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Efficient heuristics have predicted many functional materials such as high-temperature supercon-
ducting hydrides, while inorganic structural chemistry explains why and how the crystal structures
are stabilized. Here we develop the paired mathematical programming formalism for searching and
systematizing the structural prototypes of crystals. The first is the minimization of the volume of
the unit cell under the constraints of only the minimum and maximum distances between pairs of
atoms. We show the capabilities of linear relaxations of inequality constraints to optimize structures
by the steepest-descent method, which is computationally very efficient. The second is the discrete
optimization to assign five kinds of geometrical constraints including chemical bonds for pairs of
atoms. Under the constraints, the two object functions, formulated as mathematical programming,
are alternately optimized to realize the given coordination numbers of atoms. This approach suc-
cessfully generates a wide variety of crystal structures of oxides such as spinel, pyrochlore-α, and
K2NiF4 structures.

Discovering advanced materials enables technological
innovation in many areas such as batteries, photovoltaics,
and catalysis. Since electronic structure depends on the
spatial arrangements of atoms, predictions of unknown
crystal structures have a major impact on the discovery
of better materials. However, computational structure
searching is still difficult despite the progress of com-
putational power, since structure prediction is a large-
scale nonconvex minimization problem of the total en-
ergy, which has a large number of local minima, concern-
ing the atomic arrangement and crystal lattice.

Finding the global minimum essentially involves visit-
ing every local minimum, but some heuristic approaches
with more or less intelligent ways such as evolution-
ally algorithms [1–4] and particle swarm-intelligence ap-
proach [5–7] have predicted novel materials including bi-
nary hydrides that have been experimentally synthesized
as high-temperature superconductors under high pres-
sure [8–14]. The drawbacks of these methods are that
there are no guarantees that the most stable structure are
found, and similarly, they can miss synthesizable unique
structures. Furthermore, they cannot explain why and
how the predicted structures are stabilized. This is also
true of the deep learning approach [15–18] and the ran-
dom structure searching methods [19, 20], while the latter
may lead to peculiar structures without a priori knowl-
edge.

The integer programming approach has been devel-
oped to deterministically find the lowest energy struc-
ture with guarantees [21]. The global optimum of in-
teger programming can be found deterministically by
brute force with branch-and-cut algorithms that are ca-
pable of rapidly eliminating large parts of the optimiza-
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tion domain from consideration. To apply this universal
method, all the atoms are placed at discrete positions
within a fixed cubic unit cell, and the total energy is rep-
resented by the sum of two-body classical interaction po-
tentials [21]. This approach has successfully found com-
plex crystals such as garnet structure, but the fixed unit
cells and approximated total energies may limit its ap-
plicability. Instead of using approximated total energies,
geometrical approaches may be effective to search crystal
structures, for example, Yokoyama et al. have developed
the dual periodic graph approach to generate structures
composed of space-filling polyhedra [22].

Important structural principles for ionic crystals have
been summarized by Pauling in the five rules [23–25].
George et al. have shown the limited predictive power of
the Pauling rules since a few oxides simultaneously sat-
isfy them [26], but the rules offer the basic concepts for
inorganic structural chemistry. For example, the crys-
tal structures of oxides, chalcogenides, and mixed anion
compounds are linked polyhedra with explicit chemical
bonds, especially between anions and cations [24, 25].
Anions such as oxygen prefer to constitute the Barrow
packings, which are the densest packings of spheres [27],
and small cations are placed in the tetrahedral and oc-
tahedral sites, while large cations typically have a co-
ordination number greater than 6, and in some cases,
constitutes the Barrow packings with anions [24, 25].
Small and large cations generally behave as hard and
soft spheres, respectively. Highly polar bonds do not fa-
vor edge-sharing polyhedra and especially face-sharing
polyhedra because of the increased electrostatic repul-
sion between central atoms [24, 25].

The structure of amorphous semiconductors is well rep-
resented by continuous random network models which
require a condition that each atom should satisfy fully
its bonding needs [28–31]. Two atoms interact only if
they are explicitly bonded, and the total energy is given
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by the Keating potential [31, 32]. The network is repro-
duced periodically by bond transpositions accepted with
the Metropolis acceptance probability, conserving four
coordination. This approach can generate structurally
and electronically good structures comparable with ex-
periments from random initial structures.

In this study, we propose a paired mathematical pro-
gramming approach that finds candidate structures of
crystals satisfying a series of empirical rules. The first
is the minimization problem of the volume of the unit
cell within the constraints of minimum and maximum
distances between pairs of atoms. The constraints repre-
sent linked polyhedra and simultaneously the packings of
anionic spheres regardless of the kinds of chemical bonds.
We approximate the inequality constraints as the linear
potentials for the structural relaxation. The second is the
maximization problem of the number of chemical bonds.
The five kinds of geometrical constraints, which impose
restrictions on the distances between every pair of atoms,
are assigned by the network of chemical bonds. The two
optimization problems are alternately solved to find a
proper structure where every cation satisfies its bond-
ing needs; the transpositions of geometrical constraints
transform random initial structures into linked polyhedra
as the sillium approach for amorphous silicons [28–31].
We define a feasible solution as a structure satisfying all
the constraints in the two optimization problems and all
the bonding needs of atoms, and the other cases are de-
noted as infeasible solution. An optimal solution in this
study is defined to be the feasible solution whose volume
of the unit cell is minimized. The paired mathematical
programming we propose is an efficient method which
tries to find the optimal solution for a model system with
a given composition.

