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Abstract In this paper, two mesh-free CFD solvers for pore-scale fluid flow through porous media are considered,
namely the Lattice Boltzmann Method with the two relaxation time collision term and the direct Navier-Stokes
solver under the artificial compressibility limit. The porous media is built with a regular arrangement of spherical
grains with variable radii, which allows control of the porosity. Both solvers use the same h-refined meshless
spatial discretization to adequately capture the underlying geometry and the same Radial Basis Function (RBF)
method to approximate the involved fields and partial differential operators. First, the results are compared
with the data from the literature in terms of drag coefficient and permeability at different porosities achieving
excellent agreement with the reported results. Next, the simulations are extended beyond the porosity range
reported in the literature using proposed h-refined CFD solvers. The results are supported by convergence and
timing analyses and discussions on meshless parameters such as stencil size and refinement settings.
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1 Introduction

Porous media are ubiquitous and the fluid flow through them is of paramount importance for science, technology,
and life. It concerns such fundamental issues as the health and performance of the human body, which is
composed of 70% fluids, where the lungs and the arterial system can indeed be treated as porous systems [1], or
solidification processes, where the transport of solutes in mushy (porous) regime governs the macrosegregation
effect [2], and after all, study of radioactive waste seepage in radioactive waste disposal facilities [3], to name
just a few examples.

Research in the field of fluid dynamics (porous or free fluid) is not possible with analytical methods and
therefore requires sophisticated experimental methods, complex differential calculus methods, or the use of
numerical methods. Traditionally, problems in fluid dynamics have been approached numerically using mesh-
based methods, where, despite the long history of research on mesh generators [4], meshing remains a difficult
problem that cannot be fully automated and therefore often requires significant human assistance. As a matter
of fact, the meshing of irregularly shaped 3D geometries, especially when dealing with complex geometries such
as porous media [5], is one of the most complex and time-consuming steps in the overall mesh-based numerical
solution [6].

In response to the complexity of meshing, the development of numerical methods took two principal direc-
tions. In addition to the development of specific methods and algorithms for meshing [4], a class of numerical
methods based on the meshless principle has been developed [7]. The conceptual difference between mesh-based
and meshless methods lies in the consideration of the relationships between the computational nodes. Meshless
methods define the relationship between the nodes completely using only the internodal distances, thus free-
ing themselves from the constraints of using meshes. An important implication of this simplification is that
meshless methods can work with scattered nodes. Although it is generally recognized that certain rules must
be followed when generating such scattered nodes [8], the positioning of the nodes is significantly less complex
compared to meshing [9] and can be automated regardless of the dimensionality or shape of the domain under
consideration [8, 10]. Moreover, the h-adaptivity in the meshless setup is almost free, since the nodes can be
distributed with variable internodal distance without any special treatment [11, 8, 12]. In recent years, a specific
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meshless method has gained popularity, namely a radial basis function (RBF) generated finite differences (FD)
[13]. The hallmark of the RBF-FD is an approximation based on the combination of polynomials that ensure
consistency up to their order [14] and RBF (typically polyharmonic splines) that help stabilize the method.
Although the idea is not entirely new, recent theoretical and experimental research has taken the understanding
of such a numerical approach to a new level [14, 15, 12, 11, 16].

In fluid dynamics, different meshless approaches have been successfully applied to the Navier-Stokes problem,
namely methods based on direct solving of Navier-Stokes equation using different meshless approximations and
pressure-velocity couplings [16, 17, 18] and Meshless lattice Boltzmann methods [19, 20]. Each of these methods
has different properties and is used differently for certain physical problems. It is important to understand and
employ them in a proper way to utilize their strengths and avoid weaknesses in the given context, which in our
case is the fluid flow through the irregular, complex pores of porosity-dependent porous media.

The aim of this work is to formulate and implement a direct meshless Navier-Stokes solver under the
artificial compressibility limit and meshless Lattice Boltzmann Method with the two relaxation time collision.
Both methods use the same h-refined meshless spatial discretization and the same RBF method to approximate
the involved fields and partial differential operators [21] for a fair comparison. We test both methods on the
classical problem of flow through idealized three-dimensional porous media represented as a periodic array
of spheres and compare meshless results with the previously recognized benchmarks, i.e. smoothed particle
hydrodynamics method based solution provided by Holmes, et al. [22] and solution provided by Larson and
Higdon [23]. We are particularly interested in extending the simulations to the limiting cases of the model,
i.e. low porosity, high porosity, and touching limit of the singularity contact point. Under these conditions,
we discuss the strengths and weaknesses of both formulations in terms of numerical accuracy and stability,
convergence rate, complexity, and robustness using refined scattered nodes. Furthermore, we identify regions
where both approaches have problems and discuss possible overlaps and gap-filling between the two. Finally,
we extend the spectra of available benchmark data by expanding the range of porosity in the simulations.

2 Methods

We study the pore scale flow through a porous medium by modeling it with the incompressible Navier-Stokes
system of equations

∇ · v = 0,
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + g.

