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SOME FAMILIES OF NON-ISOMORPHIC MAXIMAL FUNCTION

FIELDS

PETER BEELEN, MARIA MONTANUCCI, JONATHAN TILLING NIEMANN AND LUCIANE
QUOOS

Abstract. The problem of understanding whether two given function fields are iso-
morphic is well-known to be difficult, particularly when the aim is to prove that an
isomorphism does not exist. In this paper we investigate a family of maximal function
fields that arise as Galois subfields of the Hermitian function field. We compute the
automorphism group, the Weierstrass semigroup at some special rational places and the
isomorphism classes of such function fields. In this way, we show that often these func-
tion fields provide in fact examples of maximal function fields with the same genus, the
same automorphism group, but that are not isomorphic.

1. Introduction

A function field F defined over a finite field with square cardinality Fq2 is called maxi-
mal, if the Hasse–Weil bound is attained. More precisely, if F has genus g, the Hasse–Weil
bound states that:

N(F) ≤ q2 + 1 + 2gq,

where N(F) denotes the number of places of degree one of F/Fq2. A function field is called
maximal over Fq2 if the above bound is attained with equality, that is, N(F) = q2+1+2gq.
An important and well-studied example of a Fq2-maximal function field is the Hermitian

function field H := Fq2(x, y) with

yq+1 = xq + x.

The function field H has genus g1 = q(q−1)/2, which is in fact the largest possible genus
for a maximal function field over Fq2, see [13]. This function field has also an exceptionally
large automorphism group, which is isomorphic to PGU(3, q).
In fact more is known, namely the Hermitian function field H is the only maximal

function field (up to isomorphism) with g1, see [16].
Since a subfield of a maximal function field with the same field of constants is maximal

by a theorem of Serre [14], computing fixed fields of H of a subgroup of PGU(3, q) have
given rise to many examples of maximal function fields.
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The second largest genus for a maximal function field over Fq2 is g2 = ⌊ (q−1)2

4
⌋ and

examples of such function field can be obtained in fact as a subfield of H, namely

y
q+1
2 = xq + x, for q odd (see [5]),

and

yq+1 = xq/2 + xq/4 + · · ·+ x2 + x, for q even (see [2]).

In [5] and [2] it is proven that the two function fields above are the only maximal
function fields, up to isomorphism, of genus g2.
Inspired by this, it is natural to ask how many maximal function fields of a given genus

one can find over Fq2. This question is already unanswered for g3 = ⌊(q2 − q)/6⌋, where
in fact uniqueness is still an open problem.
The underlying reason for this is that it is in general quite difficult to decide whether

two given maximal function fields over the same finite field are isomorphic or not. Besides
the function fields with large genus mentioned above there are in fact very few examples in
the literature where the investigation of non-isomorphic maximal function fields is carried
out completely and successfully.
In [8, Theorem 1.1], the authors classify when q+1

2
> 3 is a prime number and 1 ≤ i ≤

q−3
2
, the family of maximal function fields Fq2(x, y) of genus q − 1 defined by

yq+1 = x2i(x2 + 1).

This family is a collection of fixed fields of the Hermitian function field with respect of
cyclic automorphism groups of order prime to p, the characteristic of Fq2. In the same
paper [8] the authors also prove in fact that the family described above gives rise to
roughly (q + 1)/12 non-isomorphic maximal function fields.
Another example of this type was given in [1], where the authors investigated isomor-

phism in the family of maximal function fields Fq2(x, y) with yk = −xb(xd + 1) where
kd = qn + 1 and b ∈ N satisfying gcd(k, b) = gcd(k, b+ d) = 1 of genus k−1

2
.

In this paper we present a large class of non-isomorphic maximal function fields over
Fq2 of same genus (q − 1)/2, q odd. This function fields arise as a generalization of a
family of maximal function fields that appeared in [10], where the authors provide 6 non-
isomorphic maximal function fields of genus 12 over F54 . More precisely for q odd, we
consider the function field Fi(x, y) with

ym = xi(x2 + 1),

where i ∈ Z, m = (q + 1)/2 and gcd(i,m) = gcd(i+ 2, m) = 1.
As in [8, Theorem 1.1] this family is a collection of subfields of the Hermitian function

fields, see [6, Example 6.4] and hence it is Fq2-maximal.
In this paper, we compute the automorphism group of Fi over F̄q2, the Weierstrass

semigroup at some places of degree one and the isomorphism classes in the family {Fi}i.
In this way, we show that these function fields provide in fact examples of maximal

function fields with the same genus, often the same automorphism group, but that are
not isomorphic.
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Finally in Theorem 5.3 we show that the number of isomorphism classes among the
function fields Fi is

N(m) =

{
φ2(m)+1

2
for m 6≡ 0 (mod 4),

φ2(m)+2
2

for m ≡ 0 (mod 4),

where φ2(m) is given by

φ2(m) = 2max{0,α0−1}pα1−1
1 (p1 − 2) · · ·pαn−1

n (pn − 2),

for m = 2α0pα1
1 pα2

2 · · · pαn
n , p1, . . . , pn pairwise distinct odd primes and with α0 ∈ Z≥0 and

α1, . . . , αn in Z>0.
The paper is organized as follows. In Section 2 some preliminary results on maximal

function fields and their automorphism group are provided. In the same section we also
describe the inspiration behind the family of function fields {Fi}i, and why they give
intuitively rise to many non-isomorphic maximal function fields. In Section 3 the family
{Fi}i is defined and some first isomorphisms between the function fields Fi are computed,
together with partial information about the Weierstrass semigroup at some special places
of degree one. Section 4 provides the complete determination of the automorphism group
of Fi over F̄q2 for i 6= (m− 2)/2. Finally, in Section 5 the isomorphism classes among the
function fields {Fi}i and its number is computed.

2. Preliminaries and Notations

In this section, we deal with the preliminary notions and results that will be needed
throughout the paper. In the first subsection, we collect some general properties of maxi-
mal function fields, Weierstrass semigroups and automorphism groups that we will use in
the later sections. In the second subsection, we recall the definition of the function fields
{Fi}i and we focus on some particular rational functions defined on it, computing their
principal divisors. Some preliminary results about Aut(Fi) will also be provided there.

2.1. Automorphism groups and Weierstrass semigroups on algebraic function

fields. Throughout this paper p is a prime and q = ph where h ≥ 1. We denote with
K = F̄q the algebraic closure of the finite field Fq, and for a function field F of genus g
defined over the finite field Fq, we denote with Aut(F) the automorphism group of the
function field F over K. Together with the genus g, the group Aut(F) is a well-known
invariant of F under isomorphism. In fact if F and G are two isomorphic function field
over K, and ϕ : F 7→ G is an isomorphism, then Aut(F) = ϕ−1 ◦ Aut(G) ◦ φ. This
observation implies also that the set of fixed places of Aut(F) is mapped to the set of
fixed places of Aut(G).
If F is maximal over Fq2 then Aut(F) is extremely structured. A first important fact

is that actually Aut(F) is defined over Fq2, see [9, Theorem 3.10]. This implies not only
that Aut(F) acts on the set of places of degree one of F (that is, the Fq2-rational places),
giving important restriction on the shape of Aut(F), but also that Aut(F) can be used
to decide whether another given function field G can be isomorphic to F or not.
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Another important tool one can use in this direction is the Weierstrass semigroup at
places of F . If P denotes a place of F , then the Weierstrass semigroup H(P ) at P is
defined as the collection of all integers n ∈ Z for which there exists a function α ∈ F such
that (α)∞ = nP .
Clearly H(P ) ⊆ Z≥0 is a numerical semigroup, and the elements of G(P ) := Z≥0\H(P )

are called gaps. Since it is well-known that when ϕ : F → G is an isomorphism then
H(P ) = H(ϕ(P )) for all P place in F , Weierstrass semigroups also represent a useful tool
when deciding whether two function fields can be isomorphic or not.
To compute G(P ), and hence H(P ), the following result becomes extremely useful and

in fact, we will use it in the later sections.

Proposition 2.1. [17, Corollary 14.2.5] Let C be an algebraic curve of genus g defined
over K. Let P be a point of C and ω a regular differential on C. Then vP (ω) + 1 is a gap
at P .