Let us start our discussion by introducing the first ob-
ject function in the paired mathematical programming
formalism. The geometrical constraints are composed of
the minimum and maximum distances between pairs of
atoms. Suppose xi is the cartesian coordinate of atom i,
and xijT is the distances between atoms i and jT given
by

xijT = |xj + T − xi| , (1)

where the atom jT corresponds to the atom j with the
translational vector T of the crystal lattice. The object
function is the volume Ω of the unit cell. The mathemat-
ical programming is given by

minimize Ω

subject to xijT ≥ d
(min)
ijT

xijT ≤ d
(max)
ijT

, (2)

where d
(min)
ijT and d

(max)
ijT are the minimum and maximum

distances between atoms i and jT , respectively. This
model finds structural candidates of crystals without cal-
culating the total energies.

To solve the problem, the equality and inequality con-
straints are relaxed as follows: The constraint of mini-
mum distance between atoms i and jT :

xijT ≥ d
(min)
ijT , (3)

is relaxed to the hard-spherical potential Umin (xijT ) de-
fined to be

Umin ≡

{
−k↓

(
xijT − d

(min)
ijT

)
xijT < d

(min)
ijT

0 d
(min)
ijT ≤ xijT

, (4)

where k↓ is a common constant for the minimum con-
straints. Similarly, the constraint of maximum distance
between atoms i and jT :

xijT ≤ d
(max)
ijT , (5)

is relaxed to the hard-spherical potential Umax (x) defined
to be

Umax ≡

{
0 xijT ≤ d

(max)
ijT

k↑

(
xijT − d

(max)
ijT

)
d
(max)
ijT < xijT

, (6)

where k↑ is a common constant for the maximum con-
straints. The relaxations transform the problem of
Eq. (2) into the minimization problem of the enthalpy
H ({xi,ai}) per unit cell formulated as

minimize H ({xi,ai}) = E ({xi,ai}) + PΩ, (7)

where P is the pressure and E ({xi,ai}) is given by

E ({xi,ai}) =
∑
i≤j

∑
T

[Umin (xijT ) + Umax (xijT )] , (8)

and ai is the primitive translation vectors of crystal lat-
tice. The displacement of each atom is calculated from
the derivative of the enthalpy H per unit cell as

∆xi = −ki
dH

dxi
. (9)

The constant ki is scaled to ensure so that the norm of
displacement does not exceed the given maximum value,
∆xmax, for each optimization step. Similarly, the primi-
tive lattice vectors ai is optimized as

∆ai = −kL
dH

dai
, (10)

where kL is set to satisfy the condition:√
|∆a1|2 + |∆a2|2 + |∆a3|2 ≤ ∆Amax. (11)

To reach the local optima of the problem given by Eq. (7),
we gradually reduce ∆xmax and ∆Amax as

∆x(n)
max = αn−1∆x(1)

max,

∆A(n)
max =

∆x
(n)
max

4000

∑
i

4π

3

(
r
(I)
i

)3

,
(12)
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FIG. 1. The five kinds of geometrical constraints with the op-
timal solutions of Hd4O8 corresponding to anatase structure.
Cylinders connecting to two atoms correspond to chemical
bonds (CBs). Black, orange, blue, and green arrows corre-
spond to non-bonding constraints (NBCs), anionic constraints
(ACs), cationic constraints (CCs), and polyhedral constraints
(PCs), respectively.

where α is a constant and n is the number of geometrical
optimization steps. The values of pameters such as α,
k↑, k↓, and P are discussed in Supplementary Informa-
tion [33]. One may consider that structures are never re-
laxed due to the discontinuity in the first derivative of the
potential. However, the structure converges to an opti-
mal solution by gradually reducing the maximum ∆xmax

and ∆Amax, even though there is the discontinuity. The
effectiveness of linear relaxations of inequality constraints
has already been shown in the previous studies on the
densest sphere packings as iterative-balance method [34–
36]: The method enables the structures to reach a local
optima precisely enough to calculate packing fractions.
The inequality constraints are widely approximated by
the logarithmic barrier functions [37], but the advantage
of the linear potentials consists of the two folds: One is
that the computational cost is the lowest and the other is
that the potentials can impose hard penalties only when
the constraints are not satisfied.

Next we turn our discussion to the second object func-
tion in the paired mathematical programming formalism.

