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Abstract

We consider a voting problem in which a set of agents have metric preferences over a set of

alternatives, and are also partitioned into disjoint groups. Given information about the preferences

of the agents and their groups, our goal is to decide an alternative to approximately minimize an

objective function that takes the groups of agents into account. We consider two natural group-fair

objectives known asMax-of-Avg and Avg-of-Max which are different combinations of the max and

the average cost in and out of the groups. We show tight bounds on the best possible distortion

that can be achieved by various classes of mechanisms depending on the amount of information

they have access to. In particular, we consider group-oblivious full-information mechanisms that

do not know the groups but have access to the exact distances between agents and alternatives

in the metric space, group-oblivious ordinal-information mechanisms that again do not know the

groups but are given the ordinal preferences of the agents, and group-awaremechanisms that have

full knowledge of the structure of the agent groups and also ordinal information about the metric

space.

1 Introduction

One of the main subjects of study in (computational) social choice theory is to identify the capabilities

and limitations of making appropriate collective decisions when given the preferences of individuals

(or, agents) over alternative outcomes. �is is done either by an axiomatic analysis of the potential

decision-making mechanisms (which are also referred to as voting rules) [Brandt et al., 2016], or a

qualitative analysis that aims to quantify the possible loss of efficiency when the agents have private

cardinal utilities or costs for the alternatives but are only able to communicate partial information

about their preferences, for example using ordinal information. �is inefficiency is quantified by the

notion of distortion which compares the quality of the computed outcome to that of the ideal outcome

that could have been computed if full information about the underlying utilities of the agents was

available. Since its introduction more than 15 year ago, distortion has been studied for many different

social choice problems (such as voting applications, resource allocation, and facility location) and under

different restrictions about the cardinal preferences of the agents (such as assuming unit-sum utilities

or metric costs). For a more detailed overview see our discussion of the related work below and the

survey of Anshelevich et al. [2021].

With few exceptions, the distortion literature has focused on voting se�ings in which the agents

are assumed to be independent of each other. As such, the quality of the different outcomes is typically

calculated using measures such as the social welfare (defined as the total or average utility of all agents)

or the egalitarian welfare (defined as the minimum utility over all agents). However, there are social

choice applications in which, while the agents can act autonomously, they are also part of larger groups
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and care about the overall welfare of the members of their groups, but not that much about other

groups. As a toy example, consider the case of a university department, the academics of which are

members of different research groups. For several ma�ers, such as electing the head of the department,

each academic participates individually in the voting process, but the outcome might affect different

groups in different ways. Due to this, objectives such as the social and the egalitarian welfare do not

fully capture the quality of an outcome according to the structure of the problem. Instead, we would

like objectives that take into account the partition of the agents into groups to measure efficiency and

also satisfy other desired properties such as fairness or some form of balance among different groups.

Two such natural objectiveswere first introduced by Anshelevich et al. [2022] who studied a metric

district-based single-winner voting se�ing, where the agents have costs for the alternatives that are

determined by their distances in a metric space, and the agents are furthermore partitioned into groups

that are called districts. �e first objective is Max-of-Avg, defined as the maximum over all groups of

the average total distance of the agents within each group from the chosen alternative, and the second

one is Avg-of-Max, defined as the average over all groups of the maximum distance among any agent

within each group from the chosen alternative.1 By their definition, to optimize them, we need to

choose outcomes that strike a balance between the average or maximum cost of any group as a whole,

thus achieving fairness among different groups, on top of absolute efficiency.

1.1 Our Contribution

We study a single-winner voting se�ing with n agents and m alternatives that lie in a metric space.

Furthermore, the agents are partitioned into k disjoint groups. Given some information about the

groups of agents, as well as the distances between agents and alternatives in the metric space, our goal

is to choose an alternative as the winner that is (approximately) efficient with respect to the Max-of-

Avg and Avg-of-Max objectives that were defined above. In particular, we show tight bounds on the

distortion of different classes of deterministic mechanisms, depending on the type of information they

have access to in order to decide the winner.

We start by considering group-oblivious mechanisms which have no knowledge of the groups of

agents. In Section 3, we consider the class of full-information group-oblivious mechanisms which have

complete information about the distances between agents and alternatives in the metric space. For

such mechanisms, we show a tight bound of 3 for Max-of-Avg, a tight bound of 3 for Avg-of-Max on

instances in which the groups are symmetric (i.e., all groups have the same size), and a tight bound

of k for Avg-of-Max on general instances. In Section 4, we turn our a�ention to ordinal-information

group-oblivious mechanisms which are given as input the ordinal preferences of the agents over the

alternatives in the form of rankings from the smallest distance to the largest. We show a tight bound of

5 for Max-of-Avg, a tight bound of 5 for Avg-of-Max on instances with symmetric groups, and a tight

bound of 2k + 1 for Avg-of-Max on general instances. An overview of our results for group-oblivious

mechanisms is given in Table 1.

In Section 5 we turn our a�ention to group-aware mechanisms which know the structure of the

groups of agents. Having full information about the metric space on top of this knowledge about the

groups makes the problem of optimizing the Max-of-Avg and the Avg-of-Max objectives trivial by

simply calculating the cost of every alternative. Consequently, we consider group-aware mechanisms

that have access to the ordinal preferences of the agents over the alternatives instead. For instances

with two alternatives, we prove a tight bound of 3 on the distortion of such mechanisms for both

objectives. For general instances, we show that the distortion is still 3 when we are allowed to exploit

more information about the metric space for the upper bound. In particular, we assume access to the

1Observe that both of these objectives are essentially combinations of the social cost and the egalitarian cost, which are the

analogues of the social welfare and egalitarian welfare when the agents have costs for the alternatives rather than utilities.
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Full-information Ordinal-information

Max-of-Avg 3 (�eorems 3.1, 3.2) 5 (�eorems 4.1, 4.3)

Avg-of-Max
Symmetric 3 (�eorems 3.3, 3.4) 5 (�eorems 4.4, 4.5)

Asymmetric k (�eorems 3.5, 3.6) 2k + 1 (�eorems 4.6, 4.7)

Table 1: An overview of our tight distortion bounds for the class of group-oblivious mechanisms.

distances between the alternatives. Resolving the distortion of group-aware mechanisms is probably

the most challenging open question that our work leaves open; we discuss this in Section 6.