As we will see later, both the automorphism group and its fixed places, as well as Weier-
strass semigroups will be used to construct our large family of non-isomorphic maximal
function fields.
We are now in a position to define the main protagonist of this paper, namely the

family of maximal function fields {Fi}i. The aim of the next subsection is to show first
where the inspiration behind its construction.

2.2. The inspiration behind the construction of the function field Fi. Using
reciprocal polynomials, [10] provides a family of algebraic function fields Fq2(u, v) with

v
q+1
2 =

(u+ b)(bu+ 1)

us
,

where b ∈ F
∗
q and s ≥ 0 is a integer.

In the particular case q = 52 and b = 2, this family provides six non-isomorphic maximal
function fields F54 of genus 12, more specifically, the function fields Gi(u, v) with

v13 =
(u+ 2)(2u+ 1)

ui
, for i = 1, 3, 4, 5, 6 and 7.

Since 2 is a 13-power in F
∗
54 , these function fields are isomorphic to the family

(1) y13 = xi(x2 + 1) for i = 6, 7, 8, 9, 10 and 12.

This family of function fields is maximal since they appear as special cases of [6, Example

6.4 (Case 1)] and are subfields of the Hermitian function field z5
2+1 = w52+1 + 1. This

family represents the inspiration for the work of this paper, in fact for i, j = 6, 7, 8, 9, 10, 12,
with i 6= j the function fields Gi and Gj are not isomorphic, even though they have the
same genus. In reality, the function fields Gi and Gj have also the same automorphism
group. In fact Aut(Gi) contains the cyclic group of order 26 given by

Gi := {σ : (x, y) 7→ (ax, by) | a2 = b13 = 1} ⊆ Aut(Gi) for i = 6, 8, 10, 12

and
Gi := {σ : (x, y) 7→ (ax, by) | a2 = 1, b13 = a} ⊆ Aut(Gi) for i = 7, 9.
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This means that Gi is a (g+1)-function field (equivalently it gives rise to a (g+1)−curve),
that is, g + 1 is a prime number and is a divisor of |Aut(Gi)|. From [3, Theorem 17], we
have that |Aut(Gi)| = k(g + 1), where k = 2 or k = 4. From [3, Proposition 7], we
conclude that Aut(Gi) = Gi for all i = 6, 7, 8, 9, 10, 12.
It is in fact Weierstrass semigroups that allow us to see that these function fields cannot

be isomorphic for different choices of i. Denoting with P0 (resp. P∞) the only zero (resp.
only pole) of x in Gi and with Pα and P−α the zeroes of x2 + 1 where α2 + 1 = 0, one has
that the automorphism group Gi described above fixes P0 and P∞ and has no other fixed
places globally. Now if we have an isomorphism ϕi,j between Gi and Gj , then the set of
fixed points of the automorphism group Gi needs to be mapped to the corresponding one
of Gj. The following tables collects all the gap sequences obtained using [4, Propositions
4.1, 4.2] at the points P0 and P∞ for the values of i we are interested in.

i = 6 i = 7
G(P∞) {1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 18} {1, 2, 3, 4, 6, 7, 8, 11, 12, 16, 17, 21}
G(P0) {1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 18, 19} {1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 15, 20}

i = 8 i = 9
G(P∞) {1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 16, 19} {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19}
G(P0) {1, 2, 3, 4, 6, 7, 8, 9, 11, 14, 16, 21} {1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 18, 22}

i = 10 i = 12
G(P∞) {1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
G(P0) {1, 2, 4, 5, 7, 8, 10, 11, 14, 17, 20, 23} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Since according to the three table above there is not 2 equal gap sequences for dis-
tinct values of i, we deduce that the curves Ci with i = 6, 7, 8, 9, 10, 12 are pairwise not
isomorphic.
The aim of this paper is to consider a generalization of this example, and inspired by

the considerations above to show that they give rise to a large class of non-isomorphic
maximal function fields with the same genus and often the same automorphism group.
This family of maximal function fields is described in the next section, where some initial
properties will be proven as well.

3. The function fields Fi

Let q = ph, where p is an odd prime and let m = q+1
2
. The family of maximal function

fields Fi := Fq2(x, y) is defined by

(2) ym = xi(x2 + 1), i ∈ Z, gcd(i,m) = gcd(i+ 2, m) = 1

over Fq2. The condition gcd(i,m) = gcd(i + 2, m) = 1 implies that all these function
fields have genus m−1. In fact, these function fields already appeared in [6, Example 6.4
(Case 1)] and are subfields of the Hermitian function field Fq2(u, v) over Fq2 defined by
the equation vq+1 = uq+1 + 1.
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For α ∈ Fq2 such that α2+1 = 0 we denote by Pα, P−α the only places of Fi associated
to x = α, x = −α respectively. We denote by P0 (resp. P∞) the unique zero (resp.
pole) in Fi of the function x. By considering the Kummer extension Fq2(x, y)/Fq2(x), one
directly derives the following divisors, which will be useful later on

(x) = m(P0 − P∞),

(y) = iP0 + Pα + P−α − (i+ 2)P∞,

(dx) = −(m+ 1)P∞ + (m− 1)(P0 + Pα + P−α).

(3)

Our aim is to study the isomorphism classes of the function fields Fi, with i ∈ Z

satisfying gcd(i,m) = gcd(i + 2, m) = 1. As a matter of fact, we will give a complete
description of the isomorphism classes of the function fields Fq2Fi, where Fq2Fi denotes

the function field obtained from Fi by extending the constant field to Fq2, the algebraic
closure of Fq2.
We start with a lemma that will allow us to restrict the range of the parameter i

considerably.

Lemma 3.1. For i ∈ Z, let Fi be the function field as given in Equation (2). Then Fi is
isomorphic to Fi mod m, where i mod m denotes the remainder of i modulo m.

Proof. For i ∈ Z, write i = am+ r where r ≡ i (mod m) and a ∈ Z. Then

ϕi,r :

{
Fi −→ Fr,

(x, y) 7→ (x, y/xa) =: (x, ỹ).

is a field homomorphism from Fi to Fr over Fq2 . Indeed, one directly verifies that

ỹm =
ym

xam
=

xi(x2 + 1)

xam
= xr(x2 + 1).

Moreover, the map ϕi,r is an isomorphism, since its inverse is the map (x, ỹ) 7→ (x, ỹxa).
�

Lemma 3.1 allows us, without loss of generality, to assume that 0 ≤ i ≤ m − 1 when
studying isomorphism classes. As a matter of fact, we may assume that 1 ≤ i ≤ m − 1,
since for i = 0 the condition gcd(i,m) = 1 is not satisfied. It turns out that a further
restriction is possible as demonstrated in the following lemma.

Lemma 3.2. Let 1 ≤ i ≤ m− 3. Then Fi is isomorphic to Fm−2−i.

Proof. It is enough to consider the field homomorphism

ϕm−2−i,i :

{
Fm−2−i −→ Fi,

(x, y) 7→ (1/x, y/x) =: (x̃, ỹ).

This map is well-defined as

ỹm =
ym

xm
=

xm−2−i(x2 + 1)

xm
=

1

xi
+

1

xi+2
=

1

xi

(
1 +

1

x2

)
= x̃i(x̃2 + 1).
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Moreover, the map is actually a field isomorphism, as its inverse is simply given by
ϕi,m−2−i. �

Since for i = m − 2, the condition gcd(i + 2, m) = 1 is not fulfilled, Lemmas 3.1
and 3.2 together imply that we are left to study the isomorphism classes of the function
fields Fi for i = 1, . . . , ⌊m−2

2
⌋ and i = m − 1, always assuming that gcd(i,m) = gcd(i +

2, m) = 1. To study these function fields further, we will first obtain information on the
Weierstrass semigroups of various places of these function fields. To completely determine
all isomorphism classes, we will also need information on their automorphism groups, but
this is the topic of a later section.

