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Abstract

We introduce a novel methodology for simulating the excited-state dynamics of extensive molecular aggre-
gates in the framework of the long-range corrected time-dependent density-functional tight-binding fragment
molecular orbital method (FMO-LC-TDDFTB) combined with the mean-field Ehrenfest method. The electronic
structure of the system is described in a quasi-diabatic basis composed of locally excited and charge-transfer
states of all fragments. In order to carry out nonadiabatic molecular dynamics simulatios, we derive and imple-
ment the excited-state gradients of the locally excited and charge-transfer states. Subsequently, the accuracy
of the analytical excited-state gradients is evaluated. The applicability to the simulation of exciton transport
in organic semiconductors is illustrated on a large cluster of anthracene molecules. Additionally, nonadia-
batic molecular dynamics simulations of a model system of benzothieno-benzothiophene molecules highlight
the method’s utility in studying charge-transfer dynamics in organic materials. Our new methodology will fa-
cilitate the investigation of excitonic transfer in extensive biological systems, nanomaterials and other complex
molecular systems consisting of thousands of atoms.

1 Introduction
The advancement of quantum chemical methodologies
within the paradigm of excited-state molecular dynam-
ics is imperative for probing excited-state phenomena
within bio-molecules, organic semiconductors, or nano-
materials.

Whereas ab-initio wave-function or density-
functional theory (DFT) methods may be utilized to
simulate excited-state molecular dynamics in moder-
ately sized molecular systems, the calculation of larger
systems is accompanied by a huge increase in computa-
tional time due to the typically observed cubic or higher
scaling of these methods.

The development of semiempirical quantum me-
chanical (SQM) methodologies has enabled the simu-
lation of molecular dynamics in larger systems with
reduced computational demands, owing to the utiliza-
tion of minimal basis sets and the neglect of differen-
tial overlap between atomic basis functions.1,2 Notably,
among the spectrum of SQM techniques, the relatively
recent emergence of the density-functional tight-binding
(DFTB)3–6 method has demonstrated efficacy in simu-
lating processes within the excited-state manifold.7–15
Furthermore, the extension of the DFTB method with
the long-range correction has enabled the investigation
of charge-transfer excitations.16 The long-range cor-
rected time-dependent density-functional tight-binding
(LC-TD-DFTB) method has been integrated into multi-
ple software packages, such as DFTB+,17 DFTBaby,18
GAMESS19,20 and DIALECT,21 enabling the investi-

gation of excited-state dynamics in molecular systems
comprising several hundred atoms. Another semiem-
pirical tight-binding approach is the gfn-xtb method-
ology of Grimme and coworkers,22–24 which shows ex-
cellent results for ground-state molecular properties
and dynamics simulations. Although the method has
been employed to screen minimum energy crossing
points between different electronic states,25,26 the gfn-
xtb method has not yet been expanded to describe the
excited-state dynamics of extensive molecular systems.

Hybrid schemes, exemplified by QM/MM meth-
ods,27,28 present an additional approach for effectively
simulating the excited-state dynamics of larger molec-
ular systems. The integration of quantum mechanical
treatment for important segments of the molecular sys-
tems with classical treatment for the remaining parts
yields a significant reduction in computational demand,
while upholding precise characterization of the quantum
region. Nevertheless, these methodologies constrain the
description of the excited-state manifold to a subset of
the entire molecular system, thereby diminishing the
approach’s versatility.

The Multi-Configuration Time-Dependent Hartree
(MCTDH)29–31 method and its multilayer derivative
(ML-MCTDH)32–34 are other promising alternatives for
the investigation of the excited-state dynamics of large
molecular systems. They have been extensively used to
study the exciton transport in organic and nanomateri-
als.35–44

To model the molecular dynamics of several thou-
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sand atoms, linear scaling methodologies such as the
fragment molecular orbital (FMO)45–48 method and the
divide-and-conquer (DC)49–53 method have been de-
vised. These techniques employ fragmentation schemes,
wherein the molecular system is divided into multi-
ple segments, and the properties of the entire sys-
tem are derived from the interactions among the iso-
lated fragments. These approaches have been im-
plemented within various quantum chemical meth-
ods, including time-dependent density-functional theory
(TDDFT),54–56 configuration interaction (CI),57,58 the
coupled-cluster method59,60 and the GW approxima-
tion.61 Nevertheless, integrating fragmentation strate-
gies with semiempirical quantum mechanical methods
yields a further increase in computational efficiency.
Consequently, the combination of the fragment molec-
ular orbital and divide-and-conquer schemes with the
density-functional tight-binding method (FMO-DFTB,
DC-DFTB) has enabled the simulation of molecular dy-
namics in various materials such as organic semiconduc-
tors or peptides in their electronic ground states.62–65
The FMO-DFTB method has also been expanded to in-
corporate the polarizable continuum model,66 the long-
range correction (FMO-LC-DFTB),67 periodic bound-
ary conditions68 and polarization effects.69

While these fragmentation approaches have been
utilized for exploring excited-state molecular dynamics,
their utility has hitherto been restricted to molecular
systems where the excitation was confined to a limited
subset of molecules, with the remainder of the system
treated in its electronic ground state.56,70–74 In our pre-
vious work, we combined the FMO-LC-DFTB method
with an excitonic Hamiltonian to calculate the complete
excited-state spectrum of large molecular aggregates
(FMO-LC-TDDFTB).21 To this end, we employed a
quasi-diabatic basis that consists of locally excited (LE)
and charge-transfer (CT) states, which are obtained
from LC-TD-DFTB calculations of monomer and pair
fragments. The excitonic Hamiltonian is then built from
the energies of the basis states and the electronic cou-
plings between them. Subsequently, the excited-state
energies of the molecular system are obtained by the
diagonalization of the excitonic Hamiltonian.