1.2 Related Work

Inspired byworst-case analysis, Procaccia and Rosenschein [2006] introduced the distortion as a means

of quantifying the inefficiency of voting mechanisms that base their decisions on the ordinal prefer-

ences of the agents over the alternative outcomes. Without restricting the possible underlying cardinal

utilities of the agents, the distortion can be shown to be unbounded for most natural mechanisms. �is

led to subsequent works to study voting se�ings where it is assumed that the agents have underlying

normalized utilities [Boutilier et al., 2015, Caragiannis et al., 2017, Ebadian et al., 2022, 2023a], or costs

determined by distances in an unknown metric space [Anshelevich et al., 2018, Gkatzelis et al., 2020,

Kizilkaya and Kempe, 2022, Charikar and Ramakrishnan, 2022, Charikar et al., 2024, Caragiannis et al.,

2022, Jaworski and Skowron, 2020], or combinations of the two [Gkatzelis et al., 2023]. �e distortion

has also been studied for other social choice problems, such as participatory budgeting [Benadè et al.,

2021], matching [Filos-Ratsikas et al., 2014, Amanatidis et al., 2022], as well as clustering [Anshelevich

and Sekar, 2016, Burkhardt et al., 2024] and other graph problems where only ordinal information is

available [Abramowitz and Anshelevich, 2018]. We refer to the survey of Anshelevich et al. [2021] for

a more detailed exposition of the distortion framework and the problems it has been applied to.

While the bulk of the distortion literature has focused on se�ings where ordinal or even less than

ordinal information is available about the preferences of the agents, there has been recent interest in

se�ings where it is also possible to elicit some cardinal information. For example, the agents might be

able to communicate a number of bits about their preferences [Mandal et al., 2019, 2020, Kempe, 2020],

or answer value queries related to their utilities about the alternatives [Amanatidis et al., 2021, 2022,

2024, Ma et al., 2021, Caragiannis and Fehrs, 2023, Burkhardt et al., 2024], or provide more information

in the form of intensities [Abramowitz et al., 2019, Kahng et al., 2023] or threshold approvals [Bhaskar

et al., 2018, Benadè et al., 2021, Ebadian et al., 2023b, Anshelevich et al., 2024, Latifian and Voudouris,

2024]. In our work, we also consider more than ordinal information in the case of full-information

group-obliviousmechanisms, where themain source of inefficiency comes from not knowing the struc-

ture of the groups of agents.

As already previously mentioned, the particular objective functions (Max-of-Avg and Avg-of-Max)

that we consider in this paper have been studied in the context of distortion by Anshelevich et al. [2022]

for single-winner distributedmetric voting, and subsequently by Voudouris [2023] for the same se�ing,

and by Filos-Ratsikas et al. [2024] for distributed facility location on the line. In those se�ings, similarly

to our model here, the agents are partitioned into groups that are called districts, and a mechanism

works in two steps: First, for each district, it decides a representative alternative or location based on

given information about the preferences of the agents in the district, and then it decides a winner or a

facility location based on information about the district representatives. Such distributed mechanisms

can be thought of as members of the class of group-aware mechanisms in our se�ing when the groups

are assumed to be known. However, they are very restricted as they essentially forget any detailed
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in-group information in the second step and instead rely only on the group representatives to make

final decisions. �eMax-of-Avg and Avg-of-Max objectives have also been considered in the context of

mechanism design without money for altruistic facility location problems by Zhou et al. [2022, 2024].

2 Preliminaries

An instance I of our voting problem consists of a set N of n ≥ 2 agents and a set A of m ≥ 2
alternatives. Agents and alternatives are represented by points in a metric space. We denote by d(x, y)
the distance between any two points x and y in the metric space; the distance function satisfies the

properties d(x, x) = 0, d(x, y) = d(y, x), and the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) for
any x, y, z ∈ N ∪ A. �e agents are partitioned into k ≥ 2 pairwise disjoint groups which may be

known or unknown; LetG := {g1, . . . , gk} be the set of groups, and denote by ng the size of any group

g ∈ G. If the groups are symmetric, to simplify our notation we write ng = λ = n/k.

A mechanism M takes as input some information info(I) related to the groups of agents and the

distances between agents and alternatives in themetric space. Based on this information, it outputs one

of the alternatives as thewinner, denoted byM(info(I)). When the groups are assumed to be unknown

(Sections 3 and 4), we consider two different classes of group-oblivious mechanisms depending on the

type of information related to the metric space they have access to:

• Full-information group-obliviousmechanisms have complete knowledge of themetric space, that

is, they have access to the distances between all agents and alternatives.

• Ordinal-information group-oblivious mechanisms have access to the ordinal preferences of the

agents over the alternatives according to their distances; that is, if d(i, x) < d(i, y) for an agent

i and alternatives x and y, then i ranks x higher y.

When the groups are assumed to be known (Section 5), we consider group-awaremechanisms that have

access to the ordinal preferences of the agents and—potentially—information related to the distances

between alternatives (but not between agents, or between agents and alternatives).

We are interested in designing socially efficient mechanisms according to collective cost objective

functions that take the groups of the agents into account. In particular, we focus on the following two

objectives:

• �e Max-of-Avg cost of an alternative x in a given instance I is the maximum over all groups of

the average total distance of the agents within each group from x, that is,

Max-of-Avg(x | I) = max
g∈G

(

1

ng

∑

i∈g

d(i, x)

)

.

• �e Avg-of-Max cost of an alternative x in a given instance I is the average over all groups of

the maximum distance of any agent within each group from x, that is,

Avg-of-Max(x | I) =
1

k

∑

g∈G

max
i∈g

d(i, x).

Whenever the cost objective is clear from context, we will simplify our notation and write cost(x | I)
for the cost of alternative x in a given instance I . We will simplify our notation even more and write

cost(x) when the instance is also clear from context.
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Since the mechanisms we consider only have partial information about the groups of agents or the

metric space, they cannot always identify the alternatives that optimize cost objectives which depend

on the structure of the groups, like Max-of-Avg and Avg-of-Max. �e loss of efficiency of a mechanism

M is captured by its distortion, which is the worst-case ratio (over all possible instances) of the cost of

the alternative chosen by M over the minimum possible cost of any alternative, that is

sup
I

cost(M(info(I)) | I)

minx cost(x | I)
.

Observe that the distortion of any mechanism is always at least 1; we define 0/0 = 1 for consistency.
We aim to reveal the best possible distortion that can be achieved by mechanisms in this group voting

se�ing.

3 Full-Information Group-Oblivious Mechanisms

We start the presentation of our technical results with the class of full-information group-oblivious

mechanisms; recall that such mechanisms have complete access to the distances between all agents

and alternatives, which means that their inefficiency is solely due to being oblivious to how the agents

are partitioned into groups. For theMax-of-Avg objective, we show a tight bound of 3 on the distortion
of full-informationmechanisms (Section 3.1). For theAvg-of-Max objective, we first show a tight bound

of 3 for instances in which the groups are symmetric, and a tight bound of k for general instances with

asymmetric groups (Section 3.2).

3.1 Max-of-Avg

We begin by showing a lower bound of 3 on the distortion of full-information group-oblivious mech-

anisms for the Max-of-Avg objective using an instance with symmetric groups.

