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Radially-polarized light beams present very interesting and useful behavior for creating small
intensity spots when tightly-focused, and manipulating nanostructures or charged particles. The
modeling of the propagation of such vector beams, however, is almost always done using the lowest-
order fundamental radially-polarized beam due to the complexity of vector diffraction theory. We
show how a flat-top radially-polarized beam can be modeled analytically using a sum of higher-order
beams, and describe a number of interesting qualities, and compare to numerically-solved integral
descriptions.

I. INTRODUCTION

The most fundamental transverse profile for laser
beams is the Gaussian profile, where the transverse pro-
file has an amplitude described by the Gaussian function
with a characteristic width, and the amplitude profile
upon propagation remains a Gaussian that changes in
width and acquires spatial phase. In free-space, but also
for laser resonators and cavities, the Gaussian beam is
therefore a natural lowest-order mode. Many real sys-
tems produce beams having a profile very close to a
Gaussian such that it is a satisfactory approximation and
can be used for modeling propagation and the interaction
with matter. However, for high-power lasers, the limited
aperture of amplifier crystals and the need for efficiency
in pump laser operation and subsequent seed laser am-
plification, the transverse profile is generally something
significantly different from a Gaussian that has a more
flat-top character. This results in differences in propaga-
tion and focusing, that can have a large effect on certain
sensitive applications.

For scalar laser beams, there are some well-known
methods to handle the propagation or focusing of flat-top
beams. The flattened Gaussian (FG) beam is a analyt-
ical construction meant to represent a linearly-polarized
beam approaching a flat-top, Fig. 1(a), that has analyti-
cal solutions to the propagation in free-space [1, 2]. The
FG is essentially an equivalent to the super-Gaussian [3],
generally used to describe the true near-field profile of
most high-energy laser beams, where the super-Gaussian
importantly does not have known analytical solutions for
its propagation but is more practical to use for the rep-
resentation of the amplitude at a single plane. Although,
as we will see, the FG requires many terms in a sum to
describe beams that are very flat-top and have a sharp
amplitude cutoff, this description can still be preferable
to numerical propagation via a two-dimensional Fourier-
transform when demands on the spatial resolution or ac-
curacy of the propagation calculation are high. The an-
alytical forms allow for computational speed-up and can
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also provide for intuition about general or specific prop-
erties of behavior during propagation.

Beyond scalar beams there are many types of vector
beams (spatially-varying polarization) that have prop-
erties that are fundamentally interesting and useful for
some applications. A subset of vector beams are the
cylindrical vector beams [4] (CVBs) that have no depen-
dence on the polar angle and only on the radial coordi-
nate, of which the simplest in terms of polarization struc-
ture is the radially-polarized (RP) beams. RP beams
have been described, generated, and used for various pur-
poses, both in the case of the lowest-order fundamen-
tal RP beam [5–8] and higher-order RP beams [9–15]
(of higher radial order). One of the most well-known
advantages or RP beams is that at the focus, due to
the local development of a longitudinal field, the width
of the intensity profile is below the common diffraction
limit [16–18]. However, the propagation characteristics of
RP beams with an arbitrary amplitude profile is not so
often studied, mostly because the basics of vector diffrac-
tion theory make the problem more complicated.

FIG. 1. Sketch of the scenario considered. A flat-top linearly-
polarized beam (a) creates a more complex radial profile when
focused. A flat-top radially-polarized beam (b) should pro-
duce both radial and longitudinal fields in the focus, of un-
known character. Note that in (b) there will be some region
of either linear or undefined polarization near r = 0, depend-
ing on the polarization conversion method used.

