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Abstract

The work considers the N -server distributed computing scenario with K users requesting functions

that are linearly-decomposable over an arbitrary basis of L real (potentially non-linear) subfunctions. In

our problem, the aim is for each user to receive their function outputs, allowing for reduced reconstruction

error (distortion) ϵ, reduced computing cost (γ; the fraction of subfunctions each server must compute),

and reduced communication cost (δ; the fraction of users each server must connect to). For any given

set of K requested functions — which is here represented by a coefficient matrix F ∈ RK×L — our

problem is made equivalent to the open problem of sparse matrix factorization that seeks — for a

given parameter T , representing the number of shots for each server — to minimize the reconstruction

distortion 1
KL∥F−DE∥2F overall δ-sparse and γ-sparse matrices D ∈ RK×NT and E ∈ RNT×L. With

these matrices respectively defining which servers compute each subfunction, and which users connect

to each server, we here design our D,E by designing tessellated-based and SVD-based fixed support

matrix factorization methods that first split F into properly sized and carefully positioned submatrices,

which we then approximate and then decompose into properly designed submatrices of D and E. For the

zero-error case and under basic dimensionality assumptions, the work reveals achievable computation-

vs-communication corner points (γ, δ) which, for various cases, are proven optimal over a large class

of D,E by means of a novel tessellations-based converse. Subsequently, for large N , and under basic

statistical assumptions on F, the average achievable error ϵ is concisely expressed using the incomplete

first moment of the standard Marchenko-Pastur distribution, where this performance is shown to be

optimal over a large class of D and E. In the end, the work also reveals that the overall achieved gains

over baseline methods are unbounded.
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I. INTRODUCTION

We are currently witnessing a growing need for novel parallel computing techniques that efficiently

offload computations across multiple distributed computing servers [1], [2]. To address this urgent need,

a plethora of works has proposed novel methods that address various elements of distributed computing,

such as scalability [3]–[11], privacy and security [12]–[21], as well as latency and straggler mitiga-

tion [22]–[28], to mention just a few. For a detailed survey of such related works, the reader is referred

to [29]–[31]. In addition to the above elements, the celebrated computation-vs-communication relationship

stands at the very core of distributed computing as a fundamental principle with profound ramifications.

This principle appears as a limiting factor in a variety of distributed computing scenarios [24], [33]–[44]

where indeed communication and computation are often the two intertwined bottlenecks that most heavily

define the overall performance.

Another important factor pertains to computational accuracy and the ability to recover desired functions

with reduced error or distortion. There is indeed a variety of techniques dedicated to increasing accuracy

(cf. [45]–[62]), such as for instance the sketching technique [48], [52], [62] which can for example utilize a

randomized linear algebraic approach to compute an approximation of the multiplication of two massive

matrices (often by approximating input matrices by multiplying them with a random matrix having

certain properties). Another related approach can be traced in successive approximation coding techniques

(cf. [57]) which make it possible to tradeoff accuracy and speed, allowing for better approximations and

increased accuracy over time.

This triptych between accuracy, communication costs and computation costs, lies at the center of

distributed computing. We here explore this triptych for a pertinent setting of multi-user distributed

computing.

A. Multi-User Linearly-Decomposable Distributed Computing

We focus on the very broad and arguably practical setting of multi-user distributed computation of

linearly-decomposable real functions, which captures several classes of computing problems that include

distributed gradient coding problems [22], [63]–[65], the distributed linear-transform computation prob-

lem [35], [66], the distributed matrix multiplication or the distributed multivariate polynomial computation

problems [23], [26]–[28], [39], [67]–[71], as well as a plethora of distributed computing problems

of training large-scale machine learning algorithms and deep neural networks with massive data [33].

These constitute a broad collection of problems where both computation and communication costs are

crucial [72], [73].
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Our setting, as depicted in Fig. 1, initially considers a master node that coordinates, in three phases, a

set of N distributed servers that compute functions requested by the K users. During the initial demand

phase, each user k ∈ {1, 2, . . . ,K} independently requests the computed output of a single real function

Fk(.). Under the real-valued1 linear decomposability assumption2, these functions take the basic form

Fk(.) =

L∑
ℓ=1

fk,ℓfℓ(.) =

L∑
ℓ=1

fk,ℓWℓ (1)

where fℓ(·) denotes a (basis or component) subfunction, where fk,ℓ denotes a real-valued basis coefficient,

and where Wℓ = fℓ(x), x ∈ D, denotes the real-valued output file of fℓ(·) for a multi-variate input x

from any domain set D.

Subsequently, during the computing phase, the master assigns to each server n ∈ [N ], a set of

subfunctions Sn ⊆ [L]

to compute locally3 in order to generate the corresponding Wℓ, and then during the communication

phase, each server n forms signals

zn,t ≜
∑
ℓ∈[L]

en,ℓ,tWℓ, n ∈ [N ], t ∈ [T ] (2)

as dictated by the encoding coefficients en,ℓ,t ∈ R, n ∈ [N ], t ∈ [T ], ℓ ∈ [L], and subsequently proceeds to

transmit zn,t during time-slot t = 1, 2, . . . , T , to a subset of users Tn,t ⊆ [K], via a dedicated error-free

broadcast channel. Finally, during the decoding part of the last phase, each user k linearly combines its

received signals to get

F ′
k ≜

∑
n∈[N ],t∈[T ]

dk,n,tzn,t (3)

as dictated by the decoding coefficients dk,n,t ∈ R, n ∈ [N ], t ∈ [T ], k ∈ [K]. Naturally dk,n,t = 0,∀k /∈

Tn,t, simply because user k ∈ [K] does not receive any symbol from server n ∈ [N ] during time t ∈ [T ].

Note that both encoding and decoding coefficients are determined by the master node after the demand

phase, and thus are dependent on the functions requested, but remain independent of the instance of the

input to the requested functions.

1The real-valued exposition entails a variety of advantages over finite-field approaches [25], [74]–[76], such as accuracy

advantages stemming from using real-valued fixed point data representations, as well as advantages regarding computation

overflows, quantization errors and scalability barriers [7], [15], [77].
2This naturally incorporates linearly separable functions (see for example [25]) where each Fk(.), taking L subfunctions

as input, can be written as a linear combination of L univariate subfunctions. In our work, these subfunctions need not be

univariate.
3We will interchangeably use Sn to describe sets of indices of subfunctions, as well as the subfunctions themselves.
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In case of allowable error, we consider

E =

K∑
k=1

|F ′
k − Fk|

2
, E ∈ R, ∀k ∈ [K] (4)

to be the Euclidean distortion during function retrieval. Furthermore, for Tn = ∪T
t=1Tn,t, we consider the

computation and communication costs

Γ ≜ max
n∈[N ]

|Sn|, ∆ ≜ max
n∈[N ]

|Tn| (5)

respectively representing the maximum number of subfunctions to be locally computed at any server1, and

the maximum number of users that a server can communicate to. After normalization, we here consider

the normalized costs

ϵ ≜
E
KL

, γ ≜
Γ

L
, δ ≜

∆

K
. (6)

The three parameters are bounded2 between 0 and 1.

Another two parameters of interest are

ζ ≜
∆

L
, κ ≜

K

L
(7)

where ζ normalizes the number of activated communication links by the number of subfunctions, while

κ reflects the dimensionality (‘fatness’) of matrix F and thus will define the statistical behavior of the

singular values of F which will be crucial in the lossy case where we allow for function reconstruction

error.

In a system defined by K,N and L, our goal is to find schemes that can recover any set of desired

functions, with the best possible decoding refinement ϵ, and the smallest possible computation and

communication loads γ, δ. To do so, we must carefully decide which subfunctions each server computes,

and which combinations of computed outputs each server sends to which users. Having to serve many

users with fewer servers naturally places a burden on the system (suggesting higher γ, δ, ϵ), bringing to

the fore the concept of the system rate

R ≜
K

N
(8)

1Our focus directly on the cost of computing the component subfunctions fℓ(·) stems from the point of view that these

subfunctions typically capture computationally intensive (and generally non-linear) tasks which would dominate, in terms of

load, the remaining easier linear manipulations at servers and users during encoding and decoding. We also note that our

constraints of Γ and ∆ are strict constraints in the sense that they must hold for any instance of the problem.
2In brief, γ is the fraction of subfunctions that must be computed locally, and δ is the fraction of available links to be activated.

Having γ = 1 corresponds to the centralized scenario of having to locally calculate all subfunctions, while δ = 1 matches an

extreme parallelized scenario that activates all available communication links. We will discuss later in Section IV the justification

of having ϵ ≤ 1.
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Fig. 1. The K-user, N -server, T -shot setting. Each server n computes the subfunctions in Sn =

{fin,1(.), fin,2(.), . . . , fin,|Sn|(.)} and communicates to users in Tn,t, under computational constraint |Sn| ≤ Γ ≤ L

and communication constraint |Tn| ≤ ∆ ≤ K, yielding a system with normalized constraints γ = Γ
L
, δ = ∆

K
and with an error

constraint ϵ = E
KL

, where γ, δ, ϵ ∈ [0, 1].

and the corresponding system capacity C representing the supremum of all rates.

B. Connection to Sparse Matrix Factorization, and Related Works

Toward analysing our distributed computing problem, we can see from (1) that the desired functions

are fully represented by a matrix F ∈ RK×L of the aforementioned coefficients fk,ℓ. With F in place,

we must decide on the computation-assignment and communication (encoding and decoding) protocol.

As we have seen in [76], [78], for the error-free case of ϵ = 0, this task is equivalent — directly from

(2),(3) and (4) — to solving a (sparse) matrix factorization problem of the form

DE = F (9)

where, as we will specify later on, the NT ×L computing matrix E holds the coefficients en,ℓ,t from (2),

while the K ×NT communication matrix D holds the decoding coefficients dk,n,t from (3). As one can

suspect, a sparser E reflects a lower γ and a sparser D a lower δ, at the cost though of a potentially
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higher ϵ. Focusing on functions over finite fields, the work in [76], after making the connection between

distributed computing and the above factorization problem, employed from coding theory the class of

covering codes and a new class of partial covering codes, in order to derive bounds on the optimal

communication and computation costs for the error-free case. In brief, by choosing D to be the sparse

parity-check matrix of a (shown to exist) sparse partial covering code, each column of E was subsequently

produced to be the coset leader from syndrome decoding (with the syndrome being) the corresponding

column1 of F. This allowed for reduced communication and computation costs, where for example in

the single shot scenario with a q-ary finite field, the (somewhat different from here) normalized optimal

computation cost γ ∈ (0, 1] was bounded as a function of the q-ary entropy function Hq to be in the

range γ ∈ [H−1
q (

logq(L)

N ), H−1
q (KN )].

A first exposition of the real-valued variant of our computing problem, again for the error-free case

of ϵ = 0, can be found in [79], which reformulated the equivalent sparse matrix factorization problem

DE = F into the well-known compressed sensing problem Ax = y which seeks to efficiently identify

unique sparse solutions to an under-determined system of equations2. This reformulation allowed for

conditional bounds on γ of the form γ ≤ −1
r
K
NW−1

1 (−2K
erN ), where though these bounds3 remained

loose and conditional, for two main reasons. The first reason stems from the fact that the focus of the

compressed sensing machinery is mainly on the search efficiency and uniqueness of the sparse solutions,

rather than on the level of sparsity itself4. The second reason is that, while in our computing setting our

communication matrix D must be a function of F, compressed sensing places its focus on designing A

in a manner that is oblivious to the instance of y (which corresponds to our F). These mismatches are

part of what our work here addresses, allowing us to directly explore the fundamental principles of our

computing problem.

1Thus for example, the first column of E is the coset leader to the coset corresponding to the syndrome described by the first

column of F and by the code whose parity check matrix is D.
2This reformulation identifies the observed vector y with the vectorized F, the sparse solution x with the vectorized E, and

the alphabet matrix A with the Kronecker product of the communication matrix D with an identity matrix.
3Here W1(.) is the first branch of the Lambert function, while r calibrates the statistical distribution of D.
4Search efficiency and uniqueness are not fundamental to our distributed computing problem. For example, what a compressed

sensing exposition of our problem effectively shows is that, under the assumption that the sparsest solution for E has sparsity-

level not more than the above γ = − 1
r

K
N
W−1

1 (−2K
erN

), and under the additional assumption that this solution is unique, then

— with high probability, in the limit of large N — there is an l1-minimization approach that will efficiently find this sparsest

unique solution. For us, the efficiency of identifying E is of secondary importance, and the possibility of having another equally

sparse E is not an issue.
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C. New Connection Between Distributed Computing, Fixed Support Matrix Factorization, and Tessella-

tions

As we will see almost directly from (2), (3) and (4), (9), and also from Lemma 10, solving our

distributed computing problem will be equivalent to solving the approximate matrix factorization problem

Ê = min
D,E

∥DE− F∥2F (10)

under dimensionality constraints posed by K,NT,L, and under sparsity constraints on D and E posed

by δ and γ respectively. These sparsity constraints will be described in detail later on.

This problem encompasses the problem of compressed sensing, and it is known to be NP hard [80]. In

general, finding the optimal solution (D̂, Ê) = argmin
D,E

∥DE− F∥2F to (10), under the aforementioned

dimensionality and sparsity constraints, requires an infeasible coverage of the entire space of solutions.

Otherwise, establishing optimality of an algorithmic solution, generally requires establishing uniqueness

of that solution, which is challenging [81], [82]. Furthermore, to date, little is known in terms of clear

guarantees on the optimal error performance Ê , for any given F and any given dimensionality and sparsity

constraints on D,E.

Recently, the work in [83] explored the problem of Fixed Support (sparse) Matrix Factorization

(FSMF), which — under the equivalent dimensionality and sparsity constraints of the unbounded problem

of (10) — seeks to find

ÊI,J = min
D,E

∥DE− F∥2F (11)

Subject to: supp(D) ⊆ I, supp(E) ⊆ J

where I ⊆ [K] × [NT ] and J ⊆ [NT ] × [L] respectively define the support constraint supp(D) and

supp(E) of D and E, where such support constraint entails that D(i, j) = 0, ∀(i, j) /∈ I and E(i, j) =

0, ∀(i, j) /∈ J . FSMF remains a broad1 and challenging problem, partly because, as argued in [83], it

does not directly accept the existing algorithms from the unconstrained problem in (10).

After showing that ill-conditioned supports may lead certain algorithms [83] to converge to local

minima (referred to as ‘spurious local valleys’), the same work in [83] revealed that for some specific

I,J , some algorithms can provably converge to the corresponding ÊI,J which is shown to be unique

but, clearly, optimal only within the space of D,E defined by the specific support I,J . The work in [83]

placed some of its focus on a particular class of “disjoint” supports, corresponding to the class of those

1For connections between the FSMF problem with Low-rank matrix approximation [84], LU decomposition [85], Butterfly

structure and fast transforms [86], Hierarchical H−matrices [87] and matrix completion [88], the reader may read [83].
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supports I,J that (as we will clarify later on) map onto disjoint regions of F. The finding in [83] is

that such “disjoint” I,J render (11) tractable.

Naturally, depending on I,J , even such optimal “support-limited” solutions in (11) can have un-

bounded gaps ÊI,J − Ê to the global optimal Ê from (10), as we simply do not know how badly the

performance deteriorates by limiting the search within the specific fixed-support set of matrices.

In summary, to date, in terms of explicit solutions to the matrix factorization problem in (10), little is

known in terms of designing good supports, while in terms of optimality guarantees, these are restricted to

within the specific problem in (11) where the search is for a given specific support. To date, little is known

about explicitly characterizing a desired error performance Ê under any desired sparsity constraints.

a) Our contribution to the sparse matrix factorization problem: We begin by clarifying that the

progress that we have made in this domain is limited to the sparse matrix factorization problem where

the sparsity constraints are on the columns of D and the rows of E. To be clear, we are placing a

constraint that no column of D has a fraction of non-zero elements that exceeds δ, and no row of E has

a fraction of non-zero elements that exceeds γ. With this in place, in terms of designs, for the lossless case

of ϵ = 0, our contribution is to identify supports that are optimal over a very large class of D,E, and to

explicitly identify the conditional optimal (D̂, Ê) of the problem in (10) restricted to the aforementioned

very large class of D,E. Under our constraints, these are the sparsest supports that guarantee lossless

reconstruction of any F. On the other hand, when E > 0, we can identify — under some additional

uniformity assumptions — the best possible support among all conceivable disjoint supports, in that no

other disjoint support can be sparser. Hence, in terms of achievable schemes for D,E, our contribution

is to first make the connection between the approach in [83] and the combinatorics analysis of tiling

[89] which guarantees that our schemes satisfy a crucial covering condition, and to then explicitly design

easy to represent SVD-based schemes for D,E for any F.

