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Abstract

Despite extensive safety assessments of drugs prior to their introduction to the mar-

ket, certain adverse drug reactions (ADRs) remain undetected. The primary objective

of pharmacovigilance is to identify these ADRs (i.e., signals). In addition to tradi-

tional spontaneous reporting systems (SRSs), electronic health (EHC) data is being

used for signal detection as well. Unlike SRS, EHC data is longitudinal and thus re-

quires assumptions about the patient’s drug exposure history and its impact on ADR

occurrences over time, which many current methods do implicitly.

We propose an exposure model framework that explicitly models the longitudinal

relationship between the drug and the ADR. By considering multiple such models

simultaneously, we can detect signals that might be missed by other approaches. The

parameters of these models are estimated using maximum likelihood, and the Bayesian

Information Criterion (BIC) is employed to select the most suitable model. Since BIC

is connected to the posterior distribution, it servers the dual purpose of identifying the

best-fitting model and determining the presence of a signal by evaluating the posterior

probability of the null model.

We evaluate the effectiveness of this framework through a simulation study, for

which we develop an EHC data simulator. Additionally, we conduct a case study

applying our approach to four drug-ADR pairs using an EHC dataset comprising over

1.2 million insured individuals. Both the method and the EHC data simulator code are

publicly accessible as part of the R package https://github.com/bips-hb/expard.
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simulator; spontaneous reporting systems
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1 Introduction

Despite the thorough examination of drugs for potential side effects before their market

release, some adverse drug reactions (ADRs) may go unnoticed until after the drug enters

the market [60, 47, 22, 6, 58]. This could be due to several reasons. The pivotal randomized

clinical trials (RCTs) are designed with a focus on assessing efficacy, resulting in sample

sizes often inadequate for detecting rare safety outcomes [20, 45]. In these trials, patients

typically need to meet multiple inclusion criteria, and vulnerable groups, such as pregnant

women, the elderly [8], and individuals with multiple health conditions, are frequently either

excluded or underrepresented [31, 17]. Furthermore, patients in RCTs are monitored for

a limited duration only, making it difficult to uncover any potential long-term effects. For

that reason, pharmacovigilance [60, 58, 18] plays a pivotal role in ensuring the safety of

pharmaceutical products.

With the aim of promptly identifying drugs that may pose health risks, spontaneous re-

porting systems (SRSs) have been established over the years [39]. Healthcare professionals,

pharmaceutical companies, and, in some cases, patients [29] can submit a spontaneous report

to such a system when they suspect a drug may be associated with a previously unknown

reaction [47, 6, 58, 41]. These reports are collected, cleaned, stored, and subsequently ana-

lyzed by a committee of medical experts [4, 36, 3]. Due to the sheer volume of accumulated

reports typically contained in these systems [1], the idea was to present the committee of

medical experts with an automatically curated list of drug-ADR pairs that needed their

attention, rather than the raw reports themselves [50, 51, 2]. Each entry on such a list is

referred to as a a signal. Therefore, the process of creating such a shortlist is also known as

signal detection [58].

Even though SRSs form the cornerstone of pharmacovigilance, they also come with several

limitations. First, the total number of patients exposed to the drug or experiencing the

ADR is essentially unknown. Reports are submitted only when a patient has both been

exposed to the drug and has experienced the ADR, leading to what is known as the unknown

denominator problem [16]. Secondly, there is potentially an over- or underreporting bias

[41, 51, 30, 53, 24]. Newly introduced drugs, for example, may attract more attention from

healthcare professionals and are, thus, more likely to be reported. Third, the decision on

what information to include in the report is made on an individual basis. For instance, one

might choose to exclude a drug if it is deemed too unlikely to have caused the ADR or if the

patient’s exposure is considered too far in the past.

Over the last two decades, alongside SRS data, pharmacovigilance has begun considering

longitudinal data as well, specifically electronic healthcare (EHC) data [10, 44, 12, 26, 32,

42, 48]. EHC data include individual patients’ drug prescriptions and medical events over

time, along with personal details such as age, sex, and place of residence [47, 9, 62]. This
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kind of data, to some extent, mitigates the limitations of SRS data mentioned earlier [38].

The total number of patients exposed to the drug and/or experiencing the ADR is known;

there is a reduction in over- and underreporting bias [21], and it eliminates the need to make

choices about what to report. An additional advantage is that EHC data sets can be very

extensive, containing up to millions of patients [23].