In this work we consider the case of RP beams that
have a flat-top intensity profile before being focused. A
schematic for this can be seen in Fig. 1(b). We are mo-
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tivated to study this in the context of high-power lasers
that inherently have a flat-top profile being converted
into RP and then being focused. In this scenario, imme-
diately after the polarization conversion, the beam would
truly be a flat-top RP beam, where only at r = 0 would
there be a small area where the polarization would be
unknown or would stay linear, related to the limitations
of the polarization conversion method in use. There-
fore, immediately after the polarization conversion, there
would be no intensity zero and true polarization singular-
ity as is commonly associated with RP beams. However,
of course, the intensity near r = 0 would either quickly
diffract away on propagation or, if the beam is immedi-
ately focused, would contribute a negligible amount to
the field at the focus due to it’s high associated spatial
frequency. No decomposition into analytical RP beams
will be able to model a non-zero intensity at the origin,
but due to the previously stated diffraction effects in the
real-world scenario, we accept that limitation. What we
will present in this work is an attempt to model as much
as possible the flat-top character of such a beam with
RP, which means especially the intensity content close to
r = 0 and the sharp intensity transition at the edges of
the beam profile.

In the case of some strong-field laser-matter interac-
tions, modeling the focusing of such a high-power flat-
top RP beam with some equivalent low-order RP beam
will not be sufficient to accurately predict the dynamics.
Conversely, experimentally converting the flat-top to a
profile more easy to model when having RP will result
in significant losses or additional complexity, potentially
spoiling the desired strong-field interaction. An addi-
tional application of RP beams with an ultrashort pulse
duration is electron acceleration taking advantage of the
strong longitudinal field, especially when very tightly fo-
cused [19–26]. Most of the modeling of this process has
relied on the fundamental RP beam (whether paraxial,
with non-paraxial corrections, or as part of exact non-
paraxial solutions), which would not include the effects
of the initially flat-top profile of the highest power laser
beams currently in operation. Therefore an analytical
description is desirable. This work has implications as
well for the focusing of a flat-top RP beam of any power,
since the equations will be based purely on linear optical
propagation.

We will first attempt to model a flat-top RP beam with
a sum of fundamental beams, and then we will achieve a
model analogous to the FG that is a sum of RP beams of
many orders. This will be essentially a radially-polarized
flattened-Gaussian (RPFG). We will analyze the found
solutions for the RPFG, compare the results to integral
solutions that we solve numerically, and finally discuss
the potential for non-paraxial solutions for the same sce-
nario.

II. USING A SUM OF TWO FUNDAMENTAL
BEAMS WITH DIFFERENT SIZES

The fundamental radially-polarized Gaussian beam is

Er =E0Q
2ρe−Qρ2

eiη (1)

Ez = − E0iϵQ
2
[
1 − ρ2Q

]
e−Qρ2

eiη, (2)

where the normalized radius and axial coordinate are ρ =
r/w0 and ζ = z/zR, w0 and zR = kw2

0/2 characterize the
beam waist and the associated Rayleigh range, η = ωt−
kz and k = ω/c for c the speed of light, and Q = i/(i+ζ).
We choose z = 0 to correspond to the focal area since
this is where we are interested in knowing the electric
field profile, such that the near-field (before the focusing
element) is a some z ≫ zR.

We can use intuition from scalar beams, for example
the cosh-Gaussian beam, that a superposition of two fun-
damental RP beams with different beam waists may pro-
vide a more flat-top profile while perfectly conserving the
radial polarization. We can construct it simply at the fo-
cus by the following

Er =
E0√

1 + R2

[
Q2

1ρ1e
−Q1ρ

2
1 + RQ2

2ρ2e
−Q2ρ

2
2

]
eiη (3)

Ez =
−iE0√
1 + R2

{
ϵ1Q

2
1

[
1 − ρ21Q1

]
e−Q1ρ

2
1

+ Rϵ2Q
2
2

[
1 − ρ22Q2

]
e−Q2ρ

2
2

}
eiη.

(4)

In this superposition there are now two beam sizes w
(1)
0

and w
(2)
0 (and accordingly z

(1)
R and z

(2)
R ) and Qi = i/(i+

z/z
(i)
R ). After propagation away from the focus this forms

a beam with a quasi-flat-top, where the R parameter
was necessary to decrease the energy of the larger beam
at focus such that out of focus it has a peak amplitude

similar to the fundamental beam with w
(1)
0 .

FIG. 2. Near-field (left) and far-field (right) of Er with a

single beam (blue), a second beam R = 0.03125 and w
(2)
0 =

4w
(1)
0 (orange), and even a third beam with R = 3.472e − 3

and w
(2)
0 = 12w

(1)
0 (green).