(1)

where v(t,x) is the velocity field, p(t,x) is the pressure field, and ρ, ν and g are the density, the kinematic
viscosity and the body force, respectively. To solve the equations, we take two approaches. The first is to
solve the Boltzmann transport equation with the meshless Lattice Boltzmann Method (MLBM) described in
Sec. 2.2 and then, by the virtue of Chapman-Enskog expansion[24], derive v and p fields from its solution.
The other is to solve Eq. (1) directly, using a meshless Navier-Stokes (MNS) solver described in Section. 2.3.
The pseudocodes for MNS and MLBM are provided in Appendix A. Both methods rely on the meshless RBF-
FD approximation framework; either to interpolate values between the Eulerian and the Lagrangian nodes in
LBM or to approximate the spatial derivatives in MNS. The principles of the approximation method and the
description of the node positioning algorithm used in the present study are provided in Sec. 2.1.

2.1 Meshless discretization and approximation

The discretization of the computational domain for the meshless approximation is achieved by positioning N
scattered computational nodes xi ∈ RD, with D denoting the spatial dimension. The nodes are placed with a
variable density, defined with the inter-nodal distance function h(x), utilizing a dedicated meshless dimension-
independent variable density (DIVG) node positioning algorithm [25] with an extension to account for the
periodic nature of the domain. DIVG is an iterative algorithm based on an expansion queue that results in
discretization proceeding as an advancing front away from the initial nodes used to seed the queue. At each
iteration, we attempt to expand the discretization with candidate nodes laying on a circle with radius h(xd)
around the de-queued node position xd. The candidates that fall inside the domain and not too close to existing
nodes, based on their local h(xi), are then added to the discretization and to the queue for further expansion
which continues until the queue is empty.

No further information, e.g. meshing, regarding the node cloud is required as the stencil Si, i.e. the domain
for the local approximation in the i-th computational node, is constructed solely based on the inter-nodal
distance. Although more complex strategies for stencil construction exist [26] we use the simplest and populate
Si with indices of NL closest neighbors to the i-th computational node.
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After the stencils for computational nodes are constructed we can use them to form a generalized finite
difference approximation that numerically approximates the linear differential operator L in the central node

(Lu)i ≈
NL∑
j=1

wi,juSi(j), (2)

based on the function values u in stencil nodes and weights w that are pre-computed by demanding the exactness
of Eq. (2) for a set of basis functions. Note that the same general framework used for differential operators can
also be used with L = 1 for approximation of function values. We use radial basis functions

ϕ(i, j) = ϕ

(∥xj − xi∥2
δi

)
, (3)

with a local scaling factor δi that decouples the approximation from the choice of the coordinate system (espe-
cially important for RBF with a shape parameter[27]). It can be set to an arbitrary local measure of distance,
e.g., the distance between the central node and its closest neighbor. Replacing u with the RBF in the exact
form of Eq. (2) leads to a local linear system Awi = b ϕ(Si(1), Si(1)) · · · ϕ(Si(1), Si(NL))

...
. . .

...
ϕ(Si(NL), Si(1)) · · · ϕ(Si(NL), Si(NL))


 wi,1

...
wi,NL

 =

 (Lϕ)(i, Si(1))
...

(Lϕ)(i, Si(NL))

 , (4)

for each stencil with the solution providing approximation weights wi. The right hand side vector b is formed
by applying the linear operator L to the basis function and evaluating the result with an argument analogous
to Eq. (3).

We use an RBF with no shape parameter, the polyharmonic spline (PHS)

ϕ(r) = rk, (5)

with odd order k, to avoid additional problems with parameter tuning. Local matrices constructed with poly-
harmonic RBF are only conditionally positive definite and need to be augmented with monomials [28, 29]. The
system is expanded with Np =

(
m+D
m

)
monomials1 p, where m denotes the monomial order. The monomials

are scaled similarly to RBFs in Eq. (3)

pl(i, j) = pl

(
xj − xi

δi

)
. (6)

The linear system from Eq. (4) is augmented with monomials[
A P

P T 0

] [
wi

λ

]
=

[
b
c

]
,

P =

 p1(Si(1), Si(1)) · · · pNp
(Si(1), Si(1))

...
. . .

...
p1(Si(NL), Si(1)) · · · pNp(Si(NL), Si(1))

 , c =

 (Lp1)(Si(1), Si(1))
...

(LpNp)(Si(1), Si(1))

 ,

(7)

with the additional weights λ treated as Lagrange multipliers and discarded after computation.
Augmentation with an order of at least m = k−1

2 is required to guarantee the positive definiteness for a PHS
with order k. Higher orders provide better convergence characteristics [30] at the cost of increased computational
complexity, since the required stencil size is NL ≥ Np, with NL > 2Np as the often recommended value [14].
We use a slightly larger stencil size NL = 25 than the recommended minimum 20 based on observations in 3.4.
In the remainder of the paper, we use approximations with k = 3 and m = 2 unless otherwise specified.

2.2 Meshless Lattice Boltzmann Method

In the present study we use the meshless Lattice Boltzmann Method the principles of which are outlined in
[31, 20]. It solves the discrete velocity Boltzmann equation[32]:

fk (t+ 1,x) = fpost
k (t,x+ ek′) , k = 0, 1, . . . , q − 1 (8)

1The 6 monomials in D = 3 case with m = 2 would be p = {1, x, y, z, x2, xy, xz, y2, yz, z2}.
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in a semi-Lagrangian way. In the above equation, fk is the k-th distribution function, ek = −ek′ is the k-th
streaming direction and its opposite, respectively, and superscript "post" denotes post-collision distribution.
We implement compressible D3Q15 model (q=15) with the following set of discrete streaming directions:

k ek
0 (0, 0, 0)
1 (1, 0, 0)
3 (0, 1, 0)
5 (0, 0, 1)

k ek
7 (1, 1, 1)
9 (1, 1,−1)
11 (1,−1, 1)
13 (1,−1,−1)