In the present work, we further extend our FMO-LC-
TDDFTB methodology to include dynamical processes.
Given the considerable number of electronically ex-
cited states within extensive molecular systems, our new
theoretical framework employs the mean-field Ehren-
fest75–77 method instead of a Surface Hopping78,79

approach. Through the utilization of the Ehrenfest
methodology within the quasi-diabatic basis of LE and
CT states, we describe the excited-state dynamics of ex-
tensive molecular systems including all nuclear degrees
of freedom. We derive the analytical gradients for the
LE and CT states and check their accuracy by compar-
ing the analytical values to the numerical results. Sub-
sequently, we investigate the excited-state exciton dy-
namics of a two-dimensional anthracene structure, fol-
lowed by the simulation of the charge-transfer dynamics

of a model system of a p-type organic semiconductior,
[1]benzothieno[3,2-b]benzothiophene (BTBT).80,81

This paper is structured as follows: In Section 2,
the theoretical framework of our method is defined
and the technicalities of the molecular dynamics sim-
ulations are described. The accuracy of the quasi-
diabatic excited-state gradients and the results of the
excited-state Ehrenfest molecular dynamics simulations
are shown in Section 3. In section 4, conclusions and an
outlook are given.

2 Methodology
In this chapter, we will derive the expressions for the
gradients of our FMO-LC-TDDFTB method. At first,
we give a brief summary of the FMO-DFTB formal-
ism for the electronic ground state.62 Subsequently, the
methodology of the ground-state gradient of the FMO-
DFTB method is presented. In addition, we summa-
rize the theory behind the FMO-LC-TDDFTB method.
This is followed by the derivation of the gradients for
the quasi-diabatic LE and CT states in the framework
of the FMO-LC-TDDFTB method. Subsequently, the
methodology of the excited-state Ehrenfest molecular
dynamics in the basis of the locally excited and charge-
transfer states is described. Finally, the computational
technicalities of the molecular dynamics simulations are
provided.

In this manuscript, atomic units are employed, ac-
companied by the following notation convention: upper-
case letters A and B represent atoms, while molecular
fragments are denoted by uppercase letters I through
L without indices. Matrix elements are indicated by
uppercase letters with indices, and matrices are rep-
resented by bold uppercase letters. Molecular orbital
indices are denoted by lowercase letters (Greek letters
signify atomic orbital indices).

2.1 FMO-LC-DFTB
Ground state energies

After Nishimoto et al 62 firstly combined the frag-
ment molecular orbital method with the density func-
tional tight-binding formalism, it was extended by
Vuong et al to include LC-DFTB.67 We used this theory
as the foundation for the ground-state calculation of our
FMO-LC-TDDFTB method. In this section, we only
give a short summary of the working equations of FMO-
LC-DFTB, as it is described in detail in Refs.21,62,67
The total ground-state energy of the complete system
in FMO-LC-DFTB is given by

E =

N∑
I

EI +

N∑
I

N∑
J>I

(EIJ − EI − EJ)

+

N∑
I

N∑
J>I

∆Eem
IJ ,

(1)
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where

EX =
∑
µν

PµvH
0
µv

+
1

2

∑
µ,σ,λ,v

∆Pµσ∆Pλν(µσ | λv)

− 1

4

∑
µ,σ,λ,v

∆Pµσ∆Pλv(µλ | σv)lr

+
∑
A,B

V rep
AB (RAB)

(2)

is the internal LC-DFTB energy of a single fragment
of the system. While EI (EJ) denotes the energy of a
monomer fragment, EIJ denotes the energy of a pair
fragment. Using the tight-binding formalism, the two-
electron integrals in the Coulomb and exchange energy
contributions can be expressed as

(µλ | σν) =
∫∫

ϕµ(r1)ϕλ(r1)
1

r12
ϕσ(r2)ϕν(r2)d1d2

≈
∑
A,B

γABq
µλ
A qσνB , (3)

and

(µλ | σν)lr =

∫∫
ϕµ(r1)ϕλ(r1)

erf( r12
Rlr

)

r12
ϕσ(r2)ϕν(r2)d1d2

≈
∑
A,B

γlrABq
µλ
A qσνB , (4)

where the γ and γlr matrices, which represent charge
fluctuation interactions are defined in Ref.21 and the
transition charges in the AO basis qµλA of atom A are

qµλA =
1

2
(δ(µ ∈ A) + δ(λ ∈ A))Sµν . (5)

The last term of Eq. (1) is the difference of the embed-
ding energy of the pair and the monomers

∆Eem
IJ = Eem

IJ − Eem
I − Eem

J

=
∑
A∈IJ

N∑
K ̸=I,J

∑
C∈K

γAC∆∆qIJA ∆qKC ,
(6)

which describes the difference in the Coulomb interac-
tion between the molecular environment and the respec-
tive fragments. While the term

∆qA = qA − q0A (7)

=
∑
µ∈A

∑
v

[
PµvSµv − P 0

µvSµv

]
(8)

is the Mulliken charge difference of atom A, ∆∆qIJA is
the difference in the Mulliken charges of the pair and
the respective monomers.

We use the electrostatic-dimer (ES-DIM)47 approxi-
mation to account for far-separated pairs that have zero

orbital overlap. The energy of ES-DIM pairs is given by

EIJ = EI + EJ +
∑
A∈I

∑
B∈J

γAB∆q
I
A∆q

J
B . (9)

As the FMO-DFTB method includes the Coulomb in-
teraction between all monomer fragments

V X
µv =

1

2
SX
µν

N∑
K ̸=X

NK∑
C∈K

(γAC + γBC)∆q
K
C (10)

in the ground-state Hamiltonian of a fragment,

HX
µν = H0

µν +
1

2
Sµν

∑
C

(γAC + γBC)∆qC

+ V X
µν − 1

8

∑
αβ

∆PαβSµαSβν

×
(
γlrµβ + γlrµν + γlrαβ + γlrαν

)
,

(11)

the FMO-DFTB ground states calculation requires si-
multaneous monomer self-consistent charge (SCC) it-
erations, where V X

µv is updated in each iteration. A
detailed description of the technicalities of the imple-
mentation of the monomer SCC iterations is given in
our previous work.21

Ground-state gradients
In the following, a short summary of the derivation
of the ground-state gradient of the FMO-LC-DFTB
method is presented, which was originally published in
Refs.62,67 The total gradient of the system

∂E

∂ra
=

N∑
I

∂EI

∂rαx
+

N∑
I>J

(
∂EIJ

∂rαx
− ∂EI

∂rαx
− ∂EJ

∂rαx

)

+

N∑
I>J

∂∆Eem
IJ

∂rαx

(12)

is composed of the derivatives of the various energy
expressions (cf. Eq. (1)). The energy gradient of a
monomer or pair fragment