3.1. The semigroups of the places P0, P±α and P∞. Our first observation is that for
a given i ∈ Z the places Pα and P−α have the same semigroup, though it may depend
on i. Indeed, this follows directly from the description of the gapsequence of these places
from [4, Propositions 4.1, 4.2], but it is also not hard to see that Fi has an automorphism
interchanging Pα and P−α, see Section 4 for more details. For this reason, we will some-
times with slight abuse of notation talk about the semigroup of P±α, denoted by H(P±α).
Also the gapsequences of the places P0 and P∞ can be described using [4, Propositions
4.1, 4.2], but it will be more convenient for us to describe a set of generators of these
semigroups instead. We do this in the following theorem. For r ∈ R, the expression ⌈r⌉,
resp. ⌊r⌋, denotes the ceiling, resp. floor, of r.

Theorem 3.3. The Weierstrass semigroups at the places P0 and P∞ of the function field
Fi can be generated as follows:

H(P0) =

〈
m,

⌈
ℓ(i+ 2)

m

⌉
m− ℓi | 1 ≤ ℓ ≤ m− 1

〉

and

H(P∞) =

〈
m,−

⌊
ℓi

m

⌋
m+ ℓ(i+ 2) | 1 ≤ ℓ ≤ m− 1

〉
.

Proof. We prove the statement for H(P0). First of all note that for k, ℓ ∈ Z and 0 ≤ ℓ ≤
m− 1, the functions xkyℓ form a linearly independent set. From Equation (3), we have

(xkyℓ) = (km+ ℓi)P0 + ℓ(Pα + P−α)− (km+ ℓ(i+ 2))P∞.

In particular, such a function xkyℓ has no poles, except possibly at P0, if and only if
km+ ℓ(i+ 2) ≤ 0. For n ∈ Z, define the linear space

Ln = 〈xkyℓ | 0 ≤ ℓ ≤ m− 1, km+ ℓ(i+ 2) ≤ 0, km+ ℓi ≥ −n〉 ⊆ L(nP0),

where L(nP0) is the Riemann-Roch space associated to nP0. If Ln+1 6= Ln, then there
exists a function of the form f = xkyℓ such that vP0(f) = −(n + 1). In particular,
Ln+1 6= Ln implies that L((n + 1)P0) 6= L(nP0).
We claim that Ln = L(nP0) for all n. If n < 0 then Ln = {0} = L(nP0), and

L0 = Fq2 = L(0P0). From the description of Ln one directly can deduce that for n > 2m,
the vector space Ln is generated by the functions xkyℓ, with 0 ≤ ℓ ≤ m − 1 and (k, ℓ)
lying on the boundary or inside the polygon with vertices (0, 0), (−(i+2), m), (−n/m, 0)



8 PETER BEELEN, MARIA MONTANUCCI, JONATHAN TILLING NIEMANN AND LUCIANE QUOOS

and (−i− n/m,m). This polygon has area n−m. Moreover, if n is a multiple of m, the
boundary of the polygon contains 2n/m many points with integer coordinates, of which
n/m−1 satisfy ℓ = m. Hence for n > 2m a multiple of m, we deduce from the above and
Pick’s theorem that

dimLn = n−m− (2n/m)/2 + 1 + (n/m+ 1) = n−m+ 2.

From the Riemann-Roch theorem for any n > 2m we have dimL(nP0) = n + 1 − g =
n−m+ 2. We conclude that if n > 2m is a multiple of m, then Ln = L(nP0).
To finish the proof of the claim that Ln = L(nP0) for all n, it is now enough to

show that dimLn+1 − dimLn ∈ {0, 1} for all n. More precisely, this is enough, since
dimL((n+ 1)P0)− dimL(nP0) ∈ {0, 1}, Ln+1 6= Ln implies that L((n+ 1)P0) 6= L(nP0),
and we already have shown that L0 = L(0P0) and Ln = L(nP0) for infinitely many n > 0.
Now, note that since gcd(i,m) = 1, if k1m+ ℓ1i = k2m+ ℓ2i for k1, k2, 0 ≤ ℓ1, ℓ2 ≤ m− 1
in Z, then ℓ1 = ℓ2 and k1 = k2. This shows that for any n ∈ Z we have

dimLn+1 − dimLn ∈ {0, 1}.

Now that we know that Ln = L(nP0) for all integers n, we can conclude that the ring⋃
n≥0 L(nP0) is generated as an Fq2-vector space by the set of functions

{xkyℓ | 0 ≤ ℓ ≤ m− 1, km+ ℓ(i+ 2) ≤ 0}.

This implies that this ring is generated as an Fq2-algebra by the set of functions

{x−1} ∪ {x−⌈ ℓ(i+2)
m ⌉yℓ | 0 ≤ ℓ ≤ m− 1}.

Hence the semigroup H(P0) is generated by the corresponding pole orders:

m and

⌈
ℓ(i+ 2)

m

⌉
m− ℓi, where 0 ≤ ℓ ≤ m− 1.

Since for ℓ = 0, this pole order is simply 0, it can be removed when describing a generating
set. �

Remark 3.4. The proof of Theorem 3.3 actually implies that the elements of H(P0)

correspond exactly to the pole orders of functions of the form x−j ·x−⌈ ℓ(i+2)
m ⌉yℓ ∈ Fi, where

j ≥ 0 and 0 ≤ ℓ ≤ m − 1. Since x−1 has pole order m at P0, this implies that each of
the listed generators of H(P0) in Theorem 3.3, except for m itself, is the smallest possible
element of H(P0) in its congruence class modulo m. Hence, the displayed generators form
an Apéry set of H(P0) with respect to m. Exactly the same is true for the listed generators
for H(P∞): they form an Apéry set of H(P∞) with respect to m.

Remark 3.5. A set of generators of the semigroup at P∞ was also computed in [15,
Theorem 3.2 ]. The resulting set of generators is

H(P∞) =

〈
m, i+ 2, mℓ− (i+ 2)

⌊
(ℓ− 2)m

i

⌋
| 3 ≤ ℓ ≤ i+ 1

〉
.

These generators do not form an Apéry set with respect to m, but have the advantage
of being a smaller set of generators. In the proof of Theorem 3.3, we computed bases of
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several Riemann-Roch spaces. We would also like to point out that alternative bases for
such Riemann-Roch spaces in Kummer extensions can be obtained using [12, Theorem 2]
and [7, Theorem 3.1].

The following corollary indicates several gaps of the semigroup H(P∞) and will be
useful later on.

Corollary 3.6. Any divisor d > 0 of m, different from m, is a gap at P∞.

Proof. Let d < m be a positive divisor of m and assume that d ∈ H(P∞). As noted in
Remark 3.4, each generator given in Theorem 3.3, except for m, is the smallest element
in the semigroup in its congruence class modulo m. In particular, since d < m, there is
an integer ℓ ∈ {1, . . . , m− 1} such that

d = −

⌊
ℓi

m

⌋
m+ ℓ(i+ 2).

Now, gcd(i+ 2, d) ≤ gcd(i+ 2, m) = 1, so d divides ℓ. Hence we may write ℓ′ = ℓ
d
, for

some positive integer ℓ′. Dividing the above equation by d and rearranging yields

ℓ′(i+ 2) = 1 +

⌊
ℓi

m

⌋
m

d
≤ 1 +

ℓi

d
= 1 + ℓ′i.

This implies 2ℓ′ ≤ 1, which is a contradiction, and we conclude that d is a gap for P∞. �

3.2. Distinguishing the Weierstrass semigroup at P±α from the Weierstrass

semigroups at P∞ and P0. In this subsection, we will show that in most cases the
semigroup at P±α is distinct from both the semigroup at P∞ and the semigroup at P0.
The first step towards proving this is the following lemma describing the holomorphic
differentials of Fi.

Lemma 3.7. Let i ∈ Z satisfy gcd(i,m) = gcd(i + 2, m) = 1. Further, for k, ℓ ∈ Z,
denote by ωk,ℓ the differential on Fi given as follows:

ωk,ℓ = xk−1yℓ−mdx.

Then the space of holomorphic differentials on Fi has basis

{ωk,l | ℓ > 0, km+ ℓi > mi and km+ ℓ(i+ 2) < m(i+ 2)}.

