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Abstract—Time series (TS) data have consistently been in short
supply, yet their demand remains high for training systems in
prediction, modeling, classification, and various other
applications. Synthesis can serve to expand the sample
population, yet it is crucial to maintain the statistical
characteristics between the synthesized and the original TS : this
ensures consistent sampling of data for both training and testing
purposes. However the time domain features of the data may not
be maintained. This motivates for our work, the objective which
is to preserve the following features in a synthesized TS: its
fundamental statistical characteristics and important time
domain features like its general shape and prominent transients.

In a novel way, we first isolate important TS features into
various components using a spectrogram and singular spectrum
analysis. The residual signal is then randomized in a way that
preserves its statistical properties. These components are then
recombined for the synthetic time series. Using accelerometer
data in a clinical setting, we use statistical and shape measures to
compare our method to others. We show it has higher fidelity to
the original signal features, has good diversity and performs
better data classification in a deep learning application.

Keywords-Spectrogram; accelerometer; data augmentation;
neural networks; singular spectrum analysis; surrogate data;
rehabilitation

I. INTRODUCTION 

The outstanding achievements in prediction, simulation,
and classification have been made possible by deep learning as
a component of artificial intelligence. To achieve robustness,
enhance generalization, and avoid overfitting of results, deep
neural networks (NNs) are trained on large amounts of high
dimensional data.

But TS data collection is limited due to various constraints
such as privacy, expense, time and physical access. Thus there
is a need to augment such data to effectively train machine
learning systems. Besides, other uses for synthetic time series
are for testing null-hypotheses, validating new methodologies
and producing ensembles for event attribution.

Synthesizing a TS requires an understanding of the original
data generating process. Thus, for processes in a steady state, it
is simple to use the mean and standard deviation of a signal to
synthesize the data while adding a small amount of random

noise. Together with many other natural phenomena occurring
over short time periods these have been successfully modeled
by linear stationary stochastic processes. However in TS
important transient events occur like mechanical shocks or in 
exceptional events surrounding process failure.

From these considerations we see that a synthesized TS
should exhibit diversity — having a useful spread of
characteristics so systems can generalize better about the data
and have fidelity in preserving the i) basic statistical properties
of the original as well as ii) important time-based features such
as its shape and iii) important transients.

In this paper we employ various measures to compare the
fidelity of synthesized data with the original. We apply these
considerations in a biomedical application to classify human
rehabilitative accelerometric data, a common use case [1].

In Section II we describe background material and the
motivation for our approach. Section III outlines our physical
setup followed by the theory and approach in Section IV. Our
experimental results are presented in Section V and we
summarize our discussion with conclusions in Section VI. For
the rest of the paper we use the terms time series and signal
interchangeably and use the notions of fidelity and diversity in
an empirical way.

II. BACKGROUND WORK

In this section we review TS synthesis approaches and 
ways to preserve their fidelity as well as introduce diversity in
their features. 

Lately, there has been progress in the generative synthesis
of TS using various generative adversarial neural networks
(GANs), as seen in [2]. A survey of such syntheses – part of a
larger TS augmentation review –  in [3] commented that the
quality metrics for these type of syntheses are probabilistic in
nature and not comparable to traditional augmentation
approaches. Also, these methods are resource intensive in terms
of training and deployment. In comparison, traditional methods
of time series synthesis take up fewer resources and their
mechanisms more easily understood. These considerations
motivate for our approach. We thus refer to the work by Iwana
and Uchida [4] who prioritized some techniques which work
well with a variety of classifiers especially those using
Convolutional Neural Networks (CNNs). Of these, two widely



used synthesis methods by Le Guennec et al. [5] are window
slicing and warping. We note that in these reviews, many time
series synthesis methods do not aim to preserve the original
features of the data but randomly perturb the time series in
empirical ways to generate data.

In earlier works [6][7] we augmented our training data
through the use of the surrogate data technique (described in
Sec. IV.C) to successfully train a NN-based classifier. But the
waveforms of the synthesized time series in many cases were
quite unlike the shape of the original signal as seen in Fig 5E.
Subsequently we used Singular Spectrum Analysis (SSA) [8]
(described in the next subsection) to obtain better results and
portions of this work have been used here for continuity.  

