embedded in, e.g, the plasmonic cavity, where
the cavity field couples to conduction electrons in bulk.
In the present case, the cavity confinement is shown to
induce the opposite behavior, i.e., it enhances the Kondo
effect. Meanwhile, Ref. [86] has discussed the possibility
of controlling the Yu-Shiba-Rusinov state by the coupling
to a bosonic mode on the basis of the Peierls substitu-
tion. The results suggest that the coupling to a bosonic
mode can modify the strength of the exchange interac-
tion of the magnetic impurity embedded in a conventional
superconductor. Our analysis is complementary to this
previous work in the sense that we consider the magnetic
impurity embedded in a normal metal, and we treat the
light-matter coupling nonperturbatively without resort-
ing to uncontrolled approximations such as the Peierls
substitution, which can break down in the ultrastrong
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FIG. 1. Schematic figure of the Kondo singlet confined in a
cavity. A metal including the magnetic impurity is embed-
ded in the cavity, and the quantized electromagnetic field at
frequency ωc couples to the conduction electrons, where the
coupling strength is denoted by g. The magnetic impurity is
screened by the conduction electrons through the exchange
interaction J and forms the Kondo screening cloud.

coupling regime [74].
The rest of the paper is organized as follows. In Sec. II,

we introduce a model for the magnetic impurity in a
metal confined in the cavity and use the unitary trans-
formations to derive an effective single-impurity model to
describe the low-energy physics. We also explain the non-
Gaussian variational method that can be used to study
the ground-state properties of the model. In Sec. III, we
present the variational results that indicate the cavity-
enhanced Kondo effect. We also discuss the emergence
of new types of universal relations in the cavity-enhanced
Kondo effect. Finally, in Sec. IV, we discuss the under-
standing of the cavity-enhanced Kondo effect using poor
person’s scaling and summarize the results. This sec-
tion also discusses future perspectives and possible ex-
perimental relevance.

II. MODEL AND METHOD

A. Magnetic impurity embedded in cavity

We derive an effective low-energy model of the Kondo
effect in the presence of the ultrastrong light-matter cou-
pling. To this end, we start from the single-impurity An-
derson model with light-matter interaction. Specifically,
we assume the long-wave approximation, i.e., neglect the
spatial dependence of the cavity field, and consider the
following light-matter Hamiltonian in the Coulomb gauge

Ĥ = Ĥe + Ĥimp + Ĥcavity, (1)

where Ĥcavity = ℏωcâ
†â describes the energy of the

single-mode cavity photon with the cavity frequency ωc,
and the photon annihilation (creation) operator â (â†)
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satisfies the canonical commutation relation [â, â†] = 1.

The first term Ĥe represents a one-dimensional electron
system with the light-matter coupling,

Ĥe =
∑
σ

∫
dx ψ̂†

σ(x)

(
p̂+ eÂ

)2
2m

ψ̂σ(x) (2)

with Â = A(â+ â†) being the vector potential and

ψ̂σ(x) =
1√
L

∑
k

eikxĉkσ, (3)

where L is the system size and ĉkσ (ĉ†kσ) is the electron
annihilation (creation) operator with momentum k and
spin σ ∈ {↑, ↓}, while p̂ = −iℏ∂x is the momentum oper-
ator. We impose the periodic boundary conditions such
that kn = 2πn/L, n = 0,±1,±2, . . . ,±NΛ with a cutoff
integer number NΛ. The constant m is an effective elec-
tron mass, e is the elementary charge, and Ne is the total
number of conduction electrons. The impurity Hamilto-
nian is

Ĥimp =
∑
σ

εd d̂
†
σd̂σ + Un̂d↑n̂d↓

+
V0√
Ne

∑
k,σ

(
d̂†σ ĉkσ + ĉ†kσd̂σ

)
, (4)

where εd is the impurity energy, d̂σ (d̂†σ) annihilates (cre-
ates) an electron at the localized impurity site with spin
σ, and U denotes the Coulomb repulsion at the impu-

rity site with the number operator n̂dσ = d̂†σd̂σ. We note

that the fermion operators ĉkσ and d̂σ satisfy the canon-
ical anti-commutation relations

{ĉkσ, ĉ†k′σ′} = δkk′δσσ′ , {d̂σ, d̂†σ′} = δσσ′ . (5)

The last term in Eq. (4) is the hybridization term be-
tween the impurity and the conduction electrons with
the hybridization strength V0.
To obtain a low-energy effective model, we firstly

use the Bogoliubov transformation to diagonalize the
photon-only part of the total Hamiltonian, which in-
cludes Ĥcavity and the Â2 term in Ĥe, thereby introducing

another boson operator b̂ as(
b̂

b̂†

)
=

(
cosh r sinh r
sinh r cosh r

)(
â
â†

)
, (6)

r = log

[√
α+ 1

2
+

√
α− 1

2

]
, (7)

α =
ωc

Ω

(
1 +Ne

e2A2

mℏωc

)
, (8)

where

Ω = ωc

√
1 + 2Ne

g2

ω2
c

(9)

is the renormalized photon frequency, g = eA
√
ωc/(mℏ)

is the strength of the light-matter coupling.
In the Coulomb gauge, an analysis of cavity QED ma-

terials becomes challenging in the ultrastrong coupling
regime due to the strong electron-photon entanglement;
the latter leads to the need of including high-energy lev-
els of elementary excitations, such as the high electron
bands and bosonic Fock states with large photon occu-
pation numbers [56, 81, 87]. To overcome such difficulty,
we utilize the asymptotically decoupling (AD) unitary
transformation [81, 82],