In terms of guarantees on performance, and under our disjoint assumption, we provide clear expressions

on the minimum possible sparsity γ, δ that guarantees an ϵ = 0. Now for the lossy case of ϵ > 0, we

are providing upper bounds on the optimal ϵ under any given sparsity constraint (or equivalently, lower

bounds on the sparsity and dimensionality constraints, for any given ϵ > 0). These bounds on the optimal

ϵ are provided after we employ the asymptotic setting of scaling K,N,L, after we accept some uniformity

assumptions on the weights of the supports of D and E (reflecting a uniformity on the load of the servers),

and they are provided in the stochastic sense by averaging over the ensemble of possible F, under some

basic statistical assumptions. These, to the best of our knowledge, are the first explicit characterizations

that identify or bound the optimal performance of the sparse matrix factorization problem, again under

our assumptions.
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Our ability to handle the stochastic problem, particularly benefits from being able to reduce the overall

factorization problem into a sequence of combinatorially-designed1, SVD-resolved low-rank matrix ap-

proximation problems ([83]), whose simplicity opens up to the benefits from existing powerful results from

random matrix theory [90]. This same problem of using tessellations to allow for matrix decomposition

with statistically good approximations, is a very interesting problem because as we will see, the shape of

the tiles affects the goodness of the approximation that each tile offers to particular parts of the matrix

F. This is an interesting connection which, to the best of our knowledge, appears here for the first time.

b) Summary of our contributions on the problem of multi-user distributed computing of linearly-

decomposable functions: Having made the connection between matrix factorization and distributed com-

puting, we here identify the FSMF problem to be key in the resolution of our real-valued multi-user

distributed computing problem, for which we provide the following results.

We first consider the lossless case of E = 0, and after we design an achievable scheme using novel

concepts and algorithms introduced in [83] and a converse using combinatorial tiling arguments [89],

Theorem 1 establishes the exact system capacity C = K
Nopt

where

Nopt =
min(∆,Γ)

T
⌊K
∆
⌋⌊L

Γ
⌋+

min(mod(K,∆), ⌊LΓ⌋)
T

⌊L
Γ
⌋ (12)

+
min(mod(L,Γ), ⌊K∆ ⌋)

T
⌊K
∆
⌋+ min(mod(K,∆),mod(L,Γ))

T
(13)

where this exact optimality is established for the case of T ≥ min(∆,Γ) as well as the case of ∆ ≥

Γ,∆|K,T |Γ as well as the case of Γ ≥ ∆,Γ|K,T |∆, or ∆|K,Γ|L, T |min(∆,Γ). For the remaining

cases (corresponding to a subset of the cases where T < min(∆,Γ)), our achievable scheme is shown

to suffer from only a constant gap to the optimal. In terms of design, many of the above cases are of

particular interest because the tessellation patterns that we must construct, must accommodate for tiles

of various sizes and shapes. In terms of insight, we can highlight for example the simplified case of (40),

which applies to the relatively broad setting of δ−1, γ−1 ∈ N (corresponding to having ∆|K,Γ|L), where

the capacity now takes the insightful form

C =

T max(ζ, γ), if T | Lmin(ζ, γ)

Lζγ, if T > Lmin(ζ, γ)

(14)

revealing that for the first case, the optimal communication-vs-computation points (γ, δ), are ( K
NT ,

T
K )

and ( TN , L
NT ), while for the other case the tradeoff takes the form

γδ =
1

N
.

1As we note here, the approach of [83] is a special case of tiling [89], focusing on disjoint tiles.
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Subsequently, for the lossy case, we consider the large-N scaling regime with an average error guarantee

ϵ, averaged over matrices F and over the subfunctions’ outputs. Employing a similar achievable scheme

as in the error-free case, paired with a standard truncated-SVD low-rank approximation approach, and

under the assumption that the elements of F and the output of subfunctions are i.i.d with zero mean and

unit variance, we can bound the average optimal error by the expression

ΦMP,λ(t, r) =

∫ t

r
xfMP,λ(x)dx

where ΦMP,λ(t, r) is the incomplete first moment of the standard Marchenko-Pastur distribution with

parameters λ = δK
γL = ∆

Γ , r = (1 −
√
λ)2, where t is the solution to FMP,λ(t) = 1 − T γN

K , and where

FMP,λ(.), fMP,λ(.) are the CDF and PDF of the same distribution. The scheme that provides the above

bound, employs tessellations after consideration that the size and shape of the tiles, alters the statistics

of the SVD approximations of the parts of the matrices that each tile corresponds to. As it turns out, this

scheme and the above performance, is optimal over all choices of D and E whose supports satisfy the

balanced disjoint support assumption (cf. Definition 2).

D. Paper Organization and Notations

The rest of the paper is organized as follows. Section II formulates the system model for the setting of

multi-user distributed computing of linearly-decomposable functions. Section III addresses the error-free

case, providing schemes and converses that lead to Theorem 1. Subsequently, Section IV addresses the

lossy-computation case in the asymptotic setting, providing schemes and converses that lead to Theorem 2.

Section V discusses some of the results, and then various appendix sections host some of our proofs as

well as a small primer on matrix approximation.

Notations: We define [n] ≜ {1, 2, . . . , n}. For matrices A and B, [A,B] indicates the horizontal

concatenation of the two matrices. For any matrix X ∈ Rm×n, then X(i, j), i ∈ [m], j ∈ [n], represents

the entry in the ith row and jth column, while X(i, :), i ∈ [m], represents the ith row, and X(:, j), j ∈ [n]

represents the jth column of X. For two index sets I ⊆ [m],J ⊆ [n], then X(I,J ) represents the

submatrix comprised of the rows in I and columns in J . We will use ω(X) to represent the number

of nonzero elements of some matrix (or vector) X. We will use supp(x⊺) to represent the support

of some vector x⊺ ∈ Rn, describing the set of indices that can accept non-zero elements. We will

also use supp(X) to represent the support of some matrix X ∈ Rm×n, describing the set of two-

dimensional indices (i, j) ∈ [m]× [n] that can accept non-zero elements. Furthermore, I(X ,Y) ∈ Rm×n

represents a matrix that all of its elements are zero except the elements, I(i, j), i ∈ X , j ∈ Y . Supp(A) ∈

{0, 1}m×n,A ∈ Rm×n, is a binary matrix representing the locations of non-zero elements of A. ∥x∥0
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denotes the zero-norm of a vector x ∈ Rn. For two binary matrices I,J ∈ {0, 1}m×n, then (I∪J)(i, j) ≜

I(i, j) ∨ J(i, j), (I ∩ J)(i, j) ≜ I(i, j) ∧ J(i, j), I′(i, j) ≜ ¬I(i, j), I\J(i, j) = I ∩ ¬J, where ∨,∧

and ¬ are the logical “OR”, “AND” and “negation” operators, respectively. Vector 1n defines the all-

one n-dimensional real column vector, and 0m defines the all-zero m-dimensional real column vector.

The operation ⊙ represents a Hadamard product, while ∥A∥F =
√∑m

i=1

∑n
j=1A

2(i, j) represents the

Frobenius norm of the matrix A. Furthermore, for x ∈ R, then ⌈x⌉, ⌊x⌋ respectively represent the ceiling

and floor functions on x. Additionally, mod(a, b), a, b ∈ N is the remainder of division of a by b. Finally

we use ΦMP,λ(t, r) ≜
∫ t
r xfMP,λ(x)dx to denote the incomplete first moment of the Marchenko–Pastur

distribution with ratio λ.

II. PROBLEM FORMULATION

We here describe in detail the main parameters of our model, establish the clear link between our

distributed computing problem and sparse matrix factorization, define matrices D,E,F and the various

metrics, rigorously establish the link between the distributed computing problem and the factorization

in (9) (see also (32)) for the error-free case, as well as rigorously present the equivalence of our lossy

distributed computing problem to the approximate matrix factorization problem corresponding to (10).

Let us consider

f ≜ [F1, F2, . . . , FK ]⊺ ∈ RK , (15)

fk ≜ [fk,1, fk,2, . . . , fk,L]
⊺ ∈ RL, k ∈ [K], (16)

w ≜ [W1,W2, . . . ,WL]
⊺ ∈ RL (17)

where f represents the vector of desired function outputs Fk from (1), where fk represents the vector of

function coefficients fk,ℓ from (1) for the function requested by user k, and where w denotes the vector

of output files Wℓ = fℓ(·) again from (1). Then recalling the encoding coefficients en,ℓ,t and transmitted

signals zn,t from (2), as well as the decoding coefficients dk,n,t and decoded functions F ′
k from (3), we

have

en,t ≜ [en,1,t, en,2,t, . . . , en,L,t]
⊺ ∈ RL, n ∈ [N ], t ∈ [T ], (18)

zn ≜ [zn,1, zn,2, . . . , zn,T ]
⊺ ∈ RT , n ∈ [N ], (19)

En ≜ [en,1, en,2, . . . , en,T ]
⊺ ∈ RT×L, n ∈ [N ], (20)

dk,n ≜ [dk,n,1, dk,n,2, . . . , dk,n,T ]
⊺ ∈ RT , k ∈ [K], n ∈ [N ], (21)

dk ≜ [d⊺
k,1,d

⊺
k,2, . . . ,d

⊺
k,N ]⊺ ∈ RN×T , k ∈ [K] (22)
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and thus from (15), we have the output vector taking the form

f = [f1, f2, . . . , fK ]⊺w (23)

as well as the transmitted vector by server n taking the form

zn = Enw = [en,1, en,2, . . . , en,T ]
⊺w. (24)

This allows us to form the matrices

F ≜ [f1, f2, . . . , fK ]⊺ ∈ RK×L, (25)

E ≜ [E⊺
1 ,E

⊺
2 , . . . ,E

⊺
N ]⊺ ∈ RNT×L, (26)

D ≜ [d1,d2, . . . ,dK ]⊺ ∈ RK×NT (27)

where F represents the K×L matrix of all function coefficients across all the users, where E represents the

aforementioned NT ×L computing matrix capturing the computing and linear-encoding tasks of servers

in each shot, and where D represents the K ×NT communication matrix capturing the communication

protocol and the linear decoding task done by each user. Thus, we clarify here, that all presented results,

schemes and converses, assume our multi-user linearly-decomposable distributed computing problem, and

assume, in their entirety, linear encoding at the servers, and decoding at the receivers.

To see the transition to the matrix factorization problem, we first note that from (2) and (23) we have

that the overall transmitted vector z ≜ [z⊺1 , z
⊺
2 , . . . , z

⊺
N ]⊺ ∈ RN×T takes the form

z = [E⊺
1 ,E

⊺
2 , . . . ,E

⊺
N ]⊺w = Ew (28)

and then that given the decoding from (3), each retrieved function takes the form

F ′
k = d⊺

kz (29)

thus resulting in the vector of all retrieved functions taking the form f ′ = [d1,d2, . . . ,dK ]⊺z. Our aim

is to minimize the recovery error

E ≜ ∥f ′ − f∥2 (30)

solving the following problem

minimize
f ′

∥f ′ − f∥2 = minimize
D,E

∥DEw − Fw∥2 = minimize
D,E

∥(DE− F)w∥2. (31)

Directly from the above, we see that for the error-free case of E = 0, resolving our distributed

computing problem requires that F be decomposed as

F = DE (32)
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as seen in (9).

For the lossy case, directly from upcoming Lemma 10, and under the assumption of statistical inde-

pendence of w from D,E,F, as well as from the fact that D,E are deterministic functions of F, and

from the fact that the elements of w are i.i.d with unit variance, we have that

ϵ ≜
E F,w{E}

KL
=

E F,w{∥(DE− F)w∥22}
KL

=
EF{∥DE− F∥2F }

KL
(33)

which holds for any scheme that deterministically derives D,E. This brings to the fore the aforementioned

(cf. (10)) minimization Ê = min
D,E

∥DE− F∥2F , and our aim will be to bound

ϵ̂ ≜
E F,w{min

D,E
∥DE− F∥2F }

KL
(34)

which matches the function reconstruction error

ϵ̂ =

E F,w{min
D,E

∑K
k=1 |Fk − F

′

k|2}

KL
. (35)

In terms of the corresponding connection to the sparsity of D and E, we recall from (5) our metrics

Γ ≜ maxn∈[N ] |Sn| and ∆ ≜ maxn∈[N ] |Tn|, which directly from (22)–(24) and from (25)–(27), imply

that

max
n∈[N ]

| ∪T
t=1 supp(D(:, (n− 1)T + t))| ≤ ∆ (36)

and that

max
n∈[N ]

| ∪T
t=1 supp(E((n− 1)T + t, :))| ≤ Γ (37)

and thus we see how the normalized costs δ = ∆
K , γ = Γ

L from (6) form the upper bound on the fraction

of non-zero elements of the columns of D and rows of E, respectively.

Finally, from (8) we recall the system rate R = K
N , the corresponding system capacity C representing

the supremum of all rates that allow for error-free function reconstruction, and the two parameters of

interest ζ = ∆
L and κ = K

L .

Some additional definitions and assumptions on the stochastic aspects of our problem, will be described

in Section IV.

III. LOSSLESS DISTRIBUTED COMPUTING OF LINEARLY-DECOMPOSABLE FUNCTIONS

We proceed with the main results for the error-free (lossless) case. We recall the distributed computing

setting, which involves K users, N servers, T communication slots, computational and communication
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costs Γ ≤ L, ∆ ≤ K respectively, normalized costs γ, δ ∈ [0, 1], a communication-related parameter ζ =

∆
L , and a system capacity corresponding to the maximum ratio K/N that achieves lossless reconstruction

of the functions. We first present the result without any restriction on the dimensions, while we recall that

the optimality requires that each submatrix of F has full rank, which is a condition that is readily justified

in our real-function setting of interest here. All the results hold under the assumption that NT ≥ L and

NT ≥ K. The following main result will hold under the basic disjoint support assumption on the matrices

D,E, where this assumption will be clarified in Definition 1 immediately after the theorem below. The

proofs will follow from an achievable scheme and from a converse that will be presented later on.

Theorem 1. The optimal achievable rate of the lossless K,N, T,Γ,∆ distributed computing setting takes

the form C = K/Nopt, where

⌈min(∆,Γ)

T
⌉⌊K

∆
⌋⌊L

Γ
⌋+ ⌈min(mod(K,∆),Γ)

T
⌉⌊L

Γ
⌋

+ ⌈min(mod(L,Γ),∆)

T
⌉⌊K

∆
⌋+ ⌈min(mod(K,∆),mod(L,Γ))

T
⌉ (38)

≥ Nopt ≥
KL

T max(Γ,∆)
(39)

and the bounds exactly meet (and thus the achievable scheme is exactly optimal) for T ≥ min(∆,Γ)

as well as for ∆ ≥ Γ,∆|K,T |Γ as well as for Γ ≥ ∆,Γ|L, T |∆. Else the achievable capacity is

within a constant gap from the optimal. Finally, when δ−1, γ−1 ∈ N (corresponding to the case of

∆|K,Γ|L, T |min(∆,Γ)), the capacity takes the form

C =

T max(ζ, γ), if T | Lmin(ζ, γ),

Lζγ, if T > Lmin(ζ, γ).

(40)

Proof. The proof can be found in Appendix B which describes the achievability of the corresponding

decomposition DE = F, and how this decomposition is translated to our distributed computing setting

with the corresponding communication and computation cost constraints. The converse can be found in

Appendix C, and so is the proof of exact optimality and order optimality of the achievable scheme.

The above assumption on optimality, is clarified in the following definition.

Definition 1. [Disjoint Support Assumption] We say that two matrices D ∈ RK×NT ,E ∈ RNT×L, accept

the disjoint support assumption if and only if for any two columns D(:, i),D(:, i′), i, i′ ∈ [NT ] of D

and the respective two rows E(i, :),E(i′, :) of E, then supp(D(:, i)E(i, :)) = supp(D(:, i′)E(i′, :)) or

supp(D(:, i)E(i, :)) ∩ supp(D(:, i′),E(i′, :)) = ∅.
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To offer some insight on the result of our theorem above, let us provide here a small example that

pertains to the simpler single-shot scenario.

Example 1. Let us see a basic example of a multi-user linearly-decomposable problem. Here, we have

N servers tasked with computing functions for K = 6 users. These functions are linear combinations of

L = 10 subfunctions. We will focus on the simplified scenario with T = 1 (single-shot communication)1.

Our budget allows for a maximum of ∆ = 3 communication links per server, equivalent to δ = ∆
K = 3

6 ,

and a per-server computational cost of Γ = 5 (as defined in equation (5)) computed subfunctions,

corresponding to γ = Γ
L = 5

10 . With this in place, we seek the minimum number of servers needed to

guarantee lossless reconstruction (E = 0) of the desired functions at the users, and for this we directly

use (40) to conclude that we need N = 12 servers. To tackle this challenge of reconstruction, we need

to construct two key matrices based on F:

1) The (NT × L) = (12 × 10) computing matrix E, which specifies which subfunctions each server

computes. Each row of E should have at most Γ = 5 non-zero elements.

2) The (K ×NT ) = (6× 12) communication matrix D, which determines where each server commu-

nicates to and how each user collects data from different servers. Each column of D should have

at most ∆ = 3 non-zero elements.

These matrices originate from the decomposition F = DE. Recalling from equation (25) that the matrix

F representing the requested functions, is of size K × L = 6 × 10, and considering Γ = 5, which

corresponds to γ = 1/2, the solution is as follows:

1) Initially we partition F into K
∆

L
Γ = 2 ·2 = 4 disjoint 3×5 submatrices Sj ∈ R∆×Γ = R3×5 (we will

refer to these submatrices as ”tiles”), where j ranges from 1 to 4. This is illustrated in Figure 2.

2) Then using the standard matrix decomposition form (see later in (51)), we SVD-decompose each Sj

into Sj = LjRj , where Lj ∈ R3×3,Rj ∈ R3×5 for all j ∈ [4], noting that such full decomposition

is possible since the maximum rank of each Sj is min(∆,Γ) = 3.

3) Then we construct D ∈ R6×12 and E ∈ R12×10 by tiling them with Lj and Rj respectively, in the

manner clearly illustrated in Figure 2. Thus, for example, the upper left 3 × 3 submatrix of D is

equal to L1, the 3× 3 tile to the right of that is zero, while the lower left corner of E is equal to

R4.