The problem is how to determine the values of d
(min)
ijT and

d
(max)
ijT . In the following discussion, we focus on the crys-

tal structures of oxides. We introduce the five kinds of
geometrical constraints as listed in Table I and illustrated
in Fig. 1. The minimum and maximum distances are de-
termined as

d
(min)
ijT = max

p

{
s
(p)
ijT d

(p,min)
ijT

}
d
(max)
ijT = max

p

{
s
(p)
ijT d

(p,max)
ijT

}
∑
p

s
(p)
ijT = 1

, (13)

where s
(p)
ijT ∈ {0, 1} is a switch variable selecting one of

the geometrical constraints, and p runs chemical bond
(CB), non-bonding constraint (NBC), anionic constraint
(AC), cationic constraint (CC), and polyhedral con-
straint (PC). The geometrical constraints for every pair
of atoms are assigned depending on the network of CBs.
CBs or NBCs are formed between every pair of an an-
ion and a cation. ACs are formed between every pair of
anions. Besides, if two coordination polyhedra around
cations share some bridging anions, PC is formed be-
tween the two cations. Finally, CCs are formed between
remained pairs of cations. To assist making coordination
polyhedra, NBCs spatially separate the anion and cation
when CB is not formed between them. ACs impose the
hard-spherical constraint for every pair of anions; oxygen
ions often constitute the Barrow-packings if the cationic
radii are small. CCs are necessary to spatially separate
two cations enough to avoid the condensation of cations,
while a minimum distance of PC is smaller than that of
CC to share a common edge or face as

d
(PC,min)
ijT =

{
r
(M)
i + r

(M)
j N

(CBA)
ij = 1

D
(shared)
i +D

(shared)
j otherwise

, (14)

where D
(shared)
i is the minimum distance from the cation

i to the shared common edge or face as detailed in Sup-
plementary Information [33].
Since any cation i has the desirable coordination num-

ber N
(CB)
i for CBs, the feasible linked-polyhedra must

satisfy the conditions of

s
(+)
i

(
N

(CB)
i − n

(CB)
i

)
= 0, (15)

where n
(CB)
i is the coordination number, which is counted

by the number of CBs for atom i, and s
(+)
i is a switch

function for the atom i given by

s
(+)
i =

{
1 if the atom i is cation

0 if the atom i is anion
. (16)

Most of random initial structures are infeasible solu-
tions, and the analytic optimization methods such as the
steepest-descent method cannot escape from the infeasi-
ble solution to a feasible solution. Therefore, we period-

ically update the values of d
(min)
ijT and d

(max)
ijT depending

on the network of CBs that are also renewed periodi-
cally. The network is determined from the maximization
problem of the number of CBs given by

maximize s
(+)
1 ε1n

(CB)
1 + · · ·+ s

(+)
M εMn

(CB)
M

subject to n
(CB)
i ≤ N

(CB)
i

n
(CBA)
ijT ≤ N

(CBA)
ij

s
(CB)
ijT xijT ≤ 2d

(CB,max)
ijT∑

j,T

s
(+)
i s

(CB)
ijT xijT ≤ min

ni∑
q=1

xijqTq

(17)
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TABLE I. The list of geometrical constraints. If a constraint is inactive, the mimimum and maximum distances are 0 and ∞,
respectively. r(I) and R(I) are minimum and maximum ionic radii, respectively. r(C) are cationic repulsion radii.

Constraint type Abbreviation Minimum distance if active Maximum distance if active

Chemical Bond CB d
(CB,min)
ijT = r

(I)
i + r

(I)
j d

(CB,max)
ijT = R

(I)
i +R

(I)
j

Non-Bonding Constraint NBC d
(NBC,min)
ijT = 1.2

(
R

(I)
i +R

(I)
j

)
d
(NBC,max)
ijT = ∞

Anionic Constraint AC d
(AC,min)
ijT = R

(I)
i +R

(I)
j d

(AC,max)
ijT = ∞

Cationic Constraint CC d
(CC,min)
ijT = r

(C)
i + r

(C)
j d

(CC,max)
ijT = ∞

Polyhedral Constraint PC Depending on N
(CBA)
ij as discussed in main text d

(PC,max)
ijT = ∞

Optimization of 
network of chemical bonds

Global geometrical optimization

Generation of an initial structure

Has desirable 
coordination number? Yes

Is all the geometrical 
constraints satisfied?

No

Yes

No
Local geometrical optimization

Linked PolyhedraAnnealing

FIG. 2. The flow chart of the optimization scheme to find the
optimal solutions of the paired mathematical programming.

where 0 ≤ εi is the fixed bonding affinity, n
(CBA)
ijT is the

number of common bridging atoms between the pair of

atoms i and jT , N
(CBA)
ij is the default maximum num-

ber of common bridging atoms defined in Eq. (18), and
q is an index for selecting ni indices of anions jT ran-
domly. The third constraints define the formation ranges
of CBs. The fourth constraints force cations to create
CBs with the nearest ni anions. The optimization prob-
lem can be solved as follows: First, all the cations create
as many CBs as possible with neighboring anions, and
seconds, we erase CBs with maximizing the object func-
tion of Eq. (17) until all the number of common bridging
atoms satisfy the second constraints. Note that two poly-
hedra are linked by sharing a common vertex, a common
edge, or a common face that corresponds to sharing one,
two, or more than two common bridging atoms, respec-
tively [24].