∂EX

∂ra
=

∑
(b̸=a)∈X

∑
µ∈a

∑
ν∈b

[
2PX

µν

∂H0,X
µν

∂ra
− 2W ′X

µν

∂SX
µν

∂ra

+ PX
µν

∂SX
µν

∂ra

∑
c∈X

(γac + γbc)∆q
X
c − 1

4

∂SX
µν

∂ra

×
∑

αβ∈X

∆PX
µα∆P

X
βνS

X
αβ

(
γlraα + γlraβ + γlrbα + γlrbβ

)
− 1

4

∂γlrab
∂ra

∑
αβ∈X

SX
µβS

X
να (13)

×
(
∆PX

µα∆P
X
βν +∆PX

µν∆P
X
αβ

) ]

+∆qXa
∑

(c ̸=a)∈X

∆qXc
∂γac
∂ra

+
∑

(b ̸=a)∈X

∂Erep
ab

∂ra

3



is identical to the DFTB gradient with the exception of
the internal Lagrangian term

W ′X
µν =

1

2

∑
ρσ

PX
µρH

X
ρσP

X
σν ,−

1

2

∑
ρσ

PX
µρV

X
ρσP

X
σν , (14)

which includes the electrostatic interaction with all
other fragments (V X

ρσ).
The calculation of the gradient of the embedding

energy differentiates between two cases: i) If atom α is
part of the pair IJ , the gradient yields

∂∆Eem
IJ

∂rαx
= ∆∆qIJα

N∑
K ̸=I,J

∑
C∈K

∆qKC
∂γαC
∂rαx

+
∑
µ∈α

∑
ν

(
∆W̃ IJ,α

µν SIJ
µν +∆P IJ

µν

∂SIJ
µν

∂rαx

)

×
N∑

K ̸=I,J

∑
C∈K

γαC∆q
K
C , (15)

where

∆W̃ IJ,α
µν = W̃ IJ,α

µν −
(
W̃ I,α

µν ⊕ W̃ J,α
µν

)
(16)

and
∆P IJ

µν = P IJ
µν −

(
P I
µν ⊕ P J

µν

)
. (17)

ii) If atom α is not part of the pair IJ , the embedding
energy gradient yields

∂∆Eem
IJ

∂rαx
= ∆qKα

∑
A∈IJ

∆∆qIJA
∂γAα

∂rαx

+
∑
µ∈α

∑
ν

(
W̃K,α

µν SK
µν + PK

µν

∂SK
µν

∂rαx

)
×
∑
A∈IJ

γAα∆∆qIJA ,

(18)

where

W̃X,α
µν = −1

2

∑
ρσ

PX
µρ

∂SX
ρσ

∂rαx
PX
σν . (19)

The gradient of the ES-DIM energy also requires two
different expressions: i) For atom α on fragment I the
gradient is

∂EIJ

∂rαx
= ∆qIα

∑
B∈J

∆qJB
∂γαB
∂rαx

+
∑
µ∈α

∑
ν

(
W̃ I,α

µν S
I
µν + P I

µν

∂SI
µν

∂rαx

)
×
∑
B∈J

∆qJBγαB .

(20)

ii) The gradient expression for atom α on fragment J

yields

∂EIJ

∂rαx
= ∆qJα

∑
A∈I

∆qIA
∂γAα

∂rαx

+
∑
µ∈α

∑
ν

(
W̃ J,α

µν S
J
µν + P J

µν

∂SJ
µν

∂rαx

)
×
∑
A∈I

∆qIAγAα.

(21)

Using the previous expressions, the ground-state FMO-
DFTB gradient is then calculated according to Eq. 12.

2.2 Excited states within FMO-LC-
TDDFTB

As we already described the excited-state formalism of
the FMO-LC-TDDFTB method in our previous work,21
we will only give a short summary of the working equa-
tions in the following section.

The excited state wavefunction of the complete sys-
tem in the framework of the FMO-DFTB method can
be formulated as a linear combination of basis states of
the monomer and pair fragments. The basis is con-
structed from singlet locally excited states on single
fragments and charge-transfer states between two frag-
ments. Thus, the total electronic excited state wave-
function is defined as

|Ψ⟩ =
N∑
I

NLE∑
m

cmI |LEm
I ⟩+

N∑
I

N∑
J ̸=I

NCT∑
m

cmI→J |CTm
I→J⟩ ,

(22)
where the coefficients of the LE and CT configuration
state functions are obtained by solving the eigenvalue
problem Hc = Ec. The LE states

|LEm
I ⟩ =

∑
i∈I

∑
a∈I

X
m(I)
ia |Φi→a

I ⟩ (23)

are obtained from the excited-state calculation of the
monomer fragments, where X

m(I)
ia is the one-particle

transition density matrix of the m-th excited state of
fragment I in the monomer MO basis and |Φi→a

I ⟩ is
the singlet configuration state function of the excitation
from the occupied orbital i to the virtual orbital a on
fragment I.

The charge-transfer states of a fragment pair includ-
ing monomer I and monomer J can be expressed as

|CTm
I→J⟩ =

∑
i∈I

∑
a∈J

X
m(I→J)
ia |Φi→a

I→J⟩, (24)

where the transition between the fragments is restricted
to the occupied orbitals of monomer I and the virtual
orbitals of monomer J .

The excited-state energies of the LEs and CTs are
calculated using the linear-response formalism of the
LC-DFTB method.16 The excited states can be ob-
tained by solving the non-Hermitian eigenvalue equa-

4



Figure 1: Illustration of the excited-state Hamiltonian
of the FMO-LC-TDDFTB method. The Hamiltonian is
shown for an example trimer system with two LE states
for each monomer and one CT state for each pair.

tion(
A B
B A

)(
X
Y

)
= Ω

(
1 0
0 −1

)(
X
Y

)
, (25)

where the matrices A and B are defined as

Aia,jb = δijδab (ϵa − ϵi) + 2
∑
A

∑
B

qiaA γABq
jb
B

−
∑
A

∑
B

qijAγ
lr
ABq

ab
B

(26)

Bia,jb = 2
∑
A

∑
B

qiaA γABq
jb
B −

∑
A

∑
B

qibAγ
lr
ABq

aj
B (27)

in the framework of the LC-DFTB method. The atomic
transition charges between MOs are expressed as

qijA =
1

2

∑
µ∈A

∑
ν

(CµiCνj + CνiCµj)Sµν . (28)