1In the single shot scenario, a server broadcasts a single linear combination of the output files to its connected users. For

T > 1, a server can broadcast multiple linear combinations of the output files, not necessarily to the same set of users. The

communication cost ∆ measures the union of all the activated links throughout the T shots.
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Fig. 2. Corresponding to Example 1, this figure illustrates the partitioning of F into 4 tiles of size (∆ × Γ) = (3 × 5), and

also illustrates the sparse tiling of D and E with tiles Lj and Rj respectively, resulting in the full tiling of F = DE which

is covered by the four Sj = LjRj , j ∈ [4] (see Figure 2), guaranteeing sparsity δ = γ = 1
2

for D and E respectively, thus

satisfying the per-server communication and computing constraints, while yielding lossless reconstruction of F and thus of the

desired functions.

The above example offers a glimpse, albeit partly illustrative, of the general principle behind creating

our achievable scheme. In brief, for the simpler case corresponding to (40), we begin by splitting our

K × L matrix F, into γ−1δ−1 submatrices of size ∆ × Γ, and we SVD-decompose (using the matrix

decomposition form) each submatrix into the Lj , j ∈ [4] part that becomes a tile of D, and into the

Rj , j ∈ [4] part that becomes a tile of E. The tile placement must respect the sparsity constraints from

Γ,∆ and must yield DE = F. Regarding the required number of servers, the general rule (at least for

the case of T = 1) is that N is simply the number of submatrices, multiplied with the rank of each

submatrix1. In our example, we had 4 submatrices, each of rank 3, thus we employed 12 servers, which

later turns out to be optimal.

On the other hand, once we reduce the computation and communication capabilities of each server,

more servers may be required. This is illustrated in the following example.

Example 2. For the same setting as in Example 1, again for K = 6, L = 10, T = 1, and again for ∆ = 3

(corresponding to δ = 1
2 ), if we wish to substantially reduce the load on each server to only having to

compute Γ = 2 subfunctions (corresponding now to γ = 1
5 ), then the minimum number of servers N is

now 20 (cf. (38)), and the corresponding tessellation pattern is presented in Figure 3, where we see 10

submatrices of rank 2.

At the same time, some reductions in γ, δ may come for free. As it turns out, there can be multiple

tessellation patterns resulting in the same required value of N , but depending on the size and placement

1Having a larger T augments the span of the transmitted signals, thus allowing for fewer required servers.



17

Fig. 3. A problem setting with the same K = 6, L = 10, ∆ = 3 and E = 0 as in Example 2, but a smaller computation cost

Γ = 2 corresponding to γ = 1/5. The number of servers used now for zero-error function recovery increases from 12 to 20.

of the tiles, such patterns could correspond to different Γ and ∆. To illustrate, consider the following

example.

Example 3. In a lossless computing setting similar to that in Example 1, we consider again N = 12

servers, K = 6 users, L = 10 subfunctions and T = 1. As in Example 1, we maintain a computational

cost of Γ = 5, but now we see that the tessellation pattern in Figure 4 allows for a reduced ∆ = 2

corresponding to δ = 1/3.

Such reductions in the communication and computation costs can continue, up to a point, and then again

more servers may be required to provide lossless function reconstruction, as suggested by Example 2.

The following corollary addresses this aspect, by providing the optimal communication-vs-computation

tradeoff for a broad setting. We recall our usual conditions that NT ≥ L and NT ≥ K.

Corollary 1. In the (K,N, T, γ, δ) lossless distributed computing setting with δ−1, γ−1 ∈ N, the optimal
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Fig. 4. Pertaining to Example 3 with K = 6, L = 10, T = 1,Γ = 5 and an optimal number of N = 12 servers, the new

tessellation pattern allows for a reduced ∆ = 2 reflecting a reduction from δ = 1/2 to δ = 1/3.

communication-vs-computation relationship takes the form

γδ =
1

N
, for T > Lmin(ζ, γ) (41)

whereas when T | Lmin(ζ, γ), the (γ, δ) operating points

(
K

NT
,
T

K
) and (

T

L
,

L

NT
) (42)

are again optimal.

Proof. The proof is direct from (40).

The results of the above corollary are illustrated in Figure 5. As we have seen, when T ≥ max(∆,Γ)

then the above achievable rate is declared to be exactly optimal. Similarly when T < max(∆,Γ) then if

∆ ≥ Γ,∆|K,T |Γ or if Γ ≥ ∆,Γ|L, T |∆, then again the achieved performance is exactly optimal. We

now focus on the remaining cases (which are the remaining cases that abide to T < max(∆,Γ)), for

which we will show that the performance is at most a factor of 8 from our converse.

Corollary 2. For the case where T < max(∆,Γ), the achievable rate R in (38) is at most a multiplicative

factor of 8 from the optimal.

Proof. The proof can be found in the Appendix C.
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Fig. 5. On the right we see the optimal performance for T ≥ min(∆,Γ), which contrasts the blue achievable region with the red

provably non-achievable region. On the left, we illustrate for the simple single-shot case, the two optimal points (γ = K
N
, δ = 1

K
)

and (γ = 1
L
, δ = L

N
), which are compared to the operating points A = (γ = 1, δ = 1/K) and B = (γ = 1/L, δ = 1) of

two conceivable baseline schemes. Point A = ( 1
L
, 1) is that of a baseline fully-centralized scheme where servers n ∈ [K]

must compute all subfunctions (the rest are assigned no functions), while point B = (1, 1
K
) corresponds to a fully-parallelized

baseline scheme where each server only computes one subfunction output and sends it, by necessity, to all users. The two points

correspond to the trivial decompositions F = [IK 0(K,K−N)] · [F⊺ 0(L,N−K)]
⊺ and F = [F 0(K,N−L)] · [IL 0(L,N−L)]

respectively.

IV. LOSSY DISTRIBUTED COMPUTING OF LINEARLY-DECOMPOSABLE FUNCTIONS

We now examine the scenario of lossy function reconstruction, where it is possible for the reconstruction

error to surpass zero. Our primary goal is to constrain and quantify the error that occurs when the available

system resources, represented by γ, δ,N , are insufficient for achieving lossless reconstruction.

Let us recall that our aim is to approach, under the available γ, δ,N, T, the minimum (cf. (34),(35))

ϵ̂ =
1

KL
E F,w{min

D,E

K∑
k=1

|Fk − F
′

k|2} =
1

KL
E F,w{min

D,E
∥DE− F∥2F } (43)

which means that our distributed computing challenge ultimately reduces to the problem of sparse matrix

factorization, as seen below

min
D,E

∥DE− F∥2F . (44)

Solving this problem optimally has been a persistent challenge, often resisting a straightforward

characterization of the most efficient performance [82]. Consequently, we will turn to asymptotic scaling,

with parameters of interest that grow with N , as well as adopt a statistical approach, where instead of
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Fig. 6. We consider K = 6, L = 10, ∆ = 3 (corresponding to δ = 1/2), Γ = 2 (corresponding to γ = 1/5), and N = 10. We

note that E =
∑10

i=1 σ
2
2,i, where σ2,i as the second singular value of Si in decreasing order (i.e., the smallest singular value).

In this setting, LiRi is the best rank-1 approximation to submatrix Si, and is provided by the truncated SVD as described in

the appendix Section A. Compared to Example 2 (Figure 3), we now have Γ = 2 (corresponding to γ = 1/5) and a smaller

number of servers N = 10, at the expense though of having to tolerate a certain error in our function recovery.

offering guarantees for each individual matrix F, we will provide assurances across the ensemble of

matrices F under certain basic assumptions. Adopting the specific vector-wise metrics of sparsity γ, δ,

our aim will be to bound the average optimal error ϵ̂ = 1
KL E

F,w
{min
D,E

∥DE−F∥2F }, under the assumptions

that the entries of w from (17) and of F, are i.i.d with zero mean and unit variance.

We proceed directly with the main result. We recall that ΦMP,λ(t, r), FMP,λ(.) and fMP,λ(.) are

respectively the incomplete first moment, the CDF and PDF of the standard Marchenko-Pastur distribution.

We also recall that we operate under the assumption that NT ≥ L,NT ≥ K.
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The following main result will hold under a stronger disjoint balanced support assumption on the

matrices D,E, where this assumption will be clarified in Definition 2 right after the following theorem.

Theorem 2. In the limit of large N and constant δ, γ, κ,R, the average optimal reconstruction error is

bounded as

ϵ̂ ≤ ΦMP,λ(t, r) =

∫ t

r
xfMP,λ(x)dx (45)

where λ = δK
γL = ∆

Γ , r = (1−
√
λ)2, and where t is the solution to FMP,λ(t) = 1− T γN

K . Furthermore,

the bound is tight and the corresponding performance is optimal under the constraint that D and E

satisfy the disjoint balanced support assumption.

Proof. The achievable part of the proof is based on the general scheme described in Appendix D, while

the analysis part draws from the properties of the Marchenko–Pastur distribution law, and is again found

in Appendix D. The converse utilizes basic arguments from the combinatorial tiling literature [91], after

accounting for additional covering requirements, again as described in Appendix D.

The above assumption on optimality is clarified in the following definition.

Definition 2. [Disjoint Balanced Support Assumption] We say that two matrices D ∈ RK×NT ,E ∈

RNT×L accept the disjoint balanced support assumption if an only if they accept the disjoint support

assumption (cf. Definition 1) and additionally it holds that ∥D(:, i)∥0 = ∥D(:, j)∥0, ∥E(i, :)∥0 = ∥E(j, :

)∥0, ∀i, j ∈ [NT ].

The uniformity assumption reflects a uniformity in the computational and communication capabilities

across the servers. Before proceeding to the next sections that present the schemes and the proofs, we

provide here a simple example for our case of lossy function reconstruction.

Example 4. We consider a multi-user distributed computing scenario which, as in Example 1, entails

K = 6 users, T = 1 shots, L = 10 subfunctions, and a per-server computation and communication cost

defined by Γ = 5 and ∆ = 3 respectively. Unlike Example 1 that considered KL
∆Γmin(∆,Γ) = 12 servers

and error-free reconstruction, now we consider N = 4 servers, thus forcing a reconstruction error. For

this setting, we describe how to construct our matrices D ∈ R6×4 and E ∈ R4×10, after receiving F.

Useful in this description will be Figure 7, which illustrates the tessellation pattern used to tile each

non-zero submatrix of D and E with Lj and Rj respectively. The scheme entails three main steps.

1) In the first step in our example, we partition F into 4 submatrices F1,F2,F3,F4 of size 3× 5, as

shown in Figure 2. We will approximate these respectively by submatrices S1,S2,S3,S4, such that
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Fig. 7. Corresponding to Example 4, this figure illustrates the tessellation pattern used to design D and E for a system with

K = 6 users, T = 1 shots, L = 10 subfunctions, Γ = 5 and ∆ = 3, but with only N = 4 servers. The reduced number of

servers forces SVD-based approximations which entail lossy function reconstruction.

S1 will approximate the upper left 3 × 5 submatrix of F, S2 the lower right 3 × 5 submatrix, and

so on.

2) As a second step, to create each Sj , we start by SVD-decomposing each submatrix Fj . As there

are only 4 servers and four submatrices, we remove the two less dominant singular directions of

each decomposition, preserving only each dominant singular direction. Based on this rank-1 SVD

approximation (see appendix Section A for more details), each Sj takes the form Sj = LjRj where

now these dominant directions Lj ∈ R3×1 and Rj ∈ R1×5, j ∈ [4], will serve as the tiles of our

designed D and E respectively.

3) In the final third step, we decide where to place the tiles Lj ,Rj in D and E respectively. To do

this, we employ the tessellation pattern in Figure 7. For example L1 and L4 are respectively the

upper left and lower right 3× 1 vectors in D, while R1 and R4 are respectively the upper left and

lower left 1× 5 vectors in E.

Then in our example, in order to verify that the communication and computational costs at each server

are not violated, we simply note that each column of D only has ∆ = 3 non-zero elements, and each

row of E only has Γ = 5 non-zero elements. Finally, the overall approximation error for F takes the

form
4∑

j=1

∥Fj − LjRj∥2 =
4∑

j=1

√
σ2
2,j + σ2

3,j (46)

where σi,j , i ∈ [3], j ∈ [4] are the singular values of Fj in descending order.

Remark 1. The above gives an example of the employed scheme for designing D and E, and the

expression in (46) gives an example of the corresponding error performance. The scheme is described
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for any dimension in Section IV, and the error expression takes the form

EF =

n∑
j=1

∥Fj − LjRj∥2 =
n∑

j=1

√
σ2
q+1,j + σ2

q+2,j + · · · (47)

where n describes the number of submatrices that we have divided F into, and where q simply represents

the truncation depth of the SVD, where we keep only the q most dominant dimensions of each submatrix

Fj . In terms of guarantees, we clarify as follows. As is probably clear, an exact (non-truncated) SVD

approach corresponds to the error-free scenario of EF = 0, for which we have indeed proven optimality

under the assumptions of full rank F and disjoint supports, where our optimality results reveal that EF = 0

is achieved with the least amount of γ, δ,N resources, compared to any other conceivable scheme. On

the other hand, for the lossy case, we note that while the scheme applies and can be used for the finite

dimensional case, we also recall that in terms of evaluating statistics in closed form and for providing

optimality guarantees, we needed to revert to the asymptotic and stochastic setting, for which the scheme

(and the corresponding averaging E[EF] of (47), as rigorously described in (43)) is optimal under the

assumption of disjoint balanced supports. On the other hand, for the non-asymptotic and non-stochastic

lossy regime (where guarantees are required for any fixed-sized F), we clarify that the general expression

in (47) (seen more rigorously in (91)), offers a valid upper bound (directly from (34)) on the optimal error

of our distributed computing problem, under an assumption of normalized outputs ∥w∥2 = 1. Finally, in

the asymptotic but non-stochastic (non-average) setting — under commonly employed assumptions, and

under a converging ∥w∥2 = 1 — the above general expression in (47), serves as an upper bound on the

optimal error in the distributed computing problem, for any specific large F.

V. DISCUSSION AND CONCLUSIONS

In this work, we investigated the fundamental limits of multi-user distributed computing of real-valued

linearly-decomposable functions. In addressing this problem, we have made clear connections to the

problem of fixed support matrix factorization, tessellation theory, as well as have established an interesting

connection between the problem of distributed computing, and the statistical properties of large matrices.

Under a basic disjoint support assumption, the error-free system capacity C = K
Nopt

in Theorem 1 revealed

the optimal computational and communication resources γ, δ,N required to accommodate a certain

number of users and subfunctions. The same result yields a simple relationship between computational

complexity and communication load, as this is described in Corollary 1. The derived performance is

proven optimal over a sizeable class of schemes.

For the lossy case, after transitioning to the equivalent problem of approximate matrix factorization,

we employed asymptotics and a stochastic metric, allowing us to provide a clear bound on the optimal
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Fig. 8. The y-axis represents the conditionally optimal average error ϵ derived in Theorem 2 for δ = 0.4, γ = 0.3, κ = 1 and

T = 1. The x-axis describes the ratio of the operating rate to the error-free or lossless system capacity, i.e. describes how many

times higher is the system rate from the error-free system capacity.

normalized reconstruction error as a function of the matrix sparsity as it reflects our communication

and computational resources. This bound is in fact tight under the assumption of uniform and disjoint

supports, and it is an outcome of our schemes that employ tiling techniques, together with truncated SVD

decompositions1.

One of the interesting outcomes of the work is an analytical handle on how we can tradeoff our system

rate (corresponding to our server resources or the clients we serve) with the function reconstruction error.

Figure 8 offers some understanding on how lossy reconstruction is affected by having either too few

servers or too many users. Starting from a lossless scenario where the operating ratio K/N matches the

error-free system capacity (corresponding to the value of 1 on the x-axis), we see how the error increases

as we either add more users or as we remove servers. For example, when the ratio R/C between the

operating rate and the error-free capacity, is around 2 (after doubling the users or halving the servers)

then we expect an error corresponding to ϵ = 0.15. On the other hand, if we could accept ϵ = 0.3, then

— compared to the error-free scenario — we could triple the number of users or equivalently reduce our

servers to about one third.

Similarly Figure 9, for the same setting, plots the error as a function of the operating rate (unnormal-

ized), for a slightly different setting where now δ = 0.2, γ = 0.2, κ = 1, T = 1. In this scenario, where

1The derived solutions in Theorem 1 and Theorem 2 entail at most ⌈K
∆
⌉⌈L

Γ
⌉ SVD decompositions, and a corresponding

additional (unaccounted for) complexity of ⌈K
∆
⌉⌈L

Γ
⌉O(∆Γ2) = O(KLΓ) = O(KL2). Our paper operates under the assumption

that such costs are small compared to the costs of evaluating the L subfunctions that may often be non-linear.
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Fig. 9. The y-axis plots ϵ from Theorem 2 for δ = 0.2, γ = 0.2, κ = 1 and T = 1, while the x-axis represents the rate K/N .

the error-free capacity is merely C0 = 0.2 (cf. (40)), an aggressive increase in the rate to R = 2 (2 times

more users than servers, and 10 = R
C0

times more users than in the error-free case) yields a generally

unmanageable ϵ = 0.68, etc. Finally, Figure 10 reflects the effect of the per-server computation resources

γ, the per-server communication resources δ, the effect of T and the effect of η (cf. (7)) where a higher

η implies more communication resources per subfunction.