To find the optimal solutions, we solve the problems of
Eqs. (2) and (17) alternately. The optimization scheme
is shown in Fig. 2. A random initial structure can be
infeasible solution, in fact, not all cations may not be
surrounded by oxygen ions and may not have desirable
coordination numbers. Besides, even if all the atoms have
the desirable coordination numbers, the structure does
not necessarily satisfy all the geometrical constraints such
as the maximum number of common bridging atoms.
Therefore, the global geometrical optimization is aimed
at transforming the structure largely enough to create
a different network of CBs by large ∆xmax. After the
small number of global geometrical optimization steps,

we solve the problem of Eq. (17) once again to update the
network of CBs. The mutable network and the other ge-
ometrical constraints assist cations making coordination
polyhedra, and accordingly, the structure is transformed
into a feasible solution. If the structure satisfies the con-
dition of Eq. (15), the structure is locally optimized by
small ∆xmax to identify whether the structure can be the
optimal solusion of the geometrical optimization problem
given by Eq. (2). If so, the structure is the optimal so-
lution of the paired optimization problems. If not, the
structure is globally optimized again after annealing. The
parameters of global and local optimization are detailed
in Supplementary Information [33].
To estimate the number of optimal solutions and

coarsely classify the optimal solutions, we define a struc-
tural fingerprint as the bundle of the fingerprints by the
lists of geometrical constraints (LGCs) in dictionary or-
der. LGCs are defined as what kinds of geometrical con-
straints are formed with the adjacent atoms. The fin-
gerprint of LGC enumerates the element symbols of the
adjacent atoms linked by CBs, PCs, and ACs in dictio-
nary order, respectively. Note that there is a possibility
that the same structure fingerprint is assigned to differ-
ent structures. For example, the fingerprint for the rutile
structure and α-PbO2 is the case. See also Supplemen-
tary Information [33].
The paired mathematical programming approach is

aimed at showcasting capabilities of simple rules to search
structural prototypes of crystals. In this study, we in-
troduce 11 kinds of cations shown in Table II to repro-
duce a wide variety of coordination polyhedra. The 11
cations are selected by considering closed packed poly-
hedra consisting of the centered cation and surround-
ing oxygen ions, and defined by r(I), R(I), N (CB), and
N (CBA), where N (CBA) is the default maximum number

of common bridging atoms. We determine N
(CBA)
ij in the

second constraint of Eq. (17) as

N
(CBA)
ij = min

{
N

(CBA)
i , N

(CBA)
j

}
. (18)

Cationic radius Cn (n ∈ N) corresponds to the mini-
mum radius so that the cation can connect n oxygen ions,
while CO correponds to the ionic radius of oxygen ion.
They are given in Supplementary Information [33]. If the
minimum and maximum cationic radii are the same, the
cation is a hard sphere; if not, the cation is a soft sphere,
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TABLE II. 11 kinds of cations. Cn (n ∈ N) corresponds to
the minimum radius so that the cation can connect n oxygen
ions, and CO corresponds to the ionic radius of oxygen ion.
The values of the radii are listed in Supplementary Informa-
tion [33]. A symbol represents the atomic radius and/or the
maximum number of common bridging atoms. For example,
the minimum and maximum cationic radii of the cation Op
are C7 (sePta) and C8 (Octa), respectively, while the max-
imum number of common bridging atoms Ht is three (Tri).
The color is given if the cation is illustrated in Figures.

Symbol r(I) R(I) N (CB) N (CBA) color
T C4 C4 4 1 sky blue
Pe C5 C5 5 2 -
Hd C6 C6 6 2 rose
Ht C6 C6 6 3 red
Sh C7 C7 6 2 -
Op C7 C8 7 4 dark blue
Eo C8 C9 8 4 purple
Uo C7 C11 8 4 blue
Do C7 CO 8 4 -
De CO CO 9 4 light green
D CO CO 12 4 green

because the bonding lenths can vary within the two radii.

We apply our mathematical programming model to
several compositions of cations, and find that a wide va-
riety of real crystals are discovered in the optimal solu-
tions by the paired mathematical programming. Table
III shows the number of discovered optimal solutions for
each composition, which seems to be much smaller than
the number of local minima in the total energy by ab-
initio simulations, and corresponding real crystals found
in them. We discuss here results by focusing on aspects
of the generated coordination polyhedra.

The optimal solutions of HtlTmOn form a wide variety
of linked-polyhedra composed of tetrahedra and octahe-
dra as shown in Fig. 3. The cations T and Ht are placed
in the tetrahedral and octahedral sites, respectively, in
the Barrow-packings consisting of oxygen ions. Many
structures are rejected from the optimal solutions by the
constraints of the maximum number of common bridging
atoms of T. The spinel structure has the lowest number
of LGCs and highest symmetry, found as one of the opti-
mal solutions for both the Ht4T2O8 and Ht8T4O16, while
the Ga2O3 structure, which is composed of 5 LGCs with
the C2/m symmetry, has more LGCs and lower symme-
try than the structure shown in Fig. 3(d). Real crystal
structures are not necessarily the optimal solution com-
posed of the lowest number of LGCs and highest sym-
metry, however, they are generally good indicators to
assess expectations of the structures to be realized by
real crystals. The optimal solution shown in Fig. 3(c)
is similar to the crystal structure of Li2WO4; the differ-
ence comes from the sizes of the unit cells. The crystal
structure of Li2WO4 is composed of large tetrahedra and
octahedra around lithiums, but this structure may be re-
produced by using cations Ht and T , which are placed