�eorem 3.1. For Max-of-Avg, the distortion of any full-information group-oblivious mechanism is at

least 3− ε for any ε > 0, even when there are only two alternatives and the groups are symmetric.

Proof. Let ε > 0 be any constant and λ ∈ N be such that λ > 6
ε − 2. Consider the following instance

with n = λ(λ+ 1) agents and two alternatives with known locations on the line of real numbers:

• Alternative a is at 1 and alternative b is at 3;

• �ere are λ agents at 0, λ(λ− 1) agents at 2, and λ agents at 4.

Due to the symmetric locations of the alternatives and the agents, any of the two alternatives can be

chosen as the winner. We assume the winner is a, without loss of generality. �e agents might be

partitioned into the following k = λ+ 1 symmetric groups of size λ each:

• �e first group consists of all the λ agents at 4;

• Each of the remaining λ groups consists of one agent at 0 and λ− 1 agents at 2.

�e total distance of the agents in the first group is 3λ from a and λ from b, whereas the total distance
of the agents in each of the remaining groups is λ from a and λ + 2 from b. Hence, cost(a) = 3 and

cost(b) = 1 + 2
λ , leading to a distortion of at least 3λ

λ+2 = 3− 6
λ+2 > 3− ε.
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It is not hard to obtain a matching upper bound of 3 by using a mechanism that chooses the winner

to be any alternative that minimizes the total distance of all agents. In Appendix Awe present a refined

analysis of this mechanism, by characterizing the worst-case distortion instances, and we obtain a

distortion upper bound of 3− 2µ
n , where µ is the smallest group size and n is the number of agents.

�eorem 3.2. For Max-of-Avg, the distortion of a mechanism that returns an alternative who minimizes

the total distance from all agents is at most 3.

Proof. Letw be an alternative that minimizes the total distance from all agents, and let o be an optimal

alternative (that minimizes the Max-of-Avg cost according to the unknown groups of the agents). By

the definition of w, there must exist some group γ such that
∑

i∈γ d(i, w) ≤
∑

i∈γ d(i, o); otherwise,
the total distance of o from all agents would be strictly less than that ofw, thus contradicting the choice
of w. By the definition of the objective function, we also have that cost(o) ≥ 1

ng

∑

i∈g d(i, o) for every

group g. Denoting by gw the group that determines the cost of w and using the triangle inequality, we

have

cost(w) =
1

ngw

∑

i∈gw

d(i, w) ≤
1

ngw

∑

i∈gw

(d(i, o) + d(w, o)) ≤ cost(o) + d(w, o).

Using the triangle inequality and the property of group γ mentioned above, we further have that

d(w, o) =
1

nγ

∑

i∈γ

d(w, o) ≤
1

nγ

∑

i∈γ

(d(i, w) + d(i, o)) ≤ 2 ·
1

nγ

∑

i∈γ

d(i, o) ≤ 2 · cost(o).

Combining the two, we obtain cost(w) ≤ 3 · cost(o), i.e., the desired upper bound of 3.

3.2 Avg-of-Max

For the Avg-of-Max objective, we first focus on instances where the groups are symmetric (that is,

every group consists of the same number λ = n/k of agents) and show a tight bound of 3.

�eorem 3.3. For Avg-of-Max, the distortion of any full-information group-oblivious mechanism is at

least 3− ε for any ε > 0, even when there are two alternatives and the groups are symmetric.

Proof. Let ε > 0 be any constant and λ ∈ N be such that λ > 8
ε − 3. We consider the same instance

construction as in the proof of �eorem 3.1 on the line of real numbers. Recall that:

• Alternative a is at 1 and alternative b is at 3;

• �ere are λ agents at 0, λ(λ− 1) agents at 2, and λ agents at 4.

We assumed that the winner is a, which is without loss of generality due to symmetry. �e agents are

partitioned into the k = λ+ 1 symmetric groups:

• �e first group consists of all the λ agents at 4;

• Each of the remaining λ groups consists of one agent at 0 and λ− 1 agents at 2.

�erefore, cost(a) = (3 + λ) /(λ + 1) and cost(b) = (1 + 3λ) /(λ + 1), leading to a distortion of at

least 3λ+1
λ+3 = 3− 8

λ+3 > 3− ε.
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�e tight upper bound follows again by choosing any alternative that minimizes the total distance

from all agents; hence, this very simple mechanism is best possible in terms of both the Max-of-Avg

objective for general instances and the Avg-of-Max objective for instances with symmetric groups.

�eorem 3.4. For Avg-of-Max and symmetric groups, the distortion of a mechanism that returns an

alternative who minimizes the total distance from all agents is at most 3.

Proof. Let w be an alternative that minimizes the total distance from all agents, and denote by o an

optimal alternative (thatminimizes theAvg-of-Max cost according to the k unknown groups of agents).
Let S1, . . . , Sλ be any partition of the agents into λ = n/k disjoint sets of size k such that each set

consists of one agent per group; note that there are multiple such partitions of the agents since the

groups are symmetric. By the definition of w, there must exist some ℓ ∈ [λ] such that
∑

i∈Sℓ
d(i, w) ≤

∑

i∈Sℓ
d(i, o) since, otherwise, the total distance of o from the agents would be strictly less than that

of w, thus contradicting the choice of w. Let ig be a most-distant agent in group g from w, i.e., ig ∈
argmaxi∈g d(i, w). By matching each ig to a unique agent f(ig) ∈ Sℓ (i.e., f : {ig1 , . . . , igk} → Sℓ is

a bijection), we can rewrite the property of set Sℓ as

∑

g∈G

d(f(ig), w) ≤
∑

g∈G

d(f(ig), o).

In addition, by the definition of the objective function, we have that

cost(o) ≥
1

k

∑

g∈G

d(ig, o)

and

cost(o) ≥
1

k

∑

i∈Sℓ

d(i, o) =
1

k

∑

g∈G

d(f(ig), o).

Hence, by applying the triangle inequality twice, we obtain

cost(w) =
1

k

∑

g∈G

d(ig, w)

≤
1

k

∑

g∈G

(

d(ig, o) + d(f(ig), o) + d(f(ig), w)
)

≤ 3 · cost(o),

which shows the desired upper bound of 3.

We now turn our a�ention to the general case where the groups might be asymmetric and show a

tight bound of k.

�eorem 3.5. For Avg-of-Max, the distortion of any full-information group-oblivious mechanism is at

least k, even when there are two alternatives.

Proof. Consider the following instance with n = 2k agents and two alternatives on the line of real

numbers:

• Alternative a is at 0 and alternative b is at 1;

• �ere are k agents at 0 and k agents at 1.
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Due to symmetry, given only this information, any of the two alternatives can be chosen as the winner.