This strategy can make something that looks generally
more flat-top, seen in Fig. 2. And indeed, the feature near
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r = 0 in the near-field is relatively sharp with just two

beams (w
(2)
0 = 4w

(1)
0 ) and could become even sharper

with the addition of more beams in the sum with larger
(smaller) sizes in the far-field (near-field). This is shown

with a third beam (w
(3)
0 = 12w

(1)
0 ) also in Fig. 2. How-

ever, the features at the outer edge of the beam are still
not sharp at all, since every beam in the sum is a funda-
mental beam and has smooth features away from r = 0.

The far-field of the sum, seen in the right of Fig. 2,
has very little differences from a fundamental beam with

w
(1)
0 . We need a log-scale to see deviations from the fun-

damental RPLB in the far-field. We note that since the
transverse field is almost indistinguishable near r = 0
in the far-field, that the longitudinal field is also barely
modified for the three case shown in Fig. 2 and is there-
fore not shown. This is because the second beam in the
sum focuses to a much larger size and has a much smaller
contribution (R = 0.03125), and the third beam even
more so. Put another way, to have significant differences
in the far-field there should be sharp features away from
r = 0 in the near-field, that do not simply diffract away
at the focal plane. To have such sharp features in the
near-field, higher-order RP beams are necessary. This is
what we consider in the following section.

III. USING AN ANALOGUE TO A FLATTENED
GAUSSIAN BEAM

In contrast to the previous section where a more flat-
top-like beam was created with a sum of lowest-order
RPLB beams having different widths, we could attempt
to create a flat-top beam using a sum of many orders of
RPLB beams with the same width. This is the strategy
used for the flattened-Gaussian (FG) beam [1, 2], and
is also related to more recent work studying Laguerre-
Gaussian (LG) beams as orthogonal bases [27], which we
will first describe for linear polarization (LP) and then
derive for radial-polarization (RP).

A. Linearly-polarized flattened Gaussian

The FG beam of order N in the nearfield takes the
form of

U (N)(r) = exp

(
− (N + 1)r2

w2
i

) N∑
n=0

1

n!

(√
N + 1r

wi

)2n

,

(5)

where wi is the characteristic width in the near-field, and
the magnitude of the field is normalized to one. With
N = 0 this is a Gaussian beam and as N approaches
infinity this approaches circ(r/wi). This can be equiva-
lently expressed as a sum of weighted LG beams [1]

U (N)(r) = exp

(
− (N + 1)r2

w2
i

) N∑
n=0

c(N)
n Ln

(
2(N + 1)r2

w2
i

)
(6)

c(N)
n = (−1)n

N∑
m=n

1

2m

(
m

n

)
, (7)

where Ln is the Laguerre polynomial of order n. This
method creates a more tractable representation of the
nearfield of the FG while the difficulty is in calculating

the coefficients c
(N)
n . This representation makes the dif-

ferences between the FG and the sum from the previ-
ous section—the FG in the near-field is a sum of many
orders of LG beams that all share the same smaller
characteristic width. The smaller characteristic width
∝ wi/

√
N + 1 allows the low-order LG beams of the sum

to create the flat-top near r = 0 and the higher-order
beams to create the sharp amplitude feature at r = wi.
This near-field construction of U (N) is shown in Fig. 3(a).

When considering a near-field FG beam that will be
focused for the relevant applications, the expression for
the beam profile in the far-field is more important. For
an FG of order N this can be shown to be [2]

Ũ (N)(ρN ) =
1

N + 1
exp

(
−ρ2N

) N∑
n=0

Ln

(
ρ2N

)
=

1

N + 1
exp

(
−ρ2N

)
L1
N

(
ρ2N

)
,

(8)

which is the Hankel transform of Eq. (5) with the proper
scaling. In this case ρN = r/w0

√
N + 1, L1

N is the gener-
alized Laguerre polynomial with indices N and 1, and w0

is the characteristic width in the far-field, related to wi

by the focal length f and frequency ω as w0 = 2cf/wiω.
Note that now in the far-field the characteristic width of
the sum is ∝ w0

√
N + 1, i.e. larger than w0, the con-

verse to the near-field case. The magnitude of the field
amplitude is once again normalized to one for simplic-
ity. As with the near-field distribution, with N = 0 this
is a Gaussian beam, but as N approaches infinity this
approaches J1(2r/w0)/(r/w0). Eq. (8) is the solution in
the farfield with linear polarization including only parax-
ial terms. The far-field solution Ũ (N) for various orders
N is shown in Fig. 3(b).