(a) (b) (c)

(d) (e) (f)

FIG. 3. (a) Ht8T4O16 corresponding to the spinel struc-
ture (3 LGCs). Yellow balls correspond to oxygen ions.
(b) Ht8T4O16 with the Cmmm symmetry (7 LGCs). (c)
Ht8T4O16 with the Imma symmetry (6 LGCs). The struc-
ture is similar to the crystal of Li2WO4 (6 LGCs). The dif-
ference comes from the sizes of the unit cells. (d) Ht4T4O12

with the I 4̄m2 symmetry (4 LGCs). (e) Ht4T4O12 corre-
sponding to the Ga2O3 structure (5 LGCs). (f) Ht5T3O12

with the R3 symmetry (7 LGCs). The illustrated structures
are symmetrized and their space groups are determined by
the code SPGLIB [38] with correcting the structural distor-
tions. All the structural figures in this study are generated
by VESTA [39].

in the octahderal and tetrahedral sites in the Barrow-
packings consisting of oxygens, as the optimal solution
of Ht16T8O32. Figure 3(f) shows the layered structure
terminated by tetrahedra and octahedra. This optimal
solution is composed of the lowest number of LGCs in
Ht5T3O12.
All the optimal solutions of D4Ht4O12 correspond to

the real crystals shown in Figs. 4(a), 4(b), 4(c), and 4(d).
The cation D makes coordination polyhedra of antic-
uboctahedron or cuboctahedron. Besides, we find that
D3Ht6O15 has the optimal solution corresponding to the
BaTi2O5 structure shown in Fig. 4(f). The optimal so-
lution consists of 11 LGCs, but we find another optimal
solution consiting of only 5 LGCs with the Cmmm sym-
metry shown in Fig. 4(e).
Our results indicate that De4Ht2O8 and De8Ht4O16

have only one optimal solution corresponding to the crys-
tal structure of La2−xSrxCuO4 as shown in Fig. 5 (a).
The cation De makes coordination polyhedron of capped
square antiprism. Besides, our calculations indicate that
D1De2Ht2O7 and D2De4Ht4O14 also have a unique op-
timal solution corresponding to the crystal structure of
La2−xSr1+xCu2O7 which consists of three kinds of coor-
dination polyhedra as shown in Fig. 5(b).

In the pyrochlore-α structure found as one of the opti-
mal solutions for Do4Hd4O14 and Uo4Hd4O14, one oxy-
gen ion is placed in the center of the tetrahedron com-
posed of large cations, and the distance of ionic bond
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TABLE III. The number of the discovered optimal solutions for each composition and the confirmed correspondence of optimal
solutions with crystal structures. Note that if the packing fraction is less than the minimum, 60%, which is given in Table II
of Supplementary Information [33], we reject the structure from the optimal solutions in this study.

Composition per unit cell Number of discovered optimal solutions Confirmed real crystal structures
Ht2T2O6 21 Ga2O3

Ht3T5O12 508 -
Ht4T4O12 597 Ga2O3

Ht4T2O8 29 Spinel
Ht8T4O16 216 Spinel
D3Ht6O15 14 BaTi2O5

D4Ht4O12 4 Perovskite, BaNiO3, BaMnO3, Cs2NaCrF6

D1De2Ht2O7 1 La2−xSr1+xCu2O7

D2De4Ht4O14 1 La2−xSr1+xCu2O7

De4Ht2O8 1 La2−xSrxCuO4

De8Ht4O16 1 La2−xSrxCuO4

Do4Hd4O14 6 Pyrochlore-α
Uo4Hd4O14 20 Pyrochlore-α
Eo4Ht4O12 21 -
Eo6O12 944 Zirconia

Op4Ht4O12 95 YFeO3

Op4Ht8O16 15 -
Pe2Sh1O4 4 InGaZnO4

(a) (b) (c)

(d) (e) (f)

FIG. 4. (a) D4Ht4O12 corresponding to the perovskite struc-
ture (3 LGCs). (b) D4Ht4O12 corresponding to the crystal of
BaNiO3 (3 LGCs). (c) D4Ht4O12 corresponding to the crys-
tal of BaMnO3 (4 LGCs). (d) D4Ht4O12 corresponding to
the crystal of Cs2NaCrO6 (5 LGCs). (e) D3Ht6O15 with the
Cmmm symmetry (5 LGCs). (f) D3Ht6O15 corresponding to
the crystal of BaTi2O5 (11 LGCs).

must be smaller than those of the other ionic bonds, and
thereby a large cation makes coordination polyhedron of
distorted cubic as shown in Fig. 5(c). In fact, our calcula-
tions indicate that the pyrochlore-α structure is difficult
to obtain without soft sphere, while both the Do4Hd4O14

and Uo4Hd4O14 have the optimal solution correspond-
ing to the pyrochlore-α structure, which has the lowest
number of LGCs with highest symmetry. Note that the
interatomic distances can be as small as possible with-