Without loss of generality, we assume the winner is a. In that case, however, the agents might be split

into k groups as follows:

• �e first group consists of all agents at 0 and one agent at 1;

• Each of the remaining k − 1 groups consists of a single agent at 1.

Hence, cost(a) = 1 and cost(b) = 1/k, leading to a distortion of k.

For the upper bound, we first remark that choosing any alternative thatminimizes the total distance

from all agents (as we did in the case of Avg-of-Max, or Max-of-Avg with symmetric groups) leads to

a distortion of at least 2k + 1. Nevertheless, we can achieve a matching bound of k by choosing any

alternative that minimizes the maximum distance from the agents.

�eorem 3.6. For Avg-of-Max, the distortion of a mechanism that returns an alternative who minimizes

the maximum distance from any agent is at most k.

Proof. Let w be the chosen alternative and o an optimal alternative. Let iw and io be the most distant

agents from w and o, respectively. �en, by the definition of w, d(iw, w) ≤ d(io, o). By the definition

of iw , d(i, w) ≤ d(iw, w) for every agent i. Hence,

cost(w) =
1

k

∑

g∈G

max
i∈g

d(i, w) ≤
1

k

∑

g∈G

d(iw, w) = d(iw, w).

On the other hand,

cost(o) =
1

k

∑

g∈G

max
i∈g

d(i, o) ≥
1

k
d(io, o) ≥

1

k
d(iw, w).

Consequently, the distortion is at most k.

4 Ordinal-Information Group-Oblivious mechanisms

We now consider mechanisms that are given access to ordinal information about the preferences of the

agents over the alternatives, but are still oblivious to how the agents are partitioned into groups. Recall

that every agent i reports a ranking of the alternatives such that, if d(i, x) < d(i, y) for alternatives
x and y, then i ranks x higher y. For the Max-of-Avg objective, we show a tight bound of 5 on the

distortion of ordinal-information group-obliviousmechanisms. For the Avg-of-Max objective, we show

that the distortion is exactly 5 when the groups are symmetric, and is exactly 2k+1 when the groups

are asymmetric.

4.1 Max-of-Avg

We start by showing a lower bound of 5 on the distortion of any mechanism.

�eorem 4.1. For Max-of-Avg, the distortion of any ordinal-information group-oblivious mechanism is

at least 5− ε for any ε > 0, even when there are only two alternatives and the groups are symmetric.
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Proof. Let ε > 0 be any constant and λ ≥ 3 be an odd integer such that λ > 4
ε − 1. Consider an

instance with n = λ2 + λ = λ(λ + 1) agents and two alternatives {a, b}; clearly λ2 + λ is an even

number. Half of the agents prefer a and the other half prefer b. With this information, any of the two

alternatives can be chosen as the winner, so assume that the winner is a. �e agents are partitioned

into k = λ + 1 symmetric groups of λ agents each. Consider the scenario where the metric space is

the line of real numbers and the grouping of the agents is as follows:

• a is at 0 and b is at 2;

• In the first group, all λ agents prefer b and are all positioned at 2 + λ+1
2λ .

• In each of the remaining λ groups, there are λ+1
2 agents that prefer a and are positioned at 1,

and λ−1
2 agents that prefer b and are positioned at 2.

�e total distance of the agents in the first group is λ
(

2 + λ+1
2λ

)

= 5λ+1
2 from a and λ· λ+1

2λ = λ+1
2 from

b. In each of the remaining λ groups, the total distance of the agents therein is λ+1
2 + 2 · λ−1

2 = 3λ−1
2

from a and λ+1
2 from b. Consequently, cost(a) = 5λ+1

2λ (realized by the first group) and cost(b) = λ+1
2λ

(realized by any of the groups), leading to a distortion of at least 5− 4
λ+1 > 5− ε.

We now show that there are ordinal-information group-oblivious mechanisms which do achieve

this best possible bound of 5. �e domination graph of an alternative x is a bipartite graph Gx =
(N,N,Ex) with the set of agents on both sides and set of (directed) edges such that (i, j) ∈ Ex if and

only if i prefers x over the most-preferred alternative top(j) of j, that is, d(i, x) ≤ d(i, top(j)). We

focus on alternativeswhose domination graphs a�ain perfect matchings. �ere are several voting rules

that compute alternatives with this property, such as PluralityMatching [Gkatzelis et al., 2020] and

PluralityVeto [Kizilkaya and Kempe, 2022]. �e distortion of these rules in terms of the social cost

(the total distance of the agents) is known to be exactly 3. We show the following property of such

alternatives, which will be useful in some of our upper bounds.

Lemma 4.2. Given an instance, let x be some alternative whose domination graph a�ains a perfect

matching, and y any other alternative. �en,

d(x, y) ≤
4

n
·
∑

g∈G

∑

i∈g

d(i, y).

Proof. Let µ = (µ(i))i be the perfect matching in the domination graph Gx of x; that is, agent i is
matched to agent µ(i). By the triangle inequality, the property of the domination graph that d(i, x) ≤
d(i, top(µ(i))), the fact thatM is a perfect matching, and the fact that d(i, top(i)) ≤ d(i, y) for any i,
we have

n · d(x, y) =
∑

i∈N

d(x, y) ≤
∑

i∈N

d(i, x) +
∑

i∈N

d(i, y)

≤
∑

i∈N

d(i, top(µ(i))) +
∑

i∈N

d(i, y)

≤
∑

i∈N

(

d(i, y) + d(µ(i), y) + d(µ(i), top(µ(i)))
)

+
∑

i∈N

d(i, y)

≤
∑

i∈N

d(i, y) + 2 ·
∑

i∈N

d(µ(i), y) +
∑

i∈N

d(i, y)

= 4 ·
∑

g∈G

∑

i∈g

d(i, y).

�e statement now follows by dividing each side of the inequality by n.
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We are now ready to show the upper bound of 5 for Max-of-Avg.

�eorem 4.3. For Max-of-Avg, the distortion of a mechanism that returns an alternative whose domina-

tion graph has a perfect matching is at most 5.

Proof. Let w be the chosen alternative (whose domination graph has a perfect matching), and o an

optimal alternative. Let gw be the group that determines the maximum cost of w. By the definition of

Max-of-Avg, we have ng · cost(o) ≥
∑

i∈g d(i, o) for any group g. Since n =
∑

g ng, by adding all

these inequalities together, we have

n · cost(o) ≥
∑

g∈G

∑

i∈g

d(i, o). (1)

By the triangle inequality, we have

cost(w) =
1

ngw

∑

i∈gw

d(i, w)

≤
1

ngw

∑

i∈gw

d(i, o) +
1

ngw

∑

i∈gw

d(w, o)

≤ cost(o) + d(w, o). (2)

By Lemma 4.2 with x = w and y = o, and using (1), we have

d(w, o) ≤
4

n
·
∑

g∈G

∑

i∈g

d(i, o) ≤ 4 · cost(o),

which, combined with (2), leads to

cost(w) ≤ 5 · cost(o),

which directly implies the desired upper bound.