Another distinction between EHC and SRS data lies in their timeliness [52]. Reports are

typically submitted promptly to SRSs, whereas EHC data often experience delays. Conse-

quently, SRS data play a crucial role in detecting ADRs of drugs recently introduced to the

market. On the other hand, the richness of EHC data may prove beneficial in identifying

more subtle associations between the drug and ADRs, a task that might be challenging on

the basis of SRS data alone [49].

A plethora of signal detection methods have been proposed for EHC data [47, 42, 9, 62,

54, 55, 27]. To address its longitudinal nature, many of these methods convert EHC data into

a format resembling SRS data and utilize techniques initially developed for SRSs [62]. Other

approaches such as LASSO [13] and Random Forests (RFs) condense a patient’s exposures

and ADR occurrences over time into a limited number of variables while striving to retain

some of its temporal information [13].

By transforming EHC data in this way, one implicitly makes assumptions about the

temporal relationship between drug exposure and the ADR [35]. Van Gaalen et al. [54, 55]

introduce the concept of an exposure model, i.e., a formal description of how exposure to

the drug affects the risk for a patient to experience the ADR over time. The idea is to

define multiple exposure models, each attempting to capture a different type of temporal

relationship. For instance, one can establish an exposure model for withdrawal effects, where

the risk of experiencing the ADR peaks just after the patient’s exposure stops and diminishes

rather quickly. Alternatively, a model can be defined where the effect of the exposure is long-

term, and the risk increases gradually over time [54]. By considering multiple of these models

simultaneously for each drug-ADR pair, the hope is to be able to identify many different

temporal relationships, some of which may not be discernible using conventional approaches

since the effect is diluted. Van Gaalen et al. [54, 55] define several such exposure models.

However, the range of models is limited and it is unclear how the parameters of these models

are to be estimated on the basis of the data. Additionally, their approach focuses on a single

drug-ADR pair, leaving ambiguity about its applicability in a pharmacovigilance context

where multiple drug-ADR pairs are considered simultaneously.

An alternative approach involves employing cubic B-splines to characterize the connec-

tion between the drug-ADR pair [27]. While this approach offers flexibility, it comes with

drawbacks, as it does not explicitly define the nature of the relationship between the drug

and ADR pair. More critically, the application of cubic B-splines in the traditional pharma-
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covigilance setting, where multiple drug-ADR pairs are simultaneously considered, is unclear

as well [27].

In this work, we present a comprehensive exposure model framework for pharmacovigi-

lance based on EHC data to address some of the aforementioned limitations. We formally

define the concept of an exposure model. In addition, we propose eight exposure models,

known to occur, at least approximately, in real-world data. It is important to note that these

serve as examples, and any other exposure model can be defined within the framework. The

exposure models’ parameters are then estimated using maximum likelihood.

We advocate the use of the Bayesian Information Criterion (BIC) for model selection,

given its focus on both the quality of data fit (expressed by the model’s likelihood) and

the model’s complexity (quantified in terms of the number of parameters). An additional

advantage of the BIC is its close relationship to the posterior probability of the exposure

model. By utilizing the posterior probability of the null model, indicating no association

between the drug and the ADR (see Section 2.5), our approach can effectively achieve two

objectives: 1) determining the presence of an association, and 2) identifying which exposure

model among those considered best fits the data.

The posterior probabilities of the exposure models offer an added advantage, making

the approach well-suited for pharmacovigilance by providing a basis for which drug-ADR

pairs are to be considered a signal. The weakest signal shows the pair with the highest

probability for the null model indicating no association, while the pair with the lowest

posterior probability is considered the strongest signal.

To assess the effectiveness of our approach, we perform a simulation study. We offer a

simulator for EHC data, which enables users to utilize the exposure model of their choice to

simulate the occurrences of ADRs over time. We then assess the performance of the method

in terms of its capability to both detect an association and accurately identify the correct

exposure model.

Furthermore, we demonstrate the applicability of our approach through a case study

based on data from the German Pharmacoepidemiological Research Database[23] (GePaRD),

see Section 6. In this case study, we examine four drug-ADR pairs, three of which are known

to be associated, and one serving as a negative control. The literature provides information

on the longitudinal nature of the associations for these three positive pairs. We assess the

extent to which our method can accurately identify the correct exposure model.

The paper is structured as follows: We begin by formally defining an EHC dataset in

Section 2.1. Subsequently, in Section 2.2, we introduce a formal definition of an exposure

model. Section 2.3 contains eight examples of such models. We then detail how the param-

eters of the exposure models can be estimated using maximum likelihood, with analytical

solutions derived for three of the eight models. The remaining models are solved numerically.
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Section 2.5 considers model selection and the decision criterion for determining whether a

drug is associated with an ADR.