ÛAD = e−iξg
P̂e
ℏ ·i(b̂†−b̂), (10)

ξg =

√
ℏ

mωc

g

ωc(1 + 2Ne
g2

ω2
c
)

3
4

, (11)

where P̂e =
∑
k,σ ℏkĉ

†
kσ ĉkσ represents the total momen-

tum operator of the conduction electrons. After the
transformation, the length scale ξg characterizes the ef-
fective coupling strength in the new reference of frame
as shown below. This transformation can mitigate the
entanglement between electrons and the cavity field and,
in particular, completely disentangle them in the strong-
coupling limit because ξg vanishes when g → ∞. Since
ξg ∝ g at weak g, the coefficient ξg remains small over
the whole range of g, which allows us to perform the
perturbative analysis with respect to the term ξgk.
The resulting Hamiltonian after the unitary transfor-

mation is

ĤAD

= Û†
ADĤÛAD

=
∑
k,σ

εk ĉ
†
kσ ĉkσ + ℏΩb̂†b̂− ℏ2g2

mΩ2
P̂ 2
e +

∑
σ

εd d̂
†
σd̂σ

+ Un̂d↑n̂d↓ +
V0√
Ne

∑
k,σ

(
eξgk(b̂

†−b̂)d̂†σ ĉkσ + h.c.
)
, (12)

where εk = ℏ2k2

2m is the electron dispersion. In the limit
U ≫ V0, we arrive at an effective model of the cavity
Kondo effect (see Appendix A for the derivation),

ĤcK =
∑
k,σ

εk ĉ
†
kσ ĉkσ + Js⃗(0) · S⃗imp − ℏ2g2

mΩ2
P̂ 2
e , (13)

where J = 4V 2
0 /U is the Kondo exchange interaction.

Here, S⃗imp = σ⃗imp/2 is the spin- 12 operator of the mag-

netic impurity and s⃗(0) =
∑
k ĉ

†
kσ(σ⃗)

σσ′
ĉk′σ′/2 is the

electron spin at x = 0 with a vector of the Pauli ma-
trices σ⃗ = (σx, σy, σz). We emphasize that this Hamilto-
nian no longer contains cavity photons, and the leading
contribution from the light-matter interaction appears as
the nonlocal electron-electron interaction proportional to
P̂ 2
e , which is mediated by the cavity field. Said differ-

ently, in this transformed frame, the ground state can be
given by a product state of the photon vacuum and the
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many-electron ground state of ĤcK. The cavity-mediated
nonlocal interaction effectively increases the mass of the
electrons, where the electrons are dressed by a cloud of
virtual photons [74, 81] in a manner akin to the pola-
ronic mass enhancement [88]. As shown below, such mass
renormalization will enhance the density of states ρF on
the Fermi surface, which scales as ρF ∝ m, leading to

the higher Kondo temperature TK ∝ e
− 1

JρF and thus the
cavity-enhanced Kondo effect.

We note that the ground-state expectation value of
the nonlocal interaction, which is proportional to ⟨P̂ 2

e ⟩,
should vanish if the total system has the translational
symmetry. Thus, in the absence of the impurity J = 0,
the ground state is simply a Fermi sea with P̂e = 0. The
AD transformation (10) acting on this state reduces to
the identity operator, and the light-matter interaction
only appears as the squeezing effect induced by the Â2

term, which is captured by the Bogoliubov transforma-
tion (6). In contrast, the presence of the localized im-
purity breaks the translational symmetry, which renders
the effect of the nonlocal interaction P̂ 2

e nontrivial even
in the ground state.

B. Variational analysis of the cavity Kondo effect

To analyze the ground-state properties of the Hamil-
tonian (13), we employ the non-Gaussian variational
method combining the unitary transformation and a
many-body fermionic Gaussian state. The fermionic
Gaussian wavefunction defines a family of efficient varia-
tional states, where the number of variational parameters
increase polynomially as O

(
L2

)
[89, 90], while it alone

cannot capture the strong correlation between the local-
ized impurity and conduction electrons as realized in the
Kondo state. To overcome this limitation, one can use a
unitary transformation to make a larger family of varia-
tional states, allowing for efficient and flexible variational
calculations.

Specifically, we use the following unitary transforma-
tion to completely disentangle the localized impurity and
electrons [83, 84]:

ÛK = e
iπ
4 σ̂

y
impP̂bath , (14)

where P̂bath = exp
[
iπ

∑
k ĉ

†
k↑ĉk↑

]
is the parity operator

of the conduction electrons and σ̂αimp with α = x, y, z is
the Pauli matrix of the impurity spin. After the unitary
transformation, the impurity can be decoupled from the
electrons since the transformed Hamiltonian commutes
with the impurity spin, [Û†

KĤcKÛK, σ̂
x
imp] = 0. This fact

can be inferred from the parity symmetry of the original
Hamiltonian, [ĤcK, P̂] = 0 with P̂ = σ̂zimpP̂bath satisfying

the relation Û†
KP̂ÛK = σ̂ximp.