4.2 Avg-of-Max

For the Avg-of-Max cost, we first consider the case of symmetric groups, in which ng = λ for every g,
and show a tight bound of 5 on the distortion of ordinal-information group-oblivious mechanisms.

�eorem 4.4. For Avg-of-max, the distortion of any ordinal-information group-oblivious mechanism is

at least 5, even when there are only two alternatives and the groups are symmetric.

Proof. Let ε > 0 be any constant and λ ≥ 2 be an integer such that λ > 4
ε . Consider an instance with

n = 2λ(λ− 1) agents and two alternatives {a, b}; clearly, n is even. Half of the agents prefer a while

the remaining half prefer b. With this information, any of the two alternatives can be chosen as the

winner, so assume that the winner is a. �e agents might be split into k = 2(λ−1) groups of λ agents

each as follows:

• �ere are λ groups, each consisting of λ− 1 agents that prefer a and one agent that prefers b;

• �ere are λ− 2 groups, each consisting of λ agents that prefer b.

Further, consider the metric space being the line of real numbers and the positioning of the alternatives

and the agents being as follows:

10



• a is at 0 and b is at 2;

• All agents that prefer a are at 1− ε/10;

• �e λ agents that prefer b and are part of the first λ groups (in which there are agents that prefer

a) are at 3;

• �e remaining λ(λ− 2) agents that prefer b are at 2.

We have that

k · cost(a) = λ · 3 + (λ− 2) · 2 = 5λ− 2

and

k · cost(b) = λ · (1 + ε/10) + (λ− 2) · 0 = λ(1 + ε/10),

leading to a distortion of at least 5
1+ε/10 − 2

λ(1+ε/10) > 5− ε
2 − 2

λ > 5 − ε, where the first inequality
is just a ma�er of simple calculations.

For the upper bound, we consider again mechanisms that output alternatives whose domination

graphs have perfect matchings, and show an upper bound of 5 with a proof similar to the one used for

the Max-of-Avg objective.

�eorem 4.5. For Avg-of-Max and symmetric groups, the distortion of a mechanism that returns an

alternative whose domination graph has a perfect matching is at most 5.

Proof. Consider any instance with k symmetric groups, each consisting of λ = n/k agents. Let w be

an alternative whose domination graph has a perfect matching, and o an optimal alternative. For every

group g, let ig and i∗g be most-distant agents from w and o, respectively. Clearly,

cost(o) =
1

k
·
∑

g∈G

d(i∗g, o) ≥
1

k
·
∑

g∈G

d(ig, o).

By the triangle inequality, we have

cost(w) =
1

k
·
∑

g∈G

d(ig, w)

≤
1

k
·
∑

g∈G

d(ig, o) +
1

k
·
∑

g∈G

d(w, o)

≤ cost(o) + d(w, o) (3)

By Lemma 4.2 with x = w and y = o, and since k = n/λ, we have

d(w, o) ≤
4

n
·
∑

g∈G

∑

i∈g

d(i, o)

≤
4

n
·
∑

g∈G

λ ·max
i∈g

d(i, o)

=
4

k

∑

g∈G

d(i∗g, o)

11



= 4 · cost(o)

Using this, (3) becomes

cost(w) ≤ 5 · cost(o),

giving us the desired bound of 5 on the distortion.

For general instances with asymmetric groups, we show a tight bound of 2k + 1.

�eorem 4.6. For Avg-of-Max, the distortion of any ordinal-information group-oblivious mechanism is

at least 2k + 1, even when there are only two alternatives.

Proof. Consider the following instance with n = 2k agents and two alternatives located on the line of

real numbers:

• Alternative a is at 0 and alternative b is at 2;

• �ere k agents that prefer alternative a and k agents that prefer alternative b.

Since there is no way of distinguish between the two alternative given the preferences of the agents,

we may assume that the winner is a, without loss of generality. �e agents might be partitioned into

the following k groups:

• �e first group consists of k+1 agents that includes those that prefer awho are located at 1 and
one agent that prefers b who is located at 3;

• Each of the remaining k − 1 groups consist of just one agent that prefers b who is located at 2.

Hence, k · cost(a) = 3+ (k− 1) · 2 = 2k+1 and k · cost(b) = 1, leading to a distortion of 2k+1.

�e matching upper bound follows easily by choosing any alternative who is ranked first by some

agent.

�eorem 4.7. For Avg-of-Max, the distortion of a mechanism that returns an alternative who is the

most-preferred of some agent is at most 2k + 1.

Proof. For any group g, let ig and i
∗
g be agents that are most-distant from the winnerw and the optimal

alternative o, respectively. Let S be the set of groups in which there is at least one agent with w as her

most-preferred alternative, and observe that |S| ≥ 1, and thus |G\S| ≤ k−1. We make the following

observations:

• For any group g ∈ S, let jg be an agent who ranks w first. By the triangle inequality, for any

g ∈ S, we have that

d(ig, w) ≤ d(ig, o) + d(jg, o) + d(jg, w) ≤ d(ig, o) + 2d(jg, o) ≤ 3 · d(i∗g, o).

In addition, since there is agent jg that prefers w over o, then

1

2
· d(w, o) ≤

1

2

(

d(jg, w) + d(jg, o)
)

≤ d(jg, o) ≤ d(i∗g , o).
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• For any group g 6∈ S, by the triangle inequality, we have that

d(ig, w) ≤ d(ig, o) + d(w, o) ≤ d(i∗g, o) + d(w, o).

Also d(i∗g , o) ≥ 0.

Using these, we can now bound the distortion as follows:

cost(w)

cost(o)
=

∑

g∈S d(ig , w) +
∑

g 6∈S d(ig, w)
∑

g∈G d(i∗g, o)

≤
3
∑

g∈S d(i∗g, o) +
∑

g 6∈S

(

d(i∗g, o) + d(w, o)
)

∑

g∈G d(i∗g, o)

≤ 3 +

∑

g 6∈S d(w, o)
∑

g∈S d(i∗g, o)

≤ 3 +
|G \ S| · d(w, o)

|S| · 1
2 · d(w, o)

≤ 3 + 2(k − 1) = 2k + 1,

as desired.

5 Group-Aware Mechanisms

In the previous two sections, we focused onmechanisms that are oblivious to the partition of the agents

into groups. It is thus natural for one to wonder whether improved distortion bounds can be achieved

by mechanisms that are aware of the groups. Clearly, we can optimize exactly both objectives if we are

also given full information about the locations of the agents and the alternatives in the metric space,

so this question makes sense when we only have access to partial information about the metric space,

such as ordinal information. In this section, we consider such group-aware mechanisms and show

tight bounds on the distortion in two cases: (1) there are only two alternatives; (2) there are m ≥ 2
alternatives and the distances between them are known.