Alternatively, if the Tamm-Dancoff (TDA) approxima-
tion is employed in the excited-state calculations, Eq.
25 is reduced to the Hermitian eigenvalue problem

AX = ΩX, (29)

which is solved by the Davidson algorithm to obtain the
lowest eigenvalues.82

To obtain the excited states of the complete system
in the framework of the FMO-LC-TDDFTB method,
the complete excited-state Hamiltonian HExc−FMO,
which is depicted in Fig. 1, must be diagonalized. The
construction of the Hamiltonian requires the couplings

between the locally excited and charge-transfer basis
states. The diagonal matrix elements of the Hamilto-
nian are represented by the energies of the respective
basis states, obtained from the TDA-DFTB calcula-
tions. As derived in Refs.21,58, the off-diagonal matrix
elements can be split in one-electron

⟨Φi→a
I→J |H1e|Φj→b

K→L⟩ = δIKδijH
′
ab − δJLδabH

′
ij (30)

and two-electron contributions

⟨Φi→a
I→J |H2e|Φj→b

K→L⟩ = 2
(
i(I)a(J) | j(K)b(L)

)
−
(
i(I)j(K) | a(J)b(L)

)
.

(31)

The one-electron part vanishes for the coupling between
the LE states according to the Slater-Condon rules and
thus, the LE-LE coupling in the tight-binding formalism
is given by

⟨LEm
I |H |LEn

J⟩ = 2
∑
A∈I

∑
B∈J

q
m(I)
tr,A γABq

n(J)
tr,B (32)

−
∑
A∈IJ

∑
B∈IJ

∑
ia∈I

∑
jb∈J

X
m(I)
ia X

n(J)
jb qijAγ

lr
ABq

ab
B ,

where
q
m(I)
tr,A =

∑
ia

qiaAX
m(I)
ia (33)

is the transition charge of the m-th excited state of the
fragment I on atom A. The first term represents the
Coulomb interaction between the transition densities of
fragments I and J , whereas the second terms represents
the exchange interaction. If the fragment pair is classi-
fied as a far separated pair, the ES-DIM approximation
is used and the exchange interaction is neglected.

The coupling of the LE state on fragment I and
the charge-transfer state between fragment J and K is
defined as

⟨LEm
I |H |CTn

J→K⟩ =

δIJ
∑
ia∈I

∑
b∈K

X
m(I)
ia X

n(I→K)
ib H ′

ab

− δIK
∑
ia∈I

∑
j∈J

X
m(I)
ia X

n(J→I)
ja H ′

ij

+2
∑
A∈I

∑
B∈JK

q
m(I)
tr,A γABq

n(J→K)
tr,B (34)

−
∑
A∈IJ

∑
B∈IK

∑
ia∈I

∑
j∈J

∑
b∈K

X
m(I)
ia X

n(J→K)
jb qijAγ

lr
ABq

ab
B ,

where H ′
ab are matrix elements of the orthogonalized

Hamiltonian of the full system, which is given by

H′ = S− 1
2HLCMOS− 1

2 . (35)

Here, S is the overlap matrix of the complete system
and the non-orthogonalized Hamiltonian is constructed
from the Hamiltonian matrices of the monomer and pair

5



fragments as

HLCMO =
⊕
I

HI +
⊕
I>J

(HIJ −HI ⊕HJ). (36)

Compared to the LE-LE coupling, the one-electron con-
tribution to the LE-CT coupling does not vanish. How-
ever, if the LE and CT state do not share a monomer
and the fragments of the basis states are not in close
proximity to each other, the contributions get zero as
the matrix elements of the orthogonalized Hamiltonian
H

′
(cf. Eq. 35) are zero for ES-DIM pair fragments.

In the case of far separated fragments, the ES-DIM ap-
proximation is used and the only remaining part of the
LE-CT coupling is the Coulomb interaction

⟨LEm
I |H|CTn

J→K⟩ = 2
∑
A∈I

∑
B∈JK

q
m(I)
tr,A γABq

n(J→K)
tr,B .

(37)
The one-electron contributions of the CT-CT cou-

pling are included in the diagonal matrix elements ob-
tained from the LC-TD-DFTB calculations. The re-
maining two-electron contribution of the coupling be-
tween two charge-transfer states is defined as

⟨CTm
I→J |H |CTn

K→L⟩ =

2
∑
A∈IJ

∑
B∈KL

q
m(I→J)
tr,A γABq

n(K→L)
tr,B

−
∑
i∈I

∑
a∈J

∑
j∈K

∑
b∈L

∑
A∈IK

∑
B∈JL

X
m(I→J)
ia

×X
n(K→L)
jb qijAγ

lr
ABq

ab
B .

(38)

If the fragments I and K or J and L are not in close
spatial proximity, the ES-DIM approximation is utilized
and thus, the exchange contribution of the CT-CT cou-
pling is neglected.
Excited state gradients

In the following, we derive the gradient expressions
for the excited-state energies of the locally excited and
charge-transfer basis states. However, we will only give
a short summary of the derivation, a more detailed de-
scription is available in Refs.18,83

Utilizing Furche’s variational TD-DFT formalism,84
excitation energies of TDA-DFTB are stationary points
of the functional

G[X,Ω,C] = XTAX−Ω
(
XXT − 1

)
, (39)

which is part of the auxiliary functional

L [X,Ω,C,Z,W] = XTAX−Ω
(
XXT − 1

)
+
∑
i,a

ZiaHia

−
∑

p,q,p≤q

Wpq (Spq − δpq) ,

(40)

where W and Z are Lagrange multipliers. The min-
imization of the auxiliary functional leads to a set of

conditions, i.a. the stationary conditions of the MO co-
efficients

∂L

∂C
= 0, (41)

which can be utilized to determine the Lagrange mul-
tipliers W and Z (cf. Appendix A). Subsequently, the
gradient of the excitation energy can be formulated af-
ter some lengthy mathematical derivations as

dΩ

dR
=
∂G

∂R
+
∑
ia

Zia
∂Hia

∂R
−

∑
p,q,p≤q

Wpq
∂Spq

∂R
, (42)

where

∂G

∂R
=
∑
ia,jb

Xia
∂Aij,ab

∂R
Xjb (43)

=
∑
ia,jb

Xia

{
δij
∂Hab

∂R
− δab

∂Hij

∂R

+2
∂(ia | jb)

∂R
− ∂(ij | ab)lr

∂R

}
Xjb

(44)

=
∑
a,b

∂Hab

∂R

∑
i

XiaXib −
∑
i,j

∂Hij

∂R

∑
a

XiaXja

+ 2
∑
ia,jb

∂(ia | jb)
∂R

XiaXjb −
∑
ia,jb

∂(ij | ab)lr
∂R

XiaXjb.

