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Non-trivial r-wise agreeing families

Peter Frankl∗ and Andrey Kupavskii†

Abstract

A family of sets is r-wise agreeing if for any r sets from the family there is an

element x that is either contained in all or contained in none of the r sets. The

study of such families is motivated by questions in discrete optimization. In this

paper, we determine the size of the largest non-trivial r-wise agreeing family. This

can be seen as a generalization of the classical Brace-Daykin theorem.

Let [n] = {1, 2, . . . , n} be the standard n-element set and 2[n] its power set. Let
F ⊂ 2[n] be a family. We say that sets F1, . . . , Fr ⊂ [n] agree on a coordinate x ∈ [n]
if either x ∈ ∩i∈[t]Fi or x 6∈ ∪i∈[r]Fi. We call a family F r-wise t-agreeing if any r sets
from F agree on at least t coordinates. For t = 1 we call such families r-wise agreeing for
shorthand. Additionally, we call F non-trivial if ∩A∈FA = ∅ and ∪A∈FA = [n] (that is,
all sets from F do not agree on a coordinate).

r-wise agreeing families appear in the context of packing and covering problems in
combinatorial optimization [1, 2]. In particular, Abdi et al. [1] proposed a conjecture
that states that non-trivial r-wise agreeing families cannot be cube-ideal for sufficiently
large r (cf. [1] for the definition of cube-idealness). While discussing possible strategies
to attack this conjecture with Ahmad Abdi, the following question was raised:

How big can a non-trivial r-wise agreeing family be?

The goal of this note is to answer this question. We prove the following theorem.

Theorem 1. Let n > r ≥ 2 and t ≤ 2r − r − 1. Suppose that F ⊂ 2[n] is non-trivial

r-wise t-agreeing. Then |F| ≤ (r + t+ 1)2n−r−t.

Let us mention that in the case r = 2, t = 1 the bound is exactly 2n−1. The proof in
this case is easy: it is immediate to see that F contains at most 1 set out of each pair
of complementary sets A, [n] \ A. The same argument shows that any r-wise agreeing
family has size at most 2n−1. At the same time, the family of all sets not containing 1
provides an example of an r-wise agreeing family of size 2n−1. If we drop the non-triviality
assumption then the family with some fixed t coordinates provides a lower bound of 2n−t

for the size of the largest r-wise t-agreeing family. Theorem 1 shows that non-triviality
forces the family to be considerably smaller.

It is natural to draw parallel with union1 families. A family F ⊂ 2[n] is r-wise t-union
if |A1 ∪ . . . ∪ Ar| ≤ n − t for any A1, . . . , Ar ∈ F . It is non-trivial if ∪A∈FA = [n]. Note
that r-wise t-union families are r-wise agreeing, but not vice versa.
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1A notion dual to intersecting families, which is more convenient to work with here.
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Theorem 2 (Brace–Daykin–Frankl theorem [3, 4, 5]). Let n > r ≥ 2 and t ≤ 2r − r− 1.
Suppose that F ⊂ 2[n] is non-trivial r-wise t-union. Then

|F| ≤ (r + t+ 1)2n−r−t. (1)

The following example shows that the bound (1) is tight:

B = {B ∈ 2[n] : |B ∩ [r + t]| ≤ 1}. (2)

Note that ∪b∈BB = [n],∩b∈BB = ∅. In general, it is not difficult to see that inclusion-
maximal non-trivial r-wise t-union families are non-trivial r-wise t-agreeing. That is,
Theorem 1 is a strengthening of Theorem 2.

1 Proof of Theorem 1

Let us introduce a convenient definition.

Definition 1. For a collection of sets A1, . . . , Ar let W (A1, . . . , Ar) denote the set (A1 ∪
. . . ∪Ar) \ (A1 ∩ . . . ∩ Ar). For integers n > ℓ ≥ 2 and r ≥ 2 let

w(n, ℓ, r) = max{|A| : A ⊂ 2[n], |W (A1, . . . , Ar)| ≤ ℓ for all A1, . . . , Ar ∈ A}.

Let w∗(n, ℓ, r) denote the maximum taken over all non-trivial (in the agreeing sense)
families A ⊂ 2[n].

In this terminology, Theorem 1 states that w∗(n, n − t, r) = (r + t + 1)2n−t−r for
t ≤ 2r − r − 1. Kleitman [7] determined w(n, ℓ, 2) for all ℓ. Except for the trivial case
ℓ = 1, the extremal construction is non-trivial whence w∗(n, ℓ, 2) = w(n, ℓ, 2). For the
proof he introduced an operation on families of sets, called squashing (cf. [6]).