Subsequently, we introduce the simulator for EHC data in Section 3 and outline the

simulation set-up for the simulation study in Section 4. The method for assessing the per-

formance in the simulation study is described in Section 5. Following this, we introduce

our case study in Section 6. The outcomes of both the simulation and the case study are

presented in Section 7. We conclude with some final remarks and discussion in Section 8.

All the code is publicly available online. Both the simulator and the implementation

of the method are available in form of the R package expard at https://github.com/

bips-hb/expard. The code related to the simulation study and case study can be found

at https://github.com/bips-hb/expard-simulation-study and https://github.com/

bips-hb/expard-case-study, respectively.

2 Methods

2.1 A Formalization of Electronic Healthcare Data

Electronic healthcare data contains for multiple patients 1) the drugs they were exposed to,

and 2) the ADRs they experienced over time. We denote the number of drugs on the market

by m; the number of registered ADRs and the number of observed patients are denoted by n

and N , respectively. The number of time points for which a patient was observed, can differ

from patient to patient. We denote the total number of time points for the k-th patient by

Tk ≥ 1. We assume that each patient was observed continuously, i.e., without interruptions.

We represent the k-th patient’s drug exposure to the i-th drug over time as a random

binary Tk-dimensional vector:

Xk
i =

(
Xk

i (1), X
k
i (2), . . . , X

k
i (Tk)

)
,

where Xk
i (t) = 1 if the k-th patient was exposed to the i-th drug at time point t, and

0 otherwise. Likewise, the occurrences of the j-th ADR are represented by the random

Tk-dimensional binary vector

Y k
j =

(
Y k
j (1), Y

k
j (2), . . . , Y

k
j (Tk)

)
,

where Y k
j (t) = 1 if the k-th patient had the j-th ADR at time point t, and 0 otherwise.

Since there are m drugs, we can represent all drug exposures for a patient k as a set of m

different Tk-dimensional binary vectors, i.e.,

P k
drugs =

{
Xk

1 ,X
k
2 , . . . ,X

k
m

}
.
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Likewise, we can represent the ADR history for patient k as a set with n binary vectors:

P k
ADRs =

{
Y k

1 ,Y
k
2 , . . . ,Y

k
n

}
.

The k-th patient is represented by both his/her drug exposure and ADR history, i.e.,

Pk =
{
P k

drugs,P
k
ADRs

}
.

And lastly, an EHC data set is then a collection of N patients:

EHC = {P1,P2, . . . ,PN} .

Observations are denoted by lower-case letters: ehc = {pk}Nk=1 is a given EHC data set,

where pk = {pkdrugs,pkADRs} is the k-th patient. The set pkdrugs represents the observed

drug exposures: xk
i = (xki (1), x

k
i (2), . . . , x

k
i (T )) for i = 1, 2, . . . ,m. Similarly, the set pkADRs

represents the observed ADRs: yk
j = (ykj (1), y

k
j (2), . . . , y

k
j (T )) for j = 1, 2, . . . , n.

One commonly assumes patient independence, meaning that the joint probability density

function of EHC can be factorized as

P(EHC = ehc) =
N∏
k=1

P(P = pk),

where P(P ) denotes the probability density function of a single patient. For readability’s

sake, we assume in the following that all patients have been observed for the same number

of time points, i.e., T = T1 = T2 = . . . = TN . It is straightforward to extend these signal

detection methods to deal with varying observation times. Throughout this paper, we mainly

consider single drug-ADR pairs. We, therefore, omit the subscripts i and j wherever possible.

For ease of notation, we write

X(1 : t) = (X(1), X(2), . . . , X(t− 1), X(t)) ∈ {0, 1}t

for the drug exposures for that patient from time point 1 to t.

2.2 The Exposure Model

In pharmacovigilance, we are commonly interested in the joint probability distribution of X

and Y for all drug-ADR pairs in the data set. Specifically, we are interested in whether they

are independent, i.e.,

P (X = x,Y = y) = P (X = x)P (Y = y)

for all x,y ∈ {0, 1}T . A full specification of the joint probability density function of (X,Y )

is infeasible, since it requires to specify a total of 22T probabilities. The model, therefore,
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has to be simplified. As mentioned in Section 1, signal detection methods that have been

proposed in the past do this implicitly, most commonly by transforming the EHC data for

a given drug-ADR pair to a single 2 × 2 contingency table. There are a variety of ways to

do this, see, for example, the work by Zorych et al. [62].