(45)

After transformation from the MO basis to the AO ba-
sis, the expression of the gradient of the excitation en-
ergy is given by

dΩ

dR
=
∑
α,β

∂Hαβ

∂R

{
T v−v
αβ − T o−o

αβ + Zαβ

}
−
∑
α,β

∂Sαβ

∂R
Wαβ

+ 2
∑
α,β

Xαβ

∑
γ,δ

∂(αβ | γδ)
∂R

Xγδ

−
∑
α,β

Xαβ

∑
γ,δ

∂(αγ | βδ)1r
∂R

Xγδ,

(46)

where

T v−v
αβ =

∑
a

∑
b

CαaCβb

∑
i

XiaXib (47)

T o−o
αβ =

∑
i

∑
j

CαiCβj

∑
a

XiaXja. (48)

The gradient of a locally excited basis state is equivalent
to the LC-TD(A)-DFTB gradient and requires no fur-
ther calculations. However, the calculation of the gradi-
ent of a charge-transfer state requires some preliminary
transformations. As mentioned earlier, a CT state from
fragment I to fragment J is restricted to the transition
of the occupied orbitals of I and the virtual orbitals of
J . In order to calculate the gradient of the m-th CT
state of IJ , the transition density matrix Xm(I→J) in
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the MO basis between the occupied and virtual orbitals
of the two fragments is transformed into the MO ba-
sis of the fragment pair Xm(IJ) by utilizing the overlap
matrices between the monomer and pair orbitals SI,IJ

µ,λ

and SJ,IJ
ν,σ :

X
m(IJ)
jb =

∑
µ∈I

∑
ν∈J

∑
λσ∈IJ

∑
i∈I

∑
a∈J

CI
µiS

I,IJ
µ,λ CIJ

λj

×X
m(I→J)
ia CJ

νaS
J,IJ
ν,σ CIJ

σb .

(49)

Subsequently, the gradients of a charge-transfer state
from fragment I to J are obtained from the LC-TD(A)-
DFTB gradient calculation of the pair IJ with the ex-
cited state eigenvector obtained according to Eq. 49.

2.3 Nonadiabatic excited-state Ehren-
fest dynamics

In this section, we present the theoretical methodol-
ogy of nonadiabatic excited-state molecular dynamics
in the framework of the quasi-diabatic basis states of
our FMO-LC-TDDFTB approach.

In our semiclassical approach, the dynamics of
the atomic nuclei are governed by Newton’s equation,
whereas the dynamics of the electronic motion is treated
quantum mechanically. Thus, the electronic excited
state wavefunction is parametrically dependent on the
nuclear coordinates R(t) and can be expanded in the
basis of the quasi-diabatic LE and CT states of the
molecular aggregates as follows

|Ψ(r;R(t))⟩ =
N∑
I

NLE∑
m

cmI (t) |LEm
I (r;R(t))⟩ (50)

+

N∑
I

N∑
J ̸=I

NCT∑
m

cmI→J(t) |CT
m
I→J(r;R(t))⟩ ,

where cmI (t) and cmI→J(t) are the time-dependent expan-
sion coefficients for the LE and CT states. Employing
the notation |ψn⟩ for a quasi-diabatic basis state, Eq.
(50) becomes

|Ψ(r;R(t))⟩ =
∑
n

cn(t) |ψn(r;R(t))⟩ . (51)

After inserting Eq. (51) into the time-dependent
Schrödinger equation, a set of coupled differential equa-
tions for the expansion coefficients is obtained in the
diabatic representation

ih̄
dcn(t)

dt
=
∑
m

cm(t)
[
HExc−FMO

nm (R(t))

−ih̄Dnm (R(t))] ,

(52)

where HExc−FMO
nm is a matrix element of the excited

state Hamiltonian of the FMO-LC-TDDFTB method
(cf. Fig. 1) and Dnm is the nonadiabatic coupling be-
tween two quasi-diabatic states. Due to the fact that

the locally excited and charge-transfer states are adia-
batic states of the single fragments, the calculation of
the nonadiabatic coupling between the adiabatic states
on a fragment is required. Thus, the nonadiabatic cou-
pling

Dnm(R(t)) =

〈
ψn(r;R(t))

∣∣∣∂ψm(r;R(t))

∂t

〉
(53)

is calculated between LE states on the same monomer
and between CT states on the same pair fragment, while
it is zero between all other quasi-diabatic basis states.
In our simulations, the nonadiabatic coupling is ob-
tained from the scalar product of the nonadiabatic cou-
pling vector and the nuclear velocities

Dnm(R(t)) = ⟨ψn(r;R(t))| ∇R |ψm(r;R(t))⟩ · Ṙ(t).
(54)

As the derivation of the nonadiabatic coupling vectors
in the framework of the TD-LC-DFTB method was
recently published by Niehaus,85 we will only briefly
present the working equations for the TDA-LC-DFTB
approach. The nonadiabtic coupling between two adia-
batic states on the same fragment is given by

⟨ψn| ∇R |ψm⟩ = 1

Ωn − Ωm

[∑
α,β

∂Hαβ

∂R

×
{
T̃ v−v,nm
αβ − T̃ o−o,nm

αβ + Znm
αβ

}
−
∑
α,β

∂Sαβ

∂R
Wnm

αβ

+ 2
∑
α,β

Xn
αβ

∑
γ,δ

∂(αβ | γδ)
∂R

Xm
γδ

−
∑
α,β

Xn
αβ

∑
γ,δ

∂(αγ | βδ)1r
∂R

Xm
γδ

]
,

(55)

where

T̃ v−v,nm
αβ =

∑
a

∑
b

CαaCβb

∑
i

1

2
(Xn

iaX
m
ib +Xm

iaX
n
ib)

(56)

T̃ o−o,nm
αβ =

∑
i

∑
j

CαiCβj

∑
a

1

2

(
Xn

iaX
m
ja +Xm

iaX
n
ja

)
.