Time series feature isolation To preserve the shape of the
original and its important transients we note that SSA
non-parametrically extracts trend, cycle and noise (or low level)
components of a time series. Thus we advantageously specify
the trend, cycle (and seasonal parts) as its shape. SSA has been
used extensively in biomedical applications [9] and work by
Vautard et al. [10] focuses on short, noisy signals which are
applicable to our data. 

The detection of transients using spectrograms have been
well studied [17] and applied.

Time series feature randomization Another requirement for the
synthesized data is to have the basic statistical features of the
original namely: its mean, standard deviation and power
spectrum or autocorrelation. These will ensure consistent
overall population statistics for test and training data. The
method of surrogate data described by Theiler et al. [11] was
designed to preserve these features.

A similar method was used by Kostenko and Vasylyshyn
who explored how to improve the effectiveness of spectral
signal analysis and in [12] they describe how to generate
surrogate data based on the noise component of a signal
decomposed by SSA.

Classification Using NNs for time series classification have
proven very successful, beginning with early approaches such
as transforming 1D data to 2D images as the main advances in
machine learning involved images. To our knowledge, we were
the first to effectively use surrogate data to train systems to
classify time series [6]. We used transfer learning from large
2D CNNs with millions of parameters. Subsequently we
showed that a 1D CNN and a Long Short-Term Memory
(LSTM) NN was able to give very good results with a 50-fold
augmentation of data. The 1D CNNs use fewer computing
resources and our one hidden layer LSTM network can give
better results but its structure is more complex and its training
requires more resources. Furthermore, NNs in a many-layered
deep configuration have been shown to be more efficient in
terms of training and classifier complexity [13].

III. DATA COLLECTION AND SETUP

Our dataset comprises data from a triaxial accelerometer
embedded in a 10 cm cube. The cube is moved by subjects in a
manner prescribed by a rehabilitative test. Details of the
hardware and test protocol are in [14]. Three channels of data
are digitized to 8 bits at a sampling rate of 30 Hz. The
movements are visually scored by clinical staff and starts from

a score of 3 for completion of the task within 5 seconds with
appropriate hand, arm and posture movements. A score of 2 is
given when the subject completes the task with great difficulty
and/or takes abnormally long time, from 5 to 60 seconds. For a
score of 1 which indicates partial completion, the timing would
be greater than 60 seconds. Also being able to just grasp, hold
and lift the cube would be sufficient to warrant this score. Being
unable to do any of these results in a score of 0.  In Fig. 1 we
see how it is gripped, held vertically and moved.

The data were recorded from 34 patients who have had a
history of stroke and undergone rehabilitation. The medical trial
was conducted in a hospital over two months. The participants
of this study did not give written consent for their data to be
shared publicly, so due to the sensitive nature of the research
supporting data is not available.

From these subjects, 78 sets of data were recorded. Of
these 31 scored at 3, 38 scored 2, 6 scored 1 and 3 scored 0. 

Thus we consider this a classification exercise where the scores
are subjectively given by the scorer. This dataset is challenging
due to the lack of visible inter and intra class features as well as
visual subjective scoring over time.

A. Dataset augmentation

To reduce statistical bias we generate synthetic data so that
each class has roughly the same number of time series. We
denote various versions of the synthetic dataset by the fold
increase of time series being synthesized - so a 10-fold increase
would have 10 time series synthesized from an original as
shown in Table 1. However data augmentation with scores of 0
and 1 are 12 and 6 times greater respectively, to maintain
equitable sample sizes. We retain the fold designator for
convenience so the 10-fold for score 3 is actually 60-fold for
score 1.

B. Data preprocessing

The motion data captured over a session are manually
segmented and compensated for noisy readings.

IV. THEORY AND APPROACH

The theory for the components of our system is covered
here concerning transient detection, SSA and surrogate data. In
our recent work [15] we showed that our data exhibits linearity. 
This gives good support for processing the data using SSA and
surrogate data which are essentially linear operations.

Fig. 1. Rehabilitative test with scorer in background.



Fig. 2. Spectrogram of sample
wave with strong harmonics and
transients [17].

TABLE I. EXAMPLES OF DATASET AUGMENTATION. QUANTITIES IN THE

CENTER CELLS - NUMBER OF TIME SERIES: X-FOLD - FOLD INCREASE. SCORES

OF8 0 AND 1 ARE AUGMENTED  MORE - SEE TEXT.