One interesting outcome of our work is that substantial computational and communication savings can

be harvested with only a modest cost in function reconstruction error. This has to do with the nature of the

singular value distribution of larger matrices (corresponding to many users and many basis subfunctions).

Due to this nature, in principle, removing computational resources will indeed introduce error, but will

do so in a manner that is initially slow. Such error power is initially proportional to the smallest singular

value of a large F, and then with more computational/communication savings, it becomes proportional

to the sum of the few smallest singular values, and so on. Due to the statistical nature of larger matrices,

this error accumulates slowly, thus considerable computational savings can be obtained, with a relatively

modest function reconstruction error (See Figure 11).

For future work, we can consider various related scenarios such as the scenario where some subfunctions

contribute more to the overall function than other subfunctions do. Another interesting direction could

involve a pre-defined and fixed communication topology, which would then entail a support of D that

is fixed and independent of F, or similarly a scenario where each server can only compute a predefined

subset of subfunctions, now bringing to the fore a support of E that is again fixed and independent of F.
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Fig. 10. Plotting the error-effect of δ, γ, η, T (Theorem 2) in various settings. The y axis corresponds to ϵ (cf. (34)).
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Fig. 11. The y-axis represents the conditionally optimal average error ϵ derived in Theorem 2 for δ = 0.4, γ = 0.3, κ = 1 and

T = 1. The x-axis describes the number of active servers over the number of optimal serves in the lossless scheme.
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APPENDIX A

CONCEPTS RELATING TO THE DESIGN OF THE SCHEMES

Before describing our schemes and converses, we present in this section some basic properties and

definitions that will be useful later on.

We recall that our goal will be to design the communication matrix D and the computing matrix E

that yield DE = F (or DE ≈ F, depending on our case), under fixed N,T , and under a constraint of

at most ∆ non-zero elements in any column of D and at most Γ non-zero elements in any row of E. To

do so, we will need some basic concepts and definitions relating to the approach1 in [83].

Definition 3. Given two support constraints I ∈ {0, 1}K×NT and J ∈ {0, 1}NT×L of two matrices

D ∈ RK×NT and E ∈ RNT×L respectively, then for any n ∈ [NT ], we refer to Sn(I,J) ≜ I(:, n)J(n, :

) ∈ RK×L as the nth rank-one contribution support2 of DE [83].

We note that when the supports are implied, we may shorten Sn(I,J) to just Sn. This will relate to

the support of DE. On this, we have the following lemma.

Lemma 1. For I ≜ supp(D) and J ≜ supp(E), then

∪N
n=1Sn(I,J) ⊇ supp(DE). (48)

Proof. The above follows from Definition 3, from having ∪N
n=1Sn(I,J) = ∪N

n=1I(:, n)J(n, :), and from

the fact that DE =
∑NT

n=1D(:, n)E(n, :).

We also need the following definition.

Definition 4. For I = supp(D) ∈ {0, 1}K×NT and J = supp(E) ∈ {0, 1}NT×L, the equivalence classes

of rank-one supports are defined by the equivalence relation i ∼ j on [NT ] which holds if and only if

Si = Sj . This relation allows us to define C to be the set of all equivalence classes [83].

The above splits the columns of D (and correspondingly the rows of E) such that the equivalence

i ∼ j holds if and only if I(:, i)J(i, :) = I(:, j)J(j, :).

1We quickly recall that for a matrix A, then A(:, n) represents its nth column, A(n, :) its nth row, supp(A) the binary

matrix indicating the support of A, while for a vector a, then supp(a) represents the set of indices of a with non-zero elements.

Also, when we refer to a support constraint, this will be in the form of a binary matrix that indicates the support (the position

of the allowed non-zero elements) of a matrix of interest.
2We have naturally assumed that I(:, n) and J(n, :) each have at least one non-zero element.
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Definition 5. For two supports I ∈ {0, 1}K×NT ,J ∈ {0, 1}NT×L of D and E respectively, and for

C being the collection of equivalence classes as in Definition 4, then each class P ∈ C will have a

representative support which we will denote as SP .

Definition 6. For a representative support SP of a class P ∈ C (as in Definition 5), and for some n ∈ P ,

we define cP ≜ I(:, n) (resp. rP ≜ J(n, :)) to be the corresponding component column (resp. component

row) of SP , and we define CP ≜ supp(cP) ⊂ [K] to be the set of indices of the non-zero elements in

cP , while we define RP ≜ supp(rP) ⊂ [L] to be the set of indices of the non-zero elements in rP .

Remark 2. As we will see later on, the non-zero part of SP will define the position and size of tile1 P of

DE. Furthermore, the non-zero part of I(:,P) and the non-zero part of J(P, :) will define the so-called

tiles of D and E respectively2, and they will naturally map onto tile P of DE. Also note that a tile P

(which corresponds to the representative contribution support SP , i.e., which corresponds to the entire

class P) should not be confused with the rank-one contribution support Sn. A tile may entail multiple

(specifically |P| such) rank-one contribution supports.

We proceed with further definitions.

Definition 7. For every subset C′ ⊆ C of equivalence classes, we define the union of the representative

supports SC′ ≜ ∪P∈C′SP to be — as defined in Section I-D — the point-wise logical OR of the

corresponding SP .

In the above, SC′ is simply the area of the product matrix DE covered by all the tiles P in C′.

Furthermore we have the following definition.

Definition 8 ([83]). The maximum rank of a representative support of class P ∈ C takes the form

rP ≜ min(|CP |, |RP |). (49)

As one can readily see, when I = supp(D) and J = supp(E), then the part of matrix DE covered by

tile SP , can have rank which is at most rP .

Remark 3. While in mathematics, tiling a matrix (or a surface area) corresponds to finding a way to

‘cover’ this matrix with tiles of specific sizes, here our task is somewhat different. Here our goal is to

1Note that Sn = SP for any n ∈ P .
2To help the reader with the notation, we remind here that I(:,P) simply refers to the columns of I labeled by the elements

inside set P . Similarly, J(P, :) corresponds to the rows of J indexed by P .
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Fig. 12. The figure on the left illustrates the support constraints I and J on D and E respectively. The constraints I(:, 1) and

J(1. :) on the columns and rows of D and E respectively are colored green, I(:, 2) and J(2. :) are colored cyan and I(:, 3) and

J(3. :) are colored red. The product of a column with a row of the same color, yields the corresponding rank-one contribution

support Sn(I,J), n = 1, 2, 3, as described in Definition 3, and as illustrated on the right side of the figure.

Fig. 13. This figure illustrates three different rank-one contribution supports S1,S2,S3, where the first two fall into the same

equivalence class SP1 = S1 = S2, while SP2 = S3.

cover a product matrix (DE in this case) with tiles that are the result of a product of properly placed tiles

of D and of E, where these last tiles must adhere to the sparsity constraints of D and E. Furthermore,

the size of the non-zero part of each Sn, n ∈ P , together with the number of such equivalent elements

in P , will jointly determine the degree of the approximation of the corresponding submatrix of F.

Before proceeding with the scheme, we here also give a very brief reminder on the basic concepts

regarding SVD decompositions.
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A. Brief Primer on Matrix Approximation

For an m× n matrix A, for some k ≤ min{m,n}, the rank-k approximation of A takes the form1

Am×n ≃ Bm×kCk×n (50)

where Bm×k and Ck×n are two full rank matrices of dimension m × k and k × n respectively. Such

decomposition allows us to represent A with at most k(m + n) elements, which can be substantially

fewer than the mn elements required to represent A.

As we will further recall below, matrices can be represented by employing SVD decomposition. For

a rank-r matrix Am×n, this SVD takes the form

A = Um×rSr×rV
⊺
r×n =

[
u1,u2, . . . ,ur

]

σ1 0

σ2
. . .

0 σr




v⊺
1

v⊺
2
...

v⊺
r

 =

r∑
i=1

σiuiv
⊺
i (51)

where U and V are orthogonal matrices, where S is diagonal with entries σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0

being the singular values in descending order, where u1,u2, . . . ,ur are the columns of Um×r, and where

v⊺
1 ,v

⊺
2 , . . . ,v

⊺
r are the rows of Vn×r.

Subsequently, the optimal rank-k approximation matrix Ak, k < r of A, takes the form

Ak = Um×k(Sk)k×kV
⊺
k×n =

k∑
i=1

σiuiv
⊺
i = Um×kU

⊺
k×mA (52)

= (

k∑
i=1

uiu
⊺
i )A = AVn×kV

⊺
k×n = A(

k∑
i=1

viv
⊺
i ) (53)

where (Sk)k×k = diag(σ1, σ2, . . . , σk),Um×k = [u1,u2, . . . ,uk] and V⊺
k×n = [v⊺

1 ,v
⊺
2 , . . . ,v

⊺
k ]. This

approximation, also referred to as the truncated SVD approximation, is simply the projection of A

onto the space spanned by the strongest k singular vectors of A. Directly from the well-known Eckart-

Young Theorem [84], this approximation is optimal, as it guarantees ∥A − B∥F ≥ ∥A − Ak∥F =√
σ2
k+1 + . . .+ σ2

r for any rank-k matrix B.

With the above in place, we proceed to describe the scheme for the lossless case.

1In the following, when needed we will be using matrix-subscripts to denote the dimensionality of matrices. For example, we

will be using Bm×k to emphasize that matrix B has dimensionality m× k.
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APPENDIX B

SCHEME FOR LOSSLESS RECONSTRUCTION (ACHIEVABILITY PROOF OF THEOREM 1)

We recall that we wish to design the decomposition DE = F, for fixed N,K, T,∆,Γ, that will guar-

antee the reconstruction of all requested function outputs, with each of the N servers locally calculating

up to Γ subfunctions, and each engaging in communication with at most ∆ users over the entirety of T

broadcast shots.

In what follows, we will explain the tile design, elaborating on the positioning of these tiles in D and

E, as well as defining how these tiles are filled as a function of the SVD decomposition of carefully

selected submatrices of F. This is done both for the single-shot as well as the multi-shot scenarios. Our

design naturally abides by the number of servers available. In particular, the position and size of the

tiles of D and E will be crucial, because they will determine the rank of corresponding submatrices of

DE, where in particular the sum of these ranks must be bounded by NT . Before proceeding with the

scheme, we also note that we have Examples 5 and 6 that illustrate the design of our scheme for the

more challenging case of ∆ ∤ K,Γ ∤ L, T = 1 as well as of ∆|K,Γ|L, T > 1.

A. Construction of D,E

The construction will involve the following steps: a) Sizing and positioning the tiles of D,E and DE,

b) Filling the non-zero tiles in DE as a function of F, and finally c) Filling the tiles in D and E. We

elaborate on these steps below.

a) First step: Sizing and positioning the tiles of D,E and of DE: We first partition the set of

equivalent classes C (cf. Definition 4) into the following subsets of equivalence classes

C1 ≜ {Pi,j | cPi,j
= [0⊺

(i−1)∆,1
⊺
∆,0

⊺
K−i∆]

⊺, rPi,j
= [0⊺

(j−1)Γ,1
⊺
Γ,0

⊺
L−jΓ], (i, j) ∈ [⌊K

∆
⌋]× [⌊L

Γ
⌋]}, (54)

C2 ≜ {Pi,∗ | cPi,∗ = [0⊺
(i−1)∆,1

⊺
∆,0

⊺
K−i∆]

⊺, rPi,∗ = [0⊺
L−mod(L,Γ),1

⊺
mod(L,Γ)], i ∈ [⌊K

∆
⌋]}, (55)

C3 ≜ {P∗,j | cP∗,j = [0⊺
K−mod(K,∆),1

⊺
mod(K,∆)]

⊺, rP∗,j = [0⊺
(j−1)Γ,1

⊺
Γ,0

⊺
L−jΓ], j ∈ [⌊L

Γ
⌋]}, (56)

C4 ≜ {P | cP = [0⊺
K−mod(K,∆),1

⊺
mod(K,∆)]

⊺, r⊺P = [0⊺
L−mod(L,Γ),1

⊺
mod(L,Γ)]} (57)

where cPi,j
, cPi,∗ , cP∗,j , cP are the corresponding component columns (as defined in Definition 5) of

C1, C2, C3, C4 respectively. Similarly rPi,j
, rPi,∗ , rP∗,j , rP are the corresponding component rows, from the

same definition. These describe the exact position and size of each tile of D, of E, and thus automatically

of each tile of DE.

We now note that the number of classes in each subset Ci, i = 1, 2, 3, 4, is equal to

|C1| = ⌊K
∆
⌋⌊L

Γ
⌋, |C2| = ⌊K

∆
⌋, |C3| = ⌊L

Γ
⌋, |C4| = 1 (58)
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while we also note from (49) and Definition 8, that the maximum rank of each representative support

(i.e. of each tile of DE) takes the form

rP =



min(∆,Γ), P ∈ C1,

min(mod(K,∆),Γ), P ∈ C2,

min(mod(L,Γ),∆), P ∈ C3,

min(mod(K,∆),mod(L,Γ)), P ∈ C4.

(59)

The above information will be essential in enumerating our equivalence classes and associating each such

class to a collection of servers.

b) Second step: Filling the non-zero tiles in DE as a function of F: Recall that we have a tile

SP(RP , CP) corresponding to the non-zero elements of SP . This tile is now empty, in the sense that the

non-zero entries are all equal to 1. To fill this tile, we consider

FP ≜ (F⊙ SP)(RP , CP), ∀P ∈ ∪4
i=1Ci (60)

where this filled tile, in our current lossless case, is simply the submatrix of F at the position defined

by the non-zero elements of SP . The schematic illustration in Figure 14 of Example 5, may help clarify

the above.

c) Third step: Filling the tiles in D and E: We now SVD-decompose each FP , as

FP = DPEP (61)

where DP ∈ R|RP |×rP ,EP ∈ RrP×|CP |. Going back to (51), our matrices FP ,DP ,EP are associated

to A, U · S and V respectively, and all correspond to complete SVD decompositions. For a visual

representation of this second step, we provide Figure 14 of Example 5.

Let us now enumerate our classes (i.e., our tiles) as follows

∪4
i=1Ci = {P1,P2, . . . ,Pm}, m ∈ N. (62)

Now let us position each tile of D as follows

RPj
, [

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], ∀Pj ∈ ∪4

i=1Ci (63)

and each tile of E as follows

[

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], CPj

, ∀Pj ∈ ∪4
i=1Ci (64)

where the above describes the indices of columns and rows where each tile resides.
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At this point, we note that for the single shot case of T = 1, the above yields

D(RPj
, [

j−1∑
i=1

rPi
+ 1,

j∑
i=1

rPi
]) = DPj

(65)

and

E([

j−1∑
i=1

rPi
+ 1,

j∑
i=1

rPi
], CPj

) = EPj
(66)

while naturally the remaining non-assigned elements of D and E are zero. This step can also be visualized

in Figure 14 which illustrates this step as it applies to Example 5.

We recall from Section II (cf. (26), (27)), that each server n ∈ [N ] corresponds to a column and row

index of D and E respectively. To make the connection between N and the parameters employed in our

scheme, let us recall our tiles P ∈ ∪i∈[4]Ci and the corresponding DP as seen in (61), and let us recall,

as described in (65), that all such DP occupy
∑m

i=1 rPi
columns in total. Combining this information

with the value of rP in (59), yields that

N =
∑
i∈[4]

∑
P∈Ci

rP |Ci| = min(∆,Γ)⌊K
∆
⌋⌊L

Γ
⌋+min(mod(K,∆),Γ)⌊L

Γ
⌋

+min(mod(L,Γ),∆)⌊K
∆
⌋+min(mod(K,∆),mod(L,Γ)) (67)

which proves Theorem 1 for the case of T = 1. An additional clarifying illustration for the single shot

case can be found in Example 5.

For the case of T > 1, the difference is in the third step, where we now replace (65) and (66), where

by accounting for (64), we see that the tiles of D and E respectively take the form

DPj
= D(RPj

, [

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉]) (68)

and

EPj
= E([

j−1∑
i=1

T ⌈rPi

T
⌉+ 1 :

j∑
i=1

T ⌈rPi

T
⌉], CPj

). (69)

One aspect in our design that distinguishes the multi-shot from single-shot case, regards the association

of tiles to servers. An additional level of complexity here has to do with what one might describe as

an “accumulation of rank” at the different servers. As we have realized, there is an association between

tiles and servers. In the case of T = 1, a single tile Pi of rank rPi
, could be associated with rPi

servers,

each contributing to a single rank. If the number of servers associated with a tile reached the rank of that

tile, then that tile could be decomposed in a lossless manner. Now though, as one can imagine, having

multiple shots (corresponding to T > 1) can allow a single server to span more than one dimension, i.e.,

to contribute to more than one rank inside that tile. For arbitrary T and rPi
though, one can imagine
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the possibility of having underutilized servers. Imagine for example a tile with rank rPi
, which could

fully utilize ⌊ rPi

T ⌋ servers, leaving the tile with an accumulated rank that is mod(rPi
, T ) smaller than its

desired rPi
, and leaving us also with a server that is underutilized (in terms of accumulating rank) in the

decomposition of the particular tile. One might consider as a remedy, the possibility of associating the

underutilized server with an additional tile. This though, runs the risk of violating the communication

and computation constraints, simply because this additional (second) tile of DE may correspond to a

tile of D and E, whose union with the aforementioned (first) tile of D or E associated to this same

underutilized server, may have a number of non-zero elements that exceeds the number allowed by the

communication and computation constraints. The scheme that we present accounts for this, and provably

maintains a small and bounded under-utilization of our servers compared to the optimal case.