, ek = −ek−1 for k = 2, 4, . . . , 14 (9)

Using two relaxation time (TRT) collision kernel[33, 24], post-collision distributions have the form of:

fpost
k (t,x) = fk(t,x)−

1

τ+
(
f+
k (t,x)− f eq,+

k (t,x)
)
− 1

τ−
(
f−
k (t,x)− f eq,−

k (t,x)
)
+ Fk (10)

where τ+ and τ− are symmetric and anti-symmetric relaxation parameters related by:

τ− =
1

2
+

Λ

τ+ − 0.5
, (11)

with the value of Λ = 1/4 used in the present study for its positive effect on the simulation stability. Unless
otherwise stated we use the value of τ+ = 1. f+

k and f−
k are the symmetric and anti-symmetric components of

the k-th distribution function:
f+
k =

1

2
(fk + fk′)

f−
k =

1

2
(fk − fk′),

(12)

and f eq,+
k , f eq,−

k are symmetric and anti-symmetric components of the k-th equilibrium distribution function:

f eq,+
k =

1

2
(f eq

k + f eq
k′ )

f eq,−
k =

1

2
(f eq

k − f eq
k′ ).

(13)

The relaxation time τ+ defines the kinematic viscosity of the considered fluid:

νlb = c2s

(
τ+ − 1

2

)
, (14)

where the lattice speed of sound is cs = 1/
√
3 and the subscript lb denotes a macroscopic quantity in LBM

model units (non-dimensional), to distinguish it from the same quantity in physical units which will be denoted
without any subscript. We use the discrete equilibrium distribution function conserving the first two moments
of the local distributions:

f eq
k = ρlbωk

[
1 +

ek · vlb

c2s
+

(ek · vlb)
2

2c4s
− v2

lb

2c2s

]
, (15)

where lattice weights ωk have the values of:

ω =


2/9, k = 0

1/9, k = 1, . . . , 6

1/72, k = 7, . . . , 14

, (16)

and ρlb and vlb are local fluid macroscopic density and velocity vector, respectively:

ρlb =

q−1∑
k=0

fk

vlb =
1

ρlb

q−1∑
k=0

fkek

(17)

To obtain the relative pressure we use the ideal gas equation of state with the deviation of the density from
its mean:

plb = (ρlb − ⟨ρlb⟩) c2s. (18)
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We implement acceleration using first-order discretization in velocity space:

Fk = ωk
ek · F lb

c2s
(19)

where F lb = ρlbglb is the body force defined in terms of acceleration glb.
The conversion from LBM units to physical units is achieved by the multiplication of a quantity by a suitable

conversion factor:

L = δxLlb, length, ν = δx2

δt νlb, viscosity,
T = δtTlb, time, g = δx

δt2 glb, acceleration,
v = δx

δt vlb, velocity, ρ = ρrefρlb, density,

p = ρref
δx2

δt2 plb, pressure

(20)

where δx, δt, ρref are the streaming distance length, the timestep length and the reference density, respectively,
all in physical units. By virtue of Chapman-Enskog expansion [24], the macroscopic velocities and pressure ob-
tained from the solution of the discrete velocity Boltzmann equation are the solution to the weakly compressible
Navier-Stokes equation.

Since the flow domain is discretized with a set of scattered nodes, it is convenient to reformulate the streaming
step (Eq. (8)) into physical units and speak of the streaming distances δxk = ekδx rather than streaming
directions (see Fig. 1). At the same time, the collision step (Eq. (10)) is still solved non-dimensionalized. In
this way, the positions of the departure (Lagrangian) nodes for fpost

k can be related to the meshless space
discretization (Eulerian) nodes as x+ δxk′ . In contrast to the lattice-based LBM, they do not need to coincide
with the Eulerian nodes. Unless otherwise stated, in the presented MLBM setups we used the streaming distance
equal to half of the minimal internodal distance, i.e. δx = hmin/2 (compare with Eq. (26)). Along with the
relaxation time τ+ and the physical kinematic viscosity ν it determines the timestep length δt according to the
viscosity conversion from Eq. (20)2.

To obtain the value of the post-collision distribution function in such a case, we use a method of meshless
interpolation described in Sec. 2.1 (L = 1 in Eq. (2)).

Figure 1. Graphical interpretation of differences between the space discretization of a circle in standard
(lattice-based) LBM (left) and MLBM (right). The open symbols in LBM case represent the nodes whose links
are cut by the circle’s boundary. In MLBM the open symbols represent the boundary nodes lying exactly on
the circle’s surface.

In MLBM the no-slip condition is achieved through the multireflection bounce-back proposed by Ginzburg
and d’Humiéres [34] applied to the boundary nodes. As the discretization nodes lie exactly on the boundary,
the formula for the bounce-back simplifies to:

fk(t+ δt,x) = fk′(t+ δt,x). (21)

The initial conditions for all simulations presented in this work were equilibrium populations (Eq. (15))
parametrized with zero macroscopic velocities vlb and unit density ρlb. The Mach number did not exceed
2 · 10−4 in all simulations in the steady state.