Proof. For k, ℓ ∈ Z, consider the differential

ωk,ℓ = xk−1yℓ−mdx.

From Equation (3), we have

(ωk,ℓ) = (km+ ℓi−mi− 1)P0 + (ℓ− 1)(Pα + P−α)− (km+ ℓ(i+ 2)−m(i+ 2) + 1)P∞.

This means that the differential ωk,ℓ has no poles if and only if ℓ > 0, km + ℓi > mi
and km + ℓ(i + 2) < m(i + 2). Note that the number of pairs (k, ℓ) satisfying these
conditions is precisely the number of integral points, i.e., points in Z

2, lying inside the
triangle ∆ with vertices (i, 0), (i+ 2, 0) and (0, m). Pick’s theorem implies that there are
precisely m − 1 such points (k, ℓ) ∈ Z

2 in the interior of ∆. Here we used the condition
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gcd(i,m) = gcd(i + 2, m) = 1 to see that there are exactly four integral points on the
boundary of ∆, namely the points (i, 0), (i+ 1, 0) (i+ 2, 0) and (0, m).
We can conclude that we have found m− 1 holomorphic differentials. Since any (k, ℓ)

in the interior of ∆ satisfies 1 ≤ ℓ ≤ m − 1 and the defining equation of Fi in Equation
(2) has y-degree m, these m − 1 differentials are linearly independent. Moreover, since
the genus of Fi is m− 1, we see that we have found a basis of the space of holomorphic
differentials. �

Remark 3.8. From Proposition 2.1, the value vP (ω)+1 is a gap for P for any place P of
Fi and any holomorphic differential ω on Fi. Using Lemma 3.7, we immediately obtain
that the gaps at the places P0 and P∞ of the function field Fi are

G(P0) = {km+ ℓi−mi | ℓ > 0, km+ ℓi > mi, km+ ℓ(i+ 2) < m(i+ 2)}

and

G(P∞) = {−km− ℓ(i+ 2) +m(i+ 2) | ℓ > 0, km+ ℓi > mi, km+ ℓ(i+ 2) < m(i+ 2)}.

Similarly, we get the following result regarding G(P±α).

Lemma 3.9. Let i ∈ Z satisfy gcd(i,m) = gcd(i + 2, m) = 1. The gapsequence of the
place P±α of Fi contains the numbers 1, . . . , ⌊m+1

2
⌋.

Proof. Using the holomorphic differentials given in Lemma 3.7 combined with the fact
that vP±α(ωk,ℓ) + 1 = ℓ, we see that ℓ is a gap at P±α for any pair (k, ℓ) ∈ Z

2 such that
ℓ > 0, km+ ℓi > mi, and km+ ℓ(i+ 2) < m(i+ 2).
In particular, a fixed ℓ satisfying 0 < ℓ < m is a gap if there exists an integer k in the

interval [
i(m− ℓ)

m
,
(i+ 2)(m− ℓ)

m

]
.

Note that we may include the endpoints in the interval, since neither of them are integers,
as follows from the assumptions 0 < ℓ < m and gcd(i,m) = gcd(i+ 2, m) = 1.
Now, assume 0 < ℓ ≤ ⌊m+1

2
⌋ and write i(m− ℓ) = sm+ r for s, r ∈ Z, with 0 < r < m.

We claim that s+ 1 is in the above interval. Indeed, we see that

i(m− l)

m
= s+

r

m
< s+ 1,

and
(i+ 2)(m− ℓ)

m
= s+

r + 2(m− ℓ)

m
≥ s+

1 + 2
(
m− m+1

2

)

m
= s+ 1.

�

Theorem 3.10. For 1 ≤ i < m−2
2

, the Weierstrass semigroups at the places P±α and P∞

of Fi are distinct.

Proof. Using the formula for the divisor of y as given in Equation (3), it follows directly
that i + 2 ∈ H(P∞). On the other hand, Lemma 3.9 implies that i + 2 /∈ H(P±α) since
i < m−2

2
implies i+ 2 ≤ m+1

2
. �
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The rest of this subsection is devoted to showing that the semigroups of P0 and P±α

are distinct for i /∈ {1, m−2
2

}.

Lemma 3.11. Let m ≥ 19 and suppose that i satisfies gcd(i,m) = gcd(i+2, m) = 1 and
2 < i < ⌊m−3

2
⌋. Then H(P0) contains a positive integer less than or equal to m+1

2
.

Proof. From Theorem 3.3 we see that ⌈ ℓ(i+2)
m

⌉m − ℓi is a pole number for P0, for any
1 ≤ ℓ ≤ m− 1. By choosing ℓ = ⌊ m

i+2
⌋ this becomes m− ⌊ m

i+2
⌋i.

Writing m = ℓ(i+ 2) + r for some r ∈ Z, with 0 < r < (i+ 2), we get the bound

m−

⌊
m

i+ 2

⌋
i = m− i

(
m

i+ 2
−

r

i+ 2

)
≤ m−

im

i+ 2
+

i(i+ 1)

i+ 2
=

2m+ i(i+ 1)

i+ 2
.

In most cases, this bound is strong enough to show what we want. Indeed,

2m+ i(i+ 1)

i+ 2
≤

m+ 1

2
⇔ i2 −

m− 1

2
i+m− 1 ≤ 0,

and for m ≥ 19 we see that this is true when i satisfies 2 < i < ⌊m−3
2

⌋ − 1.

The last case, i = ⌊m−3
2

⌋ − 1, can be handled in a very similar way. Choosing again
ℓ = ⌊ m

i+2
⌋ = 2 we get a pole number

m−

⌊
m

i+ 2

⌋
i = m− 2

(⌊
m− 3

2

⌋
− 1

)
≤ m− 2

(
m− 3

2
− 2

)
= 7,

Since 7 ≤ m+1
2

for m ≥ 19 (even for m ≥ 13), this finishes the proof. �

For even m, the above is enough to distinguish the Weierstrass groups of P±α and P0

for any i < m−2
2

, since ⌊m−3
2

⌋ − 1 = m−2
2

− 2 and i = m−2
2

− 1 is in contradiction with

(i+ 2, m) = 1. For odd m, we still need to treat the cases i = 2 and i = m−3
2

.

Lemma 3.12. For i ∈ {2, m−3
2

}, m odd, and m > 9, it holds that 1, . . . , m+3
2

are gaps for

P±α while P0 has a pole number less than or equal to m+3
2

.

Proof. We already know from Lemma 3.9 that 1, . . . , m+1
2

are gaps for P±α. To show that
m+3
2

is also a gap, we consider again the interval from the proof of Lemma 3.9. With
ℓ = m+3

2
our task becomes to find an integer inside the interval

[
i(m− 3)

2m
,
(i+ 2)(m− 3)

2m

]
.

For i = 2, this simplifies to [m−3
m

, 2(m−3)
m

], which contains 1 for m > 3. For i = m−3
2

the
interval becomes [

(m− 3)2

4m
,
(m− 3)(m+ 1)

4m

]
,

which contains m−3
4

when m ≡ 3 (mod 4) and m−5
4

when m ≡ 1 (mod 4) and m > 9.
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To show that P0 has a pole number less than or equal to m+3
2

we use the same method
as in Lemma 3.11. For i = 2 we choose ℓ = ⌊m

4
⌋ and write m = 4s + r for s, r ∈ Z, with

0 < r < 4. Then, we have a pole number

m−
⌊m
4

⌋
i = m− 2s ≤

m+ 3

2
,

where the inequality follows from s = m−r
4

≥ m−3
4

. Similarly, for i = m−3
2

, we choose

ℓ = ⌊ m
i+2

⌋ = ⌊ 2m
m+1

⌋ = 1, and get a pole number

m− i =
m+ 3

2
,

as wished. �

By combining the above results and checking the cases m < 19 with a computer we
get:

Theorem 3.13. For i satisfying 1 < i < m−2
2

and gcd(i,m) = gcd(i + 2, m) = 1, the
places P0 and P±α of Fi have distinct Weierstrass semigroups.