For F ⊂ 2[n] and i ∈ [n] define F(i) = {F \ {i} : i ∈ F, F ∈ F} and F (̄i) = {F : i /∈
F, F ∈ F}. Note that |F| = |F(i)| + |F (̄i)| and that F is uniquely determined by the
two families F(i),F (̄i) ⊂ 2[n]\{i}.

For F ⊂ 2[n] and i ∈ [n] the squashed family Si(F) is the (unique) family G ⊂ 2[n]

determined by G(i) = F(i) ∩ F (̄i) and G (̄i) = F(i) ∪ F (̄i). Note that |G(i)| + |G (̄i)| =
|F(i)| + |F (̄i)|, implying |G| = |F|. The following statement is quintessential for the
proofs.

Lemma 1. Let F ⊂ 2[n] and i ∈ [n]. Put G = Si(F). Then for arbitrary r,

max{|W (F1, . . . , Fr)| : F1, . . . , Fr ∈ F} ≥ max{|W (G1, . . . , Gr)| : G1, . . . , Gr ∈ G}.

Proof. Let G1, . . . , Gr ∈ G. Then there exist F1, . . . , Fr ∈ F so that Gj \ {i} = Fj \
{i} for i ∈ [r]. Hence W (F1, . . . , Fr) ⊂ W (G1, . . . , Gr) is automatically satisfied unless
i /∈ W (F1, . . . , Fr) and i ∈ W (G1, . . . , Gr). The latter implies i ∈ G1 ∪ . . . ∪ Gr and
i /∈ G1 ∩ . . . ∩Gr. By symmetry, we may assume i ∈ G1, i /∈ G2.

Since G(i) = F(i) ∩ F (̄i), both G1 and G1 \ {i} must be members of F . Hence no
matter whether i ∈ F2 or i /∈ F2, we may choose F1 ∈ F so that i ∈ (F1 ∪ F2) \ (F1 ∩ F2)
whence i ∈ W (F1, . . . , Fr). Consequently, W (F1, . . . , Fr) ⊃ W (G1 . . . , Gr). This proves
the lemma.



The problem with squashing is that it might destroy non-triviality. E.g., for Feven =
{F ⊂ [n] : |F | is even }, which is an extremal constriction for w∗(n, n − 1, 2) if n is
odd, Si(F) = 2[n]\{i} for all i ∈ [n]. The following lemma permits us to circumvent this
difficulty.

Lemma 2. Let F ⊂ 2[n] be non-trivial r-wise t-agreeing family. For j ∈ [n], consider
Fj := {F \{j} : F ∈ F , thought of as a subfamily of 2[n]\{j}. If t ≥ 2 then Fj is non-trivial

r-wise (t− 1)-agreeing. If t = 1 then Fj is non-trivial (r − 1)-wise agreeing.

Proof. It should be clear that ∩A∈Fj
A ⊂ ∩A∈FA = ∅ and ∪A∈Fj

A = ∪A∈FA \ {j} =
[n]\{j}, and thus Fj is non-trivial. By the definition of Fj, for any ℓ and A1, . . . , Aℓ ∈ Fj

there are B1, . . . , Bℓ ∈ F such that Bi ∈ {Ai, Ai ∪ {j}}, and thus

W (B1, . . . Bℓ) \ {j} = W (A1, . . . Aℓ).

If t ≥ 2, then, using the above for ℓ = r, we get |W (A1, . . . Ar)| ≥ |W (B1, . . . Br)| − 1 ≥
t − 1. If t = 1 then, using the above for ℓ = r − 1, we get W (B1, . . . Br−1) \ {j} =
W (A1, . . . Ar−1). Since F is non-trivial, we can find a set Br such that B1, . . . , Br do
not agree on j, and thus, using that F is r-wise agreeing, we get ∅ 6= W (B1, . . . , Br) ⊂
W (B1, . . . Br−1)\{j} = W (A1, . . . Ar−1), which proves that Fj is (r−1)-wise agreeing.

Proof of Theorem 1. The proof is by induction on t + r, subject to the constraint t ≤
2r − r − 1. The case r = 2 serves as the base case (note that here only t = 1 is allowed).

Take the largest non-trivial r-wise t-agreeing family F ⊂ 2[n] and sequentially apply
the squashing operations to F for j = 1, 2, . . . , n. There are two possible outcomes of
this procedure. The first outcome is that the family (by the abuse of notation, also F)
always stays non-trivial. The resulting family is down-closed: for any set A ∈ F and
B ⊂ A, we have B ∈ F . Then, whenever x ∈ A1 ∩ . . . ∩ Ar, Ai ∈ F , we also have
A1 \{x} ∈ F , and the set of agreeing coordinates for A1 \{x}, A2, . . . , Ar does not include
x. This implies that, in order to guarantee the r-wise t-agreeing property, we must have
|A1 ∪ . . . ∪ Ar| ≤ n − t. In other words, F is a non-trivial r-wise t-union family, and we
may apply Theorem 2 to F and get the desired bound |F| ≤ (r + t+ 1)2n−r−t.