2.3 Meshless Navier-Stokes solver

One of the main problems in directly solving the Eq. (1) lies in implementing the pressure-velocity coupling
procedure that ensure continuity. We use one of the fundamental approaches, the artificial compressibility
method (ACM)[35, 36], first introduced by Chorin [37] in 1967, that relies on transiently introducing a slight
compressibility into the system. The main benefit of this method from the computational standpoint is that

2The actual values of δt that we use range from 1.04 · 10−6 to 1.67 · 10−5.
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it avoids solving the global pressure Poisson equation required by pressure projection[38], the other main class
of pressure-velocity coupling methods, thus allowing for perfect parallelization within a single time step. Addi-
tionally, the selection of ACM for pressure-velocity coupling is motivated by its innate similarities to LBM [39].

We use the explicit Euler method for the temporal discretization of the Navier-Stokes equation

v′ = v + δt
(
ν∇2v − v · ∇v + g

)
, (22)

where δt is the time step, µ the the viscosity and ρ the density. The time step3 δt = 0.1
h2
min
2ν is set as a

function of the smallest inter-nodal distance hmin. Note that the pressure term is omitted while calculating the
intermediate velocity v′. This is because the subsequent pressure-velocity coupling

p← p− δtC2ρ(∇ · v), (23)

v ← v′ − δt

ρ
∇p, (24)

is done iteratively. The magnitude of the AC is determined with the artificial speed of sound C [40]

C = βmax(max
i

(∥vi∥2), ∥vref∥2), (25)

where β is the compressibility parameter, and vref a reference velocity that prevents instabilities due to
C reaching zero in stagnation points. We use β = 10 for all computations presented in this paper. If we
sought a time-accurate solution the pressure-velocity coupling iteration would have to be iterated until the
maximum divergence of the velocity field dropped below a pre-determined threshold, but since we are dealing
with a steady state problem, the number of iterations can be limited. We chose to perform np = 3 pressure
correction iterations for each velocity iteration as a reasonable compromise that empirically provided the fastest
convergence to a steady state.

The non-slip boundary condition (BC) is enforced by setting boundary node values according to the Dirichlet
BC v = 0 for velocity and the Neumann BC ∂p

∂n = 0 for pressure.

2.4 Case definition
We consider a flow through a three-dimensional, infinite, periodic, simple cubic (SC) array of spheres. All the
spheres in the domain have the same radius and we consider cases with radii ranging from r = 0.04 to r = 0.69.
This gives the porosity range φ ∈ [0.05, 0.9997] and a natural transition from the overlapping to the diluted
regime of the system. The flow is forced with a constant acceleration g = [0.1, 0, 0]. In actual computations,
it is thus sufficient to reduce the computational domain to the fluid-occupied part of a single periodic cell with
the side length d = 1. The no-slip boundary condition is imposed on the spheres’ walls and periodic boundary
conditions are imposed in all three directions via the periodic search of stencils’ members.

The discretization is refined locally by decreasing the internodal distance towards the spheres’ surface. We
implement the refinement by specifying the function of the target distance between the nodes:

h(x) = hmax − exp

(
− ϕ̃2(x)

2ε2

)
(hmax − hmin), ϕ̃(x) = ϕ(x)

(√
3/2− r

)
(26)

where ϕ(x) is the distance of the point x to the closest spherical obstacle, hmin and hmax are minimum and
maximum values of the target distance, respectively and ε is the shape parameter. Note that h(x) reaches the
minimum on the spheres’ surface (ϕ(x) = 0) and maximum away from it. The shape of the refinement function
for a selection of parameters is shown in (Fig. 2). Unless otherwise stated we use the values of hmin = 0.5hmax
and ε = 0.295. Example visualizations of the discretizations are shown in Fig. 3.

To allow for a reliable comparison between MLBM and meshless Navier-Stokes results we use the stopping
criterion based on the relative change of permeability k/d2

|∆|k/d2 =
1

(k/d2) (t)

∣∣(k/d2) (t)− (k/d2) (t−∆t)
∣∣

∆t
(27)

calculated every 104 timesteps with ∆t = 104δt and we stop the simulations when |∆|k/d2 < 10−2. The
permeability is defined as:

k/d2 =
qν

|g|d2 , q =
1

d2
· 1
5

5∑
i=1

∫
Pi

dA v0(x) (28)

3The actual values of δt that we use range from 1.25 · 10−6 to 2 · 10−5.
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Figure 2. The average distance between points as a function of the normalized distance function value for
various shape parameters and hmax/hmin ratios.

Figure 3. Meshless space discretizations used in the calculations. Two leftmost pictures: r = 0.062, two
rightmost pictures: r = 0.6526. Each pair consists of the visualization of the boundary discretization and the
subset of nodes with y ∈ [0.45; 0.55] viewed along +y direction. The spheres’ boundaries are rendered as grey
surfaces.

where q is the mean x-component of the velocity averaged over five cross-sections Pi = {(x, y, z) ∈ Ω : x ∈ {0, 0.2, 0.4, 0.6, 0.8}}.
In both methods, for the calculation of surface forces acting on the spheres we use the stress tensor σij at

boundary nodes:

σij = −pδij +
(
∂vi
∂xj

+
∂vj
∂xi

)
(29)

The integration of the stresses over the spheres’ surface assumes equal area ∆A assigned to each boundary node:

∆A = A/Nb (30)

where Nb is the number of boundary nodes and A is the area of the obstacles in a unit cell. To obtain the
hydrodynamic force on the obstacle we sum:

Fi = ∆A
∑
n∈Ib

(σij n̂j)xn
(31)

where n̂i is a local normal vector and Ib is the set of boundary nodes indices.