Consequently, the impurity spin is no longer a dy-
namical degree of freedom in the transformed Hamil-
tonian. At the cost of decoupling the impurity, the

Hamiltonian acquires the additional nonlocal electron-
electron interaction, which originates from the impurity-
mediated interaction. One can efficiently analyze this
transformed Hamiltonian by using variational Gaussian
states to study the ground-state properties, which can
provide accurate results comparable to tensor network
calculations with much less variational parameters [84].
We note that it has been also demonstrated that the
cavity-mediated nonlocal term P̂ 2

e can be well described
by the Gaussian variational states in the context of po-
laron problems [91, 92].
More specifically, as a variational state for the trans-

formed Hamiltonian Û†
KĤcKÛK, we use a fermionic Gaus-

sian state |ψGS⟩,

|ψGS⟩ := e
1
4 ψ̂

TXψ̂ |0⟩ , (15)

where X is a 2Nf × 2Nf real antisymmetric matrix with
Nf being the total number of fermionic modes, and |0⟩ is
the vacuum state of conduction electrons; in the present
case, Nf = gs(2NΛ + 1) where gs = 2 counts the spin

degrees of freedom. The vector ψ̂ in the Majorana basis
is defined by

ψ̂ = (ψ̂1,1, . . . , ψ̂1,Nf
, ψ̂2,1, . . . , ψ̂2,Nf

)T

with

ψ̂1,i = ĉ†i + ĉi, ψ̂2,i = i(ĉ†i − ĉi) (16)

for i = 1, 2, . . . , Nf . The fermionic Gaussian wavefunc-
tion is completely characterized by its covariant matrix

(Γψ)η,ξ =
i

2

〈
[ψ̂η, ψ̂ξ]

〉
GS
, (17)

where ⟨·⟩GS means the expectation value with respect to
a Gaussian state |ψGS⟩.
To obtain the variational ground state, we employ the

imaginary-time evolution that minimizes the variational
energy [93]

dΓψ
dτ

= −H− ΓψHΓψ, (18)

H :=4
δEvar

δΓψ
, Evar = ⟨Û†

KĤcKÛK⟩GS . (19)

This imaginary-time evolution allows us to obtain an
approximate ground state within the subspace of the
Hilbert space spanned by the variational wavefunction
in the limit τ → ∞. We note that during the imaginary-
time evolution the total number of the conduction elec-
trons Ne is conserved. The higher-order many-body cor-
relation function for Gaussian states can be decomposed
into components of a covariance matrix by Wick’s the-
orem. Thus, an expectation value with respect to the
Gaussian variational state can be efficiently calculated
for various physical quantities such as magnetic suscep-
tibility and Kondo length as discussed below.
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It is worthwhile to recall that, in the original Coulomb
gauge, the above procedure is equivalent to finding the
variational ground state within the manifold spanned by

|ψ⟩ = ÛADÛK

(
|0⟩ph |σx⟩imp |ψGS⟩

)
, (20)

where |0⟩ph is the vacuum state for the photon opera-

tor b̂, which is a squeezed state in terms of the origi-
nal photon operator â, and |σx⟩imp is the eigenstate of
the impurity x−spin operator σ̂ximp that has eigenvalues
σx = ±. It is evident that the photon-electron entan-
glement (impurity-electron entanglement) is solely gen-

erated by the unitary transformation ÛAD (ÛK).

III. RESULTS

A. Cavity-enhanced Kondo effect

We numerically demonstrate that the Kondo effect
can be enhanced by the cavity confinement. In this
section, we use the dimensionless exchange interaction
j = ρFJ with the density of states at the Fermi energy
ρF , and represent the dimensionless light-matter cou-
pling strength via η =

√
Neg/ωc by including the collec-

tive factor
√
Ne. In Fig. 2, we show the numerical results

of the Kondo temperature extracted from the magnetic
susceptibility χh via TK = 1/(4χh) and the Kondo length
ξK estimated by the impurity-electron spin correlation
function. More specifically, the Kondo length is defined
as a length scale such that the singlet sum rule [9, 94]∫

dx ⟨S⃗imp · s⃗(x)⟩ = −3

4
(21)

is almost satisfied (see the caption). This relation follows

from the fact that the total spin operator S⃗tot = S⃗imp +∫
dxs⃗(x) of the Kondo singlet state satisfies the relation

S⃗2
tot = 0. All the results are plotted by setting ℏ = kB =
m = ωc = 1.
Figure 2 (a) and (b) show the results of η dependence

of the Kondo temperature and length, respectively, where
TK0 and ξK0 are the Kondo temperature and length at
η = 0. These numerical calculations consistently indicate
that the Kondo effect is enhanced by the cavity confine-
ment, where the Kondo cloud shrinks due to the effec-
tively enhanced exchange interaction j. Physically, the
enhancement originates from the cavity-mediated non-
local interaction proportional to P̂ 2

e , which leads to the
mass renormalization that enhances the density of states.
In the original frame, this phenomenon can be under-
stood as the dressing of conduction electrons by virtual
photons, leading to the effect akin to the polaronic mass
enhancement. We note that the Kondo temperature is
more sensitive to the change of the dimensionless light-
matter coupling strength η at a smaller exchange inter-
action j. This finding might be understood as follows:
a smaller exchange interaction leads to the formation of