(57)

The Lagrange multipliers Znm and Wnm for the nona-
diabatic couplings can be derived in analogy to the
TDA-LC-DFTB gradient.15,85 As we are using Ehren-
fest dynamics in the quasi-diabatic basis of LE and CT
states, we approximate the excited-state forces as the
linear combination of the TDA-LC-DFTB gradients of
all basis states

FR = −
∑
n

|cn|2 ∇REn, (58)

where cn are the expansion coefficients of the quasi-
diabatic basis states.
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2.4 Computational Details
In the present section, the computational technicali-
ties of the quantum mechanical simulations will be de-
scribed.

We employed the ob286 parameter set for the cal-
culations of the anthracene system and the mio5,87 pa-
rameter set for the molecular dynamics of the BTBT
aggregates. In all simulations in this work, a long-range
radius of 3.03 a0 was used for the LC-DFTB approach.

The Mercury88 program was utilized to generate the
molecular structures of the anthracene and benzene ag-
gregates from their crystal structures.89,90

In case of the molecular dynamics simulations of the
anthracene system, the DFT-D391,92 dispersion correc-
tion was employed in conjunction with the ob2 disper-
sion parameters. To prevent the molecular aggregates
from moving apart during the course of the molecular
dynamics simulations, the gradient of the harmonic po-
tential

V (R) =
1

2
k(R−R0)

2 (59)

was added to the total gradient of the system, where
R0 are the initial coordinates of the molecular system
and the force constant k is 1.0 · 10−6Eh/a

2
0

The initial velocities of the molecular dynamics sim-
ulations were sampled from a Maxwell-Boltzmann dis-
tribution at a temperature of 300 K. The classical dy-
namics of the nuclei was performed using the Velocity-
Verlet algorithm with a time step of 0.1 fs.

For the molecular dynamics of the anthracene sys-
tem (30 monomers), 50 trajectories were propagated
for 20000 steps (2000 fs), respectively. In case of the
excited-state dynamics of the model system of BTBT
molecules (8 monomers), 10 trajectories were propa-
gated for 200000 steps (20 ps). In case of both excited-
state dynamics simulations, the number of CT states is
one, whereas the number of LE states is set to three for
the anthracene system and two for the BTBT aggregate.

The excited-state dynamics of our FMO-LC-
TDDFTB method was implemented in our own software
package DIALECT, which is available on Github.93

3 Results and Discussion
In this section, the accuracy of the excited-state gra-
dients of the LE and CT states will be investigated
by comparing the analytical results with the numeri-
cal values. Subsequently, a simulation of the excited-
state molecular dynamics of a anthracene aggregate
is presented to illustrate the efficacy of our method
to describe exciton dynamics. Furthermore, we show
the molecular dynamics simulation of the excited-
state charge-transfer dynamics of the BTBT system to
demonstrate the applicability of our method to charge-
transfer dynamics of organic materials. In addition, the
applicability of our method for simulating the recombi-
nation of a CT state is shown for the BTBT molecular
system.
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Figure 2: Absolute deviation of the analytical a) LE
and b) CT gradients from the numerical gradients for
the benzene crystal structure (C6H6)61.

3.1 Accuracy of the excited-state gradi-
ents

In order to investigate the accuracy of the excited-
state gradients of the locally excited and charge-transfer
states, the analytical excited-state gradients are com-
pared to the numerical gradients. To this end, the
excited-state gradients of a molecular aggregate of 61
benzene molecules, which was obtained from the crystal
structure of benzene,90 are calculated. The deviations
of the analytical gradient from the results of the numer-
ical gradient are shown in Fig. 2. In case of the LE
states, the gradients of the first excited-state of all ben-
zene monomers are compared to the numerical results.
The CT gradients are limited to the transitions from the
first monomer fragment to the rest of the monomers.
The root-mean-square deviation (rmsd) and the maxi-
mum deviation of the analytical gradient from the nu-
merical results is shown in Table 1. While the LE gra-
dients show deviations in the magnitude of 10−5Eh/a0
with maximum values reaching 3 ·10−4Eh/a0, the errors
of the CT gradients are in the range of 10−4Eh/a0 and
reach a maximum of 6 · 10−4Eh/a0. These deviations
should be sufficiently small to accurately simulate the
excited-state dynamics of molecular systems.

Table 1: Comparison of the analytical and numerical
gradients for the benzene crystal.

gradients rmsd max error

LE 0.000058 0.00030
CT 0.00015 0.00064
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Figure 3: Illustration of the different excitonic couplings
in the anthracene crystal structure.

3.2 Excited-state exciton dynamics of
anthracene

To investigate the excited-state dynamics of a molecu-
lar system of anthracene aggregates, a two-dimensional
structure of 30 monomers (3 x 10) was cut from the
crystal structure. A structure was chosen along the B-
axis of the anthracene crystal that shows the highest
excitonic coupling among the crystallographic axes of
the anthracene system. The calculated excitonic cou-
pling between the S1 and S2 states of the anthracene
molecules for 4 crystallographic directions (cf. Fig. 3)
of the structure is shown in Tab. 2. The initial state of
the excited-state dynamics is set to the first LE state on
the outermost anthracene monomer of the middle row
of the molecular system and is shown in Fig. 4. As the
simulation starts at the outermost monomer, a transfer
of the exciton along the horizontal axis to the other side
is expected. To observe this phenomenon, the excited-

Table 2: Excitonic coupling strength (cf. Eq. 32) be-
tween the LE states of neighbouring molecules of the
anthracene crystal along the axes in the crystal struc-
ture.

abs. coupling strength / eV
LE state A-axis B-axis C-axis D-axis

S1 0.008 0.048 0.005 0.011
S2 0.003 0.013 0.009 0.013

Figure 4: Initial state of the excited-state dynamics of
the anthracene system.
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Figure 5: Population of the excited-states of the an-
thracene monomers averaged over all trajectories. The
colored lines depict the populations of the anthracene
monomers along the middle row of molecules, the gray
lines display the populations of the monomers along the
upper and lower horizontal rows.