With this in mind, we associate ⌈ rPT ⌉ servers to each equivalence class where, continuing as before,

we can evaluate rP using (59) for any P ∈ Cj , j ∈ [4]. This yields automatically

N = ⌈min(∆,Γ)

T
⌉⌊K

∆
⌋⌊L

Γ
⌋+ ⌈min(mod(K,∆),Γ)

T
⌉⌊L

Γ
⌋

+ ⌈min(mod(L,Γ),∆)

T
⌉⌊K

∆
⌋+ ⌈min(mod(K,∆),mod(L,Γ))

T
⌉. (70)

To complete the achievability proof of Theorem 1, we proceed to evaluate (40), which gives our capacity

to be

C0
(a)
=

K

N

(b)
=

∆Γ

⌈min(∆,Γ)
T ⌉L

(c)
=

(T/L)(∆Γ/min(∆,Γ)), if T |min(∆,Γ),

(∆Γ)/L, if T > min(∆,Γ)

where (a) follows by definition, (b) follows from Theorem 1, and (c) follows after basic algebraic

manipulations where we see that if T |min(∆,Γ) then ⌈min(∆,Γ)
T ⌉ = min(∆,Γ)

T , while if T > min(∆,Γ)

then ⌈min(∆,Γ)
T ⌉ = 1. The proof is then completed directly after applying (6) and (7) to evaluate the RHS

of the last equality.

B. Examples

We now present two small examples, first for the single-shot and then for the multi-shot case, which

can help us better understand the concepts of representative supports (tiles), and the tessellation pattern

that yields D and E.

Example 5. Consider a single-shot scenario with K = 7 users, L = 11 subfunctions (thus corresponding

to a demand matrix F ∈ R7×11), under the constraint ∆ = 3 and Γ = 5. Let us go through the design

steps described above.
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text

[scale = 0.2]

Fig. 14. Corresponding to Example 5, the figure on the left represents in black the families of the equivalent classes (cf. (54)–

(57)). The 9 equivalent classes (right) cover the entire F.

• First step — Sizing and positioning the tiles of D,E and of DE: The positions of the tiles are derived

according to (54)–(57), yielding the corresponding tessellation pattern illustrated in Figure 14. As

we can see, the pattern entails four tile families C1, C2, C3, C4, of respective sizes 3× 5, 3× 1, 1× 5

and 1 × 1. Each family has the following number of tiles |C1| = ⌊K∆ ⌋⌊LΓ⌋ = 2 × 2 = 4, |C2| =

⌊K∆ ⌋ = 2, |C3| = ⌊LΓ⌋ = 2, |C4| = 1, and the tiles have a maximum rank (cf. Definition 8) equal to

rP = 3 for P ∈ C1, and rP = 1 for the rest. Figure 14 also illustrates how the designed tessellation

pattern successfully covers F, which — in the lossless case — is a necessary condition.

• Second step — Filling the non-zero tiles in DE: The master node extracts the submatrices correspond-

ing to each of the tiles as described in (60), and we have now matrices FP = (F⊙ SP)(RP , CP),

which tell us how the tiles of F are filled.

• Third step — Filling the tiles in D and E: In this final step, the master node proceeds to perform
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Fig. 15. Creating our communication and computing matrices D,E and applying the coordinates given in (63)–(66).

complete SVD decompositions for all matrices FP above, where each SVD decomposition takes the

form FP = DPEP , thus yielding all DP and EP , ∀P ∈ C, as described in (61). Note that there are

four different types of SVD decompositions, depending on whether P comes from C1, C2, C3 or C4.

These filled tiles are placed inside D and E respectively (as illustrated in Figure 15), in accordance

to the positioning steps in (68) and (69).

At this point, we calculate the number of used servers (cf. (5)) to be N = 3×4+1+1×2+1×2 = 17.

We proceed with an additional example, now for the multi-shot case.

Example 6. We consider the same setting as in Example 1, with K = 6 users, L = 10 subfunctions, a

communication cost ∆ = 3 and a computation cost of Γ = 5, but where now we consider each server to

be able to communicate to T = 2 different sets of users, in two respective shots (one shot to one group

of users, and another one to a potentially different group of users). Let us go through the steps described

in our section above.

• First step — Sizing and positioning the tiles of D,E and of DE: The sizes and locations of the

tiles of D,E and DE, are described by the tessellation pattern given directly from (54)–(57), as

also illustrated on the left side of Figure 2. This pattern, in our simpler case here, entails tiles only



37

from C1, where we find a total of |C1| = ⌊K∆ ⌋⌊LΓ⌋ = 2 × 2 = 4 tiles, each of size 3 × 5, and each

of maximum rank rP = 3 (cf. Definition 8). We again note that the pattern successfully covers F.

• Second step — Filling the non-zero tiles in DE: Exactly as in the single-shot case, again here the

master node extracts the submatrices corresponding to each of the tiles as described in (60). This

yields all the FP which are simply the filled tiles of F.

• Third step — Placing the filled cropped tiles DP and EP in D and E: Finally, the master SVD

decomposes each FP as FP = DPEP , which provides the required DP and EP , ∀P ∈ C, as

described in (61). Finally, these tiles are placed in D and E respectively, in direct accordance to the

coordinates described in (63)–(66). This last part is illustrated in Figure 16.

For this setting, applying directly (70) tells us that we need N = 8 servers. We also observe that while

the tiles of F remain the same as in the corresponding single shot case of Example1 (as also illustrated in

Fig 2), indeed our tiles of D and E change1, as illustrated in Figure 16. The same figure also illustrates

how each two consecutive columns of D and two consecutive rows of E, correspond to a server. Note

that although the rank of each tile is at most rP = 3, the number of servers associated with each tile

is ⌈ rPT ⌉ = ⌈32⌉ = 2. This reflects the fact that the second shot of the even-numbered servers remains

unused, to avoid having a server be associated to two tiles, and thus to avoid violating the computation

and communication constraints.

APPENDIX C

APPENDIX:PROOF OF THE CONVERSE FOR THEOREM 1

The converse that we provide here will prove that the scheme for the single shot case is exactly optimal

when Γ ≥ ∆,Γ|L, T |∆ or ∆ ≥ Γ,∆|K,T |Γ and also the scheme for the multi-shot case is optimal

when T ≥ min(∆,Γ). We begin with three lemmas that will be useful later on. First, Lemma 2 will

state the necessity of having a one-to-one correspondence between each rank-one contribution support2

and each server, then Lemma 3 will state the necessity of having a tessellation pattern that covers the

whole area of F, and then Lemma 4 will elaborate more on size limits of each tile as a consequence of

the communication and computation constraints. Lemma 5 then establishes the conceptual equivalence

1We note here that if we had forced N down to N = 6 as in Example 1 (corresponding to the tiling in Figure 2), then some

servers would violate the communication and computation cost constraints. For example, server 2 would have been forced to

support a communication cost of 6 (6 links to different users), since the union of supports of the third and fourth column of D

would have size 6. Similarly the corresponding E would entail a computation cost of 10 (10 subfunctions locally calculated),

since the size of the union of the supports of the third and the fourth columns of E would have been 10.
2Recall that the nth rank-one contribution support takes the form Sn(I,J) = I(:, n)J(n, :).
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Fig. 16. Corresponding to Example 6, this figure illustrates the tiling of D and E respectively with DP ∈ R3×3 and EP ∈ R3×5,

for P ∈ {P1, P2, P3, P4}. Guaranteeing DPEP = FP ∈ R3×5, ∀P ∈ {P1, P2, P3, P4}, in turn guarantees lossless function

reconstruction. We can see that the union of the supports of T = 2 consecutive columns of D includes at most ∆ = 3 non-zero

elements thus guaranteeing the communication constraint. We also see that the union of the supports of T = 2 consecutive rows

of E includes at most Γ = 5 non-zero elements thus guaranteeing the computation constraint.

between Definition 1 and disjoint tiles. Lemma 6, lower bounds the number of tiles is each equivalence

class by the number of subtiles (cf. Definition 6) corresponding to a tile. Subsequently, Lemma 7, gives

the necessary number of subtiles, so that a covering scheme can be constructed, then via combining the

last two of the aforementioned lemmas, we give a lower bound on the number of rank-one contribution

supports for any covering scheme with proper sizes, and then using Lemma 2, we finalize our converse

by giving a lower-bound on the number of servers.

When focusing on the general case of T > 1 in Section C-B, we will substitute Lemma 2 with

Lemma 8 to eventually show how each server’s transmission (to one set of users) must correspond to a

rank-one contribution support. Then using the same argument as in the single-shot case, we lower bound

the necessary number of servers by the number KL
T max(Γ,∆) . Then the lower bound is further tightened

for the cases where T ≥ min(∆,Γ), since then each tile corresponds to one server which will enable

us, using Lemma 9, to obtain a new lower bound of ⌈K∆ ⌉⌈LΓ⌉, which matches the value obtained by the

achievable scheme.
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A. Converse for The Single-Shot Case of T = 1

Before presenting the lemmas, let us recall that rank-one contribution supports were defined in Defi-

nition 3, that representative supports (i.e. tiles) were defined in Definition 5, as well as let us recall from

the same definition that the collection of all classes is represented by C.

The following lemma, while stating the obvious, will be useful in associating the number of servers

to the number of rank-one contribution supports.

Lemma 2. For any D,E with respective supports I = supp(D) ∈ {0, 1}K×N and J = supp(E) ∈

{0, 1}N×L, there exists a one-to-one mapping between the server indices n ∈ [N ] and rank-one contri-

bution supports Sn(I,J).

Proof. The proof is direct by first recalling Definition 3 which, for any n ∈ [N ], says that Sn(I,J) =

I(:, n)J(n, :), and then by recalling from (18),(21),(26) and (27) that, in the single-shot setting, each

server n ∈ N corresponds to the nth column of D (itself corresponding to I(:, n)) and the nth row of E

(corresponding to J(n, :)).

We proceed with the next lemma, which simply says that every element of F must belong to at least

one representative support (tile).

Lemma 3. In any lossless function reconstruction scheme corresponding to DE = F, for each (i, j) ∈

[K]× [L], there exists a class ∃P ∈ C such that (i, j) ∈ RP × CP .

Proof. The lemma aims to prove that there exists no element F(i, j) of F that has not been mapped

to a tile FP . We will prove that for each (i, j) ∈ [K] × [L] then ∃P ∈ C : (i, j) ∈ RP × CP
and we will do so by contradiction. Let us thus assume that there exists (i, j) ∈ [K] × [L] such that

∄P ∈ C : (i, j) ∈ RP ×CP , which would in turn imply — directly from (65), (66) — that DE(i, j) = 0

as well as would imply the aforementioned fact that the non-assigned (by the process in (65), (66))

elements of D and E, are zero. Now we see that

∥(DE− F)w∥22 = ∥
K∑
k=1

(DE− F)(k, :)w∥22

=

K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ ̸=j

[(DE− F)(k, ℓ)w(ℓ)]2 + (DE− F)2(i, j)w2(j)

+ 2(DE− F)(i, j)w(j)

K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ ̸=j

(DE− F)(k, ℓ)w(ℓ)
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=

K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ ̸=j

[(DE− F)(ℓ, k)w(ℓ)]2

+ F2(i, j)w2(j)− 2F(i, j)w(j)

K∑
k=1,k ̸=i

L∑
ℓ=1,ℓ ̸=j

(DE− F)(ℓ, k)w(ℓ). (71)

Let us now recall that lossless function reconstruction implies that ∥(DE−F)w∥22 = 0 for all F ∈ RK×L

and all w ∈ RL. Under the special case of w(ℓ) = 0,∀ℓ ∈ [L]\{j} and w(j)F(i, j) ̸= 0, we see —

directly from (71) — that ∥(DE−F)w∥22 = F2(i, j)w2(j) ̸= 0, which contradicts the lossless assumption,

thus concluding the proof of the lemma.

The next lemma now limits the sizes of each tile.

Lemma 4. For any feasible scheme yielding DE = F, then each representative support P ∈ C satisfies

0 < ∥SP(k, :)∥0 ≤ Γ,∀k ∈ RP , 0 < ∥SP(:, l)∥0 ≤ ∆, ∀l ∈ CP (72)

which means that each SP can have at most Γ non-zero elements in each row and ∆ non-zero elements

in each column.

Proof. We first recall from Definition 3 that supp(D) = I, supp(E) = J. We also recall that maxn∈[N ] |∪T
t=1

supp(D(:, (n− 1)T + t))| ≤ ∆ and maxn∈[N ] | ∪T
t=1 supp(E((n− 1)T + t, :))| ≤ Γ (cf. (36),(37)) must

hold for any feasible scheme. Hence for all n ∈ [NT ], we have that ∥I(:, n)∥0 ≤ ∆, ∥J(n, :)∥0 ≤ Γ,

and consequently since Sn = I(:, n)J(n, :) (cf. Definition 3), we must have that ∥Sn(k, :)∥0 ≤ Γ, ∀k ∈

[K] , ∥Sn(:, l)∥0 ≤ ∆, ∀l ∈ [L] ∀n ∈ [N ]. Then from Definition 5, we see that for all P ∈ C, there exists

an n ∈ [N ] such that Sn = SP . Note that the lower bound follows from Definition 6 where RP , CP are

defined.

Continuing with the main proof, in order to relate the notion of tiles to the rank-one contribution

supports, we need first to define the notion of sub-tiles, where each entry of a sub-tile is a matrix

coordinate. We also recall that RP and CP are respectively the row and column indices of tile P , as

given in Definition 6, as well as note that we here regard RP and CP as arbitrarily ordered sets.

Definition 9. For each tile P , the set of (at most) ∆ horizontal sub-tiles takes the form

HP,hP ≜ {(RP(hP), j)|j ∈ CP , hP ∈ [∆]} (73)

while the set of (at most) Γ vertical sub-tiles takes the form

VP,vP ≜ {(i, CP(vP))|i ∈ RP , vP ∈ [Γ]}. (74)
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In the above, RP(hP) represents the hP -th element of RP , and similarly CP(vP) represents the vP -th

element of CP . We also note (cf. Lemma 4) that each horizontal (resp. vertical) sub-tile can have at most

Γ (resp. ∆) elements. We also need the following function definition.

Definition 10. For G being the power set of all horizontal and vertical sub-tiles {HP,hP ,VP,vP}P∈C,hP∈[∆],vP∈[Γ],

we define the function Φ(.) : {0, 1}K×L → G as

Φ(SP) ≜

{HP,hP |hP ∈ [∆]}, if |RP | ≤ |CP |,

{VP,vP |vP ∈ [Γ]}, if |RP | > |CP |.
(75)

We now proceed to bound the number of rank-one contribution supports, and we do so under our

previously stated assumption of disjoint supports (cf. Definition 1), which is equivalent to disjoint tiles

assumptions via the following Lemma,

Lemma 5. For two matrices D,E, the representative supports {SPi
}mi=1 of DE are disjoint (i.e., SPi

∩

SPj
= 0, j ̸= i) if and only if D and E accept the disjoint support assumption of Definition 1.

Proof. Assuming that D ∈ RK×NT ,E ∈ RNT×L abide by the disjoint support assumption from Def-

inition 1, then for all i, i′ ∈ [NT ], we have that either Supp(D(:, i)E(i, :)) = Supp(D(:, i′)E(i′, :))

or that Supp(D(:, i)E(i, :)) ∩ Supp(D(:, i′)E(i′, :)) = ∅. This in turn implies that for I = Supp(D) ∈

{0, 1}K×NT ,J = Supp(E) ∈ {0, 1}NT×L, then either I(:, i)J(i, :) = I(:, j)J(j, :) or I(:, i)J(i, :) ∩ I(:

, j)J(j, :) = 0K×L, which in turn yields the assumption in Definition 4 of disjoint representative support

equivalence classes.

In reverse, if DE accepts the disjoint representative support assumption, and if C = {P1, . . . ,Pm}

is the collection of the equivalence classes, then ∀P,P ′ ∈ C, CP = CP ′ or CP ∩ CP ′ = ∅ and similarly

∀P,P ′ ∈ C,RP = RP ′ or RP ∩RP ′ = ∅, which in turn implies that ∀i, i′ ∈ [NT ] then supp(D(:, i)) =

supp(D(:, i′)) or supp(D(:, i)) ∩ supp(D(:, i′)) = ∅, as well implies that ∀i, i′ ∈ [NT ] then supp(E(i, :

)) = supp(E(i′, :)) or supp(E(i, :)) ∩ supp(E(i′, :)) = ∅. Consequently, if supp(D(:, i)) = supp(D(:, i′))

and supp(E(i, :)) = supp(E(i, :)) both hold, then supp(D(:, i)E(i, :)) = supp(D(:, i′)E(i′, :)) or other

wise supp(D(:, i)E(i, :))∩ supp(D(:, i′)E(i′, :)) = ∅, which in turn yields the assumption in Definition 1

that D and E satisfy the disjoint support assumption.

We proceed with the next lemma.

Lemma 6. In any lossless function reconstruction scheme corresponding to DE = F, the number of

rank-one contribution supports |P| in each class P , satisfies |P| ≥ |Φ(SP)|.
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Proof. Recall from Definition 1 and Lemma 5 that in the context of lossless schemes, each representative

support is disjoint. Then we can see that

|P| ≥ min(min(|RP |, |P|),min(|CP |, |P|)) (76)

(a)
= min(rank(DP), rank(EP))

(b)

≥ rank(FP)
(c)
= min(|RP |, |CP |) = rP (77)

where (a) follows from Definition 1 and Lemma 5 which tells us that in the context of lossless schemes

then each representative support is disjoint which in turn tells us that (61) applies in which case we have

D(RP ,P) = DP and E(P, CP) = EP . Subsequently (b) follows from the fact that DPEP = FP , (c)

follows from the dimensionality of FP , and the last equality holds from the definition of rP .