The second outcome is that at a certain stage we lose non-triviality: while F is non-
trivial, Sj(F) is trivial. This means that no set in Sj(F) contains j, and thus Sj(F)
coincides with Fj (as defined in Lemma 2), in particular, |Sj(F)| = |Fj|. By Lemma 2,
Fj is non-trivial r-wise (t−1)-agreeing for t ≥ 2, and non-trivial (r−1)-wise agreeing for
t = 1. In any case, we may apply the induction hypothesis to Fj and get

|F| = |Sj(F)| = |Fj| ≤ (r + t)2(n−1)−r−t+1 < (r + t + 1)2n−r−t,

which proves the required bound.

Working a bit harder, one can determine the families for which equality in Theorem 1
for r ≥ 3 is attained. Suppose that F is r-wise t-agreeing for t < 2r − r − 1. We want to
show that there is a set A ∈

(

[n]
r+t

)

and R ⊂ A such that

F = {F∆R : F ⊂ [n], |F ∩A| ≤ 1}. (3)

To do so, we analyze the squashing procedure. If, while running the procedure, we lose
non-triviality, then the size of the family is smaller than the extremal value, and thus we
must arrive at a non-trivial r-wise t-union family at the end of the procedure. The first



author showed [5] that the extremal family in Theorem 2 for t < 2r−r−1 is unique and, up
to permuting the coordinates, is of the form (2). Thus, F is also of the form (3) at the end
of the procedure. In order to complete the proof, we need to show that, provided Sj(F)
is of the form (3), F itself must be of the form (3). In order to simplify the exposition, let
us assume that j = 1 and A = [r + t]. Next, replacing F with F∆R = {F∆R : F ∈ F}
preserves the property of being non-trivial r-wise t-intersecting and transforms a family of
the form (3) into a family of the same form. Thus, we may replace S1(F) with S1(F)∆R
for a suitably chosen R, and w.l.o.g. assume that S1(F) = {F ⊂ [n] : |F ∩ [r + t]| ≤ 1}.

By definition of squashing, we must have F(1)∩F(1̄) = {F ⊂ [2, n] : F ∩ [2, r+t] = ∅}
and F(1) ∪ F(1̄) = {F ⊂ [2, n] : |F ∩ [2, r + t]| ≤ 1}. Note that

F(1)∆F(1̄) = {F ⊂ [2, n] : |A ∩ [2, r + t]| = 1}.

Saying that F is not of the form (3) is the same as saying that both F(1) \ F(1̄) and
F(1̄) \ F(1) are non-empty. Arguing indirectly, let us assume that. Further, assume
w.l.o.g. that |F(1) \ F(1̄)| ≤ |F(1̄) \ F(1)| and take A1 ∈ F(1) \ F(1̄). Assume that
A1∩ [2, r+ t] = {i1}. Take A2 ∈ F(1̄) \F(1) such that A2∩ [2, r+ t] = {i2}, i2 6= i1. This
is possible since

|F(1̄)\F(1)| ≥
1

2
|F(1)∆F(1̄)| =

1

2
(r+t−1)2n−r−t > 2n−r−t =

∣

∣{F ⊂ [2, n] : F∩[2, r+t] = {i1}}
∣

∣.

Next, fix some distinct i3, . . . , ir ∈ [2, r + t] \ {i1, i2} and for each is, s ∈ [3, r], take
a set As ∈ F(1̄) ∪ F(1) such that As ∩ [2, r + t] = {is} and As ∩ [r + t + 1, n] =
[r+ t+1, n]\A1. For each s ∈ [r] let A′

i be the set in F that corresponds to Ai. Note that
∪i∈[r]A

′
i∩[2, n] = ∪i∈[r]Ai∩[2, n] = {i1, . . . , ir}∪[r+t+1, n] and that i ∈ A′

1∪A
′
2 ⊂ ∪i∈[r]A

′
i.

Thus, | ∪i∈[r] A
′
i| = n − t + 1. Similarly, ∩i∈[r]A

′
i ∩ [2, n] = ∩i∈[r]Ai ∩ [2, n] = ∅ and

i 6∈ A′
1∩A′

2 ⊃ ∩i∈[r]A
′
i. Thus, ∩i∈[r]A

′
i = ∅. We conclude that |W (A′

1, . . . , A
′
r)| = n− t+1,

contradicting the fact that F is r-wise t-agreeing.
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