Instead of the full probability distribution, we consider here the conditional distribution

of the ADR history given the exposures to the drug over time:

P (Y |X) =
T∏
t=1

P (Y (t) |X(1 : t)) . (1)

Modelling the full probability distribution P (X,Y ) = P (Y |X)P(X) would require to

model the drug exposure to the drug over time, i.e., P(X), which is not of direct interest.

We assume that the occurrences of the ADR at different time points are independent given

the drug exposure history. This can be a rather strong assumption for certain types of

ADRs, e.g., anaphylaxis and myocardial infarction. We address this in the discussion, see

Section 8. Note that we can express P (Y (t) |X) as P (Y (t) |X(1 : t)) since the occurrence

of the j-th ADR at time point t is independent of drug exposures in the future given the

drug exposures up to that point in time.

Here, we set out to create a framework for modelling the conditional probability dis-

tribution from eq. (1). To this end, we first define a risk level as a value between [0, 1],

where 0 represents that the patient is, at that point in time, at ‘minimal’ risk of experi-

encing the ADR and 1 represents ‘maximal’ risk (its precise meaning becomes clear later).

In addition, we define DT = {{0, 1}t : t = 1, 2, . . . , T} be the set of all binary vectors of

length t = 1, 2, . . . , T . It, thus, represents all possible drug exposure histories. We propose

to represent the conditional distribution in terms of an exposure model:

Definition 1 An exposure model M for a drug-ADR pair is given by the tuple

⟨π1, π0, T, rM(·;θ),ΘM⟩ , (2)

where π1, π0 ∈ [0, 1], T is the number of time points, and rM : DT → [0, 1] is the risk

function that maps each binary vector in DT to a risk level in the interval [0, 1]. The risk

function is parameterized by the m-dimensional parameter vector θ = (ξ;ϕ) ∈ ΘM, where

ξ = (ξ1, . . . , ξq) ∈ ΞM are continuous and ϕ = (ϕ1, . . . , ϕs) ∈ ΦM are discrete parameters

(m = q + s ≥ 0).

Utilizing the exposure model M, we can express the conditional probability of the ADR

occurring at time point t, given the drug history up to that point, as

PM (Y (t) |X(1 : t)) = (π1 − π0) rM(X(1 : t);θ) + π0.
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Figure 1: The probability of the ADR occurring at time point t, denoted as PM (Y (t) |X(1 : t)),

plotted against the risk level represented by rM (X(1 : t);θ). At the minimal risk level (0), the

probability of the ADR taking place is π0. Conversely, at the maximal risk level (1), the probability

is π1.

In other words, the probability is π0 when the patient is at minimal risk (rM(X(1 : t);θ) = 0)

and π1 when the patient is at maximal risk (rM(X(1 : t);θ) = 1). This relationship is

visualized in Figure 1, where the x-axis represents the risk level and the y-axis signifies the

probability of the ADR taking place. As the risk level varies, this probability can assume any

value within the interval [π0, π1]. Consequently, the conditional probability from equation (1)

can be expressed as the product

PM (Y |X) =
T∏
t=1

PM (Y (t) |X(1 : t)) =
T∏
t=1

[(π1 − π0) rM(X(1 : t);θ) + π0] .

In the next section, we propose eight exposure models that mimic various known relationships

between drugs and ADRs. We provide examples of drug-ADR pairs that are known to

approximately follow those models. In Section 2.4 we discuss how to fit an exposure model

M to a specific data set. It is important to note that the concept of an exposure model is

of course not limited to the eight examples presented here; one can define others as well.

2.3 Examples of Exposure Models

Here, we propose eight exposure models by specifying the risk function rM and the associated

parameter space ΘM for each model.
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No Assocation (M0)

The no association exposure model reflects the case when there is no association between

the drug and ADR in question, i.e., P(X,Y ) = P(X)P(Y ). In terms of the risk function,

we can represent this case as

rM0 (X(1 : t)) = 0 for all X ∈ DT .

The parameter space ΘM0 is the empty set ∅. In other words, the patient is at ‘minimal risk’

independent of his/her exposure to the drug. See, for example, Figure 2a. The drug exposure

over time is represented by the x-axis, where the exposed period from t = 5 to t = 10 is

denoted by the shaded area. The y-axis is the risk level over time given the exposure. As

you can see, the risk level is constant and zero throughout.

Current Use (Mcurrent use)

The current use exposure model represents the case where the patient’s risk level is elevated

when the patient is exposed and returns to zero the moment he/she ceases to be exposed.

Formally, we can express this as

rMcurrent use (X(1 : t)) = X(t) for all X ∈ DT .

The parameter space is ΘMcurrent use = ∅ as well. See Figure 2b for an example. One can see

that the risk level is maximal (= 1) during exposure and minimal (= 0) when not exposed.