Remark 3.14. Theorems 3.10 and 3.13 together cover the case 1 < i < (m − 2)/2. To
complete the picture, let us describe what happens for i = 1 and i = (m− 2)/2.
If i = 1, we have gcd(3, m) = 1 and using this and [4, Propositions 4.1, 4.2], one quickly

sees that G(P0) = G(Pα) = G(P−α) = {1, . . . , ⌊2m/3⌋} ∪ {m+ 1, . . . , m+ ⌊m/3⌋}. Hence
we see that P0, Pα and P−α all have the same Weierstrass semigroup. From Theorem
3.10, we already know that P∞ has a different semigroup. In fact H(P∞) = 〈3, m〉 as can
be seen from for example Theorem 3.3.
If i = (m − 2)/2, all four places P∞, P0, Pα and P−α turn out to have the same

Weierstrass semigroup. Indeed, as we will see in Subsection 4.2, the function field F(m−2)/2

has an automorphism acting as a 4-cycle on these four places. Note that if i = (m−2)/2,
then m needs to be even and i needs to be odd, since gcd(i,m) = 1. Then in fact m needs
to be a multiple of four. Using this, it is not hard to use Theorem 3.3 to show that the
semigroup of places P∞, P0, Pα and P−α is 〈m

2
+ 1, m

2
+ 3, m − 3, m − 1, m〉. Indeed,

considering the generators in the theorem for H(P∞) for ℓ = 2ℓ′+1 < m/2, one finds the
generators m

2
+1, m

2
+3, m−3, m−1. These together with m already generate a semigroup

with m− 1 gaps, so no more generators are needed.

4. The automorphism group of Fi

We denote by Aut(Fi) the Fq2-automorphism group of Fq2Fi. For convenience we will
simply call Aut(Fi) the automorphism group of Fi. As a first observation note that the
automorphism group of Fi contains a cyclic subgroup, which we will denote by Gi, with
q + 1 elements. In fact for i even one has

Gi := {σ : (x, y) 7→ (ax, by) | a, b ∈ Fq2 , a
2 = b

q+1
2 = 1} ⊆ Aut(Fi),

and for i odd

Gi := {σ : (x, y) 7→ (ax, by) | a, b ∈ Fq2, a
2 = 1, b

q+1
2 = a} ⊆ Aut(Fi).
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Our aim is to show the automorphism group of Ci quite often coincides with Gi itself.
The fixed field of Gi is given by Fq2(x

2) and it is easy to see that the only ramified
places of Fi in the extension Fi/Fq2(x

2) are the places P0, P∞ and P±α. In other words,
the only short orbits of Gi are {P∞}, {P0} and {Pα, P−α}. The subgroup

Hi := {σ : (x, y) 7→ (x, by) | b
q+1
2 = 1, b ∈ Fq2} ⊆ Gi

has index two in Gi and contains the elements of Gi fixing both Pα and P−α.
Our aim is to show the automorphism group of Fi is not particularly larger than Gi,

and quite often coincides with Gi itself. Note that since Fi is isomorphic to Fm−2−i, we
can assume w.l.o.g. that 1 ≤ i ≤ ⌊(m− 2)/2⌋ or i = m − 1. We will deal with the cases
i = (m− 2)/2 and i = m− 1 later and first assume that 1 ≤ i ≤ (m− 3)/2.

Remark 4.1. It turns out that there are two very special, exceptional cases, that one
needs to deal with separately. These cases are (i, q) = (1, 3) and (i, q) = (1, 7).
If q = 3 and i = 1, the function field F1 is elliptic. In particular, this implies that its

automorphism group is infinite by [11, Theorem 11.94 (i)].
If q = 7 and i = 1, the function field F1 has genus three and an automorphism group

of order 96. This group is the semidirect product of a solvable group of order 48 and a
cyclic group of order 2. These results can be obtained using a computer, for example the
computer-algebra package Magma.

4.1. The case 1 ≤ i < (m − 2)/2. The key to determining the automorphism group of
Fi is the following theorem.

Theorem 4.2. Let i = 1, . . . , (m − 3)/2 with gcd(i,m) = gcd(i + 2, m) = 1 and as-
sume (i, q) 6∈ {(1, 3), (1, 7)}. Then the Aut(Fi)-orbit containing P∞ is contained in
Ω := {P∞, Pα, P−α, P0}.

Proof. If q ≤ 31, one checks the lemma using a computer. We will assume from now on
that q > 31. Denote with g := m−1 = (q−1)/2 the genus of Fi. Assume by contradiction
O∞, the Aut(Fi)-orbit containing P∞, is not contained in Ω. From the fact that Gi has
only short orbits contained in Ω, while it acts on O∞, we deduce that O∞ contains P∞

and at least one long orbit of Gi. Hence

(4) |O∞| ≥ 1 + |Gi| = q + 2

Recalling that Gi fixes P∞ we have from the Orbit-Stabilizer theorem that

|Aut(Fi)| = |O∞||Aut(Fi)P∞
| ≥ (q + 2)(q + 1) = (2g + 3)(2g + 2) > 84(g − 1),

as q > 31. From [11, Theorem 11.56] Aut(Fi) has order divisible by the characteristic p
and one of the following cases occurs:

(1) Aut(Fi) has exactly one short orbit.
(2) Aut(Fi) has exactly 3 short orbits of which two have cardinality |Aut(Fi)|/2.
(3) Aut(Fi) has exactly 2 short orbits, of which at least one is non-tame (i.e. the

stabilizer of a place in the orbit has order divisible by p).
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Note that since all the places in Ω are fixed by Hi, they need to be contained in some
short orbits of Aut(Fi). From Corollary 3.10, the orbit O∞ cannot contain Pα and hence
Aut(Fi) must have at least two short orbits, namely O∞ and Oα, the orbit containing
both Pα and P−α. This implies that Case (1) above cannot occur. Also Case (2) cannot
occur, as both O∞ and Oα have a stabilizer of order at least m, and hence larger than 2.
The orbit stabilizer theorem implies that both |O∞| and |Oα| are at most |Aut(Fi)|/m <
|Aut(Fi)|/2.
This proves that Case (3) holds necessarily and hence O∞ and Oα are exactly the short

orbits of Aut(Fi) and at least one of these two orbits has a stabilizer of order divisible by
p. We denote with O such an orbit, without specifying whether O = O∞ or O = Oα.
Let P ∈ O and denote with Sp the Sylow p-subgroup of Aut(Fi)P (depending on which

orbit O is, one could choose P = P∞ or P = Pα). From [11, Theorem 11.49] we can write
Aut(Fi)P = Sp ⋊ C, where C is a cyclic group of order prime to p containing Hi (recall
that Hi fixes all the places in Ω).

Denote with F̃i the fixed field of Fi with respect to Sp and by g(F̃i) its genus. We

distinguish three cases: either g(F̃i) ≥ 2, g(F̃i) = 1 or g(F̃i) = 0.

Case 1 (g(F̃i) ≥ 2): The quotient group Aut(Fi)P/Sp
∼= C is a cyclic automorphism

group of F̃i of order at least m = g+1. From [11, Theorem 11.79] m ≤ |C| ≤ 4g(F̃i) + 4.

However the Hurwitz genus formula implies that g − 1 ≥ |Sp|(g(F̃i) − 1) + (|Sp| − 1) =

|Sp|g(F̃i)− 1 and so

g(F̃i) ≤
g

|Sp|
.

Combining all the above, we need to have that

g + 1 = m ≤ |C| ≤ 4g(F̃i) + 4 ≤
4g

|Sp|
+ 4.

Hence

p ≤ |Sp| ≤
⌊ 4g

g − 3

⌋
= 4.