a more spatially extended Kondo cloud, and the larger
number of localized electrons can be susceptible to the
cavity confinement effect.
One of the important features of the Kondo effect is

that various quantities exhibit universal scaling with the
Kondo temperature. It is natural to ask whether a similar
scaling relation can be found in the cavity Kondo effect
discussed here. To examine this possibility, we plot the
Kondo temperature and length as a function of the light-
matter coupling strength g normalized by TK0 as shown
in Fig. 2 (c) and (d). These numerical results lie on
the same universal curves independent of the exchange
interaction j up to η ∼ 1, suggesting that the cavity-
enhancement of the Kondo temperature can exhibit the
universal scaling. Thus, the results indicate the scaling
relation of the cavity-enhanced Kondo temperature,

TK(j, g)

TK0(j)
= 1 + f

(
g

TK0(j)

)
(22)

with a scaling function f(x) satisfying f(0) = 0; we re-
call that TK0(j) = TK(j, 0) is the Kondo temperature at
g = 0. The relation suggests that, even though the light-
matter coupling strength g presents as an additional pa-
rameter, this parameter can be renormalized in the uni-
versal relation of the Kondo effect.

B. Virtual photons induced by the Kondo effect

In this section, we discuss the influence of the Kondo
effect on the quantum electromagnetic environment.
Specifically, we consider the ground-state photon occu-
pation number in the original Coulomb gauge, which is
defined by (see Appendix B for details)

Nph(j, g) = ⟨â†â⟩

=
ωc
Ω

ξ2g
ℏ2

⟨P̂ 2
e ⟩GS +

1

4

(
ωc
Ω

+
Ω

ωc
− 2

)
. (23)

The last term originates from the squeezing due to the
A2 term and exists even in the absence of the magnetic
impurity. Meanwhile, the first term is the photon occu-
pation induced by the Kondo effect and can be written
as

δNph(j, g) := Nph(j, g)−Nph(0, g)

=
ωc
Ω

ξ2g
ℏ2

⟨P̂ 2
e ⟩GS . (24)

We note that the η dependence of the Kondo-induced
photon occupation δNph is mainly characterized by ξ2g ,
which scales as

ξ2g ∝ η2

(1 + 2η2)3/2
.

This quantity reaches a maximum value at η = 1,
and consequently, δNph(j, g) should exhibit a peak in
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(a) (b)

(d)(c)

FIG. 2. (a) Kondo temperature TK = 1/(4χh) determined from the magnetic susceptibility of the impurity χh plotted against the
dimensionless light-matter coupling η =

√
Neg/ωc. The Kondo temperature at η = 0 is represented by TK0. (b) Kondo length

ξK obtained by estimating the distance from the impurity at which the spin correlation is screened as
∫ ξK
0

dx ⟨s⃗imp · S⃗(x)⟩ =

− 3
4
(1 − f) with 1 − f = 0.97. The Kondo length at g = 0 is represented by ξK0. (c) Kondo temperature plotted against the

light-matter coupling strength g normalized by TK0. The plot covers the range of η ≤ 1. (d) Kondo length plotted against the
light-matter coupling strength g normalized by ξK0. The plot covers the range of η ≤ 0.7. The calculations are performed for
Ne = 70 in (a,c) and Ne = 122 in (b,d).

the vicinity of η = 1 and monotonically decrease at
larger η. Nevertheless, we note that the last term in
Eq. (23), which is the squeezing contribution, always
dominates over the Kondo-induced virtual photon con-
tribution δNph, and thus the total photon occupation
Nph still monotonically increases as a function of η.
The variational results of ℏωcδNph(j, g) are plotted in

Fig. 3(a). Interestingly, the photon energy ℏωcδNph ex-
hibits the universality as a function of g/TK0, indicating
the relation

ℏωcδNph(j, g)

kBTK0
= h

(
g

TK0

)
(25)

with a scaling function h(x) that satisfies h(0) = 0. The
deviation from the universal curve in the deep strong
coupling regime η > 1 can be understood from the fact
that the photon excitation energy is renormalized to Ω
and gets enhanced as Ω ∝ η in this regime. Such a high
photon excitation energy can lead to electron excitations
far from the Fermi level where the dispersion relation can
no longer be approximated as the linear one.

The similar behavior can be also found in the entangle-
ment entropy between the cavity photons and the elec-
tron system. One can obtain the entanglement entropy
up to an order of O

(
ξ2g
)
as

ŜEE = −Trelectron
[
ρ̂0 log ρ̂0

]
= −

∑
σ=±

λσ log λσ, (26)

λ± =
1

2

(
1±

√
1− 4ξ2g ⟨P̂ 2

e ⟩GS /ℏ2
)
, (27)

with ρ̂0 being the density matrix operator of the varia-
tional ground state in the Coulomb gauge (cf. Eq. (20)).
As shown in Fig. 3(b), the η dependence of this entan-
glement entropy is qualitatively similar to that of the
Kondo-induced photon occupation (23). Meanwhile, we
note that the photon-electron entanglement shows the re-
duction in the deep strong coupling regime (η > 1) and
likely converges to zero in the limit η → ∞. This be-
havior arises from the fact that, as η is increased, the Â2

term in the original frame becomes dominant, leading to
the asymptotic decoupling of light and matter.
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(a)

(b)

FIG. 3. (a) The g dependence of δNph(j, g), a component
of the photon occupation number (23) that is induced by the
Kondo effect. The horizontal axis is normalized by the Kondo
temperature TK0 at η = 0, while the vertical axis plots the
photon energy ℏωcδNph divided by the Kondo temperature
TK0. (b) Entanglement entropy between the electron system
and cavity photons. The results are obtained for Ne = 122.