5.1 �e Case of Two Alternatives

Here, we consider the case of two alternative a and b. For both objectives (Max-of-Avg and Avg-of-

Max), we show a tight bound of 3 on the distortion of ordinal-information mechanisms. We start with

the lower bounds, which are implied by the classic voting se�ing without groups.

�eorem 5.1. For both Max-of-Avg and Avg-of-Max, the distortion of any ordinal-information group-

aware mechanism is at least 3, even when there are only two alternatives and the groups are symmetric.

Proof. �e lower bounds for both objectives follow by considering instances in which the agents are

partitioned into singleton groups. �en, the Max-of-Avg objective reduces to the egalitarian cost (the

maximum distance over all agents), while the Avg-of-Max objectives reduces to the average social

cost (the average total distance of the agents). When there are no groups (or, equivalently, there are

singleton groups), the best possible distortion in terms of the egalitarian or the average social cost is

3, even where there are only two alternatives [Anshelevich et al., 2018, Gkatzelis et al., 2020, Kizilkaya

and Kempe, 2022].
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Next, we present the tight upper bounds. For the Max-of-Avg objective, we consider the Group-

Proportional-Majority mechanism which chooses the winner w to be an alternative that has the

largest proportional majority within any group. In particular, for any alternative x ∈ {a, b}, let ng(x)
be the number of agents in group g that prefer x. �en,

w ∈ argmax
x∈{a,b}

max
g∈G

ng(x)

ng
.

�eorem 5.2. For Max-of-Avg and two alternatives, the distortion of Group-Proportional-Majority

is at most 3.

Proof. For any group g, let Sg(x) be the set of agents in g that prefer x; thus, ng(x) = |Sg(x)|. By the

definition of the mechanism, there is a group γ such that
nγ(w)
nγ

≥
ng(o)
ng

for every group g. Clearly, for

any agent i ∈ Sγ(w), d(i, w) ≤ d(i, o), and thus, by the triangle inequality, d(i, o) ≥ d(w, o)/2. Using
this, for any group g, we can bound the optimal cost as follows:

cost(o) ≥
1

nγ

∑

i∈γ

d(i, o) ≥
1

nγ

∑

i∈Sγ(w)

d(i, o) ≥
nγ(w)

nγ
·
d(w, o)

2
≥

ng(o)

ng
·
d(w, o)

2

or, equivalently,
ng(o)

ng
· d(w, o) ≤ 2 · cost(o). (4)

Now, let gw be the group that determines the cost of w. Using the fact that d(i, w) ≤ d(i, o) for every
agent i ∈ Sgw(w) and the triangle inequality, we have

cost(w) =
1

ngw

∑

i∈gw

d(i, w)

=
1

ngw

∑

i∈Sgw (w)

d(i, w) +
1

ngw

∑

i∈Sgw (o)

d(i, w)

≤
1

ngw

∑

i∈Sgw (w)

d(i, o) +
1

ngw

∑

i∈Sgw (o)

(d(i, o) + d(w, o))

≤ cost(o) +
ngw(o)

ngw

· d(w, o).

Using (4) for g = gw , we finally obtain cost(w) ≤ 3 · cost(o), as desired.

For Avg-of-Max, we consider the Group-Score mechanism which, for any alternative x ∈ {a, b},
assigns 2 points to x for any group in which all agents prefer x, and 1 point for any group in which

some agents prefer x while the remaining agents prefer the other alternative. �e winner w is the

alternative with maximum score, breaking possible ties arbitrarily.

�eorem 5.3. For Avg-of-Max and two alternatives, the distortion of Group-Score is at most 3.

Proof. Letw be the alternative chosen by themechanism, and o an optimal alternative; clearly, ifw = o,
the distortion is 1, so we assume that w 6= o. We partition the groups into three sets:

• Sw contains the groups that are in favor of w, in which all agents prefer w over o;

• So contains the groups that are in favor of o, in which all agents prefer o over w;
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• Sm contains the groups that are mixed, in which some agents prefer w over o and some agents

prefer o over w.

For any group g, let ig be a most-distant agent from w and i∗g a most-distant agent from o; hence,

cost(w) = 1
k

∑

g d(ig, w) and cost(o) = 1
k

∑

g d(i
∗
g, o). We make the following observations:

• For any g ∈ Sw, both ig and i
∗
g prefer w over o. Hence, d(ig, w) ≤ d(ig, o) ≤ d(i∗g, o) and, using

the triangle inequality, d(i∗g, o) ≥
1
2 · d(w, o).

• For any g ∈ So, by the triangle inequality, d(ig, w) ≤ d(ig, o) + d(w, o) ≤ d(i∗g , o) + d(w, o).
Also, recall that d(i∗g, o) ≥ 0.

• For any g ∈ Sm, like above, d(ig, w) ≤ d(i∗g, o) + d(w, o). Also, since there is at least one agent

that prefers w over o, it must be the case that d(i∗g, o) ≥
1
2 · d(w, o).

Using first the upper bounds on the distances fromw, and then the lower bounds on the distances from
o, we can write the distortion as follows:

cost(w)

cost(o)
=

∑

g d(ig, w)
∑

g d(i
∗
g, o)

≤

∑

g d(i
∗
g, o) + (|So|+ |Sm|) · d(w, o)

∑

g d(i
∗
g, o)

= 1 +
(|So|+ |Sm|) · d(w, o)

∑

g d(i
∗
g, o)

≤ 1 +
(|So|+ |Sm|) · d(w, o)

(|Sw|+ |Sm|) · 1
2 · d(w, o)

= 1 + 2 ·
|So|+ |Sm|

|Sw|+ |Sm|
.

By the definition of the mechanism, w is chosen as the winner because 2|Sw| + |Sm| ≥ 2|So| + |Sm|
or, equivalently, |Sw| ≥ |So|. Using this, the distortion is at most

1 + 2 ·
|So|+ |Sm|

|Sw|+ |Sm|
≤ 1 + 2 ·

|So|+ |Sm|

|So|+ |Sm|
= 3,

as claimed.

5.2 Known Distances between Alternatives

We finally consider the general case of m ≥ 2 but when slightly more information than just ordinal

preferences is available. In particular, besides knowing the ordinal preferences of the agents over the

alternatives, we assume that the distances between the alternatives in the metric space are also known.

�is is a natural assumption in various important applications (such as in facility location problems)

and it has thus been examined in previous work on the distortion for different voting se�ings [An-

shelevich and Zhu, 2021, Anshelevich et al., 2024]. Before we continue, we remark that the lower

bound of 3, and even the lower bounds in the previous sections, still hold for this se�ing where the

distances between the alternatives are known since they have been proven using instances with just

two alternatives.