In the final equality, we used that g = m−1 > 15, which follows since we assumed q > 31.
So this case is only possible if |Sp| = p = 3, which in turn implies that |C| = m, since we
now know that |C| ≤ 4g/3 + 4. Hence C = Hi. We want to prove that also this case is
actually not possible. To do so, first note that since Gi fixes both P∞ and P0 (and has
order larger than m) this also implies that O = Oα and P0 6∈ O. Recall that C = Hi fixes
P = Pα and also P−α and normalizes S3. Hence Hi needs to act on the S3-orbit containing
P−α. Since Fi has 3-rank zero, we know from [11, Lemma 11.129] that the generator of S3

fixes P = Pα and acts on O \{P} with orbits of length three. This means that necessarily
the S3-orbit containing P−α has length three. This is not possible because Hi fixes the
places in Ω and acts with orbits of length m elsewhere (m > 3). This gives the desired
contradiction.
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Case 2 (g(F̃i) = 1): As before the quotient group Aut(Fi)P/Sp
∼= C is a cyclic automor-

phism group of F̃i of order at least m = g + 1. Clearly such a group fixes at least one
place of F̃i, namely the one below P . From [11, Remark 11.95] it needs to be true that
m ≤ |C| ≤ 12, which is not possible for q > 31.

Case 3 (g(F̃i) = 0): The quotient group C̄ := Aut(Fi)P/Sp
∼= C is a cyclic automorphism

group of F̃i of order at least m = g + 1 fixing at least one place. From [11, Theorem

11.91], C̄ fixes exactly two places in F̃i. In other words: Hi fixes exactly two Sp-orbits,
one of which is the orbit {P}. On the other hand, the only short orbits of Hi are the
places in Ω implying that any Sp-orbit fixed by Hi is contained in Ω. Hence the second
Sp-orbit that is fixed by Hi needs to be equal to Ω \ {P}. Theorem 3.10 implies that
P = P∞ and therefore that Ω \ {P} = {P0, Pα, P−α}. In particular, p = 3 and |S3| = 3,
since Fi has 3-rank zero. Moreover we can conclude that H(Pα) = H(P0), which implies
that i = 1 from Theorem 3.13.
Note that F1 is the function field of a plane curve given by a separated polynomial.

Hence by [11, Theorem 12.11], Aut(F1) fixes P∞ unless F1 is isomorphic to an Hermitian
function field, or to a function field of type Fq2(u, v) with vm̄ = u3t + u for some m̄ and
t satisfying m̄ | (3t + 1). Since the genus of a Hermitian function field would in this case
be divisible by 3 (while m − 1 is not), this case cannot occur. If F1 is isomorphic to
a function field of type Fq2(u, v) as described above, then by comparing their genera, it
needs to be true that

2g = 2(m− 1) = q − 1 = 3n − 1 = g(Fq2(u, v)) = (3t − 1)(m̄− 1).

Since this implies that 3t−1 divides 3n−1 we deduce that necessarily t | n, that is, n = st
for some s ≥ 1. Combining with the fact that m̄ divides 3t + 1 we get

3n − 1 = 3st − 1 = (3t − 1)(m̄− 1) ≤ (3t − 1)3t < 32t − 1.

This proves that s = 1, that is n = t, and hence m̄ = 2. This implies that Fq2Fi has a
place P such that 2 ∈ H(P ). On the other hand, by Remark 3.14, 2 is a gap of P ∈ Ω.
The same is true for P 6∈ Ω as we show now. Consider the differential

ω := (x− a)
dx

ym−1
,

where a := x(P ). From Equation (3), the divisor of ω is of the form

(ω) = P + E + (m− 4)P∞,

where E ≥ 0 and P /∈ Supp(E). Since m > 16, ω is holomorphic and hence vP (ω)+1 = 2
is a gap at P using Proposition 2.1. We can conclude that Fq2F1 cannot be isomorphic to

Fq2(u, v). This shows that Aut(F1) fixes P∞. This is in contradiction with Equation (4).
We have now shown that in all possible cases Equation (4) gives rise to a contradiction.

This proves that the Aut(Fi)-orbit containing P∞ is contained in Ω. �

Using the results from the proof of Theorem 4.2, we can complete the case (i, p) = (1, 3)
quite easily.
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Corollary 4.3. Let q = 3n with n > 1. Then Aut(F1) = C3 ⋊G1 where C3 is the cyclic
group of order 3 generated by the automorphism γ defined by γ(x) = x+α and γ(y) = y.
In particular |Aut(F1)| = 3(q + 1).

Proof. Recall from the proof of Theorem 4.2 that Aut(F1) fixes P∞. Therefore, by [11,
Theorem 11.49], we can write Aut(F1) = Aut(F1)P∞

= S3 ⋊ C, where S3 is the Sylow
3-subgroup of Aut(F1) and C is a cyclic group of order prime to 3 containing G1. Note
that S3 is not trivial, as it contains the automorphism γ defined in the statement of the
corollary. It is easy to see that γ indeed is an automorphism (using α2 + 1 = 0) and that
it has order three. From [11, Theorem 12.7 (i)] we then have that |C| = m(3−1) = 2m =
q + 1 and since C contains G1 (which has order q + 1) we deduce that C = G1. Since
2m = q+1 ≡ 1 (mod 3), we have m ≡ 2 (mod 3) and hence by [11, Theorem 12.7 (iii)] we
can deduce that |S3| = 3. This shows that |Aut(F1)| = 3(q + 1) and Aut(F1) = C3 ⋊G1,
with C3 being the cyclic group generated by γ. �

Now we are in a position to complete the determination of Aut(Fi) for i = 1, . . . , (m−
3)/2.

Proposition 4.4. Let i = 1, . . . , (m−3)/2 with gcd(i,m) = gcd(i+2, m) = 1 and assume
(i, q) 6= (1, 7) and (i, p) 6= (1, 3). Then Aut(Fi) = Gi.

Proof. For q ≤ 31, the proposition can be verified using a computer. Hence we assume
q > 31 from now on. From Theorem 4.2 we know that the Aut(Fi)-orbit containing P∞,
say O∞, is contained in Ω = {P∞, P0, Pα, P−α}. Recalling that from Corollary 3.10, Pα

and P−α cannot be contained in O∞ , we have only the following possibilities

(1) O∞ = {P∞} or
(2) O∞ = {P0, P∞}.

If Case (1) occurs then Aut(F1) = Sp⋊C, where Sp is the Sylow p-subgroup of Aut(F1)
and C is a cyclic group of order prime to p containing Gi. In reality C = Gi. The reason
is that Gi is trivially a normal subgroup in C (because C is abelian) and hence C acts on
the fixed points of Gi. Since C already fixed P∞, this implies that C fixes also P0. Hence
a generator β of C will map x to λx (for some constant λ, because it preserves the divisor
of x). Recall that C also normalizes Hi and hence acts on Ω (the set of fixed points of
Hi). This means that C also acts on {Pα, P−α} and hence preserves the divisor of y as
well. Since β(x) = λx and β(y) = µy and β(y)m = β(x)i(β(x)2 + 1), we get

µmym = µmxi(x2 + 1) = β(x)i(β(x)2 + 1) = λixi(λ2x2 + 1),

and hence µm = λi+2 = λi. In particular, β ∈ Gi, and since β was a generator of C ⊇ Gi,
we deduce C = Gi. Let |Sp| = pt. If t = 0 then we have Aut(Fi) = Gi, and we are done.
Otherwise t ≥ 1.
If t ≥ 1, we can reason in a very similar way as in the proof of Theorem 4.2. Indeed,

the reasoning is easier because we now know that C = Gi instead of only knowing that
Hi ⊆ C. Moreover, we now assume (i, p) 6= (1, 3), so there are fewer cases to consider.
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We are left with Case (2), namely O∞ = {P∞, P0}. Note that from the Orbit-Stabilizer
theorem

|Aut(Fi)| = 2|S|,

where S ⊆ Aut(Fi) is the stabilizer of P∞. Note that S also fixes P∞, since O∞ only
contains two places. Since Fi has p-rank zero, an element of order p fixes exactly one
place, from [11, Lemma 11.129]. Hence |S| is prime to p and S is cyclic. Note that
Gi ⊆ S as Gi fixes both P0 and P∞. We claim that S = Gi. To show that, we fix a
generator β of S. Then β will map x to λx (for some constant λ, because it preserves
the divisor of x). Recall that S also normalizes Hi and hence acts on Ω (the set of fixed
points of Hi). This means that S also acts on {Pα, P−α} and hence preserves the divisor
of y as well. As before this implies that β ∈ Gi, and since β was a generator of S ⊇ Gi,
we deduce that S = Gi.
In particular we know that |Aut(Fi)| = 2(q + 1) and since Gi is a subgroup of Aut(Fi)

of index 2, Gi is normal in Aut(Fi). In particular Aut(Fi) acts on Ω, as Ω is the union of
the three short orbits of Gi.
Let γ ∈ Aut(Fi) \ Gi. Then γ(P0) = P∞, γ(P∞) = P0 (otherwise γ ∈ Gi). Recalling

that γ acts on Ω we see that γ acts also on {Pα, P−α}. So from Equation (3)

(y) = iP0 + Pα + P−α − (i+ 2)P∞,

we get
(γ(y)) = iP∞ + Pα + P−α − (i+ 2)P0,

that is, (γ(y)
y

)
= (2i+ 2)(P∞ − P0).