IV. DISCUSSIONS

We here provide a simple explanation of the variational
results presented in the previous section on the basis of
poor person’s scaling [95]. After making several sim-
plifications, the renormalization group equation for the
scaling of the exchange interaction, including the cavity-
mediated interaction, can be given by (see Appendix C
for technical details)

dj = − dEΛ

ε− EΛ(1− 2 g
2

Ω2 )
j2, (28)

where EΛ is the cutoff energy, and ε is an excitation en-
ergy of electrons. This relation allows us to obtain the ap-
proximative analytical expression of the cavity-modified
effective Kondo temperature as follows:

kBTK(η) = kBTK0 exp

[
2

Ne

η2

1 + 2η2
1

j0

]
. (29)

(a)

(b)

poor person scaling

non-Gaussian state

FIG. 4. Comparison between the variational results and poor
person’s scaling. Dashed curves represent the enhancement of
the Kondo temperature using the analytical expression (29)
based on poor person’s scaling. The solid curves represent
the variational results obtained from the non-Gaussian states.
The results are plotted for Ne = 70. Both variational and
poor person’s results are plotted as a function of g/TK0, indi-
cating the universal relation at small g/TK0.

In Fig. 4, we make a comparison between the variational
results and the analytical result (29) obtained from poor
person’s scaling. Both results exhibit qualitatively sim-
ilar behaviors and, in particular, indicate the universal
relation of the cavity-modified Kondo temperature up to
η ∼ 1 (cf. Eq. (22)).
In the setup we have studied in this paper, there ex-

ists only the single localized impurity embedded in the
bulk metal, and the effect of the cavity confinement is ex-
pected to disappear when the number of conduction elec-
trons Ne is taken to be infinite while keeping η finite. In
practice, however, metals contain a number of magnetic
impurities with nonvanishing density. As far as the impu-
rity concentration, nimp = Nimp/Ne, remains sufficiently
small such that the RKKY interaction does not play an
important role, we expect that our variational calcula-
tions should capture qualitative features of the cavity
Kondo effect in such real materials including magnetic
impurities. In principle, the Kondo cloud consists of a
finite number of electrons in the vicinity of the localized
impurity, and the cavity-enhanced Kondo effect could be
realized in each of individual magnetic impurities within
the bulk. It would be interesting to observe the cavity-
induced shrinkage of such Kondo cloud dressed by virtual
photons with the help of recent techniques [11, 21] if at
all possible.
Previous studies have indicated that the magnetic im-

purity system strongly interacting with bosonic degrees
of freedom can give rise to the multi-channel Kondo ef-
fect. Examples include the systems with periodically
driven classical light [31, 33]or the electron-phonon in-
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teractions [86, 96]. In particular, in Ref. [97], it has been
discussed that the Hamiltonian of the Kondo polaron can
contain a term proportional to P̂ 2

e , which gives rise to
the multi-channel Kondo effect. It merits further study
to explore the possibility of realizing the multi-channel
Kondo effect also in the setup with the cavity confine-
ment, where the nonlocal P̂ 2

e term can appear as shown
in this paper; exploring such non-Fermi liquid feature in-
duced by vacuum fluctuations of the cavity field could
be one of the intriguing directions. It would be also in-
teresting to explore transport phenomena and real-time
dynamics of the cavity Kondo effect, which can be done
by using the real-time Gaussian variational calculations
[37, 84], where the inclusion of photon excitations in the
transformed frame could be important. From a broader
perspective, our nonperturbative framework can be used
to study a variety of quantum impurity problems influ-
enced by structured quantum electromagnetic environ-
ment.

In conclusion, we have studied the influence of the
cavity confinement on the Kondo effect in the ultra-
strong coupling regime. Employing the two disentangling
unitary transformations, we have obtained the effective
model that describes the low-energy physics of the sin-
gle magnetic impurity in a metal confined by the cavity.
The leading contribution due to the cavity confinement
can be captured by the nonlocal electron-electron inter-
action, leading to the mass renormalization akin to the
polaronic mass enhancement. Consequently, the Kondo
effect can be enhanced by the cavity confinement as
confirmed in our variational calculations using fermionic
Gaussian states. We also found that the ultrastrong cou-
pling leads to universal scaling relations depending on
the light-matter coupling strength g, which are unique
to the cavity Kondo effect. We expect that our results
should advance our understanding of cavity engineering
of strongly correlated electronic phenomena. We hope
that our work stimulates further studies in this direction.
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Appendix A: Derivation of the effective Hamiltonian