Score Original : # T.S. “10-fold”  # T. S. “50-fold” # T. S.

3 31 310 1550

2 38 380 1900

1 6 360 1800

0 3 360 1800

Total 78 1410 7550

A.  Singular spectrum analysis

SSA is a subspace analysis method originally developed for
single channel time series analysis. We describe basic SSA
after Vautard et al. [10] where for a time series at time t the
data is represented by a vector x(t) = {x(t): t=1... N} with N
sequential, equally spaced time intervals. From this a trajectory
matrix Y is formed by sliding a window of length M < N over
x(t). The rows of Y are:

x1    = [x(1), x(2),..., x(M)] 
x2    = [x(2), x(3),..., xi(M+1)]
xN!M+1 = [x(N-M+1), x(N-M+2),..., x(N)] for row N-M+1

and Y = [ x1 ; x2 ; @ @ @ ; xN !M + 1]

where ; denotes vertical concatenation.

The decomposition of Y into its principal components starts by
forming the M ×M covariance matrix 

C = YTY / N 

where T is the transpose operator. Diagonalization of C
produces sorted scalar eigenvalues ë and eigenvectors ek (length
M). The singular values of Y are /ë, together with ek these are
used to form principal components (PC), the kth PC is a vector
of length N!M +1 whose elements are:

for 0 # t # N ! M  

In our earlier work [7] we have successfully used M = 17. To
view the effects of the decomposition, we generate the
reconstructed signal component (RC). For a set K of PCs used
for reconstruction, the kth RC is a vector of length N given by
separate equations catering for the beginning and end
conditions of the embedding operation: 

for M # t # N ! M + 1

       for 1 # t # M ! 1

       for N ! M + 2 # t # N 

Significant eigenvalues The decomposition returns a set of M
eigenvalues which are sorted to show the contribution of an 
eigenvalue to the variation of the data. We can compute a

threshold above which are considered as significant eigenvalues
Using Relevant Dimension Estimation [16] the corresponding
significant eigenvectors are used to construct RCs which are
considered as trend and seasonal data. The remaining values are
then the low level part of the signal.

We have found that SSA does not isolate transient
waveforms well, motivating for another method to do so.

B. Transient detection

For transient detection we use a spectrogram where each pixel
in Fig. 2 represents the signal energy present at a given time
point and frequency bin. Note this is an example signal from
[17] and shows two components: a constant signal cn with
strong harmonic content and transient signals tr. Here cn
contributes to the horizontal lines or rows showing significant
frequency components in bins that last for the signal duration
across time. The vertical lines or columns denote significant
transients from tr in time-bins. In our application, we consider a
significant transient as having relatively high energy at short
time points across the frequency-bins This can be interpreted as
the time point (column) having a high mean value and a low
standard deviation (std). In terms of a spectrogram, we want a
uniformly bright narrow strip across its vertical extent.

For example in Fig. 3 we show the time series data of the y-axis
movement of subject p18, trial 3, overlaying the spectrogram.
There is a large downward transient at the time point marked by
sample #60 depicted by the prominent vertical bar. This is
caused by the cube unexpectedly hitting an object and may
indicate fatigue at the end of the move. For our signals which
are digitized to values of ±128 (Sec. III) we experimentally
define a prominent transient as having a mean and standard
deviation threshold greater than 50 and 80 respectively in a
time point (column). A transient may occupy more than one
time point so we need to cluster adjacent time points with
similar characteristics. The transients are subtracted from the
signal and the intervening data points linearly interpolated, 
described as follows:

Transient detection algorithm
1 Generate spectrogram of zero-mean signal

2 For all time points
compute mean and std
cluster the means using k-means

3 For all clusters
remove members that are:
<  mean threshold  % low energy
>  std threshold    % energy not evenly spread
remove clusters with few members

4 For valid clusters % members adjoining time points

Fig. 3. Spectrogram heatmap of
accelerometer. Actual signal
superimposed (blue). Strong
transient at sample 60.

(1)



find start and end values of time points
linearly interpolate start/end times
subtract from actual signal %transient only
store differences % to be restored

Finally the differences (described in step 4 of algorithm) are
added back to the surrogate along with the trend/cycle. We
used a window of two time points and 129 normalized
frequency points.