(a) (b) (c)

(d) (e) (f)

FIG. 5. (a) De8Ht4O16 corresponding to the crystal of
La2−xSrxCuO4 (4 LGCs). (b) D2De4Ht4O14 corresponding
to the crystal of La2−xSr1+xCu2O7 (6 LGCs). (c) Uo4Hd4O14

corresponding to the pyrochlore-α structure (4 LGCs). (d)
Uo4Hd4O14 with the P1 symmetry (6 LGCs). (e) Eo6O12 cor-
responding to the zirconia structure (2 LGCs). (f) Eo4Ht4O12

with the Cmcm symmetry (4 LGCs).

out attractive forces since the volume of the unit cell is
minimized. The optimal solution consisting of the sec-
ond lowest number of LGCs for the Uo4Hd4O14 is the
layer-by-layer structure of cubics and octahedra with the
P1 symmetry as shown in Fig. 5(d).

The cubic coordination can also be realized by the
cation Eo. Eo6O12 has the optimal solution correspond-
ing to the zirconia structure shown in Fig. 5(e). The
cation Eo can also make the coordination polyhedra of
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(a) (b) (c)

FIG. 6. (a) Op4Ht4O12 corresponding to the crystal of
YFeO3 (4 LGCs). (b) Op4Ht4O12 with the Pnma symme-
try (5 LGCs). (c) Op4Hd8O16 with the Pbam symmetry (4
LGCs).

square antiprism as shown in Fig. 5(f).
Op4Ht4O12 has the optimal solution corresponding

to the crystal structure of YFeO3 which is composed
of coordination polyhedra of capped trigonal prisms as
shown in Fig. 6(a). YFeO3 and the optimal solution
shown in Fig. 6(b) have the same symmetry, but the
latter structure is composed of 5 LGCs, and capped
trigonal prisms in the structure share the faces. The
manner of atomic distribution in YFeO3 is the same
as LaMgxTa1−xO1+3xN2−3x which can be employed for
overall water splitting at wavelengths of up to 600
nm [40]. The correspondence implies the applicability
of our method to mixed anion compounds. On the other
hand, we could not find the optimal solution correspond-
ing to the crystal structure of Sr2PdO4 in the optimal
solutions of Op4Hd8O16. However, the optimal solution,
which has 4 LGCs and the Pbam symmetry shown in
Fig. 6(c), is similar to the crystal structure of Sr2PdO4;
they have the same symmetry, and the difference only
comes from the kind of linking between octahedra and
capped trigonal prisms. In the optimal solution, octahe-
dra and capped trigonal prisms share the faces, while in
the crystal structure of Sr2PdO4, they share edges. In
general, our algorithm tends to generate polyhedra shar-
ing as many common bridging atoms as possible.

Finally, Pe2Sh1O4 has the optimal solution corre-
sponding to the crystal structure of InGaZnO4. However,
it may be difficult to form trigonal bipyramidal coordi-
nation polyhedra using the cation Pe, which possesses
a hard cationic radius of C5. Note that in the hexago-
nal closest packing of oxygen ions, the center of trigonal
bipyramid is identical with the interstice between three
atoms in the hexagonal layer, and accordingly, the axial
atoms of the bipyramid are 41% more distant than the
equatorial atoms from the central atoms. Also, note that
C5 is same as C6.

In summary, we propose a novel method to enumer-
ate crystal structure prototypes using the paired math-

ematical programming, subject to a set of constraints
on atomic distances, and demonstrate its applicability to
find a broad range of crystal structures of oxides. The
method consists of two optimization problems. The first
is the minimization problem of the volume of the unit cell
under the geometrical constraints that are the minimum
and maximum distances between every pair of atoms,
while the second is the maximization problem of the
number of chemical bonds. The constraints of the two
problems make every optimal solution satisfy a series
of empirical rules systematized in inorganic structural
chemistry [24, 25]. The two optimization problems are
solved alternately to find a proper structure where every
cation satisfies its bonding needs by transpositions of ge-
ometrical constraints as sillium approach for amorphous
silicons [28–31]. We find that the linear relaxations of
inequality constraints are effective, and accordingly, the
small computational cost enables the exhaustive search
for the optimal solutions of large-scale systems. We apply
the mathematical programming to cases with 18 compo-
sitions, find the optimal solutions for each case success-
fully, and identify the corresponding real crystal struc-
tures. Our result strongly implies that the number of op-
timal solutions in the mathematical programming seems
to be much smaller than the number of local minima in
the total energy by ab-initio simulations. A small number
of optimal solutions, identified through the mathemati-
cal programming, can be easily validated using ab-initio
simulations to assess their stability. We anticipate that
these optimal solutions may lead to the discovery of novel
materials. The successful reproduction of a broad range
of oxide crystal structures may suggest the emergence
of a universal rule, potentially resulting from the precise
refinement of the Pauling rules as demonstrated in this
study. Given the proven success with oxide cases, it is
anticipated that this method could be extended to other
cases such as chalcogenides, mixed anionic compounds,
intermetallic compounds, and borides, provided that ef-
fective principles are established.
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Supplementary Information for Mathematical Crystal Chemistry

I. METHODS

Our mathematical programming formulation is based
on inorganic structural chemistry that describes crystal
sructures. As references for our basic idea, see the text-
books [U. Müller, Inorganic Structural Chemistry, Sec-
ond Edition (John Wiley & Sons, Ltd, 2007)] and/or [A.
F. Wells, Structural Inorganic Chemistry, Fifth Edition
(Oxford University Press, 1984)].