In this section, we derive the low-energy effective
Hamiltonian (13) of the cavity Kondo effect, which in-
cludes the exchange interaction, by using perturbation
theory. We recall that the hybridization term is written

as

Ĥhyb =
V0√
Ne

∑
k,σ

(
eξgk(b̂

†−b̂)d̂†σ ĉkσ + h.c.
)
. (A1)

The terms in Eq. (12) other than Ĥhyb are the unper-

turbed Hamiltonian Ĥ0. We consider the perturbative
analysis by performing the expansion with respect to the
characteristic length,

ξg = g

√
ℏ
m

1

Ω
3
2

=

√
ℏ
m

η
√
Neωc(1 + 2η2)

3
4

,

which remains small over all the coupling strengths since
it scales as ξ2g ∝ O

(
N−1

e

)
at any η. Specifically, we ex-

pand the exponential function in Ĥhyb with respect to
ξgk as follows:

Ĥhyb = Ŵ0 + Ŵ1 + Ŵ2 + . . . , (A2)

where

Ŵ0 =
V0√
Ne

∑
k,σ

(d̂†σ ĉkσ + ĉ†kσd̂σ), (A3)

Ŵ1 =
ξgV0√
Ne

∑
k,σ

k(b̂† − b̂)(d̂†σ ĉkσ − ĉ†kσd̂σ), (A4)

Ŵ2 =
ξ2gV0

2
√
Ne

∑
k,σ

k2(b̂† − b̂)2(d̂†σ ĉkσ + ĉ†kσd̂σ). (A5)

To derive the effective Hamiltonian, we consider the
strong Coulomb interaction at the impurity site, i.e.,
U ≫ V0, and also assume that an impurity-site energy
is below the Fermi energy εd < εf . In this parameter
regime, doubly occupied state can be eliminated from
the low-energy Hilbert space of interest, thereby leading
to the single-magnetic moment state [1, 4, 98].
We begin by constructing the low-energy Hamiltonian

by the second-order perturbation theory∑
m

⟨f | Ĥhyb |m⟩ ⟨m| Ĥhyb |i⟩
⟨Ĥ0⟩i − ⟨Ĥ0⟩m

(A6)

with the initial state |i⟩ and the final state |f⟩. Firstly,

only considering Ŵ0, one can get the usual Kondo ex-
change model,

Hsd,0 =
J0
Ne

∑
k,k′

[
Ŝzimp(ĉ

†
k′↑ĉk↑ − ĉ†k′↓ĉk↓) + Ŝ+

impĉ
†
k↓ĉ

†
k↑

+ Ŝ−
impĉ

†
k↑ĉ

†
k↓
]
+R0

∑
k,k′,σ

ĉ†kσ ĉk′σ (A7)

with the coupling constants

J0 = V 2
0

[
1

εd + U
− 1

εd

]
, (A8)

R0 =
V 2
0

2Ne

[
1

εd + U
+

1

εd

]
. (A9)
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We introduce the impurity spin operator Ŝαimp for α =

x, y, z and Ŝ±
imp = Ŝximp ± iŜyimp. Here, in the denomi-

nator, we assume εf = 0 and neglect the kinetic energy
term εk = ℏ2k2/2m in the excitation energy near the
Fermi surface.

Next, we consider the leading and next-leading terms
Ŵ1 and Ŵ2 in Eq. (A4) and Eq. (A5), respectively, which
include virtual excitations and emissions of cavity pho-
tons. Since the hybridization process between the d or-
bital and free electrons remains unchanged, the notable
modifications from the conventional Kondo model appear
in the perturbation’s denominator, where the energy of
the cavity field should be included, and in the term in-
volving ξg appearing as a product with V0.

Since Ŵ1 changes the number of photons, the change in
the ground-state energy can originate from the second-
order perturbation of Ŵ1. This modification accounts
for the distinctive features introduced by the presence of
virtual photon absorption and emission processes, differ-
entiating the present model from the conventional Kondo
model. More specifically, the leading contribution from
Ŵ1 is

Ĥsd,1 =
1

Ne

∑
k,k′

J1,kk′
[
Ŝzimp(ĉ

†
k′↑ĉk↑ − ĉ†k′↓ĉk↓)

+ Ŝ+
impĉ

†
k↓ĉ

†
k↑ + Ŝ−

impĉ
†
k↑ĉ

†
k↓
]

+
∑
k,k′,σ

R1,kk′ ĉ
†
kσ ĉk′σ, (A10)

J1,kk′ = V 2
0 ξ

2
g

[
1

εd + U + ℏΩ
− 1

εd − ℏΩ

]
kk′, (A11)

R1,kk′ =
V 2
0

2Ne
ξ2g

[
1

εd + U + ℏΩ
+

1

εd − ℏΩ

]
kk′. (A12)

The exchange interaction appears in a form that depends
on the wavevector k.