We now proceed with a lemma that lower bounds the minimum number of horizontal or vertical

sub-tiles needed1 to cover F ∈ RK×L.

Lemma 7. For any single-shot lossless function reconstruction scheme, and for the corresponding DE =

F decomposition, the minimum number of sub-tiles needed to cover F is at least KL
max(∆,Γ) .

Proof. Suppose first that Γ ≥ ∆ and consider a scheme that covers the entire F, with m1 horizontal

sub-tiles and m2 vertical sub-tiles. We wish to show that m1+m2 ≥ KL
max(∆,Γ) . To see this, we first note

that since there is no intersection between each of the tiles (cf. Definition 1 and Lemma 5), and since

there is no intersection between each sub-tile inside a tile (Definition 10), then we can conclude that for

any P,P ′ ∈ C and any S ∈ Φ(SP),S ′ ∈ Φ(SP ′), we must have S ∩S ′ = ∅. This in turn implies that the

sub-tiles can now cover at most m1Γ+m2∆ elements of F, which in turn means that m1Γ+m2∆ ≥ KL,

which means that KL
Γ −m2

∆
Γ ≤ m1, which means that KL

Γ + (1− ∆
Γ )m2 ≤ m1 +m2. Since ∆

Γ ≤ 1, we

have that KL
Γ ≤ KL

Γ +(1− ∆
Γ )m2, which directly tells us that m1+m2 ≥ KL

Γ . This concludes the proof

for the case of Γ ≥ ∆. The same process follows directly also for the case of Γ ≤ ∆, thus concluding

the proof.

At this point we can combine our results. We know from Definitions 9,10 and from Lemma 7 that∑
P∈C |Φ(SP)| > KL

max(Γ,∆)) , while we know from Lemma 10 that
∑

P∈C |P| ≥
∑

P∈C |Φ(SP)|. Now by

recalling that
∑

P∈C |P| is the number of rank-one contribution supports, and by recalling from Lemma 2

that each rank-one contribution support corresponds to a server in any lossless scheme, we can use the

lower bound on the number of sub-tiles in Lemma 7 as a lower bound on the number of servers, allowing

1To “cover” in this context means that every element of F has to be in at least one representative support.
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us to thus conclude that Nopt ≥ KL
max(∆,Γ) , thus concluding the proof of our converse for the single-shot

case.

B. The General Multi-Shot Case of T > 1

We begin with our first lemma for this case.

Lemma 8. To guarantee lossless function reconstruction with constraints ∆,Γ, any T -shot scheme with

computation and communication matrices D,E, must associate each server transmission (shot) to a unique

rank-one contribution support Sn(I,J), n ∈ [NT ], where I ∈ {0, 1}K×NT and J ∈ {0, 1}NT×L are the

support constraints of D and E respectively as in Definition 3.

Proof. The proof follows directly the proof steps of Lemma 2, after noting that in our current multi-shot

setting, each column of D and row of E correspond to a single transmission by a unique server.

We use Lemma 8 to recall that NT is equal to the number of rank-one contribution supports. Then

we apply the same proof steps found at the last paragraph of Appendix C-A to see that the number

of rank-one contribution supports is no less than KL
max(Γ,∆) , which in turn implies that N ≥ KL

T max(∆,Γ) .

This holds for all T . The following lemma will allow us to provide a tighter bound, for the case of

T ≥ min(∆,Γ). After proving the following lemma, we will complete the proof of the converse for the

multi-shot case. In the following, we recall that the term “cover” in our context means that every element

of F has to be in at least one representative support.

Lemma 9. For lossless function reconstruction, the corresponding DE = F decomposition needs at least

⌈K∆ ⌉⌈LΓ⌉ representative supports (tiles) to cover the entire matrix F ∈ RK×L.

Proof. Let us first recall from Lemma 3 that (the tiles corresponding to) any lossless optimal scheme must

cover F. Let C be the collection of classes of an optimal scheme, and let I = Supp(D),J = Supp(E)

and Supp(F) = Supp(DE) = IJ.

Let us first consider the simplest instance where ∆|K,Γ|L, in which case we first note that F has a

total of KL elements, and that each tile can cover at most ∆Γ elements of F (cf. Lemma 4), which

in turn means that the minimum number of disjoint covering tiles is simply KL
∆Γ (cf. Lemma 1), which

then completes the proof of the lemma for this instance. Subsequently, for the case of ∆ ∤ K,Γ|L,

we first split the rows of F into an upper part R1 with K1 = ⌊K∆ ⌋∆ rows, and a lower part R2 with

K2 = mod(K,∆) = K − K1 rows. Here R1 and R2 are the corresponding row indices. Using the

argument from the previous case of ∆|K,Γ|L, we can see that the upper part F(R1, :) needs at least
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⌊K∆ ⌋LΓ tiles to complete covering. For the lower submatrix F(R2, :), we know that having ⌊K∆ ⌋LΓ tiles is

not enough since we would only be able to cover K1L = ⌊K∆ ⌋∆L elements, thus leaving L uncovered

elements in each row in R2. Since each tile can cover at most Γ elements in each column (cf. Lemma 4),

there has to be at least L
Γ additional tiles to cover all of F, which implies a total of ⌊K∆ ⌋LΓ + L

Γ = ⌈K∆ ⌉LΓ
tiles, which proves our claim for the case of ∆ ∤ K,Γ|L. The third case of ∆|K,Γ ∤ L is similar.

We now consider the more involved, general case of K = q1∆+r1, L = q2Γ+r2, where q1, q2, r1, r2 ∈

N∪{0}, 0 < r1 ≤ ∆, 0 < r2 ≤ Γ. We first recall from Lemma 4 that each tile P ∈ C can cover at most Γ

elements of a row of F, which in turn implies that ∥SP(k, :)∩Supp(F)(k′, :)∥0 ≤ Γ, ∀k, k′ ∈ [N ],∀P ∈ C.

Similarly, we also know that each tile can cover up to ∆ elements in one column of F, which in turn

implies that ∥SP(:, ℓ) ∩ Supp(F)(:, ℓ′)∥0 ≤ ∆, ∀ℓ, ℓ′ ∈ [L], ∀P ∈ C.

We will employ a two-dimensional version of the pigeon-hole principle. In reference to this principle,

our “pigeon” here will correspond to an element of F, a “hole” will correspond to a tile, while now also

each row and column of a tile (which corresponds to a horizontal and vertical sub-tile (cf.Definition 9))

will correspond to a ‘sub-hole’. Let us recall from Definition 9 that each tile consists of ∆ horizontal sub-

tiles, and then recall from Lemma 4 that each such horizontal sub-tile (sub-hole) has up to Γ elements1.

Similarly we recall that each tile consists of Γ vertical sub-tiles, each having at most ∆ elements. For any

scheme whose corresponding D,E satisfy the disjoint support assumption (Definition 1 and Lemma 5),

we now define a mapping function ΞD,E : [K]× [L] → C×Ch ×Cv, where C, Ch, Cv are respectively the

set of all tiles, horizontal sub-tiles, and vertical sub-tiles involved in the scheme. This function is here

defined to take the form

ΞD,E((i, j)) ≜ {(P, hP , vP)}, (i, j) ∈ [K]× [L] (78)

where the input (i, j) is the location of the element in F, and where the output consists of the tile P that

covers (i, j), and the corresponding sub-tile index hP ∈ [∆] of the horizontal sub-tile that covers (i, j),

as well as sub-tile index vP ∈ [Γ] of the vertical sub-tile again covering (i, j). For ease of reading, we

recall here from Definition 9 that horizontal and vertical sub-tiles are defined as

HP,hP = {(RP(hP), j)|j ∈ CP} (79)

VP,vP = {(i, CP(vP))|i ∈ RP} (80)

1Recall that a tile, and by extension, a sub-tile, is a set of indices.
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where RP and CP , are defined in Definition 6. We also recall that we regard RP and CP as ordered sets,

with an arbitrary order, where RP(hP) is the hP -th element of RP and where similarly CP(vP) is the

vP -th element of CP . Now we claim that

∀i ∈ [K] : |{P|ΞD,E(i, j) = {(P, hP , vP), j ∈ [L]}| ≥ q2 + 1 (81)

which says that the intersection of each row of F with any specific tile, is at least q2+1. This is obvious

because if this intersection was less than q2 + 1 then — as a consequence of the pigeon-hole principle,

where again each element of F(i, :) is our “pigeon” and each horizontal sub-tile as a sub-hole — there

would exist at least one sub-hole covering at least P1 elements, where

P1 = ⌈ L
q2
⌉ = ⌈q2Γ + r2

q2
⌉ = Γ + 1 (82)

which would though contradict Lemma 4 which guarantees that there can exist no tile covering more

than Γ elements in a row, which simply translates to having no horizontal sub-tile with more than Γ

elements.

With (81) in place, we now conclude that1 in each row, at least q2 + 1 horizontal sub-tiles reside.

Recall that by Lemma 4, each horizontal sub-tile in a tile can cover at most Γ elements. Note also that

by Definition 9, for any given row of F, we cannot encounter two or more sub-tiles from the same tile

(they must be from different tiles). In this context, for any given row i of F, let (i, 1), (i, 2), · · · , (i, ui)

be the indices of the corresponding horizontal sub-tiles that reside in that row, from left to right. Recall

from (81) that ui ≥ q2 + 1.

We proceed to provide a similar enumeration, now though for vertical sub-tiles.

We first note from Lemma 4 that each column of F can intersect at most ∆ horizontal sub-tiles.

Similar to before, we can also see that

∀j ∈ [L] : |{P|ΞD,E(i, j) = {(P, hP , vP)}, i ∈ [K]}| ≥ q1 + 1 (83)

which says that the intersection of each column of F with any specific tile, entails at least q1 + 1 tiles,

because if this intersection was less than q1 + 1 then — as a consequence of the pigeon-hole principle,

where now each horizontal sub-tile is our “pigeon” and each tile is a hole — there would exist at least

one sub-hole covering at least P2 elements, where

P2 = ⌈K
q1

⌉ = ⌈q1∆+ r1
q1

⌉ = ∆+ 1 (84)

which though would contradict Lemma 4 which now guarantees that there can exist no tile covering more

than ∆ elements in a column, which now simply translates to having no vertical sub-tile intersecting

1For the case where q2 = 0, Lemma 3 simply guarantees that each row has to be at least in one tile.
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with more than Γ horizontal sub-tiles. We can now conclude that1 each row of F intersects with at

least q2 + 1 tiles. After recalling from Definition 9 that two horizontal sub-tiles of the same tile have

the same beginning and end2, we can conclude that two horizontal sub-tiles (i′, j′) and (i′′, j′′) (where

j′ ̸= j′′), cannot be found in the same tile, because their respective column indices differ by at least one

element. We will now only consider the parts of F that correspond to horizontal sub-tiles with indices

restricted to the set [K] × [q2 + 1]. Note that this “pruning” is in line with our effort to lower bound

the number of required tiles for covering F. We proceed by combining the fact that each column of

F intersects with at least q1 + 1 tiles (cf. (83)), together with the aforementioned fact that the column

coordinates of two horizontal sub-tiles of the same tile are identical. Thus we can finally adopt the

tile indexing (1, ĵ), (2, ĵ), . . . , (vĵ , ĵ) for all ĵ ∈ [q2 + 1]. The fact that this indexing applies to any

conceivable covering tessellation scheme, allows us to conclude that any covering scheme must entail at

least
∑q2+1

ĵ=1
vĵ tiles. Noting now from (81), we have that vĵ ≥ q1 + 1,∀ĵ ∈ [q2 + 1]. This fact allows us

to conclude that there must exist at least (q1+1)(q2+1) tiles, which completes the proof after recalling

that K = q1∆+ r1, L = q2Γ + r2 which in turn says that q1 = ⌈K∆ ⌉, q2 = ⌈LΓ⌉.

With the above lemma in place, focusing again on the particular case of T ≥ min(∆,Γ), we can now

tighten the bound on N , from N ≥ KL
T max(∆,Γ) to N ≥ ⌈K∆ ⌉⌈LΓ⌉. We see this by first noting that in our

case of T ≥ min(∆,Γ) each tile corresponds to a server, and then by combining this with Lemma 8

which additionally tells us that each server corresponds to T distinct rank-one contribution supports.

Furthermore, we also know from Definition 7 and Lemma 6 that min(∆,Γ) = rP = |Φ(SP)|. Finally,

from the fact that no server can be associated with two different tiles3, and directly from Definition 10,

we can conclude that the optimal number of servers will be the minimum number of covering tiles,

which was shown Lemma 9 to be equal to ⌈K∆ ⌉⌈LΓ⌉. This concludes the proof that N ≥ ⌈K∆ ⌉⌈LΓ⌉ for

T ≥ min(∆,Γ). This concludes the converse for the multi-shot case.

C. Proof of Corollary 2

Our aim here is to show that for T < min(∆,Γ), then the achievable N (and thus the achievable rate)

in (38) is at most a multiplicative factor of 8 from the corresponding converse expression in (39). The

1For the case where q1 = 0. Lemma 3 simply guarantees that each column has to be at least in one tile.
2More rigorously, we can rephrase the above by saying ‘after recalling from Definition 9 that ∀hP , h

′
P ∈ [∆] : {j|(i, j) ∈

HP,hP } = {j|(i, j) ∈ HP,h′
P
}’.

3This was shown in appendix Section B-A, to be a necessary condition for guaranteeing the Γ and ∆ constraints.
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proof can be derived from the following sequence of expressions

Nupper

NLower
≤ (min(∆,Γ)/T + 1)(KL/(∆Γ) + L/Γ +K/∆) +min(∆,Γ)/T )

KL/(T max(Γ,∆))

= 1 +
T max(∆,Γ)

∆Γ
+

T max(∆,Γ)min(∆,Γ)

TKΓ

+
T max(Γ,∆)L

KLΓ
+

T max(∆,Γ)min(∆,Γ)

T∆L
+

T max(∆,Γ)

L∆

+
T max(∆,Γ)min(∆,Γ)

TKL
+

T max(∆,Γ)

KL

≤ 1 + 4
T

min(∆,Γ)
+ δ + γ + δγ < 8

where the final answer results by noting that T < min(∆,Γ),∆ ≤ K,Γ ≤ L.

APPENDIX D

PROOF OF THE ACHIEVABILITY AND CONVERSE OF THEOREM 2

The proof incorporates an achievable and a converse argument. We first prove the following lemma used

in (33), corresponding to the average normalized error1 ϵ = E F,w{E}
KL of any scheme with communication

matrix D and computing matrix E. Recall that in our asymptotic setting, the parameter N scales to

infinity, while the calibrating ratios δ, γ, κ,R remain constant. We also note that T here is a non-scaling

constant, while we also recall that the elements of w are i.i.d, independent of D,E,F, and have unit

variance. We proceed with the first lemma:

Lemma 10. In the limit of large N , the average normalized error ϵ = E F,w{E}
KL of any lossy function

reconstruction scheme corresponding to DE = F, under the assumptions of Theorem 2, takes the form

ϵ =
EF{∥DE− F∥2F }

KL
. (85)

Proof. The proof starts with the definition of the average error from (33) where we defined this error to

be ϵ EF{∥DE−F∥2
F }

KL , then the following sequence of steps hold

ϵ =
E F,w{[(DE− F)w]⊺[(DE− F)w]}

KL
=

E F,w{w⊺(DE− F)⊺(DE− F)w}
KL

(a)
=

E F,w{tr(w⊺(DE− F)⊺(DE− F)w)}
KL

(b)
=

E F,w{tr((DE− F)⊺(DE− F)ww⊺)}
KL

(c)
=

tr(E F,w{(DE− F)⊺(DE− F)ww⊺})
KL

(d)
=

tr(E F{(DE− F)⊺(DE− F)}Ew{ww⊺})
KL

(e)
=

tr(E F{(DE− F)⊺(DE− F)})
KL

(f)
=

E F{tr((DE− F)⊺(DE− F))}
KL

(g)
=

EF{∥DE− F∥2F }
KL

(86)

1We recall from (4) our instantaneous error E =
∑K

k=1 |F
′
k − Fk|2, E ∈ R, ∀k ∈ [K].
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where (a) holds since the trace argument is a scalar, (b) and (c) follow from the cyclic property of the trace

operation and its linearity, (d) holds since w and F are independent, (e) holds since Ew{ww⊺} = IL,

(f) follows from the interchangeability of the trace and expectation operations, and (g) holds since

tr(A⊺A) =
∑I

i=1

∑J
j=1A(i, j)2 = ∥A∥2F , ∀A ∈ RI×J .

In the following, we provide the achievability part of the proof, where we present in this appendix,

the lossy variant of the scheme of Theorem 1, while in this appendix we also derive the average of

the normalized error. For the error analysis, in Lemma 11 (see also Remark 4) we adapt the well

known Marchenko–Pastur Theorem to our setting, to then yield the proof of Lemma 12 that tells us

how the approximation error corresponding to each tile is defined by the truncated first moment of the

Marchenko–Pastur distribution. Subsequently, in Lemma 13, we describe the total error ∥DE− F∥2F as

the sum of errors for each tile, reflecting the nature of our tile assignment from Theorem 1. The last step

combines Lemmas 12 and 13 to derive the corresponding upper bound on the normalized error. Note

that all the definitions in appendix A apply to our setting.