A. Geometrical constraints

Figure S1(a) shows the optimal solution of Hd4O8 cor-
reponding to the rutile structure. Every oxygen makes
three chemical bonds with Hd, while every Hd makes
six chemical bonds with oxygens. Parallel linear strands
of edge-sharing octahedra are joined by common octa-
hedron vertices. Oxygen ions constitute the hexagonal
closest-packings, and the structure is reproduced by the
anionic constraints between every pair of oxygen ions.
Figure S1(b) shows the optimal solution of Hd4O8 cor-
reponding to the α-PbO2 structure. The zigzag chains
of edge-sharing octahedra are also joined by common
vertices. If a pair of oxygen and Hd is not connected
by a chemical bond, a non-bonding constraint connects
them. Every Hd makes ten polyhedral constraints, and
two of them correspond to edge-sharing. These two op-
timal solutions, which correspond to the rutile structure
and the α-PbO2 structure, respectively, have the same
structural fingerprint, because the two structures have
the same number of LGCs of the same type, where a
fingerprint of a LGC enumerates the element symbols of
the adjacent atoms linked by chemical bonds, polyhedral
constraints, and anionic constraints in dictionary order,
respectively. Figures S1(c) shows the optimal solution
Ht4O6 correponding to the corundum structure. There
are pairs of face-sharing octahedra, and every octahe-
dron shares three edges within a layer and three vertices
with octahedra from the adjacent layer to which it has
no face-sharing connection.

To share edges or faces of coordination polyhedra,
the mimimum distance between two cations is shortened
compared to that of the cationic constraints. Suppose σi

is the minimum bonding distance given by

σi = r
(I)
i + CO, (S1)

and then the minimum distance D(shared) from the cation

TABLE S-I. List of cationic radii. Cn (n ∈ N) corresponds to
the minimum radius so that the cation can connect n oxygen
ions, and CO correponds to the ionic radius of oxygen ion.

Symbol Cationic radius
C4 0.314643
C5 0.579899
C6 0.579899
C7 0.827755
C8 0.903460
C9 1.02487
C10 1.165450
CO 1.4

i to the shared common edge or face is given by

D
(shared)
i =


√

σ2
i − C2

O N
(CBA)
ij = 2√

σ2
i −

4

3
C2

O N
(CBA)
ij = 3√

σ2
i − 2C2

O N
(CBA)
ij = 4

. (S2)

B. Initial structures

Initial structures are generated as follows: Suppose a1,
a2 and a3 are the primitive lattice vectors. First, they
are given by

(a1,a2,a3) =

l1 l2 cos θ2 l3 sinφ3 cos θ3
0 l2 sin θ2 l3 sinφ3 sin θ3
0 0 l3 cosφ3

 , (S3)

where 1 ≤ li ≤ 2,
π

3
≤ θi ≤ 2π

3
, and −π

6
≤ φi ≤ π

6
are randomly set. Second, the lattice is expanded until
the sum of the volume of the atomic spheres becomes
70% of the volume of the unit cell, where the anionic and
cationic radii are set to be 0.6 and 1.4, respectively. The
cartesian coordinate of an atom is set to be

x = q1a1 + q2a2 + q3a3 (S4)

where 0 ≤ qi ≤ 1 are random values.

C. Cationic Radii

The 11 cations, which are listed in Table II of the main
article, are selected by considering closed packed poly-
hedra consisting of the centered cation and surrounding
oxygen ions. Cationic radius Cn (n ∈ N) corresponds
to the minimum radius so that the cation can connect n
oxygen ions, while CO correponds to the ionic radius of
oxygen ion. Table S-I lists the value of Cn and CO.
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(b) (c)(a)

FIG. S1. (a) The optimal solution of Hd4O8 corresponding to the rutile structure. The space group is P42/mnm. (b) The
optimal solution of Hd4O8 corresponding to the α-PbO2 structure. The space group is Pbcn. (c) The optimal solution of
Ht4O6 corresponding to the corundum structure. The space group is R3̄c.

TABLE S-II. Common parameters for global and local geo-
metrical optimizations.

Parameter Value
Pressure 1.0

Attractive force constant k↑ 30.0
Repulsive force constant k↓ −100.0

Maximum error of geometrical constraints 5%
Minimum packing fraction 60%

Maximum number of total optimization steps 40000

TABLE S-III. Specific parameters for global geometrical op-
timization.

Parameter Value
Initial ∆xmax 6.0
Final ∆xmax 0.55

Maximum number of optimization steps 40000
Update frequency of geometrical constraints 20

All cations have the same cationic repulsion radius
r(C) = 1.4 which is the same as the ionic radius of oxygen
ion to avoid the condensation of cations.