Since we have also (x) = m(P0 − P∞), we must have that gcd(2i + 2, m) ∈ H(P∞).
Since 2i + 2 ≤ m − 3 + 2 = m − 1, gcd(2i + 2, m) is a proper divisor of m. This is not
possible from Corollary 3.6. �

4.2. The case i = (m − 2)/2. We now study the case i = m−2
2

. Obtaining a complete
description of the automorphism group would be interesting, but it appears to be more
difficult than for the other values of i. Fortunately, a partial result will be sufficient for
our purposes. Note again that the condition gcd(i,m) = 1 implies that i = (m − 2)/2
only occurs in case m is a multiple of four.

Theorem 4.5. The automorphism group of the function field F(m−2)/2 contains a subgroup
that is the semidirect product of Gi and a cyclic group of order four.

Proof. It is enough to show that there exists an automorphism σ4 of order four such that
neither σ4 nor σ2

4 occurs in G(m−2)/2. We claim that this automorphism can be given by

σ4(x) = α
x− α

x+ α
and σ4(y) = 4β

y(m−2)/2

x(m−4)/4(x+ α)
,

where β2 = α. Note that β ∈ Fq2 , since eight divides q2 − 1 and β4 = α2 = −1.
First of all, we show that σ4 indeed is an automorphism:
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σ4(y)
m = (4β)m

(ym)(m−2)/2

x(m2−4m)/4(x+ α)m

= 4αm/2x
(m2−4m+4)/4(x+ α)(m−2)/2(x− α)(m−2)/2

x(m2−4m)/4(x+ α)m

= 4αm/2

(
x− α

x+ α

)(m−2)/2
x

(x+ α)2

=

(
αx+ 1

x+ α

)(m−2)/2
((

αx+ 1

x+ α

)2

+ 1

)

= σ4(x)
(m−2)/2(σ4(x)

2 + 1).

A direct calculation shows that this automorphism acts as a 4-cycle on the places P0,
P−α, P∞ and Pα of F(m−2)/2. This shows that both σ4 and σ2

4 do not fix P∞. Since any
automorphism in G(m−2)/2 fixes P∞, we see that both σ4 and σ2

4 are not in G(m−2)/2, which
is what we needed to show. �

We get the following result regarding semigroups as an immediate consequence, also
see Remark 3.14.

Corollary 4.6. The semigroups of the places P0, P−α, P∞ and Pα of F(m−2)/2 are the
same.

Proof. This is clear, since σ4 acts transitively on these places. �

4.3. The case i = m − 1. In this subsection we study the case i = m − 1 and show
that this case is very special. In fact we will see that Fm−1 is isomorphic to the famous
Roquette function field:

R = Fq2(x̃, ỹ) : ỹ
2 = x̃q + x̃.

Since the automorphism group of R is known, we immediately find the automorphism
group of Fm−1 as well.

Lemma 4.7. Fm−1 and R are isomorphic.

Proof. Consider the map

{
Fm−1 → R

(x, y) 7→
(

y+2x
2(y−2x)

, x
m+1−xm−1

(y−2x)m

)
=: (x̃, ỹ)

.



SOME FAMILIES OF NON-ISOMORPHIC MAXIMAL FUNCTION FIELDS 19

Then from ym = xm−1(x2 + 1), we have yq+1 = xq−1(x2 + 1)2. Now we prove ỹ2 = x̃q + x̃:

x̃q + x̃ =

(
y + 2x

2(y − 2x)

)q

+

(
y + 2x

2(y − 2x)

)

=
(y + 2x)q(y − 2x) + (y + 2x)(y − 2x)q

2(y − 2x)q+1

=
2yq+1 − 8xq+1

2(y − 2x)q+1

=
2xq−1(x2 + 1)2 − 8xq+1

2(y − 2x)q+1

=
xq+3 − 2xq+1 + xq−1

(y − 2x)q+1

= ỹ2.

Since the function fields have the same genus m− 1 and m− 1 > 1, the map above is an
isomorphism. �

The Roquette function field has been studied extensively and in particular it is known
that its automorphism group has cardinality 2 · |PGL(2, q)| and can be described as an
extension of PGL(2, q) by a group of order two [11, Theorem 12.11].

The following theorem summarizes our knowledge about Aut(Fi), collecting all the
partial results proven in this section. The statements for q ≤ 31 were obtained using a
computer.

Theorem 4.8. Let q = pn be the power of an odd prime p. Let m = (q + 1)/2 and
Fi = Fq2(x, y) with ym = xi(x2 + 1), gcd(i,m) = gcd(i+ 2, m) = 1. Then Aut(Fi) = Gi

unless (i, p) = (1, 3), (i, q) = (1, 7) or i ∈ {(m− 2)/2, m− 1}. Moreover:

• Aut(Fi) is infinite, if (i, q) = (1, 3),
• Aut(Fi) is the semidirect product of Gi and a cyclic group of order 3 if (i, p) =
(1, 3) and q > 3,

• Aut(Fi) is the semidirect product of a solvable group of order 48 and a cyclic group
of order 2 if (i, q) = (1, 7),

• Aut(Fi) contains a subgroup that is the semidirect product of Gi and a cyclic group
of order 4 if i = (m− 2)/2,

• Fi is isomorphic to the Roquette function field and in particular Aut(Fi) is an
extension of PGL(2, q) by a group of order 2 if i = m− 1.

Corollary 4.9. Let q = pn be the power of an odd prime p. Let m = (q + 1)/2 and
i = 1, . . . , (m − 3)/2 such that gcd(i,m) = gcd(i + 2, m) = 1. Unless (i, q) = (1, 3)
or (i, q) = (1, 7), Aut(Fi) acts on Ω = {P0, P∞, Pα, P−α}. Moreover, any short orbit of
Aut(Fi) is contained in Ω.
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Proof. From Theorem 4.8, unless i = 1 and either q is a power of 3 or q = 7, Aut(Fi) = Gi

and hence fixes P0 and P∞ and has {Pα, P−α} as another short orbit. Note that Gi has
no other short orbits.
The fact that Aut(Fi) acts on Ω is true also if p = 3, i = 1 and q > 3. In fact in this

case Theorem 4.8 gives that Aut(F1) = C3 ⋊ G1. This group fixes P∞ (as both C3 and
G1 do so) and acts on Ω \ {P∞} transitively. Since neither G1 nor C3 have short orbits
outside Ω, the group Aut(F1) acts with long orbits elsewhere. �

Theorem 4.8 gives a precise description of Aut(Fi) except when i = (m − 2)/2 and
q > 7. We believe that in this case the automorphisms described in Theorem 4.5 form
the entire automorphism group. We finish this section by stating this as a conjecture.

Conjecture 4.10. Let q > 7 and i = (m− 2)/2. Then |Aut(Fi)| = 4(q + 1).

5. Isomorphism classes

Using the results from Section 3, we will in this section complete the study of the
isomorphism classes. Whereas previously, we used the notation P0, Pα, P−α and P∞ to
indicate certain places of Fi, we now change the notation to P i

0, P
i
α, P

i
−α and P i

∞. The
reason is that we will have to keep track of places of several function fields at the same
time. Similarly, to be able to describe maps between different function fields Fi and Fj,
we will in this section sometimes write Fi = Fq2(xi, yi) with ymi = xi

i(x
2
i + 1), when the

role of i needs to be emphasized.
As mentioned before, when studying isomorphism classes, we only need to consider the

function fields Fi for 1 ≤ i ≤ (m− 2)/2 and i = m− 1. We start by showing that Fm−1

is not isomorphic to any of the others.