C.  Randomizing with surrogate data

In this section we briefly describe the method of surrogate data
as well as its output, both which have the same name. We
denote the signal by x for brevity rather than x(t). All data sorts
mentioned are ascending and bold characters are vectors.

1. Sort x to xS with the indexes of the sorted values ix

    Sort ix to form the rank index vector irx.
2. Generate a vector of length N from a normal distribution.
    Sort this vector to give rv.
3. Permute rv using irx as indexes to create a new vector rrv.
4. Compute the Fourier transform of rrv as ft.
   Produce vector ö of length N/2 of random angles from [0 2ð]. 
   Compute the phase randomized vector ftr:

For the first half of ftr multiply this by exp(iö) 
For the second half of ftr, take the flipped complex conjugate
of the first half.

5. Take the inverse Fourier transform of ftr to form vector s.
6. Sort s to obtain indexes is ; sort is to form rank indexes irs

7. Permute xs using irs as indexes to get the surrogate vector.

D.  Randomizing with window slicing / warping

Here we briefly describe two window distortion methods.
Window slicing discards 10% of data at random starting points
of a signal. Window warping expands or contracts a random
window of 10% of the data in the signal. In both cases the time
series data were interpolated to retain the duration of the signal.

E. 1D Convolutional neural network

We used a deep 1D CNN as it has shown good results with a
relatively simple structure. This had 3 sets of convolutional and
pooling layers, then 2 sets of dense and dropout layers, all with
ReLU activations. The final dense layer used softmax
activation with 3 outputs resulting in a network of 26,800
parameters. We used a mini-batch size of 20 over 20 epochs
with the ADAM adaptive weight update rule: this starts from a
learning rate of 0.001, decaying at a rate of 1E-6 and uses
accuracy as the learning metric. In the augmented dataset, 80%
was used for training, 20% for validation and the original 78
time series used for testing.

The input needs to be a fixed length vector which we have
set to 91, the median of our variable length data. The time
series is zero-padded or truncated to this length before being
used to train the 1D CNN. 

F. Methodology

We denote our proposed system as the transient, shape,
statistics saving surrogate (TS4) method. The input signal is
decomposed into transients, then trends, cycles and low level
components by SSA. The transient, trend-cycle and seasonal
data or shape of the signal is passed on unchanged and thus

exhibits fidelity to the original signal. The low level signal is
subjected to surrogate data processing. All of these signal
components are recombined to form the synthetic time series as
shown in Fig. 4. This process is repeated for the specified fold
increase to generate a batch of time series used for training,
classification and so on.

For window slicing and warping, the time series data are
generated by the software from [4] for the number of fold
increases  required.

V. RESULTS

In this section we compare the statistical and shape
preserving abilities of our algorithms followed by their
effectiveness in classification. Note that the statistical values
and signal shapes are only indicative and will differ slightly for
each iteration of the generating algorithm.

We use the changes in four numerical measures to compare
the preservation of features in the synthesized signals.

i) Signal mean: The difference between the simple average of
the original and synthesized signal values as a percent of the
average of the original signal. 
ii) Signal standard deviation: Same as i) except we compute the
standard deviation instead.
iii) Signal autocorrelation function (ACF): the root mean
squared difference between the magnitudes of the ACF of the
two signals.

The fourth measure gauges the similarity between the  signals using:
iv) Dynamic Time Warping [18] (DTW): non-linearly warps
two time series to match optimally. This produces a distance
also called the DTW measuring how closely they match. The
signals are normalized to zero mean and unity standard
deviation. After computing the DTW this is further normalized
by dividing by the length of the signal.

Finally we do a visual comparison in Fig. 5 where the plots
of the synthetic time series are overlaid on the original signal.
Panel A) shows the original signal with isolated transients, SSA
decomposed trend-cycle and low level components. As defined,
the shapes of the signals are consistent with the gross
movement of the cube in Fig. 1. There are some higher
frequency components which are a combination of tremors as
well as electronic noise [14] which are considered as
comprising the low level signal. In Fig. 5B the waveform from
our work together with panels C) and D) show a general
adherence to the original shape.

Fig. 4. Block diagram of our data augmentation system. Input split by
transient detection and SSA into shape(trend/cycle) and low level
components. The latter are subject to the surrogate randomizing process.
Data is recombined, batched and used to train the classifier (lower right).