The importance of this analysis, specifically Eq. 6 and
Eq. 8, is that these representations as sums of Laguerre
polynomials allow for the propagation of the NF and FF
of the FG to be analytically calculated using the known
propagation characteristics of Laguerre Gaussian beams.
However, crucially, the sum for the near-field in Eq. (6)
involves a factor of 2 in the Laguerre polynomial, where
the sum for the far-field in Eq. (8) does not have a fac-
tor of 2. This implies the standard Laguerre Gaussian
beam propagation is relevant for the near-field, where the
elegant-Laguerre Gaussian propagation is relevant in the
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FIG. 3. Linearly-polarized flattened Gaussian beam in the
nearfield (a) and the farfield (b).

far-field. It is the farfield of the FG beam having radial
polarization that we calculate in the next section, which
involves the radially-polarized elegant-Laguerre Gaussian
beam.

B. Radially-polarized analogue to a
flattened-Gaussian

As we saw in the previous section, a linearly-polarized
FG beam can be constructed using various sums. For
us, the most interesting is the sum in Eq. (8) that does
not involve complicated weighting coefficients, and in-
volved a sum of Laguerre polynomials. To produce the
radially-polarized flattened-Gaussian (RPFG) we use the
RP analogue to the eLG beam (RPeLG) and use a sim-
ilar sum to produce the far-field of a proposed RPFG.
Then we propagate that back to the near-field (i.e. be-
fore focusing) to confirm that it is indeed an RPFG. In
fact, we attempted to produce a flat-top-like intensity
profile directly in the near-field using a sum of higher-
order RPeLG beams using the procedure detailed briefly
in Ref. [15], but were not successful in producing analyti-
cal descriptions for the coefficients. Therefore we present
rather the ansatz created first in the far-field (focus) and
the confirmation of it’s success upon propagation to the
near-field.

The paraxial fields of the RPeLG are

E(n)
r =E0e

iηe−Qρ2

Qn+2ρL(1)
n (Qρ2) (9)

E(n)
z =iE0e

iηe−Qρ2

Qn+2ϵ(n + 1)Ln+1(Qρ2), (10)

which at z = 0 are simply

E(n)
r (z = 0) =E0e

iωte−ρ2

ρL(1)
n (ρ2) (11)

E(n)
z (z = 0) =iE0e

iωte−ρ2

ϵ(n + 1)Ln+1(ρ2). (12)

One can note the similarity of the radial component of
the RPeLG in Eq. 11 to the terms in the sum form of the
farfield of the linearly-polarized FG in Eq. 8. Therefore,
the RPeLG could be used as a basis to form a sum that

creates a radially-polarized flattened-Gaussian (RPFG)
analogue.

We use the RPeLG fields to construct a radially-
polarized version of the farfield of the standard FG as in
Eq. 8 using scaled versions of the RPeLG equations us-
ing ρN = r/(w0

√
N + 1) as in the linearly-polarized case

as an ansatz, and eventually modifying the sum slightly.
The scaled versions of the fields are

E(n,N)
r =E0e

iηe−QNρ2
NQn+2

N ρNL(1)
n (QNρ2N ) (13)

E(n,N)
z =iE0e

iηe−QNρ2
NQn+2

N ϵN (n + 1)Ln+1(QNρ2N ).

(14)

where QN = i/(i + z/[zR(N + 1)]) and ϵN =
w0/(zR

√
N + 1). Combining the model of the FG in fo-

cus and the paraxial fields of RPeLG, we can construct
the fields of an RPFG of order N as follows

E(N)
r =

1

N + 1

N∑
n=0

E
(n,N)
r√
n + 1

(15)

E(N)
z =

1

N + 1

N∑
n=0

E
(n,N)
z√
n + 1

, (16)

where the sum is only changed by the factor of 1/
√
n + 1

from that for the linearly-polarized flattened-Gaussian
beam, Eq. 8, and there is no need to calculate any co-
efficients as for Eq. 6. These sums do not admit simple
solutions, but at the very least do not require numerical
solutions like integrals do. Even the most simple sum,

E
(N)
z (r = 0) ∝ Q2

N

∑N
n=0 Q

n
N

√
n + 1/(N + 1) does not

have a simpler solution except for exotic functions that
are themselves sums (polylogarithmic functions and the
Lerch transcendent).