Theorem 5.1. For any i ∈ Z, satisfying 1 ≤ i ≤ (m − 2)/2 and gcd(i,m) = gcd(i +
2, m) = 1, the function fields Fi and Fm−1 are non-isomorphic.

Proof. From the size of the automorphism groups as listed in Theorem 4.8, we see that
Fi and Fm−1 cannot be isomorphic except possibly when i = (m − 2)/2. The function
field Fq2Fm−1 has a place P such that two is a gap of P , since Fm−1 is isomorphic to the
Roquette function field. On the other hand, very similar as in the proof of Theorem 4.2,
one shows that Fq2F(m−2)/2 has no such place Q using Remark 3.14 for Q ∈ Ω and the

holomorphic differential (x−a)x(m−2)/2−1dx
ym−1 , with a := x(Q), for Q 6∈ Ω. �

We are left with studying whether or not for some i, j ∈ Z, satisfying 1 ≤ i < j ≤
(m− 2)/2, the function fields Fi and Fj can be isomorphic. We will see that this cannot
happen.

Theorem 5.2. For any i, j ∈ Z, satisfying 1 ≤ i < j ≤ ⌊(m − 2)/2⌋ and gcd(i,m) =
gcd(i + 2, m) = gcd(j,m) = gcd(j + 2, m) = 1, the function fields Fi and Fj are non-
isomorphic.

Proof. First, note that 1 ≤ i < j ≤ (m − 2)/2 only occurs when (m − 2)/2 ≥ 2, so we
can assume q ≥ 11. We may conclude then, from Theorem 4.8, that the order of Aut(Fi)
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is at most 3(q + 1), and for j = m−2
2

the statement of the theorem follows already from
Theorem 4.5.
Now, assume that 1 ≤ i < j ≤ ⌊m−3

2
⌋, and assume for contradiction that we have an

isomorphism φ : Fj → Fi. We denote the induced map from the set of places of Fi to the
set of places of Fj by φ∗. Such a map φ∗ maps short orbits to short orbits, so it follows
from Corollary 4.9 that the places P i

0, P
i
∞, and P i

±α of Fi must be mapped to the places

P j
0 , P

j
∞, and P j

±α of Fj. We will use the results on the semigroups at these points to show
that such an isomorphism cannot exist.
The first step towards finding a contradiction is to show that φ∗(P i

∞) = P j
∞. Just as

in the proof of Theorem 3.10, we observe that i + 2 ∈ H(P i
∞) while i + 2 /∈ H(P j

±α), so

H(P i
∞) 6= H(P j

±α). Similarly, j+2 ∈ H(P j
∞) while j+2 /∈ H(P i

±α), so H(P j
∞) 6= H(P i

±α).

It follows that P i
∞ cannot be mapped to P j

±α by φ∗ and that P j
∞ cannot be mapped to

P i
±α by the inverse of φ∗. There are two remaining options: Either φ∗ maps P i

∞ to P j
∞ or

it maps P i
∞ to P j

0 and P i
0 to P j

∞.
Assume that the latter happens. Since either φ∗(P i

±α) = P j
±α or φ∗(P i

±α) = P j
∓α, we

find a principal divisor
(

yi
φ(yj)

)

Fi

= (i+ j + 2)(P i
0 − P i

∞).

At the same time, we have the divisor (xi)Fi
= m(P i

0 −P i
∞), so it follows that gcd(i+ j +

2, m) ∈ H(P i
∞). Since i + j + 2 < m, this is in contradiction with Corollary 3.6 and we

conclude that φ∗ maps P i
∞ to P j

∞.
Next, we investigate whether P i

0 may be mapped to P j
0 by φ∗. If φ∗(P i

0) = P j
0 then we

find a principal divisor (
φ(yj)

yi

)

Fi

= (j − i)(P i
0 − P i

∞),

and we obtain a contradiction by a similar argument as above.
The only remaining option is φ∗(P i

0) = P j
±α. For i > 2 and m ≥ 19 this is excluded by

Lemma 3.11. Similarly, by considering the image of P j
0 under the inverse of φ∗, we can,

for m ≥ 19, exclude all cases except j = ⌊m−3
2

⌋. For i = 2 and j = ⌊m−3
2

⌋ it follows from

gcd(i,m) = 1 that m is odd, so in fact j = m−3
2

, and we reach a contradiction by using
Lemma 3.12.
Finally, we use Magma to calculate the relevant semigroups for m < 19, and conclude

that an isomorphism between Fi and Fj cannot exist. �

What is left to do is to obtain an expression for the total number of distinct isomor-
phism classes of the function fields Fi. This number can be determined from the prime
factorization of m.

Theorem 5.3. Write m = 2α0pα1
1 pα2

2 · · · pαn
n , for distinct odd primes p1, . . . , pn, with

α0 ∈ Z≥0 and α1, . . . , αn ∈ Z>0. The number of isomorphism classes among the function
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fields Fi defined in Equation (2) is

N(m) =

{
φ2(m)+1

2
for m 6≡ 0 (mod 4),

φ2(m)+2
2

for m ≡ 0 (mod 4),

where φ2(m) is given by

φ2(m) = 2max{0,α0−1}pα1−1
1 (p1 − 2) · · ·pαn−1

n (pn − 2).

Proof. We immediately reduce the problem to counting the distinct isomorphism classes
among the set of function fields corresponding to i ∈ {0, 1, . . . , m−1}, for which gcd(i,m) =
gcd(i + 2, m) = 1. We claim that there are exactly φ2(m) function fields in this set, i.e.,
that

φ2(m) = |{i ∈ {0, 1, . . . , m− 1} | gcd(i,m) = gcd(i+ 2, m) = 1}|.

Assume first that m is odd, so that α0 = 0. By the Chinese Remainder Theorem,
each i ∈ {1, 2, . . . , m − 1} corresponds exactly to a tuple (x1, x2, . . . , xn) ∈ Z

n, with
0 ≤ xj < p

αj

j and i ≡ xj (mod p
αj

j ) for j = 1, . . . , n. There is a non-trivial common
divisor of i and m if and only if xj is divisible by pj for at least one j. Similarly, i+2 and
m have a non-trivial common divisor if and only if xj + 2 is divisible by pj for at least
one j.
For each j ∈ {1, . . . , n}, there are p

αj−1
j (pj −2) possible choices for xj such that neither

xj nor xj + 2 is divisible by pj. It follows that there are exactly φ2(m) tuples, and hence
φ2(m) possible values for i, such that the conditions on the greatest common divisors are
satisfied.
For even m, i.e., for α0 ≥ 1, a very similar argument applies. The only thing that

needs to be considered when dealing with the prime 2, as opposed to the odd primes,
is that i ≡ i + 2 (mod 2). The number of possible choices for i modulo 2α0 is then
2α0−1(2− 1) = 2α0−1. This finishes the proof of the claim.
Now, among these φ2(m) different possible values for i, we know that i = m − 1

corresponds to a function field that is not isomorphic to any of the others, namely the
Roquette function field. It is clear that m − 2 is never among the possible values of i.
For 1 ≤ i ≤ m − 3 we know that Fi is isomorphic to Fm−2−i. Note that i satisfies the
greatest common divisor conditions if and only if m− 2− i satisfies the conditions. This
means that the remaining φ2(m)−1 function fields split into pairs of isomorphic function
fields, with the possible exception of the function field F(m−2)/2. As previously mentioned,
(m− 2)/2 is among the possible values of i precisely when m ≡ 0 (mod 4).
Each pair contains a function field Fi with index i less than or equal to m−2

2
, so by

Theorem 5.2 function fields from different pairs are non-isomorphic. For m 6≡ 0 (mod 4)
this means that we get

1 +
φ2(m)− 1

2
=

φ2(m) + 1

2
isomorphism classes, and for m ≡ 0 (mod 4) we get

2 +
φ2(m)− 2

2
=

φ2(m) + 2

2
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isomorphism classes, as claimed. �
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