A. Scheme Design

Similar to Section B-A of this appendix, the construction of D,E will involve the steps of: a) sizing

and positioning the tiles of D, of E, and of DE, b) filling the non-zero tiles in DE as a function of F,

and c) filling the tiles in D and E. Crucial to our lossy-variant of our scheme, will be the rank αrP ∈ N

of each tile P , where this rank will be defined by the desired error performance as we will see in this

appendix. We proceed with the description of the steps.

a) Sizing and positioning the tiles of D, of E, and of DE: Our first step applies the corresponding

step in the achievable scheme of the appendix Section B-A, to the current setting of C2 = C3 = C4 = ∅,

where this latter equality follows after noting that — in terms of the derived performance — ∆|K, Γ|L

and T |min(∆,Γ) hold directly in our current setting of constant T and scaling ∆ and Γ.

b) Filling the non-zero tiles in DE as a function of F: We here first approximate each FP (cf. (60))

by a low-rank matrix Fα
P , whose rank does not exceed αrP , for some auxiliary variable α ∈ R, 0 < α ≤

1, αrP ∈ N 1. To obtain the desired

Fα
P ≜ argmin

A
{∥A− FP∥F , : rank(A) ≤ αrP} (87)

1As we will see soon, the choice of α here will determine the degree of the approximation of FP . As we will elaborate

later on, this parameter will take the form α = T max(∆,Γ)
R

, while guaranteeing that the rank αrP is an integer. Note that since

∆|K,Γ|L, then rP = min(∆,Γ) (cf. (59)) which naturally scales with ∆ and Γ.
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we employ the well-known Echart-Young Theorem [92] to get

Fα
P = Dα

PE
α
P (88)

where DP ∈ R|RP |×αrP ,EP ∈ RαrP×|CP | are the results of the truncated SVD algorithm1. Naturally,

since C2, C3, C4 = ∅, we have that |RP | = ∆, |CP | = Γ (cf.(59)).

c) Filling the tiles in D and E: In this last step, after considering C1 = {P1,P2, . . . ,Pm}, then for

each j ∈ [m], we set

D(RPj
, [

j−1∑
i=1

αrPi
+ 1,

j∑
i=1

αrPi
]) = DPj

(89)

and

E([

j−1∑
i=1

αrPi
+ 1,

j∑
i=1

αrPi
], CPj

) = EPj
(90)

while the remaining non-assigned elements of D and E remain equal to zero.

B. Normalized Error Analysis of the Designed Scheme

We proceed to evaluate in Lemma 12 the approximation error for each tile as a function of the truncated

first moment of the Marchenko–Pastur distribution, and then to show in Lemma 13 that for our scheme,

the total approximation error ∥DE− F∥2F , for each instance of the problem, is equal to the sum of the

approximation errors, where the sum is over all tiles. The proof for the achievability part of the error

analysis is completed by properly combining the two aforementioned lemmas.

Directly from the Echart-Young Theorem, the truncated SVD solution yields the optimal approximation

error for each tile, which takes the form

∥Fα
P − FP∥F = ∥Dα

PE
α
P − FP∥F =

√√√√ rP∑
i=αrP+1

σ2
i (FP) (91)

where σi(FP), i ∈ [rP ] are the singular values of FP (cf. (60)), in decreasing order.

Let us now recall that for each P ∈ C1, then FP ∈ R∆×Γ is a random matrix of i.i.d elements having

zero mean and σ̄ variance. Let λ1(YP) ≤ λ2(YP) ≤ . . . ≤ λ∆(YP) be the ordered eigenvalues of the

symmetric matrix

YP ≜
1

Γ
FPF

⊺
P (92)

and consider

µ∆(x) =
1

∆
#{λj(YP) ≤ x} (93)

1In particular, Fα
P , Dα

P and Eα are respectively associated to Ak, US and V in (52) of appendix Section A.
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which will be associated below to the CDF FMP,λ = µ∆(x) of the Marchenko-Pastur distribution.

The following describes the well known Marchenko-Pastur law ([93]) as applied to our setting.

Lemma 11. [Marchenko-Pastur Law] Consider a random matrix FP ∈ R∆×Γ having i.i.d elements with

zero mean and variance σ̄. Let λ1(YP) ≤ λ2(YP) ≤ . . . ≤ λ∆(YP) be the ordered eigenvalues of

YP = 1
ΓFPF

⊺
P . Let ∆,Γ → ∞, and let ∆

Γ → λ for some λ > 0. Then µ∆ (cf. (93)) converges in

distribution to

µ∆(x) =

(1− 1
λ)1(0≤x) + v(x), if λ > 1,

v(x), if 0 < λ ≤ 1

(94)

where v(x) is such that

d(v(x)) =
1

2πσ̄2

√
(λ+ − x)(x− λ−)

λx
1x∈[λ−,λ+]dx (95)

for any point x ∈ R. This in turn means that the PDF of the Marchenko-Pastur distribution takes the

form

fMP,λ(x) =
1

2πσ̄2

√
(λ+ − x)(x− λ−)

λx
1x∈[λ−,λ+] + 1(1<λ)(1−

1

λ
)δ(x) (96)

where λ± ≜ σ2(1±
√
λ)2.

Remark 4. With the same notation as in Lemma 11, the CDF’s explicit form is

FMP,λ(x) =


λ−1
λ 1x∈[0,λ−) +

(
λ−1
2λ + FMP(x)

)
1x∈[λ−,λ+) + 1x∈[λ+,+∞), if λ > 1,

FMP(x)1x∈[λ−,λ+) + 1[λ+,∞), if 0 ≤ λ ≤ 1,

(97)

FMP(x) =
1

2πλ

(
πλ+ σ−2

√
(λ+ − x)(x− λ−)

− (1 + λ)arctan(
r(x)2 − 1

2r(x)
) + (1− λ)arctan(

λ−r(x)
2 − λ+

2σ2(1− λ)r(x)
)
)

(98)

where r(x) =

√
λ+ − x

x− λ−
. (99)

Now utilizing Lemma 11, we provide an expression for the error contributed by any tile P ∈ C1. The

following lemma holds under the same assumptions as in Theorem 2 and Lemma 11.

Lemma 12. The average error attributed to each tile P , described in (91), takes the form

E F{∥Fα
P − FP∥2F } = Γ∆

∫ F−1
MP,λ(1−(min(∆,Γ)/∆)α)

(1−
√
λ)2

xfMP,λ(x) dx. (100)
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Proof. Addressing first the case where ∆ ≤ Γ, we see that

E F{∥Fα
P − FP∥2F }

(a)
= E F{

(1−α)rP∑
i=1

σ2
i+αrP (FP)}

= ΓE F{
(1−α)rP∑

i=1

σ2
i+αrP

(FP)

Γ
}

(b)
= ΓE F{

∫ +∞

−∞

(1−α)rP∑
i=1

δ(x−
σ2
i+αrP

(FP)

Γ
) xdx}

(c)
= ΓE F{

(1−α)rP∑
i=1

∫ +∞

−∞
δ(x−

σ2
i+αrP

(FP)

Γ
) xdx}

(d)
= ΓE F{

(1−α)rP∑
i=1

∫ +∞

−∞
lim
δx→0

1(x < σ2
i+αrP

(FP)/Γ ≤ x+ δx)

δx
xdx}

(e)
= Γ

(1−α)rP∑
i=1

∫ +∞

−∞
lim
δx→0

E F{
1(σ2

i+αrP
(FP)/Γ ≤ x+ δx)− 1(σ2

i+αrP
(FP)/Γ ≤ x)

δx
} xdx

(f)
= Γ∆

∫ F−1
MP,λ(1−α)

−∞
lim
δx→0

FMP (x+ δx)− FMP,λ(x)

δx
xdx

(g)
= Γ∆

∫ F−1
MP,λ(1−α)

(1−
√
λ)2

xfMP,λ(x) dx

where (a) holds because of (91), (b) is true because of the continuous delta Dirac function properties, (c)

follows from the linearity of both the summation and integral operators, while (d) and (e) follow from

the fact that d(1(x−σ2
i+αrP

/Γ))/dx = limδx→0
1(σ2

i+αrP
(FP)/Γ≤x+δx)−1(σ2

i+αrP
(FP)/Γ≤x)

δx . Then, to show

(f), we first note that 1
∆#{λj(YP) =

σ2
j (FP)

Γ ≤ x, j ∈ [rP ]} → FMP,λ(x) as ∆,Γ scale to infinity. Now,

again in (f), to understand the change of limits in the integral, we note that given that rP = ∆ ≤ Γ,

we seek to find an x′ such that (1 − α)rP = (1 − α)∆ = ∆FMP (x
′), which will allow x′ to be the

upper integration limit1 of the integral in the RHS of equality (f), yielding
∑(1−α)rP

i=1 1(σ2
i+αrP

(FP)/Γ ≤

x) =
∑rP

i=1 1(σ
2
i (FP)/Γ ≤ x) = ∆FMP,λ(x) since x ≤ x′1 = F−1

MP (1 − α), thus yielding (f). Finally

(g) is simply the result of the relationship between CDF and PDF, after considering the support of the

Marchenko-Pastur distribution.

For the case where ∆ > Γ, we have that

E F{∥Fα
P − FP∥2F }

(a)
= E F{

(1−α)rP∑
i=1

σ2
i+αrP (FP)}

1In essence, this step simply says that the first (1 − α)rP eigenvalues (corresponding to the summation) correspond to the

eigenvalues accounted for by F−1
MP (1− α).
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= ΓE F{
(1−α)rP∑

i=1

σ2
i+αrP

(FP)

Γ
}

(b)
= ΓE F{

∫ +∞

−∞

(1−α)rP∑
i=1

δ(x−
σ2
i+αrP

(FP)

Γ
) xdx}

(c)
= ΓE F{

(1−α)rP∑
i=1

∫ +∞

−∞
δ(x−

σ2
i+αrP

(FP)

Γ
) xdx}

(d)
= ΓE F{

(1−α)rP∑
i=1

∫ +∞

−∞
lim
δx→0

1(x < σ2
i+αrP

(FP)/Γ ≤ x+ δx)

δx
xdx}

(e)
= Γ

(1−α)rP∑
i=1

∫ +∞

−∞
lim
δx→0

E F{
1(σ2

i+αrP
(FP)/Γ ≤ x+ δx)− 1(σ2

i+αrP
(FP)/Γ ≤ x)

δx
} xdx

(f)
= Γ∆

∫ F−1
MP,λ((Γ/∆)(1−α)+(1− Γ

∆
))

−∞
lim
δx→0

FMP (x+ δx)− FMP,λ(x)

δx
xdx

(g)
= Γ∆

∫ F−1
MP,λ(1−α Γ

∆
)

(1−
√
λ)2

xfMP,λ(x) dx

where firstly (a) through (e) and (g) follow as in the first case of ∆ ≤ Γ. Then, regarding (f), we first note

that 1
∆#{λj(YP) =

σ2
j (FP)

Γ ≤ x, j ∈ [rP ]} → FMP,λ(x) as ∆,Γ scale to infinity. We also note that rP =

Γ < ∆. Thus, if we find an x′ such that (1−α)rP = (1−α)Γ+(1− Γ
∆)∆ = ∆FMP (x

′), then x′ can act

as the upper limit of integration, thus yielding
∑(1−α)rP

i=1 1(σ2
i+αrP

(FP)/Γ ≤ x) =
∑rP

i=1 1(σ
2
i (FP)/Γ ≤

x) = FMP,λ(x) because, as before, in the integration we have that x ≤ x′1 = F−1
MP (

Γ
∆(1−α)+(1− Γ

∆)).

In essence, the change in the upper integration limit in (f) here (as compared to the same integration

limit found the previous case of ∆ ≤ Γ) accounts for the fact that the first ∆− Γ eigenvalues are now

zero. This proves (f) and the entire lemma.

We proceed with an additional lemma that bounds the approximation error of the design described in

(89) and (90).

Lemma 13. The D and E design in (89) and (90), guarantees that

∥DE− F∥F =

√∑
P∈C1

∥Fα
P − FP∥2F . (101)

Proof. We first note that for

U ≜ DE− F (102)

then following (89) and (90), we see that

U(RP , CP) = Dα
PE

α
P − FP = Fα

P − FP (103)
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where FP is defined in (60). Now we note that

∥U∥F =

√√√√√ (K,L)∑
(k,l)=(1,1)

U2(k, l)
(a)
=

√∑
P∈C1

∑
(i,j)∈RP×CP

U2(i, j) (104)

(b)
=

√∑
P∈C1

∥U(RP , CP)∥2F (105)

(c)
=

√∑
P∈C1

∥Fα
P − FP∥2F (106)

where (a) follows from the fact that the representative supports P ∈ C1 partition matrix F ∈ RK×L1, (b)

follows from the definition of the Frobenius norm, while (c) follows as a direct consequence of (103).

Combining (102) and (104) proves the lemma.

We can now prove the theorem. For the case where ∆ ≤ Γ, we have

ϵ
(a)
= E F{∥DE− F∥2F }

1

KL
(107)

(b)
= E F{

∑
P∈C1

∥Fα
P − FP∥2F }

1

KL
(108)

(c)
=

∑
P∈C1

E F{∥Fα
P − FP∥2F }

1

KL
(109)

(d)
=

K

∆

L

Γ
E F{∥Fα

P − FP∥2F }
1

KL
(110)

(e)
=

∫ F−1
MP,λ(1−α)

(1−
√
λ)2

xfMP,λ(x) dx (111)

(f)
=

∫ F−1
MP,λ(1−T γ

R
)

(1−
√

δκ

γ
)2

xfMP,λ(x) dx (112)

where (a) follows from (85), (b) follows from (101), (c) results from the interchangeability of the

statistical mean and the summation, (d) is true since the number of representative supports in C1 is K
∆

L
Γ ,

(e) results from (100), and (f) results from the fact that α = T γ
R , which follows from the fact that

rP = min(∆,Γ) = ∆ and from the fact that NT = αmin(∆,Γ)K∆
L
Γ = αKL

Γ (cf. (88),(89),(90)), which

in turn says that R = K
N = T Γ

αL = T γ
α . The proof of (f) is concluded by noting that λ = ∆

Γ = δκ
γ

(cf. (7)).

Similarly, for the case of ∆ > Γ, we have

ϵ
(a′)
=

K

∆

L

Γ
E F{∥Fα

P − FP∥2F }
1

KL
(113)

1It means that the tiles are disjoint and cover the whole matrix F.
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(b′)
=

∫ F−1
MP,λ(1−Γ/∆α)

(1−
√
λ)2

xfMP,λ(x) dx (114)

(c′)
=

∫ F−1
MP,λ(1−T γ

R
)

(1−
√

δκ

γ
)2

xfMP,λ(x) dx (115)

where (a′) follows from equalities (a), (b), (c), (d) corresponding to the above case of ∆ ≤ Γ, where (b′)

results from (100), and where (c′) results after substituting γ/κδ = Γ/∆, α = T κδ
R , which follows after

noting that rP = min(∆,Γ) = Γ and that NT = αmin(∆,Γ)KL
∆Γ = αKL

∆ (cf. (88),(89),(90)), which in

turn says that R = T∆
αL = T κδ

α . The proof of (f) and of the entire lemma is concluded after recalling

our asymptotic setting and also that T |min(∆,Γ) and that λ = δκ
γ (cf. (7))..

C. Converse and Proof of Optimality

We will here provide a converse on the average normalized error. The converse will then allow us

to show that under the disjoint balanced support assumption of Definition 2, the scheme proposed in

this appendix is asymptotically optimal. First, Lemma 14 will offer a lower bound on the approximation

error attributed to each tile, and then Lemma 15 proves that any scheme satisfying Definition 2, has to

have disjoint and tiles with the same |RP | and |CP |. Subsequently, Lemma 16 will establish the covering

requirement for any optimal scheme. Combining the above will then yield the proof.

Our goal is to prove that in the limit of large N and constant δ, γ, κ,R, and under the disjoint balanced

support assumption, the average optimal reconstruction error is bounded as

ϵ̂ ≥ ΦMP,λ(t, r) =

∫ t

r
xfMP,λ(x)dx (116)

where λ = δK
γL = ∆

Γ , r = (1 −
√
λ)2, and where t is the solution to FMP,λ(t) = 1 − T γN

K . To achieve

this, we begin with the following lemmas.

Lemma 14. Consider approximating any F by a product DE with limited ∆,Γ, and consider a disjoint

set of m tiles C = {Pi}mi=1 (corresponding to an arbitrary set of disjoint submatrices {FPi
}mi=1 of F)

each allocated αirPi
contribution supports where αirPi

∈ N, αi ∈ R, αi ≤ 1. Then
m∑
i=1

rPi∑
j=(1−αi)rPi

+1

σ2
j (FPi

) ≤ ∥DE− F∥2F (117)

where σj(FPi
), j ∈ [rPi

], i ∈ [m] are the singular values of each FPi
, in descending order.

Proof. The above can be seen by noting that
m∑
i=1

rPi∑
j=(1−αi)rPi

+1

σ2
j (FPi

)
(a)

≤
m∑
i=1

∥DPi
EPi

− FPi
∥2F (118)
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(b)

≤ ∥DE− F∥2F (119)

where, for DPi
EPi

being a rank-αrPi
approximation of FPi

, then (a) follows directly from the Eckart-

Young Theorem that guarantees that
∑rPi

j=(1−αi)rPi
+1 σ

2
j (FPi

) ≤ ∥DPi
EPi

− FPi
∥2F , while (b) follows

after considering (60), after considering that the representative supports are disjoint, that the rank of

DPi
EPi

is αirPi
, and after considering that parts of F may remain uncovered by the tiles.