state population of each monomer averaged over all 50
trajectories is shown in Fig. 5. Here, the populations of
the monomers along the middle horizontal row are dis-
played in bright colors, whereas the excited-state pop-
ulations of the upper and lower row are shown in grey
(cf. inset). As depicted in Fig. 5, the excited-state pop-
ulation of the initial state is gradually decreasing, while
the excited-state population of the other monomers in
the same row is increasing. At a simulation time of
ca. 70–80 fs, the exciton transfer has progressed to the
last monomer of the row and shows an increase of its
populations. However, due to the low excitonic coupling
between the different rows, the populations of the upper
and lower anthracene monomers is only growing slowly.
As the simulation time increases, the exciton is delocal-
ized over the complete molecular structure of the an-
thracene aggregates. From around 1500 fs onwards, the
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Figure 6: Excited-state populations along the b-axis of
the anthracene crystal. The average population of all
trajectories (thick lines) and the population of the indi-
vidual trajectories (thin lines) are shown.
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Figure 7: Transition densities of the excited-state configurations along a single example trajectory of the anthracene
system.
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average excited-state population of all monomers shows
only slight fluctuations and has reached a value of ca.
1/30, and thus, the exciton is equally delocalized over
all monomers. In order to illustrate this phenomenon in
greater detail, the sum of the excited-state populations
of the three horizontal rows of anthracene monomers is
depicted in Fig. 6. Up to a simulation time of 500 fs, the
exciton dynamics is mainly taking place at the central
row of anthracene molecules.

Between 500 fs and 1000 fs, the population of an-
thracene system is gradually delocalized over the whole
aggregate. At around 1500 fs, the complete delocaliza-
tion of the exciton is reached. However, compared to
the average population of all trajectories, the excited-
state populations of the individual trajectories show
pronounced oscillations around the average population
of 1

3 .
In the interest of a visual representation of the exci-

ton dynamics, the transition density matrices for a sin-
gle example trajectory are shown in Fig. 7 at different
simulation times. Between the start of the simulation
and 100 fs, the initially localized population of the ex-
citon is gradually transported along the central chain
of anthracene molecules and populates the excited state
of the last monomer. At the same time, a small part
of the excited-state population is transfered to the up-
per and lower chain of anthracene monomers. Between
100 fs to 500 fs, the exciton population is partially trans-
ferred from the central anthracene chain to the upper
and lower rows of anthracene molecules. Furthermore, a
high degree of delocalization is already present at 500 fs.
From this point of the simulation, the exciton popula-
tion keeps fluctuating between the excited-states of all
monomers of the system. However, the exciton is at no
point of the simulation equally distributed between all
monomers, instead showing varying degrees of delocal-
ization on the three anthracene chains.

3.3 Excited-state charge-transfer dy-
namics of BTBT

In order to show the feasibility of the simulation of
excited-state charge-transfer dynamics by employing
our method, we investigate the excited-state dynamics
of a model BTBT system, which is known as an organic
field-effect transistor and a p-type semiconductor.

To this end, a small molecular aggregate of 8 stacked
BTBT monomers was prepared. The excited-state dy-
namics simulation starts from an initially far separated
CT state, which is depicted in Fig. 8.

Due to the increased hole-conductive properties of
the BTBT system, the movement of the hole should be
favored compared to that of the particle. However, op-
posed to typical charge-transfer processes in solar cells
or organic light-emitting diods, the movement of the
CT states in our method is driven by the excitonic cou-
pling between the excited-states and not by an external
electric field. The average excited-state population
of the BTBT monomers for all 10 trajectories is shown

b)

a)

Figure 8: Initial charge-transfer state of the excited-
state dynamics of the BTBT system. a) The hole (blue)
and b) particle (red) density of the excited state is
shown.

in Fig. 9. As the simulation starts from a CT state
between the first and the last monomer of the BTBT
chain, the populations of the respective states are ini-
tially 0.5. Compared to the population of the electron
on the last monomer, which remains relatively constant
for the first five picoseconds, the hole population on the
first monomer shows a pronounced decline in conjunc-
tion with the increase of the excited-state populations
on the second and third BTBT molecule. From 5 ps to
15 ps, the hole population is partially transferred from
the first to the 5th monomer, showing a delocalization
over the first five BTBT molecules. Compared to the
hole transfer process, the population of the electron is
gradually transferred from the 8th to the 7th monomer,
illustrating a much slower process.

At the end of the simulation, the majority of
the population of the electron remains on the last
BTBT molecules, showing a partial transfer to the 7th
monomer and a marginal population of the CT con-
tribution of the 6th monomer. Opposed to this, the
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Figure 9: Mean excited-state populations of the BTBT
monomers averaged for all trajectories.
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Figure 10: The hole (blue) and particle (red) densities of the excited states of the BTBT system of a single example
trajectory.
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population of the hole is predominantly located on the
5th BTBT molecule at the end of the simulation, show-
ing a much higher mobility than the electron. However,
the hole is still partially delocalized over the first four
monomers, showing the least amount of population on
the first and second molecule.

To obtain a more visual representation of the charge-
transfer dynamics of the BTBT model system, the hole
and particle densities for different simulation times of an
example trajectory are displayed in Fig. 10. While the
hole density illustrates the partial hole transfer from the
first to the 5th BTBT monomer from 0 ps to 8 ps, the
particle density shows that the electron remains solely
on the last monomer for the first 4 ps, transferring a
small part of its population to the 7th monomer over
8 ps. From 12 ps to 20 ps, the majority of the hole
population is transferred to the 4th monomer, while
the electron is mostly delocalized between the last two
BTBT molecules, showing a marginal population of the
6th monomer. Unfortunately, due to the lack of com-
putational resources, it was not possible to increase the
simulation time for the excited-state dynamics trajec-
tories of the BTBT system and prove that our method
enables the investigation of the recombination of a CT
state to an LE state. Thus, we calculated a single tra-
jectory for the BTBT model system starting from an
initial CT state, which was constructed between the 4th
and the 5th monomers. The excited-state populations
of the BTBT monomers for the simulation of the charge
recombination are depicted in Fig. 12. Within the first
200 fs of the excited-state dynamics, the total popula-
tion of the CT states decreases by ca. 27%, while the
increased population of the LE states is rapidly delocal-
ized between all the LE states of the BTBT monomers.
In the next few ps of the simulation, the CT population
is gradually transmitted to the manifold of LE states,
resulting in a final excited-state distribution of 39% LE
state and 61% CT state. Another striking feature of the
charge recombination simulation is the stark difference
of the rate of excitonic transfer between the LE and CT

Figure 11: Initial CT state of the simulation of the
charge recombination.
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Figure 12: Plot of the a) LE state populations of the
monomers, b) CT state populations of the monomers
and c) total LE and CT contribution during the simu-
lation.

manifolds of the BTBT monomers, which is depicted in
Fig. 12 a) and b). This difference results from the dis-
parity in the coupling strength between the respective
LE and CT states.