To show a tight bound of 3 for the two objectives, we consider mechanisms that virtually map each

agent i to its most-preferred alternative top(i), and then choose the winner to be an alternative that
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minimizes the objective under consideration for these most-preferred alternatives. In particular, the

winner for the Max-of-Avg objective is

w ∈ argmax
x∈A

max
g∈G

(

1

ng

∑

i∈g

d(top(i), x)

)

,

while the winner for the Avg-of-Max objective is

w ∈ argmax
x∈A

(

1

k

∑

g∈G

max
i∈g

d(top(i), x)

)

.

Wewill refer to these twomechanisms asVirtual-MiniMax-of-Avg andVirtual-MiniAvg-of-Max,

respectively.

�eorem 5.4. When the alternative locations are known, the distortion of Virtual-MiniMax-of-Avg is

at most 3 for Max-of-Avg, and the distortion of Virtual-MiniAvg-of-Max is at most 3 for Avg-of-Max.

Proof. We first show the bound for the Max-of-Avg objective. Let w be the alternative chosen by

the Virtual-MiniMax-of-Avg mechanism, and denote by o an optimal alternative. By definition,

cost(o) ≥ maxg∈G
(

1
ng

∑

i∈g d(i, o)
)

. Let gw be the group that determines the cost ofw. By the triangle

inequality, the fact that d(i, top(i)) ≤ d(i, o) for any agent i, the definition of w (which minimizes the

Max-of-Avg cost of the most-preferred alternatives of all agents), and the fact that the maximum of a

set of additive functions is subadditive, we obtain

cost(w) =
1

ngw

∑

i∈gw

d(i, w)

≤
1

ngw

∑

i∈gw

d(i, top(i)) +
1

ngw

∑

i∈gw

d(top(i), w)

≤
1

ngw

∑

i∈gw

d(i, o) + max
g∈G

(

1

ng

∑

i∈g

d(top(i), w)

)

≤ cost(o) + max
g∈G

(

1

ng

∑

i∈g

d(top(i), o)

)

≤ cost(o) + max
g∈G

(

1

ng

∑

i∈g

d(i, top(i))

)

+max
g∈G

(

1

ng

∑

i∈g

d(i, o)

)

≤ 3 · cost(o).

�e proof for the Max-of-Avg objective is quite similar. Now let w be the alternative chosen by

the Virtual-MiniAvg-of-Max mechanism. For the optimal alternative o, by definition, we have

cost(o) ≥ 1
k

∑

g∈G maxi∈g d(i, o). Let ig be the most-distant agent from w in group g. Again, using
the triangle inequality, the fact that d(i, top(i)) ≤ d(i, o) for any agent i, the definition of w (which

now minimizes the Avg-of-Max cost of the most-preferred alternative of all agents), and the fact that

max is a subadditive function, we obtain

cost(w) =
1

k

∑

g∈G

d(ig, w)

≤
1

k

∑

g∈G

d(ig, top(ig)) +
1

k

∑

g∈G

d(top(ig), w)
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≤
1

k

∑

g∈G

d(ig, o) +
1

k

∑

g∈G

max
i∈g

d(top(i), w)

≤
1

k

∑

g∈G

max
i∈g

d(i, o) +
1

k

∑

g∈G

max
i∈g

d(top(i), o)

≤ cost(o) +
1

k

∑

g∈G

max
i∈g

(

d(i, top(i)) + d(i, o)
)

≤ cost(o) +
1

k

∑

g∈G

max
i∈g

(

2 · d(i, o)
)

≤ 3 · cost(o),

as claimed.

6 Conclusion and Open problems

In this paper, we considered a metric voting se�ing in which the agents are partitioned into groups.

When the groups are unknown, we showed tight bounds on the distortion of oblivious full-information

and oblivious ordinal-information mechanisms in terms of two objectives that take the groups into

account, the Max-of-Avg and the Avg-of-Max objectives. On the other hand, when the groups are

known, we managed to show tight bounds on the distortion of group-aware ordinal mechanisms when

there are just two alternatives or when we also have access to the locations of the alternatives in the

metric space.

�ere are multiple avenues for further research in the group voting model we considered here.

�e most important problem that our work leaves open is to resolve the distortion of group-aware

ordinal mechanisms for more than two alternatives. While this a very challenging task in general, we

remark that achieving constant distortion can be done by using the two-step distributed mechanisms

of Anshelevich et al. [2022] which are, by definition, group-aware. However, those mechanisms do

not fully exploit the structure of the groups, and we therefore expect that be�er distortion bounds can

be achieved by unlocking the full potential of group-aware mechanisms. Other interesting directions

would be to consider randomized mechanisms and other objective functions that take the groups into

account, beyond Max-of-Avg and Avg-of-Max.
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A Refined Analysis of the Full-Information Group-Oblivious

Mechanism for Max-of-Avg

In �eorem 3.2, we showed that choosing any alternative that minimizes the total distance from all

agents achieved the best possible distortion of 3 in terms of the Max-of-Avg objective when taking the

worst-case over all possible instances. In this appendix, we present a more detailed analysis of this

mechanism and show that the distortion bound is 3− 2µ/n, where µ is the smallest group size and n
is the number of agents. While this is still 3 in the worst-case, it implies some improved upper bounds

for cases in which the number of groups k is small or the smallest group size µ is rather large compared

to n. In particular, for instances where there are k symmetric groups, the bound becomes 3− 2/k.

�eorem A.1. For Max-of-Avg, the distortion of any alternative that minimizes the total distance from

all agents is at most 3− 2µ/n, where µ is the smallest group size and n is the number of agents.

Proof. Letw be the alternative thatminimizes the total distance from all agents. Suppose that d(w, o) =
2 without loss of generality. Let gw be the group that determines the cost of w (that is, gw is the group

for which the average distance of the agents therein from w is maximized). We define zw and zo to be
the average distance of all agents that do not belong to gw from w and o, respectively, that is

zw :=
1

n− ngw

∑

g 6=gw

∑

i∈g

d(i, w)

and

zo :=
1

n− ngw

∑

g 6=gw

∑

i∈g

d(i, o).

Also, let y = 1
ngw

∑

i∈gw
d(i, o) and γ = cost(w) = 1

ngw

∑

i∈gw
d(i, w). Using this notation, we have

∑

i

d(i, w) = ngw · γ + (n− ngw) · zw

and
∑

i

d(i, o) = ngw · y + (n − ngw) · zo.

By applying the triangle inequality, and using our assumption that d(w, o) = 2, we obtain

γ ≤
1

ngw

∑

i∈gw

(d(i, o) + d(o,w)) = 2 + y.