3 Results and Discussion

3.1 Analysis of the velocity and stresses fields
We first present the visualizations of the velocity fields obtained for diluted and overlapping systems in Fig. 4.
For the small sphere case, we observe an undisturbed flow away from the obstacle and a boundary layer near
the sphere’s surface. For the large sphere case, a strong channelization is visible with a considerable portion
of the fluid volume excluded from the percolation where recirculation occurs. Also, the value of the maximum
velocity magnitude differs by two orders of magnitude between the two cases.
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Figure 4. Streamlines of the velocity field and a cross section of the velocity magnitude field for r = 0.062
(left) and r = 0.6526 (right) case.
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Figure 5. Pressure (top) and tangent force (Eq. (31)) magnitude (bottom) contours on the sphere’s surface
for r = 0.062 (left) and r = 0.6526 (right) obtained with MLBM and MNS. The contours are presented in
a spherical coordinate system with the origin at the sphere’s center. θ is the polar angle measured from the
negative direction of the x-axis and ϕ is the azimuthal angle measured from the positive direction of the z-axis.
The blank ellipses in the right column result from the intersection between the obstacle and the periodic cubic
cell.

Initially, we performed a set of simulations for |g| = 49 as indicated in [22]. We noticed, however, that
both results obtained with MLBM and MNS for |g| = 49 exhibit an asymmetry about the x = 0.5 plane in the
x-component of the velocity field at high porosities (data not shown). It can be associated with inertial effects
in the flow. If we define the Reynolds number as:

Re =
2rq

ν
, (32)

we find that for g = 49 and r = 0.062 the Reynolds number is approximately 4. This is already when inertial

8



effects appear in the flow past a single sphere[41]. This motivated us to decrease the acceleration to |g| = 0.1
to ensure Darcy regime in the whole range of porosities. Now, for the lower acceleration, the Reynolds number
for the same system is on the order of 10−2.

Fig. 5 shows the isocontours of pressure and tangent force magnitude on the sphere’s surface for r = 0.062
and r = 0.6526. Results obtained with both methods are compliant with each other in terms of the values of the
quantities. The most pronounced difference between the two methods is visible in the tangent force isocontours
for r = 0.062 case, where MNS records values ≥ 2, not present in MLBM solution. Nevertheless, this level of
complianace between the methods is satisfactory, especially as MLBM and MNS use vastly different strategies
to calculate the pressure (see Sec. 2). Moreover, the use of boundary-compliant discretization in MLBM allows
for a direct comparison of σij with the Navier-Stokes solver, inaccessible in the lattice-based LBM due to the
staircase approximation of boundaries[42, 43].

3.2 Convergence of permeability and drag coefficient
We next check the convergence of the permeability k/d2 (Eq. (28)) and the drag coefficient K with the space
discretization refinement for various sphere radii. The drag coefficient is the non-dimensionalized drag force:

K =
Fd

6πrφqµ
. (33)

We use the minimal distance between nodes hmin ∈ {0.02, 0.014, 0.01, 0.007, 0.005}.

Figure 6. The convergence of the dimensionless permeability k/d2 and drag coefficient K obtained with
MLBM and MNS in 3D case for sphere radii r = 0.062 (left), r = 0.49 (middle) and r = 0.6526 (right). The
horizontal dashed lines are the values obtained by Larson and Higdon [23] and Holmes et al. [22] (interpolated
for r = 0.49).

The results are presented in Fig. 6 along with literature data [23, 22]. For r = 0.49 (near the touching
limit) we interpolate the reference values of K from the above works. To calculate the reference k/d2 we use
the relation:

k/d2 =
1

K

(
d

6πr

)
. (34)

For r = 0.062, in the considered range of discretization parameters and for both tested methods, the values
of permeability k/d2 comply with the reference values within about 1% relative difference. The drag coefficient
K converges towards the reference values in a stable manner.
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For r = 0.49, both methods converge to values of the permeability slightly off the reference values (< 3%
relative difference). The results of the drag force coefficient show a much higher discrepancy for MLBM (about
10% compared to the reference). We note that for MLBM the hmin = 0.02 (N ≈ 3 · 104) case went unstable. To
obtain stable solutions, the streaming distance needed to be changed to δx = 0.005 for hmin = 0.014 and the
stencil size to NL = 26 for hmin = 0.01 and to NL = 35 for hmin = 0.007. The possible causes of the instability
are further investigated in Sec. 3.3.

When large spheres are considered, permeability, as well as the drag coefficient obtained with both methods,
converge to values close to those from the references. However, bigger differences from the reference values for
coarse discretizations are visible in MNS.

Concerning those results, one can assess the efficiency advantage of the use of space discretization refinement
as follows. The work of Holmes and others[22] reports the internodal distance approximately equal to h̃ =
4.1 · 10−3 for the porosity φ = 0.1 (r = 0.6526). Our results show that to achieve similar values of k/d2 and K
for this case we need to have hmin = 7 · 10−3, which gives N ≈ 1.7 · 105 nodes. Assuming the least dense, simple
cubic packing of points in Holmes and others’ work one can estimate the lower bound for the number of nodes
in their simulation as about an order of magnitude higher:

Ñ =
φd3

h̃3
=

0.1 · 1
68.9 · 10−9

= 1.45 · 106. (35)

Further in the text, we show that the number of nodes in the meshless solutions can be further decreased with
no significant rise in the error of K.