Meanwhile, the leading contribution from Ŵ2 comes
from the first-order perturbation of Ŵ2, which reads as

Ĥsd,2 =
∑
k,k′

J2,kk′
[
Ŝzimp(ĉ

†
k′↑ĉk↑ − ĉ†k′↓ĉk↓)

+ Ŝ+
impĉ

†
k↓ĉ

†
k↑ + Ŝ−

impĉ
†
k↑ĉ

†
k↓
]

+
∑
k,k′,σ

R2,kk′ ĉ
†
kσ ĉk′σ, (A13)

J2,kk′ = −1

2
V 2
0 ξ

2
g

[
1

εd + U
− 1

εd

]
(k2 + k

′2), (A14)

R2,kk′ = −V
2
0

4
ξ2g

[
1

εd + U
+

1

εd

]
(k2 + k

′2). (A15)

When we consider the symmetric case εd = −U/2, the
interactions become J0 = 4V 2

0 /U,R0 = 0 and

J1,kk′ =
ξ2gkk

′

1 + 2J0ℏΩ/V 2
0

J0 ∼ ξ2gkk
′J0, (A16)

where we neglect the second term in the denominator
since J0ℏΩ/V 2

0 = 4ℏΩ/U ≪ 1 as inferred from U ≫
ℏΩ = ℏωc

√
1 + 2η2.

Finally, we arrive at the following Hamiltonian

ĤcK =
ℏ2

2m

∑
k,σ

k2ĉ†kσ ĉkσ − ℏ2g2

mΩ2
P̂ 2
e

+
1

2Ne

∑
k,k′,σ,σ′

Jkk′ ĉ
†
kσ(σ⃗)

σσ′
ĉk′σ′ · S⃗imp, (A17)

Jkk′ =

(
1− 1

2
ξ2g(k − k′)2

)
J0. (A18)

We note that the spin-unrelated scattering R vanishes.
While we assume the symmetric model εd = −U/2 here,
we expect that our conclusions remain qualitatively simi-
lar in other cases since only the magnitude of Jkk′ can be
slightly affected, and a nonzero spin-independent scatter-
ing R only modifies the chemical potential.
The second term 1

2ξ
2
g(k−k′)2 of Jkk′ in Eq. (A18) gives

a contribution which is at most ∼ 2ξ2gkf . We recall that

ξ2g scales as O
(
N−1

e

)
. In the ultrastrong coupling regime

with the collective enhancement, η =
√
Neg/ωc can be

η ∼ O(1). Even when ξg takes its maximum value around
η = 1, the contribution 2ξ2gk

2
f remains small such that

the k and k′ dependencies in Eq. (A18) can be neglected.
Indeed, we have numerically checked that the inclusion
of the momentum-dependent term in Jkk′ only leads to
minuscule changes in the results and does not affect the
conclusions of this paper. We thus obtain the effective
Hamiltonian (13) in the main text.

Appendix B: Derivation of the photon occupation
and entanglement entropy

In this section, we provide the expressions of the pho-
ton occupation number in Eq. (23) and the entanglement
entropy in Eq. (26). First of all, using the relation in the
Bogoliubov transformation (6), the expectation value of
the photon number of the â operator in the Coulomb
gauge can be rewritten as

Nph(j, g) = ⟨â†â⟩

=
ωc
Ω
(1 + η2) ⟨b̂†b̂⟩ − η2

2

ωc
Ω

⟨b̂2 + b̂†2⟩

+
1

4

(
ωc
Ω

+
Ω

ωc
− 2

)
. (B1)

Using the expressions of the variational ground state

|ψ⟩ = ÛADÛK

(
|0⟩ph |σx⟩imp |ψGS⟩

)
in the Coulomb

gauge, where |ψGS⟩ is a fermionic Gaussian state, we ob-
tain the expectation values

⟨b̂†b̂⟩ =
ξ2g
ℏ2

⟨P̂ 2
e ⟩GS , (B2)

⟨b̂2 + b̂†2⟩ =
2ξ2g
ℏ2

⟨P̂ 2
e ⟩GS . (B3)
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We here note that the vacuum state is defined in terms
of the b̂ operator, i.e., b̂ |0⟩ph = 0, and the unitary trans-

formation acts as Û†
ADb̂ÛAD = b̂ + ξgP̂e/ℏ. As a result,

we get

Nph(j, g) =
ξ2g
ℏ2
ωc
Ω

⟨P̂ 2
e ⟩GS +

1

4

(
ωc
Ω

+
Ω

ωc
− 2

)
. (B4)

To calculate the entanglement entropy between the
cavity electromagnetic field and the total electron sys-
tem, including the impurity and conduction electrons,
we define a reduced density operator by tracing out the
electron part

ρ̂ph = Tre
[
|ψ⟩ ⟨ψ|

]
. (B5)

We use the Fock space basis {|n⟩ph} with respect to the

b̂ photon field, the partial trace results in

ρ̂ph =
∑
n,m=0

|n⟩ph ⟨m|
ℏn+m

√
n!m!

ξn+mg ⟨P̂n+me e−ξ
2
gP̂

2
e ⟩GS . (B6)

The leading contribution in terms of ξgP̂e to the entan-
glement entropy as a von Neumann entropy gives

SEE = −Tr[ρ̂ph log ρ̂ph] (B7)

≃ −
∑
σ=±

λσ log λσ, (B8)

where

λ± =
1

2

(
1±

√
1− 4ξ2g ⟨P̂ 2

e ⟩GS /ℏ2
)
. (B9)

While the entanglement entropy in Eq. (B7) is not sen-
sitive to a choice of the photon basis, it does so in prac-
tice when truncating the photon number to evaluate its

approximate value. Our results indicate that the conver-
gence of this approximation is much better when consid-

ering the Fock space of the b̂ photon than that of the â
photon.