4 Conclusion and Outlook
We have developed a new methodology to simulate the
excited-state dynamics of large molecular aggregates
employing the mean-field Ehrenfest approach in the
framework of FMO-LC-TDDFTB. To this end, we de-
rived the excited-state gradients and the non-adiabatic
couplings for the quasi-diabatic LE and CT states of our
FMO-LC-TDDFTB method and implemented the pro-
posed theory in our own software package DIALECT,
which is publically available on Github.93

We analyzed the accuracy of the analytical LE and
CT gradients by the comparison with the numerical gra-
dients. The results show an average deviation of the
excited-state gradients in the range of 10−5Eh/a0 (LE)
to 10−4Eh/a0 (CT), which should be sufficient for the
simulation of excited-state dynamics.

The excited-state exciton dynamics of the two-
dimensional anthracene system showed the potential ap-
plications of our method in simulating the exciton trans-
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port in organic semiconductors and nanomaterials.
The simulation of the charge-transfer dynamics in

the model system of 8 BTBT monomers proved the ca-
pability of our methodology in investigating the excited-
state hole and electron dynamics in organic materials.
Our findings indicate an enhanced hole mobility within
the BTBT system, consistent with its classification as
a p-type semiconductor, thereby showcasing the poten-
tial applicability of our methodology. In addition, the
excited-state dynamics starting from a neighbouring CT
state proved that our approach also facilitates the ob-
servation of charge recombination in molecular systems.

Our new methodology opens the possibility to per-
form fully atomistic real-time simulations of excitonic
transfer in large biological systems and organic materi-
als and devices. To this end, we intend to extend the
parameterization of the LC-DFTB method to a wider
range of elements. Furthermore, we aim to combine
the FMO-LC-TDDFTB methodology with the Tavis-
Cummings Hamiltonian to calculate the interaction be-
tween large molecular systems and microcavities and
simulate their excited-state dynamics in the regime of
strong light-matter coupling. Additionally, we are work-
ing on an ab-initio implementation of our methodology
to facilitate the simulation of more complex molecular
materials.

Acknowledgement We gratefully acknowledge fi-
nancial support by the Deutsche Forschungsgemein-
schaft via the grants MI1236/6-1 and MI1236/7-1.

A Determination of Lagrange
multipliers

A brief summary of the determination of the Lagrange
multipliers is presented. For a more detailed derivation,
we refer to Ref.18

To obtain the Lagrange multipliers Z and W, the
stationary condition of the Lagrange functional in re-
spect to the variation of the molecular orbital coeffi-
cients ∑

µ

∂L

∂Cµp
Cµq = 0 (60)

is used. By inserting Eq. (40) into the above equation,
one gets∑

µ

∂L

∂Cµp
Cµq =

∑
µ

∂G

∂Cµp
Cµq +

∑
ia

Zia

∑
µ

∂Hia

∂Cµp
Cµq

−
∑
r≤s

Wrs

∑
µ

∂Srs

∂Cµp
Cµq = 0, (61)

where
Qpq =

∑
µ

∂G

∂Cµp
Cµq. (62)

The second and third term terms of Eq. (61), which

contain Z and W, are∑
ia

Zia

∑
µ

∂Hia

∂Cµp
Cµq =

∑
ia

Zia [(δpaδqi + δpiδqa) ϵi

+δp∈occ(A+B)ia,pq] (63)
= Zqpϵq + Zpqϵp + δ(p ∈ occ)

×
∑
ia

Zia(A+B)ia,pq (64)

and∑
r,s,r≤s

Wrs

∑
µ

∂Srs

∂Cµp
Cµq =

∑
r,s,r≤s

Wrs (δqsδrp + δqrδsp)

= (1 + δpq)Wpq. (65)

Inserting the Eqs. (63) and (65) into (61) yields

Qpq + (Zqpϵq + Zpqϵp) + δp∈occ

∑
ia

Zia(A+B)ia,pq

= (1 + δpq)Wpq, (66)

which is used to determine Z. By subtracting the
occupied-virtual

Qia + Ziaϵi +
∑
jb

(A+B)ia,jbZjb (67)

= (1 + δia)Wia for p ∈ occ and q ∈ virt

from the virtual-occupied

Qai + Ziaϵi = (1 + δai)Wai for p ∈ virt and q ∈ occ
(68)

block of Eq. (66), the Z-vector equation is obtained:∑
jb

(A+B)ia,jbZjb = Qai −Qia (69)

Using the solution of the Z-vector equation, the La-
grange multiplier W is calculated according to

Wij =
1

1 + δij

(
Qij +

∑
kb

(A+B)ij,kbZkb

)
(70)

Wia =Wai = Qai + Ziaϵi (71)

Wab =
1

1 + δab
Qab, (72)

where the different occupied and virtual parts of Qpq
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are defined as

Qij =Ω
∑
c

XicXjc − 2
∑
c

ϵcXicXjc

+ 2H+
ij [T

v−v]− 2H+
ij [T

o−o]

(73)

Qia =2
∑
c

XicH
+
ac[X] + 2H+

ia[T
v−v]

− 2H+
ia[T

o−o]

(74)

Qai =2
∑
k

XkaH
+
ki[X] (75)

Qab =Ω
∑
k

XkaXkb + 2
∑
k

ϵkXkbXka, (76)

with

H+
pq[vrs] =

∑
r,s

Apq,rsvrs (77)

=
∑
r,s

(2 (pq|rs)− (pr|qs)) vrs (78)

and

T o−o =
∑
a

XiaXja (79)

T v−v =
∑
i

XiaXib. (80)
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