3.3 Permeability and drag coefficient for various porosities
Next, we calculate the permeability and drag coefficient in a wide range of solid volume fractions. We choose
the range r ∈ [0.04, 0.69]. Fig. 7 shows the values of k/d2 and K obtained for hmin = 0.01 compared to the
results of Holmes and others[22]. An excellent match between the two methods and the reference values is seen.
This can be referred to the results of He and others [44] where steady-state LBM and ACM solutions of the
velocity and the pressure field are compliant with each other. MLBM and MNS are capable of extending the
analysis range beyond those investigated by the previous authors (denoted by red dashed lines) without any
changes to the refinement function, Eq. (26). The meshless discretization with a proper refinement of the the
narrow pore throats could open the possibilities to consider even lower porosities. The lack of MLBM data at
φ = 0.4 (r = 0.528) was caused by the divergence of the simulation.

Figure 7. The values of the dimensionless permeability k/d2 and drag coefficient K obtained with MLBM and
MNS as a function of porosity. The solid line denotes the values obtained by Holmes et al. [22] in the range
from φ = 0.1 to φ = 0.999 (indicated by vertical dashed lines).

To further investigate this issue we show the permeability and the drag coefficient values obtained for the
near-touching limit cases (r ≈ 0.5) in Fig. 8. Away from the r = 0.5 the values obtained with both methods
are compliant with one another. For r → 0.5 MNS faces no problems with the solution stability, nor does it
exhibit irregular behavior of the coefficients’ values. On the other hand, MLBM simulations go unstable for the
cases r = 0.5, 0.505 and 0.510. To obtain a stable solution for radii close to the problematic range we need to
increase the stencil size up to NL = 40 and change the rule for determining which populations of the boundary
nodes are assumed unknown during the streaming. We no longer use the local normal vectors at the boundary
nodes, rather we explicitly check which Lagrangian nodes lie inside the solid. Those altered MLBM setups are

10



denoted with filled symbols in Fig. 8. We attribute the difference in the behavior of the two methods in the
touching limit case to the implementation of the no-slip boundary condition. In MNS, the Dirichlet boundary
v = 0 needs no approximation or information about the orientation of the local normal on the boundary, thus it
introduces no error to the velocity field. MLBM faces growing approximation errors as the spheres get closer to
each other and in the narrow volumes adjacent to the obstacle’s intersections for r > 0.5 which might produce
unbalanced stencils due to visibility criterion [45]. Those can be further amplified by too few discretization
points across the narrow fluid volumes compared to the minimal number of nodes used in the literature in e.g.
Poiseuille flow[46, 24].

Figure 8. The values of the permeability (left) and the drag coefficient (right) in the near-touching limit cases.
The filled symbols denote the MLBM cases where the bounceback criterion or the interpolation parameters
needed to be changed in order to obtain stable simulations. The dashed line indicates the touching limit.

3.4 Influence of the refinement parameters and the stencil size
The advantage of meshless discretizations lies in the flexible positioning of nodes and easy manipulation of the
approximation accuracy via the number of stencil members. First, we investigate the stability of the simulations
and the relative errors of the drag coefficient K obtained with various combinations of ε and hmax/hmin ratio
(Eq. (26)) for small and large spheres. In general, lower values of ε and higher values of hmax/hmin correspond
to more aggressive refinement from the bulk towards the sphere’s surface (Fig. 2). The relative error, defined
as:

E (hmax/hmin, ε) =
|K (hmax/hmin, ε)−Kref|

Kref
, (36)

is shown in Fig. 9. Kref ≡ K(1, 1) is the value of K for the constant nodes density in space. For all simulations,
we used hmin = 0.01. No error value is plotted for setups when the simulations diverged or when E > 2. On
top of the errors map we plot isolines of several chosen numbers of nodes in the domain N . For comparison, in
Fig. 9 we also report the number of nodes for the non-refined case, N1,1.

For the considered refinement parameters, both methods show similar regions of stable solutions. This
suggests that this is by large the meshless approximation stability/accuracy which determines the stability for
both methods. The values of error E approximately follow the isocontours of the number of nodes with a
noticeable drop of the error for large ε at a constant hmax/hmin ratio in the case of r = 0.062. This is most
probably due to a too small volume of fine discretization near the sphere to properly handle gradients in the
relatively thick boundary layer. In this case, MLBM exhibits an extended area of stability than MNS. For the
convergent cases of r = 0.6526 the error values are comparable between the methods. For r = 0.062, MNS
exhibits a larger set of stable solutions for low hmax/hmin and ε than MLBM, with higher values of errors in
the range of medium values of those parameters. A comparison with the number of nodes in the non-refined
case (N1,1) reveals that the local refinement brings great advantages in the case of high-porosity sample -
approximately 15-fold reduction of the node count comes with the cost of less than 1% error for hmax/hmin = 4,
ε = 0.3 case.

Fig. 10 shows the obtained values of the drag coefficient for various stencil sizes NL and refinement function
shape parameters ε. In the case of MLBM, the value of K shows no significant dependence on the stencil
size, regardless of the refinement aggressiveness. MNS can provide stable solutions with smaller stencil sizes but
exhibits a stronger dependence of K on NL. This can be explained by the fact that smaller ε, i.e. large gradients
in node density, result in unbalanced stencils due to them being constructed from NL closest nodes irrespective
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Figure 9. Relative error of the drag coefficient for MLBM and MNS solution (Eq. (36)) for various refinement
function parameters. N1,1 is the number of nodes in the non-refined discretization. Dashed lines with labels are
isocontours of the number of Eulerian nodes N .
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Figure 10. The values of the drag coefficient K for r = 0.6526, hmax/hmin = 3 case versus the stencil size NL

for various shape parameters ε for both solvers. The dashed lines are the reference Kref ≡ K(1, 1) values.

of direction. Unbalanced stencils are not as problematic for the RBF-FD method in value interpolation used by
MLBM but can cause significant problems for 1st and 2nd-order derivative approximation used in MNS.