FIG. 4. Radially-polarized flattened Gaussian (RPFG) beam
in the near-field (z ≫ zR) for various values of N . The trans-
verse field Er (a) becomes more flat-top, while the longitudi-
nal field (b) is linear in r.

Somewhat counter-intuitively we have so far con-
structed the RPFG at its focus around z = 0 using an
ansatz, i.e. at the far-field. Therefore it must be checked
that indeed at large z ≫ zR the amplitude profile ap-
proaches a flat-top. This can be seen in Fig. 4 for both
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Er and Ez for a number of N values, confirming the
flat-top character. Note that with increasing N the in-
tensity transition at wi becomes steeper and the energy
content pushes closer to r = 0, but all cases still are
forced to have zero intensity at r = 0. Due to the na-
ture of diffraction the longitudinal field becomes small
compared to the transverse field upon propagation away
from the focus such that Er is the main contribution to
the overall amplitude profile, which we can see is clearly
more flat-top as N increases. Due to symmetry consid-
erations as N increases Ez ∝ r when r < wi.

The fields at the focus and the behavior of Ez at r = 0
under propagation can be seen in Fig. 5. As is expected
from Fourier optics intuition, as N increases, both Er

and Ez become slowly more extended transversely (due
to more content near r = 0 in the near-field) and have
more amplitude oscillations outside of the main ring or
inner lobe, respectively (due to the sharper boundary at
r = wi in the near-field). In the focus at r = 0 the
amplitude of Ez decreases more slowly as N increases,
and at high enough N begins to show non-monotonic
behavior.

FIG. 5. Radially-polarized flattened Gaussian (RPFG) beam
in the far-field. The transverse field Er (a) and longitudinal
field Ez (b) are shown for various values of N at z = 0, along
with the amplitude (c) and phase (d) evolution of Ez as z
increases (i.e. upon propagation).

It is important to note the phase at r = 0 for the longi-
tudinal field, Fig. 5(d), agrees with past conclusions [28]
where, once there is a sharp enough boundary in the illu-
mination, the phase will deviate from the standard total

Guoy phase difference from z = −∞ → +∞ for an RPLB
of 2π. This is seen in the N = 64 case in Fig. 5 where
from z = 0 to large z the phase undergoes almost 5π,
5 times the expected amount. This does not present in
the N = 16 case, where the phase briefly exceeds π but
settles at larger z.

Another interesting observation in the phase is that as
N becomes larger, the phase (along with the amplitude)
changes more slowly with z. This was shown to be the
case for RPLBs where the derivative of the illumination
amplitude at r = 0 was modified [29], which turned out
to be relevant to direct electron acceleration efficiency
with ultrashort RP pulses [30].

As a last detail we show in Fig. 6 the amplitude pro-
file of both components of the field for different po-
sitions around the far-field. This shows the evolution
from a localized beam to a beam beginning to have flat-
top features and a sharp amplitude drop-off, and im-
portantly the complex evolution between those two ex-
tremes. The intensity distribution near the focus depends
on the strength of focusing, i.e. ϵ determines the relative
strength of Ez to Er, but far away from the focus Er

dominates regardless of the focusing.

FIG. 6. Radially-polarized flattened Gaussian (RPFG) beam
propagating out of the far-field for N = 64, with |Er| (top)
and |Ez| (bottom) for 4 different values of ζ = z/zR (left to
right).