TABLE IV ACCURACIES OF FOLD INCREASE WITH FOUR TIME SERIES SYNTHESIS METHODS.

Synthesis method TS4 Window Slicing Window Warp  Surrogate

Fold increase 50x 25x 10x 5x 50x 25x 10x 5x 50x 25x 10x 5x 50x 25x 10x 5x

Predict accuracy 1 1 0.933 0.892 0.987 0.987 0.933 0.933 0.96 0.853 0.933 0.973 0.893 0.822 0.776 0.781

Validate accuracy 0.998 .0.994 0.997 0.952 0.99 0.994 0.971 0.914 0.981 0.876 0.97 0.943 0.932 0.912 0.901 0.922

Train accuracy 1 1 1 0.923 1 0.999 1 1 0.979 0.912 0.951 0.948 0.941 0.932 0.91 0.881

In comparison panel E) shows the non-shape preserving
surrogate signal from our previous work [7] and the shifted
transient. The summary comparison in Table III shows the
values of the percent differences in mean, standard deviation,
ACF and DTW between the original and synthesized signal.

TABLE III DIFFERENCES OF STATISTICS AND SIMILARITY

BETWEEN ORIGINAL AND SYNTHESIZED TIME SERIES. 

Difference TS4 Window
Slicing 

Window
Warping

Surrogate
only

Ä mean % 0 1.98 -8.14 0

Ä std % -0.07 0.07 -1.67 -1

Ä autocorr 0.29 0.62 0.98 0.83

DTW% 18.2 13.18 20.74 25.42

Generally we see that TS4 best preserves the statistical
properties as it produces the smallest changes in values. While
the DTW (distance) is larger than the window distortion
methods, it is an indication that it provides good diversity but
still follows the original signal shape in Fig. 5B. In comparison
the window distortion methods do not preserve the statistical
data as well although they have good similarity measures in the DTW.

We next show the ACF plots of the synthesized signal
overlaying the original in Fig. 6. These refer to the summary
comparison information in Table III. As can be seen they
follow each other quite closely in form with the surrogate
methods in panels A) and D) having the best matches. This is in
accord with the intent of the surrogate data method.

Fig. 6.  ACF plots - original signal in solid blue, synthesized in dotted lines. A)
TS4 B) Windows Scaling C) Windows Warping D) Surrogate only

Finally we take the synthesized data and perform
classification. This was done for each synthesis method and
data fold combination, for at least three runs and the median
value taken. In Table IV we see our TS4 method gives the best
results in being able to predict the condition of a subject with
100% accuracy using just a 25-fold increase of the time series
data. The window distortion methods also had good
classification together with the surrogate-only method. 

VI. CONCLUSION

In summary we attempted to automatically classify the
condition of a subject based on their performance in a
rehabilitation test using data from a triaxial accelerometer. The
training data are essentially subjective scores awarded by
different clinicians over time and not normalized. 

By augmenting our data so it has fidelity to the original, we
achieve excellent results training a deep 1D CNN to accurately
score the movement of subject. Here, much fewer parameters
were needed for training, resulting in a smaller network. 

Using surrogate data only, our earlier 1D to 2D approach
[1] used millions of parameters with 100 fold augmentation to
achieve accuracies of around 97%. Another early approach [7]
used a 1D CNN with 140,735 parameters and 50 fold
augmentation to achieve this.

The key outcome of our work is the generation of 
synthetic TS that maintains with respect to the original signal
its crucial signal characteristics which are: the mean, variance,
autocorrelation as well as its shape and transients. These are
important in studies of rehabilitative movements involving the
picking and placing of objects as well as detecting and
preserving important short term events in the move. We show it
also performs better than two existing time series augmentation methods.

For greater variety in augmented waveforms the 
parameters of TS4 can be adjusted. For example, by changing
the threshold of what is defined as low level signal in SSA, and
the threshold(s) of what is defined as a transient. 

            A)                 B)                 C)                 D)                  E)

Fig. 5. Examples of waveforms: all solid blue lines are original signal. Overlays are A) starred: SSA derived trend/cycle with transient | dash-dot: low level|
dash:transient only B)  starred: TS4  C) starred: windows slice D) starred: windows warp  E) starred: surrogate only.
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