3.5 Pointwise comparison of the meshless solvers

We next investigate the pointwise relative difference between the velocity fields obtained with MLBM and
MNS. A single simulation with r = 0.062 and r = 0.6526 was run with each solver using exactly the same space
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discretization. We define the pointwise difference of the velocity field as:

δ(x) =
|vMLBM − vMNS|

|vMNS|
=

∆v

|vMNS|
(37)

where the subscript denotes the method used to obtain the velocity value and | · | is the Euclidean vector
norm. Fig. 11 shows isosurfaces of δ(x) for each sphere radius. For r = 0.062 the lowest difference isosurface
corresponds to the boundary layer around the sphere, being stretched in the x-direction. The larger values of
δ(x) towards the surface are caused by the normalization by near-zero velocity values (compare with the right
subplot of Fig. 12 showing that the absolute value of the difference falls down towards the surface) with the
maxima occurring in the same places as the maxima of the tangent force of MNS solution in Fig. 5. More drag
in the MNS solution may explain the slightly lower x-velocity visible in the right plot of Fig. 12. In the case
of r = 0.6526 the largest differences occur in the concave parts of the domain, near the spheres’ intersections,
where vortices are expected to emerge in the velocity field, even for a very low Reynolds number [47]. The fact
that the main point-wise differences shown in Fig. 11 and Fig. 12 occur in areas with stagnant flow indicates
that it may be caused by known ACM problems with pressure oscillations in the low Reynolds regime[48].
This is supported by the oscillations in the surface pressure field shown in Fig. 5. Oscillatory problems could
be resolved by resorting to entropically dampened artificial compressibility [48], a more advanced form of the
method.

Figure 11. Relative pointwise velocity difference between the two solvers δ(x) for r = 0.062 (left) and
r = 0.6526 (right). The isocontours correspond to the values: 0.1, 0.05, 0.01 for r = 0.062 and 1, 0.25, 0.05 for
r = 0.6526, from the darkest to the brightest. Note the sphere surface is not rendered but the isosurfaces are
trimmed by it.

3.6 Complexity and timings analysis
Algorithmical complexity

The cost of a single timestep of the described MLBM algorithm can be expressed as:

CMLBM = N

q( 56︸︷︷︸
I

+2NL − 1︸ ︷︷ ︸
II

) + q − 1 + 6q︸ ︷︷ ︸
III

 = N(q(62 + 2NL)− 1) (38)

where terms denoted by I, II, and III correspond to the collision, the interpolation, and the calculation of the
macroscopic variables according to Eq. (17), respectively. In the case of the present MNS implementation, it is:

CMNS = N

6(2NL − 1) + 4︸ ︷︷ ︸
I

+np(4(2NL − 1) + 4)︸ ︷︷ ︸
II

 = N(NL(8np + 12)− 2) (39)

where the terms denoted by I and II correspond to the update of the velocity field and the pressure correction
steps, respectively. It is immediately seen that the number of the stencil members NL contributes significantly
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Figure 12. The absolute value of the difference of the velocity magnitude between MLBM and MNS ∆v (left)
and the values of the velocity magnitude for each method (right) along the line y, z = 0.5 for the r = 0.062 case.

to both values. In MLBM its contribution is multiplied by the number of discrete velocities q, while in MNS
by terms corresponding to the number of macroscopic fields and pressure correction steps np. In MLBM, q
multiplies also a large factor of 62 related to the calculation of the equilibrium distributions. In fact, the
asymptotic complexity of each method is O(NNLq) for MLBM (in line with the findings of e.g. Musavi and
Ashrafizaadeh [19]) andO(NNLnp) for MNS. However, for the asymptotic regimes to be reached, extremely large
values of NL, q and np would need to be used. It is therefore more useful to consider the values of complexities for
some certain, smaller values of those parameters. Fig. 13 shows the ratio of the two complexities for a constant
number of pressure correction steps np and discrete velocities q. The complexity of both methods depends on
the choice of the free parameters. For small stencils, the overhead from the calculation of equilibrium in MLBM
makes it more complex than MNS.

0 50 100 150 200
NL

0

1

2

3

4

C
M

L
B

M
/C

M
N

S

np = 3

q = 15

q = 19

q = 27

0 50 100 150 200
NL

0

1

2

3

4

C
M

L
B

M
/C

M
N

S

q = 15

np = 2

np = 6

np = 10

Figure 13. The ratio of MLBM complexity to MNS complexity defined by Eqs. (38) and (39) for three
velocity discretizations used in MLBM (left) and for a range of pressure correction step numbers np (right).
The horizontal dashed lines denote the asymptotes of the ratio for NL → +∞.

It is important to notice that the size of the monomial subset of the interpolation basis does not influence
the approximation step’s complexity directly. It does, however, impose limits on the minimal number of nodes
in interpolation supports, as noted in Section 2.1. The approximation step makes use of the weights vectors,
Eq. (7), which need to be calculated only once, in the preprocessing step. The computational cost of this is of
the order of O(N(NL+m)3) which has to be multiplied by the number of populations in MLBM or the number
of approximated operators in MNS.