For applications it is interesting to know the physical
beam power in a certain beam, or to be able to properly
describe a beam given a known beam power, where so far
we have just modeled the fields with a placeholder con-
stant E0. The power can be calculated via the Poynting
vector flux such that the power for a given order n of
RPeLG is

P (n) = ε0cπE
2
0w

2
0

∫ ∞

0

ρ3e−2ρ2

[L1
n(ρ2)]2 dρ. (17)

Then the power for an RPFG of order N is

P (N) =
ε0cπE

2
0w

2
0

N + 1

N∑
n=0

∫∞
0

ρ3e−2ρ2

[L1
n(ρ2)]2 dρ

√
n + 1

. (18)

If one fixes the power of an RPFG, then this equation
must be inverted to solve for E0.
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IV. COMPARISON TO INTEGRAL SOLUTIONS

There are various integral solutions that could be used
to approximate the focusing of a flat-top RPLB or an
RPFG. One example is using a vectorial diffraction in-
tegral in the Stratton-Chu [31] or Richards-Wolf [32]
formalism. A radially-polarized beam can also be
constructed from a sum of circularly polarized vortex
beams [33] therefore requiring only a scalar diffraction
integral for the radial field and a calculation of the lon-
gitudinal field. In this section we compare a simplified
integral solution to the solutions based on a sum of La-
guerre beams from the previous section.

Assuming cylindrical symmetry and an illumination of
circ(r/wi), i.e. a perfect flat-top illumination, the parax-
ial approximation allows for simplifying the opening half-
angle α such that cos(α) ∼ 1 − α2/2 and sin(α) ∼ α
reducing the integral solution to [29]

Er = e−ikz

∫ wi/f

0

iα(1 − α2

2
)J1(krα)eikzα

2/2 dα (19)

Ez = e−ikz

∫ wi/f

0

α2J0(krα)eikzα
2/2 dα. (20)

Since this is a finite integral, there is not an analytical
solution as far as we know, but it can be integrated nu-
merically.

The numerical integration for the paraxial and per-
fectly flat-top RP beam is shown in Fig. 7. When com-
paring to the N = 64 case shown as a dashed line, it is
clear that the perfectly flat-top case is in agreement with
the characteristic features taken to the extreme. The
off-axis modulations in Er and Ez at z = 0 are qualita-
tively similar to the N = 64 RPFG, but slightly larger
in relative magnitude. The longitudinal field Ez at r = 0
experiences the same slower decrease as z increases, also
with modulations, again similar but larger in magnitude
than for the N = 64 RPFG. Finally, the on-axis phase of
Ez in Fig. 7 shows similar behavior as in Fig. 3, except
that it continues to increase for a greater range of z such
that it goes through ∼ 6π from z/zR = 0 to 20.

The good agreement between the N = 64 RPFG
(which is analytical albeit requiring many terms in a sum)
and the numerical solution to the vector diffraction inte-
gral, is also a sign that the energy content near r = 0 is
not a dominating factor. Even the high-order RPFG has
zero field at r = 0 in the near-field (see Fig. 4), but the il-
lumination of the vector diffraction integral Eqs. 19–20 is
an exact flat-top (rigorously with a punctual and there-
fore arbitrarily small hole at r = 0). Still, they agree
very well in-focus in Fig. 7. The disagreement at mod-
erate z/zR values, i.e. along propagation, is more likely
due to the integral solution being for a perfectly sharp
flat-top illumination, where even the N = 64 RPFG has
smooth features (see again Fig. 4).

FIG. 7. Farfield of the integral solution with a flat-top illu-
mination in the paraxial regime (blue solid line) compared to
the RPFG solution for N = 64 (gray dashed line). To have a
quantitative comparison, the parameters were chosen to be:
λ0 = 800 nm, wi = 5 cm, f = 50 cm, such that w0/zR = 0.1.

V. NON-PARAXIAL CORRECTIONS

Non-paraxial corrections are interesting, because the
longitudinal field is the strongest with tighter focusing,
and therefore the width of the beam intensity reaches
a much smaller level. However, of course, non-paraxial
models generally require increased complexity.

Intermediate non-paraxial corrections can be based on
the model in Ref. [34] which is conveniently based on
the RPeLG in the non-paraxial regime. This would in-
volve taking the non-paraxial corrections for Er and Ez

in Ref. [34] and apply them to the the RPeLG fields at
each value of n, and then do the same sum to calculate
the RPFG for a given N . However, the non-paraxial cor-
rections at each n cause a spurious increase in the total
energy that depends on n such that higher-order parts of
the sum would be over-represented. In the sum over n
we would need to compensate for this, but since the over-
contribution is not known analytically (i.e. not derived
in Ref. [34]), this is not currently tractable.