We also have that y ≤ γ; otherwise, since γ = cost(w) and y ≤ cost(o), the distortion would be 1. �is

implies that
∑

i∈gw
d(i, w) ≥

∑

i∈gw
d(i, o). Also, by the definition of w (which minimizes the total

distance from all agents),
∑

i d(i, w) ≤
∑

i d(i, o). By these, we can conclude that zw ≤ zo; otherwise
the total distance from o would be strictly smaller than w, and w would not be the winner. So, there

must exist C, x ≥ 0 such that zw = C − x and zo = C + x. In fact, using the triangle inequality,

2 = d(w, o) =
1

n− ngw

∑

g 6=gw

∑

i∈g

d(w, o) ≤ zw + zo = 2C

and thus C ≥ 1.

We now introduce a lemma that characterizes the worst-case instances we need to focus on.
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gw

n− |gw|

w o

y = C + xγ

zo = C + xzw = C − x

Figure 1: An illustration of the worst-case instance given by Lemma A.2.

Lemma A.2. In a worst-case instance (in terms of distortion), y = zo = C + x.

Proof. �e proof proceeds in two steps: We first transform the original instance I into a new instance

I ′ in which there are only a few distinct points in the metric space where agents and alternatives are

located. �en, we transform I ′ into another instance I ′′ with the desired property y = C + x. While

doing these transformations we will show that the cost of o does not increase, that is,

cost(o | I) ≥ cost(o | I ′) ≥ cost(o | I ′′),

while the cost of w does not decrease, that is,

cost(w | I) ≤ cost(w | I ′) ≤ cost(w | I ′′).

We now introduce the first transformation. Consider the following new instance I ′ with two al-

ternatives w and o:

• �ere is a group consisting of ngw agents all of whom are located at the same point with distance

γ from w and y from o.

• �ere are also k − 1 groups with sizes equal to the sizes of the remaining groups in the original

instance I . �e n − ngw agents in all those groups are located at the same point with distance

zw = C − x from w and zo = C + x from o.

Observe thatw still minimizes the total distance of all agents in I ′; this follows since the total distance
of the agents from w and o remain the same as in I . For the same reason, cost(w | I ′) = cost(w | I).

We now argue that cost(o | I ′) ≤ cost(o | I). By the definition of y, the average distance of the

agents in gw from o is the same as in I . Consider any group go 6= gw that maximizes 1
ngo

∑

i∈go
d(i, o).

Since go maximizes the average distance out of all groups that are different than gw , we have that

1

ngo

∑

i∈go

d(i, o) ≥
1

n− ngw

∑

g 6=gw

∑

i∈g

d(i, o) = zo = C + x.

Observe now that

cost(o | I) = max

(

1

ngo

∑

i∈go

d(i, o),
1

ngw

∑

i∈gw

d(i, o)

)

≥ max {C + x, y} = cost(o | I ′),
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thus proving our claim.

Next, we transform I ′ into a new instance I ′′ with the desired property C + x = y such that the

distortion does not decrease. We consider the following two cases.

Case 1: y ≥ C + x in I ′. Let C ′ = y − x ≥ C and consider the following instance I ′′:

• �ere is a group consisting of ngw agents all of whom are located at the same point with distance

γ from w and y from o.

• �ere are also k − 1 groups with sizes equal to the sizes of the remaining groups in the original

instance I . �e n − ngw agents in all those groups are located at the same point with distance

C ′ − x from w and C ′ + x from o.

In this new instance w still minimizes the total distance from all agents; indeed, the location of any

agent i ∈ gw is the same in both instances I ′ and I ′′, while any agent i 6∈ gw has been moved closer

to w and o by exactly the same distance C ′ − C = y − (x + C) ≥ 0 between the two instances.

Observe that cost(o | I ′′) = cost(o) since the average distance of any group from o is y in I ′′ and
cost(o | I ′) = max{C + x, y} = y by our assumption for this case. In addition, the distances to w
increase for some agents, and thus cost(w | I ′′) ≥ cost(w | I ′), which further means that the distortion

does not decrease as we go from I ′ to I ′′ for which the desired property y = C ′ + x holds.

Case 2: y < C + x in I ′. Let y′ = C + x, γ′ = γ + (y′ − y) and consider the following instance I ′′:

• �ere is a group consisting of ngw agents all of whom are located at the same point with distance

γ′ from w and y′ from o.

• �ere are also k − 1 groups with sizes equal to the sizes of the remaining groups in the original

instance I . �e n − ngw agents in all those groups are located at the same point with distance

C − x from w and C + x from o.

As in the previous case, w still minimizes the total distance from all agents; indeed, the any agent

i ∈ gw has been moved closer to w and o by the same distance y′ − y between the two instances,

while any agent i 6∈ gw is at the same location in both instances. We also have that cost(o | I ′′) =
cost(o | I ′) = C + x, and cost(w | I ′′) ≥ cost(w | I ′) since the distance to w has increased for some

agents from y < C + x to y′ = C + x. Hence, the distortion again does not decrease, and the new

instance again satisfies the desired property that y′ = C + x.

By the above lemma, there exists a worst-case instance (where the ratio
cost(w)
cost(o) is maximized) with

C + x = y. We consider the following two cases.

Case 1: x ≥
ngw

n−ngw
. �en, since cost(w) = γ ≤ 2 + y = 2 + C + x and cost(o) = max{y,C + x} =

C + x, the distortion is at most

cost(w)

cost(o)
=

2 + C + x

C + x
.

�is expression is a non-increasing function in terms of C and x. Hence, since C ≥ 1 and x ≥
ngw

n−ngw
,

we obtain an upper bound of

3 +
ngw

n−ngw

1 +
ngw

n−ngw

= 3−
2ngw

n
≤ 3−

2µ

n
.
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Case 2: x ≤
ngw

n−ngw
. Since zw = C − x, have that

∑

i

d(i, w) = ngw · γ + (n− ngw) · zw = ngw · γ + (n− ngw) · (C − x).

Also, since zo = C + x = y, we have that

∑

i

d(i, o) = ngw · y + (n− ngw) · zo = n · (C + x).

Using these and the definition of w, which is the alternative that minimizes the total distance from all

agents, we further have that

∑

i

d(i, w) ≤
∑

i

d(i, o) ⇔ γ ≤
2nx

ngw

+ C − x.

Hence, the distortion in the worse case instance is at most,

cost(w)

cost(o)
=

γ

cost(o)
≤

2nx
ngw

+ C − x

C + x

�is expression is a non-decreasing function of x and a non-increasing function ofC . Since x ≤
ngw

n−ngw

and C ≥ 1, we obtain an upper bound of

2n
n−ngw

+ 1−
ngw

n−ngw

1 +
ngw

n−ngw

= 3−
2ngw

n
≤ 3−

2µ

n
.

�e proof is now complete.
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