Timings
To provide a more practical quantification of the performance of the presented methods we measure the

time needed to achieve a converged solution (defined as in the previous tests) with each of them. Fig. 14 shows
the algorithms’ execution times for the case of r = 0.062 and r = 0.6526 versus the number of nodes in the
discretization N . We perform the analysis for single-threaded runs, observing that the scaling is of the order
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1.5 for both methods and compliant with the theoretical predictions. In the large sphere case, the MNS needs
approximately 3-folds more time to complete the calculations compared to the MLBM. We note, however, that
the presented execution time implicitly contains the amount of the physical time needed for the system to reach
steady-state. MLBM needed about 3.57s and 0.04s to reach the stopping criterion for r = 0.062 and r = 0.6526,
respectively, at hmin = 0.007. Those times for MNS are 3.58s and 0.39s. In the case of r = 0.6526, the difference
of 0.35s in the physical time is what accounts for the larger execution times of MNS in Fig. 14. In case r = 0.062,
where the physical time of the simulations is comparable between the methods, the estimated execution times
were about three times larger for MLBM than for MNS. The issues of pressure oscillations mentioned in Sec.3.5
may explain the difference in the physical time required to reach a steady state in the r = 0.6526 case with
large areas of stagnant flow.

Figure 14. Execution times in seconds of r = 0.062 (left) and r = 0.6526 (right) case for single-threaded
runs versus the number of nodes in the domain N . Open symbols denote meshless Navier-Stokes timings and
filled symbols denote MLBM timings. The stopping criterion was the same as in the remaining tests. In both
methods, the execution time is inversely proportional to the timestep length δt. In both methods the diffusive
scaling of the timestep length was used (δt ∝ h(x)2 in MNS and δt ∝ δx2 ∝ h(x)2 in MLBM) and as δx ∝ N1/3

one obtains that the execution time should scale as N1.5. The dashed lines denote the 1.5-order slope. The
execution times for r = 0.062 were extrapolated based on the physical time at which the simulation reached the
stopping criterion and the execution time for a fixed number of iterations.

4 Conclusions

The paper compares two meshless CFD solvers for the simulation of fluid flow through porous media, the mesh-
less Lattice-Boltzmann method with two relaxation-time collision terms and a direct Navier-Stokes solver under
the artificial compressibility limit, focusing on a periodic 3D porous medium modeled as a cubic array of spheres.
Both methods utilize point clouds of the same point density in space, provided by an iterative, advancing-front
dimension-independent algorithm that allows variable internodal distances (needed for h-refinement) and Radial
Basis Function (RBF) approximation for the field and operator approximation. In terms of methods, the paper
discusses the meshless discretization and approximation techniques as well as the specifics of the implementation
of the considered CFD methods.

Through a convergence analysis of the permeability and drag coefficient analysis across various porosities, we
demonstrate the effectiveness of both methods in accurately predicting the flow characteristics. Both methods
are convergent and provide results that agree with reference data from the literature. This has encouraged us
to extend the range of solvable problems beyond the available benchmark data to lower porosities.

Furthermore, we investigate the sensitivity of the drag coefficient to the refinement parameters, with both
methods showing a similar stability range. We demonstrate the advantages of meshless refined discretization
by significantly reducing the number of nodes with minimal increase in error.

When analyzing the effect of the stencil size, we find that the meshless Lattice-Boltzmann method achieves
good results even with a relatively small stencil size compared to the direct solver. This is to some extent to be
expected, since the Lattice-Boltzmann method uses the RBF approximation only for field approximation, while
the direct solver approximates all differential operators involved.

The paper also delves into the complexity and timing analyses of both solvers. We find the complexity of
both methods linearly dependent on the stencil size and the space discretization size with coefficients related
to the equilibrium VDF form (LBM) and the number of pressure steps (MNS). Although the MNS is seemingly
less complex in terms of the sheer number of operations, it requires a larger stencil size for stability reasons.
Moreover, the actual execution times strongly depend on the number of iterations required to reach the steady
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state, which is different for both methods for different porosities. The message here is that both methods are
in the same order of magnitude in terms of computational complexity.
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A MLBM and MNS algorithms comparison

MLBM algorithm
1: while the stopping criterion is not met do
2: // COLLIDE
3: for all Eulerian points xi do
4: for each lattice velocity ck do
5: Calculate f eq

k (Eq. (15));
6: Calculate fpost

k (Eq. (10));
7: end for
8: end for
9: // STREAM

10: for all Eulerian points xi do
11: for each Lagrangian point xi + δxk do
12: Interpolate fpost

k′ to xi + δxk

(Eq. (2));
13: Overwrite fk′(xi) with fpost

k′ (xi +
δxk) (Eq. (8));

14: end for
15: Update ρlb, vlb (Eq. (17));
16: end for
17: end while

MNS algorithm
1: while the stopping criterion is not met do
2: // UPDATE VELOCITY
3: for all computational points xi do
4: Calculate intermediate velocity v′

(Eq. (22));
5: end for
6: // PRESSURE-VELOCITY COUPLING
7: for a predetermined number of iterations do
8: for all computational points xi do
9: Update pressure (Eq. (23));

10: end for
11: for all computational points xi do
12: Update velocity with the new pres-

sure gradient Eq. (24);
13: Update C if required (Eq. (25));
14: end for
15: end for
16: end while
17:
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