Arbitrarily non-paraxial field equations could be based
on the model of April [35, 36]. Generally, the arbitrarily
non-paraxial model for the RPeLG at a given n requires
itself a sum over a higher-order vector-potential solution
to the Helmholtz equation involving the spherical Bessel
function and the Legendre function. Then, to construct
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the arbitrarily non-paraxial RPFG a sum of these non-
paraxial RPeLG would be performed over n to N and
derivatives taken to calculate the fields from the vector
potential. Evidently this is very complicated and we con-
sider it outside the scope of this work.

Finally, integral models used in Section IV have non-
paraxial forms. These involve un-simplified sin(α) and
cos(α) terms, and require a so-called apodization func-
tion that depends on the focusing element. The non-
paraxial model is useful when αmax (which was implicitly
approximated to be wi/f in the paraxial case) becomes
large. The non-paraxial version of Eqs.19–20 could be re-
produced here, but they are outside of the interest of this
work since we aim to model the focusing of a flat-top RP
beam analytically and we don’t yet have an non-paraxial
analytical model to compare to the non-paraxial integral
model.

VI. CONCLUSION

In this work we have shown how the focusing of a
radially-polarized (RP) light beam can be modeled us-
ing a sum of transversely scaled RP elegant Laguerre-
Gaussian (RPeLG) beams, which therefore allows for the
propagation of the complex field to be described fully
analytically. This required a sum of higher-radial-order
RPeLG beams, where the higher the maximum mode N
allows for more closely reproducing the flat-top intensity
profile. In parallel to this analytical description, we could
describe the evolution of the on-axis longitudinal electric
field around the focus, since this field is often interesting
for applications. The closer to a flat-top before focus-
ing, the more gradually the intensity and phase evolve
through the focus, although this creates more complexi-
ties away from the optical axis.

The descriptions we have found in this work and the
technique we have employed to model an RP flattened-
Gaussian analogue may be useful for describing high-
intensity laser-matter interactions where a high-power
laser with a flat-top intensity is converted to RP. Ad-
ditionally, it may be possible to use the same technique,
a sum or transversely-scaled higher-order RP beams, to
describe analytically RP beams with different or more
arbitrary transverse intensity profiles.
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phase of radially polarized laser beams. Journal of the
Optical Society of America A, 37(9):1496–1504, 2020.

[29] S. Pelchat-Voyer and M. Piché. Tuning of the gouy phase
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gouy phase on the process of direct-field electron accel-
eration. Journal of the Optical Society of America B,
39(8):2186–2193, 2022.

[31] J. A. Stratton and L. J. Chu. Diffraction theory of elec-
tromagnetic waves. Physical Review, 56:99–107, 1939.

[32] B. Richards and E. Wolf. Electromagnetic diffraction
in optical systems II. structure of the image field in an
aplanatic system. Proceedings of the Royal Society A,
253:358–379, 1959.

[33] M. A. Porras. Exploding paraxial beams, vortex beams,
and cylindrical beams of light with finite power in linear
media, and their enhanced longitudinal field. Physical
Review A, 103:033506, 2021.

[34] S. Yan and B. Yao. Description of a radially polarized
Laguerre-Gauss beam beyond the paraxial approxima-
tion. Optics Letters, 32(22):3367–3369, 2007.

[35] A. April. Nonparaxial elegant laguerre–gaussian beams.
Optics Letters, 33(12):1392–1394, 2008.

[36] A. April. Nonparaxial TM and TE beams in free space.
Optics Letters, 33(14):1563–1565, 2008.


	Modeling the focusing of a radially-polarized laser beam with an initially flat-top intensity profile
	Introduction
	Using a sum of two fundamental beams with different sizes
	Using an analogue to a flattened Gaussian beam
	Linearly-polarized flattened Gaussian
	Radially-polarized analogue to a flattened-Gaussian

	Comparison to integral solutions
	Non-paraxial corrections
	Conclusion
	Funding
	Acknowledgments
	Disclosures
	Data availability
	References