Appendix C: Poor person’s scaling

Here we provide the details of poor person’s scaling,
which has been originally developed by Anderson [95].
Consider a cut-off energy ±EΛ that is away from the
Fermi energy at εf = 0. When this cut-off energy is
slightly modified by the amount ∆E > 0 such that E′

Λ =
EΛ −∆E, the change of the potential energy is

dV̂ = V̂ P̂∆EĜ0V̂ +O
(
∆E2

)
, (C1)

where P̂∆E is the projection operator onto a space EΛ >
|ε| > EΛ−∆E and Ĝ0(ε) = (ε−Ĥ0)

−1 is the unperturbed

Green’s function. The potential displacement dV̂ is the
operator on the states that belong to the subspace of
1− P̂∆E .
We define the unperturbed Hamiltonian Ĥ0 and the

potential energy V̂ as follows:

Ĥ0 =
∑
k

εk ĉ
†
kσ ĉkσ − ℏ2g2

mΩ2

(∑
k,σ

kĉ†kσ ĉkσ

)2

, (C2)

V̂ = JS⃗imp · s⃗(0)

=
J

2Ne
S⃗imp ·

∑
k,k′,σ,σ′

ĉ†kσσ⃗
σσ′
ĉk′σ′ . (C3)

The change in the potential can be calculated as

dV̂ =
1

4Ne
J2

|εk,εk′ |<EΛ−∆E∑
k,k′,σ,σ′

∑
p,ξ

EΛ−∆E<|εp|<EΛ

[
S⃗imp · (σ⃗σξ)

][
S⃗imp · (σ⃗ξσ

′
)
]

×

[
1

ε− (εf + εp − εk′ − vp,k′)
ĉ†kσ ĉpξ ĉ

†
pξ ĉk′σ′ +

1

ε− (εf + εk′ − εp − vp,k′)
ĉ†pξ ĉkσ ĉ

†
k′σ′ ĉpξ

]
, (C4)

where we introduce the variable vp,k′ =
ℏ2g2

mΩ2 (p
2 + k

′2 − 2pk′) for the sake of notational simplicity. We note that the

terms proportional to
∑
q,τ qĉ

†
qτ ĉqτ and

∑
q,q′,τ,τ ′ qq′ĉ†qτ ĉqτ ĉ

†
q′τ ′ ĉq′τ ′ vanish in a Fermi state. Considering sufficiently

low temperatures, the wavenumbers k, k′ can be treated as the variables denoting the excitations near the Fermi
surface. Also, high-energy momentum p can be taken as an excitation that is nearly at the energy cutoff, which is
sufficiently far from the Fermi surface, and the energy slice ∆E is sufficiently small. Therefore, we assume that the p
dependence of the vp,k′ can be neglected, as vk′ = vp,k′

∣∣
|p|=kΛ

.
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Integrating out the virtual states, we get

dV̂ =
1

4Ne
J2

|εk,εk′ |<EΛ−∆E∑
k,k′,σ,σ′

∑
ξ

[
S⃗imp · (σ⃗σξ)

][
S⃗imp · (σ⃗ξσ

′
)
]

×
[

ρF∆E

ε− EΛ + εk′ + vk′
ĉ†kσ ĉk′σ′ +

ρF∆E

ε− εk′ − EΛ + vk′
ĉkσ ĉ

†
k′σ′

]
. (C5)

Using the relation σασβ = δαβ + iεαβγσ
γ with the Levi-Civita symbol εαβγ , we can take the exchange interactions

out of the expression (C5) such that

dV̂ = −1

4
J2

∑
k,k′

[
ρF∆E

ε− EΛ + εk′ + vk′
+

ρF∆E

ε− εk′ − EΛ + vk′

]
S⃗imp · ĉkσ(σ⃗)σσ

′
ĉ†k′σ′ . (C6)

We assume that the electron excitations are only being
in the vicinity of the Fermi energy εF = 0. The de-
nominators can then be simplified as εk ≃ εk′ ≃ 0 and
vk′ ≃ 2EΛg

2/Ω2, leading to

dV̂ = − J2ρF∆E

ε− EΛ(1− 2 g
2

Ω2 )
S⃗imp · S⃗(0). (C7)

Thus, the scaling of the exchange interaction becomes

dJ = − ρF dEΛ

ε− EΛ(1− 2 g
2

Ω2 )
J2. (C8)

Taking the limit ε → 0 with the initial conditions
J(EΛ0) = J0, EΛ0 = D, we can integrate this equation
to get

1

ρFJ(EΛ)
=

1

ρFJ0
+
(
1− 2

g2

Ω2

)−1

log
EΛ

D
. (C9)

The cut-off energy EΛ at which J(EΛ) goes to infinity
can be defined as the Kondo temperature TK as follows:

kBTK(η) = kBTK0 exp

[
2g2

Ω2

1

ρFJ0

]
(C10)

= kBTK0 exp

[
2

Ne

η2

1 + 2η2
1

ρFJ0

]
, (C11)

where kBTK0 = De−1/(ρF J0) is the Kondo temperature at
η = 0. This formula provides the cavity-enhanced Kondo
temperature in Eq. (29) in the main text.
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