II. NUMERICAL ASPECTS

Table S-II lists the common parameters for the global
and local geometrical optimizations. The geometrical
constraints are given by the minimum and maximum dis-
tances between atoms as

xijT ≥ d
(min)
ijT , xijT ≤ d

(max)
ijT , (S5)

but when we confirm the feasibility of the structure after
local geometrical optimization, we permit 5% error as

xijT ≥ 0.95 d
(min)
ijT , xijT ≤ 1.05 d

(max)
ijT . (S6)

TABLE S-IV. Specific parameters for local geometrical opti-
mization. The maximum displacement is gradually decreased
to find optimal solutions.

Parameter Value
Initial ∆xmax 0.1
Final ∆xmax 0.02

Maximum number of optimization steps 1000

Besides, in this study, if the packing fraction is less than
the minimum, we reject the sparse structure from the
optimum solutions. α is calculated as

α =

(
∆xmax,f

∆xmax,i

) 1
Nopt

, (S7)

where ∆xmax,i and ∆xmax,f are the initial and final
∆xmax, respectively, and Nopt is the maximum number
of optimization steps.
Table S-III lists the specific parameters for the global

geometrical optimizations (GGO). The network of the
chemical bonds is updated per 20 steps of GGO. We mon-
itor the crystal lattice per 1000 steps of GGO, and we
reject the structure if the lattice is too distorted or too
sparse. To reduce the computational costs, the neigh-
boring list of pairs of atoms is updated per 60 steps of
GGO.
Table S-IV lists the specific parameters for the local

geometrical optimizations (LGO). The geometrical con-
straints are fixed through LGO. To relax the structure,
the maximum displacements of atoms and crystal lattice
are gradually decreased.
We generate 1000000 samples for Ht4T2O8 and

Ht8T4O16. Table S-V shows the number of Ht4T2O8

and Ht8T4O16 samples optimized to the spinel structure;
about 10% of Ht4T2O8 are optimized to spinel structure,
while 0.01% of Ht8T4O16 are optimized to spinel struc-
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FIG. S2. The examples of the changes of the rate of chemical bonds and relaxed chemical bonds, and the packing fraction
through the optimization processes. (a) The exaples of Ht4T2O8 that is optimized to the spinel structure. In the first local
optimization process, Prc cannot reach 1.0. (b) The exaples of Ht4T2O8 that is optimized to the structure with the Cmmm
symmetry. This structure tends to require many local optimization processes. (c) The exaples of Ht8T4O16 that is optimized
to the spinel structure. In the first local optimization process, Prc cannot reach 1.0. (d) The exaples of Ht8T4O16 that is
optimized to the structure with the Imma symmetry. This sample reaches the optimal solution in the first local optimization
process.

TABLE S-V. The number of samples reaching optimal so-
lutions. We generate 1000000 samples for Ht4T2O8 and
Ht8T4O16. Note that 746250 samples of Ht4T2O8 and 938542
samples of Ht8T4O16 cannot reach optimal solutions, respec-
tively.

Optimal Solution Number of samples
Ht4T2O8 (spinel structure) 126048

Ht4T2O8 (Cmmm symmetry) 6061
Ht8T4O16 (spinel structure) 906
Ht8T4O16 (Imma symmetry) 800

ture. 938542 samples of Ht8T4O16 cannot reach optimal
solutions if we use the optimization parameters shown in
Tables S-II, S-III, and S-IV.

Generally, not all the cations have the maximum num-
ber of chemical bonds. The global geometrical opti-
mization is aimed at transforming the structure largely
enough to create a different network of chemical bonds so
that every cation satisfies its bonding needs. To analyze
the optimization history, we monitor the rate of chemical
bonds Pc given by

Pc ≡
∑

i s
(+)
i n

(CB)
i∑

i s
(+)
i N

(CB)
i

, (S8)

where the numerator is the number of chemical bonds,

and the denominator is the total number of bonding
needs. If every cation satisfies its bonding needs, the
structure is locally optimized to identify whether the
structure can be the optimal solusion of the geometrical
optimization problem. If so, all the interatomic distances
satisfy the condition of Eq. (S6), and we regard the chem-
ical bonds satisfying Eq. (S6) as the relaxed chemical
bonds. We monitor the rate of relaxed chemical bonds
Prc, where the numerator and the denominator are the
total number of the relaxed chemical bonds and the total
number of the chemical bonds of the constraint, respec-
tively. We also monitor the packing fraction Φ defined to
be

Φ =
1

Ω

∑
i

4π

3

(
r
(I)
i

)3

. (S9)

Figure S2 shows the changes of Pc, Prc and Φ during
the optimization process. The fluctuation of Pc indicates
that a structure is transformed largely enough to change
the network of chemical bonds. The small rate of Prc

comes from the large displacement through the global
optimization. If Pc reaches 1.0, the structure is locally
optimized to identify whether the structure can be the
optimal solution of the geometrical optimization problem
within the 5% error. In local optimization, Prc shows
larger value due to the small displacement, however, in
some cases, Prc cannot reach 1.0 due to the contradictions
in the geometrical constraints. Φ has the value around
0.5 through the global optimization process.
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