We proceed with the next lemma.

Lemma 15. For two matrices D,E, the representative supports {SPi
}mi=1 of DE are disjoint (i.e., SPi

∩

SPj
= 0, j ̸= i) and |RPi

| = |RPj
|, CPi

| = |CPj
| ∀i, j ∈ [m] if and only if D and E accept the disjoint

balanced support assumption of Definition 2.

Proof. The proof follows from the same proof of Lemma 1, after additionally now noting that for

any class Pi ∈ C then |RPi
| = ∥I(:, i)∥0 for some i ∈ [NT ], and after noting that due to the disjoint

balanced support assumption of Definition 2 we have that ∥D(:, i)∥0 = ∥Supp(D(:, i))∥0 = ∥D(:, j)∥0 =

∥Supp(D(:, j))∥0, ∀i ̸= j, i, j ∈ [NT ], which in turn implies that |RPi
| = |RPj

|, ∀i, j ∈ [m]. Similar

considerations to RP , also apply when focusing on CP .

We also have the following lemma.

Lemma 16. In the limit of large N and fixed R, KL , and under the assumption of demand matrices

F ∈ RK×L drawn with i.i.d entries having zero mean and unit variance, then any optimal scheme that

satisfies the disjoint balanced support assumption of Definition 2 having fixed |RPi
|

K ,
|CPj

|
L ,∀Pi ∈ C =

{P1,P2, . . . ,Pm}, must guarantee that the union of all representative supports covers F.

Proof. We prove this by contradiction. Suppose that there exists an optimal scheme whose union of

representative supports (union of tiles) does not cover F. Since the scheme satisfies Definition 2, by

Lemma 5, we can let |RPi
| = |RPj

| = X,∀i, j ∈ [m] and |CPi
| = |CPj

| = Y,∀i, j ∈ [m]. We also see

due to the fact that the scheme does not cover F, then

[K]× [L]\ ∪P∈C RP × CP ̸= ∅. (120)

Furthermore we see that

[K]× [L]\ ∪P∈C RP × CP = ∩P∈C([K]× [L]\RP × CP) (121)

= ∩P∈C((([K]\RP)× [L]) ∪ ([K]× [L]\CP)) (122)

= ∪A⊆C((([K]\ ∪i∈A RPi
)× [L]) ∩ ([K]× [L]\ ∪i∈(C\A) CPI

)) (123)
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= ∪A⊆C([K]\ ∪i∈A RPi
× [L]\ ∪i∈(C\A) CPi

) ̸= ∅ (124)

and thus there exists a subset A ⊆ C such that [K]\ ∪i∈A RPi
× [L]\ ∪i∈(C\A) CPi

̸= ∅, which in turn

says that [K]\∪i∈ARPi
̸= ∅ and [L]\∪i∈(C\A) CPi

̸= ∅. Since |[K]\∪i∈ARPi
| = K−|∪i∈ARPi

|, then

from Definition 2 and Lemma 1, we see that either RPi
= RPj

, ∀i, j ∈ A or that RPi
∩RPj

= ∅, ∀i ̸=

j, i, j ∈ A. We also recall that |RPi
| = X,∀i ∈ [m], and thus that X divides | ∪i∈A RPi

|. Since also X

divides K, we can see that X divides |[K]\ ∪i∈A RPi
|. A similar argument can be made to show that

Y divides |[L]\ ∪i∈(C\A) CPi
|.

Now, to show that this assumption results in a contradiction, we construct another scheme for the same

set of parameters and analyse its performance. We first recall that NT =
∑m

i=1 rank(Fα
P) =

∑m
i=1 αirPi

,

i.e., that the sum of the ranks of the matrices Fα
P (cf. (91)) across P ∈ C is equal to NT . Assuming,

without loss of generality, that X ≤ Y , yields rP = X,∀P ∈ C which in turn yields

NT =

m∑
i=1

αirPi
=

m∑
i=1

αiX. (125)

Now, consider another scheme with the same positioning of tiles, though now an additional tile Pm+1,

with a set of row indices RPm+1
⊆ ∪i∈ARPi

, |RP | = X and column indices CPm+1
⊆ [L]\ ∪i∈(C\A)

CPi
, |CPm+1

| = Y . Let the now additionally introduced tiles be placed inside the previously “uncovered”

area of the previous scheme, which means that RPm+1
×CPm+1

⊆ [K]× [L]\∪P∈C RP ×CP . Let us now

choose β < α1, βrP1
∈ N and then let FP1

be now estimated by a matrix Fα1−β
P1

of rank (α1 − β)X

(rather than by matrix Fα1

P1
of rank α1X .). We now recall that the error of the first tile of the optimal

scheme is

∥Fα1

P1
− FP1

∥F =

(1−α1)rP∑
i=1

σ2
i+α1rP (FP) (126)

which we know to be optimal from the Eckart-Young Theorem. Now we see that the error corresponding

to the first tile, for the new scheme — which again employs the optimal truncated SVD method — takes

the form

∥Fα1−β
P1

− FP1
∥F =

(1−α1+β)rP∑
i=1

σ2
i+(α1−β)rP

(FP). (127)

For the same new scheme, the last used FPm+1
is being approximated by matrix Fβ

Pm+1
, which has rank

βrPm+1
= βX , yielding a last-tile error of the form

∥Fβ
Pm+1

− FPm+1
∥F =

(1−β)rP∑
i=1

σ2
i+βrP (FP). (128)

We also note that both the original and the new scheme incur NT = (α1−β)rP1
+
∑m

i=2 αirPi
+βrPm+1

=

((α1 − β) +
∑m

i=2 αi + β)X =
∑m

i=1 αiX which comes from (125).



57

Now we can see that the average normalized error of the scheme can be thus expressed as

ϵopt =
EF {

∑(1−α1)X
i=1 σi+α1X(FPi

)}
KL

+ ϵ{2,...,m} +
EF{

∑
(i,j)∈[K]×[L]\∪P∈CRP×CP

F(i, j)2}
KL

(129)

where the first fraction describes the error due to the first tile (cf. (126)), the second term ϵ{2,...,m} is the

average normalized error of the second to last tiles, while the last term represents the Frobenius norm

for the part of the matrix that represents the “hole” left uncovered. Then the average normalized error of

the constructed scheme can be expressed as

ϵc =
EF {

∑(1−α1+β)X
i=1 σi+(α1−β)X(FPi

)}
KL

+ ϵ{2,...,m}

+
EF{

∑
(i,j)∈[K]×[L]\∪P∈CRP×CP

F(i, j)2 −
∑βX

i=1 σi(FPm+1
)}

KL
(130)

where the first term corresponds to the first tile (cf. (127)), the second term ϵ{2,...,m} is again the average

normalized error corresponding to the second to mth tiles, while the last error term is attributed to tile m+

1 and to the still uncovered area. This last expression is simplified after considering the summation of the

average Frobenious norm of the uncovered area that yields error EF{
∑

(i,j)∈[K]×[L]\∪P∈CRP×CP
F(i, j)2−

∥FPm+1
∥F}, as well as after considering that the error EF{∥Fβ

Pm+1
−FPm+1

∥F } of the (m+1)th tile takes

the form in (128), and finally after noting that ∥Fβ
Pm+1

− FPm+1
∥F − ∥FPm+1

∥F = −
∑βX

i=1 σi(FPm+1
).

Thus we can conclude that the normalized error attributed to tile m+ 1 and to the still uncovered area,

takes the form of the numerator of (130).

Thus we can now see that

ϵopt − ϵc =
XY

KL
(−

∫ F−1
MP,λ(1−α1+β)

F−1
MP,λ(1−α1)

xfMP,λ(x) dx+

∫ F−1
MP,λ(1)

F−1
MP,λ(1−β)

xfMP,λ(x) dx), λ =
X

Y
(131)

which follows after considering (129), (130), as well as after following the corresponding steps found in

the proof of Lemma 12. We can now also note that

d

dt

∫ F−1
MP,λ(t)

F−1
MP,λ(t−β)

xfMP,λ(x) dx =
1

fMP,λ(F
−1
MP,λ(t))

F−1
MP,λ(t)fMP,λ(F

−1
MP,λ(t))

− 1

fMP,λ(F
−1
MP,λ(t− β))

F−1
MP,λ(t− β)fMP,λ(F

−1
MP,λ(t− β))

= F−1
MP,λ(t)− F−1

MP,λ(t− β) > 0

where the last inequality is due to the fact that F−1
MP,λ(t) is a strictly monotonically increasing function of

t, which means that the function
∫ F−1

MP,λ(t)

F−1
MP,λ(t−β)

xfMP,λ(x) dx for all β ≤ t ≤ 1 is a strictly monotonically

increasing function of t, which now yields
∫ F−1

MP,λ(1)

F−1
MP,λ(1−β)

xfMP,λ(x) dx >
∫ F−1

MP,λ(1−α1+β)

F−1
MP,λ(1−α1)

xfMP,λ(x) dx,

and thus — after considering (131) — yields ϵopt − ϵc > 0, which contradicts our initial optimality
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assumption. By showing that there can always be a scheme that offers strictly lower error than the best

scheme that fails to fully cover F, we prove that optimal schemes must cover F.

Continuing with our main proof, we recall that F is a K×L real random matrix whose entries are i.i.d

with zero mean and unit variance. In this context, and in the limit of large N , we recall Lemma 5 and

Definition 2, and after seeing that |RP | = X, |CP | = Y,∀P ∈ C, we first consider the case of X ≤ Y ,

where we have r = X
Y and

∑m
i=1 αiX = NT , and proceed to see that

EF{
m∑
i=1

rPi∑
j=(1−αi)rPi

+1

σ2
j (FPi

)} (a)
= Y EF

{∑m
i=1

∑αiX
j=1 σ2

j+(1−αi)X
(FPi

)

Y

}
(b)
= Y EF

{ m∑
i=1

αiX∑
j=1

∫ ∞

−∞
δ(x−

σ2
j+(1−αi)X

(FPi
)

Y
)xdx

}
(c)
= Y EF

{ m∑
i=1

αiX∑
j=1

∫ ∞

−∞
(1/δx)1(

σ2
j+(1−αi)X

(FPi
)

Y
≤ x+ δx)

− 1(
σ2
j+(1−αi)X

(FPi
)

Y
≤ x)xdx

}
(d)
= Y

m∑
i=1

EF

{ αiX∑
j=1

∫ ∞

−∞
(1/δx)1(

σ2
j+(1−αi)X

(FPi
)

Y
≤ x+ δx)

− 1(
σ2
j+(1−αi)X

(FPi
)

Y
≤ x)xdx

}
(e)
= Y X

m∑
i=1

∫ F−1
MP,λ(1−αi)

(1−
√
r)2

(1/δx)[FMP (x+ δx)− FMP,λ(x)]xdx

(f)
= Y X

m∑
i=1

∫ F−1
MP,λ(1−αi)

(1−
√
r)2

fMP (x)xdx

(g)

≥ Y Xm

∫ F−1
MP,λ(1− NT

mX
)

(1−
√
r)2

fMP (x)xdx

(h)
= KL

∫ F−1
MP,λ(1−NTY

KL
)

(1−
√
r)2

fMP (x)xdx

(i)

≥ KL

∫ F−1
MP,λ(1−NTΓ

KL
)

(1−
√

∆

Γ
)2

fMP (x)xdx

where (a) follows since Y is a constant, (b) follows from basic properties of the delta Dirac func-

tion, (c) follows from the fact that the delta Dirac function is a derivative of the step function, (d)

follows from the fact that expectation and sum are interchangeable functions, (e) follows from the

same reasoning that allowed equality (f) for the case ∆ ≤ Γ of the proof of Lemma 12, and (f)

here follows from the fact that fMP is the derivative of FMP . Furthermore, (g) follows by first setting

g(αi) ≜
∫ F−1

MP,λ(1−αi)

(1−
√
r)2

fMP (x), and then by recalling that
∑m

i=1 αi =
NT
X , and subsequently by noting
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that g(αi) is a monotonic decreasing convex function of αi,∀0 ≤ αi ≤ 1, which in turn implies that

its Lagrange optimizer function will be L(α1, α2, . . . , αm) = Y
∑m

i=1 g(αi)− λ(
∑m

i=1 αi − NT
X ), where

to ensure ∂L
∂αi

= 0,∀i ∈ [m] we have ∂g(αi)
∂αi

= F−1
MP,λ(1 − NT

mX ) = λ,∀αi, which in turn means that

α1 = α2 = . . . = αm = α which, combined with the optimization constraints, yields that α = NT
mX .

Then (h) results by noting that m = KL
XY , which itself holds since, by Lemma 16, we have that for any

asymptotic scheme with bounded normalized error, the representative supports or tiles must cover the

whole matrix F. Finally (i) follows from the fact that X ≤ ∆, Y ≤ Γ and after seeing that the derivative

of the RHS side of (h) with respect X is KL
X ((−2(1−

√
X
Y ))( 1

Y )(−1
2)

X
Y

−1/2
fMP ((1−

√
X/Y )2)(1−√

X
Y )2)− KL

X2

∫ F−1
MP (1−NT

KL
Y )

(1−
√

X

Y
)2

xfMP,λ(x)dx, as well as by noting that since fMP ((1−
√

X/Y )2) = 0, the

derivative of the RHS side of (h) is always negative, which in turn means that the RHS side of (h) is

a monotonically decreasing function of X which in turn yields that X = ∆ gives the optimal solution.

This is then combined with the fact that the derivative of the RHS side of (h) with respect regarding Y

is −NT
KL

1
fMP (F−1(1−NTY

KL
))
F−1
MP,λ(1−

NTY
KL )fMP (F

−1
MP,λ(1−

NTY
KL ))−2(1−

√
X
Y )(−1

2)(
X
Y )−1/2XY −2 =

−NT
KLF

−1
MP (1−

NTY
KL )−(1−

√
X/Y )(XY )−1/2XY −2. Finally, since X ≤ Y , this derivative is also negative,

which in turn means that Y = Γ, with the same reasoning as the case where X = ∆. This proves that

EF{∥DE− F∥2F } ≥ KL

∫ F−1
MP,λ(1−T γ

R
)

(1−
√

δκ

γ
)2

xfMP,λ(x) dx (132)

for the case of X ≤ Y . As a result, this proves the lower bound in (116), and thus the entire lower bound

(converse) of Theorem 2, over all schemes for which |RP | ≥ |CP |,∀P ∈ C.

Now for the case of Y ≤ X , similarly we have r = X
Y , and now with

∑m
i=1 αiY = NT , we see that

EF{
m∑
i=1

rPi∑
j=(1−αi)rPi

+1

σ2
j (FPi

)} (a,b,c,d)
= Y

m∑
i=1

EF

{ αiY∑
j=1

∫ ∞

−∞
(1/δx)1(

σ2
j+(1−αi)X

(FPi
)

Y
≤ x+ δx)

− 1(
σ2
j+(1−αi)X

(FPi
)

Y
≤ x)xdx

}
(e)
= Y X

m∑
i=1

∫ F−1
MP,λ(1− Y

X
αi)

(1−
√
r)2

(1/δx)[FMP (x+ δx)− FMP,λ(x)]xdx

(f)
= Y X

m∑
i=1

∫ F−1
MP,λ(1− Y

X
αi)

(1−
√
r)2

fMP (x)xdx

(g)

≥ Y Xm

∫ F−1
MP,λ(1− NT

mX
)

(1−
√
r)2

fMP (x)xdx

(h)
= KL

∫ F−1
MP,λ(1−NTY

KL
))

(1−
√
r)2

fMP (x)xdx

(i)

≥ KL

∫ F−1
MP,λ(1−NTΓ

KL
)

(1−
√

∆

Γ
)2

fMP (x)xdx
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where the first equality is proven the same way as the equalities (a, b, c, d) in the previous case of

X ≤ Y , and where here (e) is proven similar to equality (f) of the case ∆ > Γ in the proof of

Lemma 12. Furthermore, here, (f) follows from the fact that fMP is the derivative of FMP . To establish

(g), we first consider g(αi) ≜
∫ F−1

MP,λ(1−αi)

(1−
√
r)2

xfMP (x)dx subject to
∑m

i=1 αi =
NT
Y , and then note that

g(αi) is a monotonic decreasing convex function of αi, in the range αi ∈ R, thus allowing us to conclude

that its Lagrange optimizer function will be L(α1, α2, . . . , αm) = Y
∑m

i=1 g(αi) − λ(
∑m

i=1 αi − NT
Y )

where to ensure ∂L
∂αi

= 0,∀i ∈ [m], we have ∂g(αi)
∂αi

= F−1
MP,λ(1 − NT

m ) = λ,∀αi, which means that

α1 = α2 = . . . = αm = α, which is then combined with the optimization constraints to yield that

α = NT
mY . Subsequently, (h) results after noting that m = KL

XY after recalling Lemma 16 which tells us

that for any asymptotic scheme with normalized error, the representative supports must cover the entire

F. Finally, (i) follows directly as inequality (i) of the case of X ≤ Y . As a result, this proves the lower

bound in (116), and thus the entire lower bound (converse) of Theorem 2, over all schemes for which

|RP | ≤ |CP |, ∀P ∈ C.
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