An examples of a drug-ADR pair that, at least approximately, follow this pattern are oral

corticosteroids and fractures [57].

Withdrawal Effects (Mwithdrawal)

The risk of experiencing withdrawal effects is highest quickly after a patient is no longer

exposed and decreases with time. We can model this with the following risk function where,

for all X ∈ DT ,

rMwithdrawal
(X(1 : t); ρ) =

0 if never/currently exposed, and

exp (ρ · flast(X(1 : t))) otherwise,

where ρ ∈ ΘMwithdrawal
= R+ is the risk function’s only parameter denoting the rate with

which the risk level decreases, and the function flast(·) returns the number of time points

since the patient’s last exposure, i.e.,

flast (X(1 : t)) = t−max {τ ∈ {1, 2, . . . , t− 1} such that X(τ) = 1} . (3)

Figure 2c and 2d show two examples where the rate parameter ρ is either 1 or 1
2
. A well-

known example of drugs that elicit such a response are opioids [28].
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Figure 2: Examples of risk functions introduced in Section 2.3. These exact risk functions are

also used in the simulation study, see Section 4. The horizontal axis represents time (t). The gray

area is the period in which the patient was exposed (from t = 5 to t = 10). The y-axis shows the

risk level, where 1 represents ‘maximal’ risk to experience the ADR, and 0 denotes ‘minimal’ risk.
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Delayed Effects (Mdelayed)

The delayed effect model represents drug-ADR pairs where the risk of experiencing the ADR

increases gradually during exposure, reaches a ‘peak’ (represented by the parameter µ > 0)

and dissipates afterwards. We model this using the probability density function of the normal

distribution, normalized so that the risk level is 1 at µ, i.e.,

rMdelayed
(X(1 : t);µ, σ) =


0 if never exposed, and

exp

[
−1

2

(
fstart(X(1:t))−µ

σ

)2
]

otherwise,
(4)

for allX ∈ DT . The parameter σ > 0 regulates how rapidly the risk level increases/decreases

and the function fstart(·) returns the number of time points since the patient was exposed

for the first time:

fstart (X(1 : t)) = t−min {τ ∈ {1, 2, . . . , t} such that X(τ) = 1} . (5)

See Figure 2e and Figure 2f for an example where µ is 2 and 5, respectively. The parameter

σ equals 2 in both cases. Various antiepilectic drugs are known to have a similar temporal

relationship to the Stevens-Johnson syndrome [7]. Direct oral anticoagulants (DOACs) and

gastrointestinal bleeding are also known to follow a similar pattern [19]. We consider the

latter drug-ADR pair in the case study, see Section 6.

Decaying Effects (Mdecaying)

In case of a decaying effect, the risk level is maximal when the patient is exposed for the

first time and quickly diminishes, even when still exposed. We propose

rMdecaying
(X(1 : t); ρ) =

0 if never exposed, and

exp (−ρ · fstart (X(1 : t))) otherwise,

for all X ∈ DT , where ρ > 0 represents the rate with which the risk level decreases. See

Figure 2g and 2h for two examples where the rate ρ is either 1 or 1
2
. Drug-ADR pairs that are

known to follow such a pattern include penicillin and anaphylaxis [34], antiepileptic drugs

and adverse psychiatric effects [37, 59], and oral contraceptives and venous thrombosis [56].

We consider penicillin and anaphylaxis in the case study, see Section 6.

Delayed and Decaying Effects (Mdelayed+decaying)

In some cases, the exposure to a drug shows both a delayed and a decaying effect on the

occurrences of the ADR, e.g., oral glucocorticoids and serious infections [15]. We can reflect

this by combining both models as follows:

rMdelayed+decaying
(X(1 : t);µ, σ, ρ) = C−1

[
rMdelayed

(X(1 : t);µ, σ) + rMdecaying
(X(1 : t); ρ)

]
,
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where µ, σ and ρ > 0 and C is a normalizing constant. We must select the value for C

such that the maximum value of the model’s risk function is 1. This necessitates solving the

optimization problem

C = max
X∈{0,1}T

{
rMdelayed

(X(1 : t);µ, σ) + rMdecaying
(X(1 : t); ρ)

}
= max
X∈{0,1}T

{
exp

[
−1

2

(
fstart(X)− µ

σ

)2
]
+ exp [−ρ · fstart (X)]

}
.

To solve this, we would actually need to consider each binary vector X ∈ {0, 1}T . However,
we can simplify the problem using the function fstart(·). This indicates the number of time

points that have elapsed since the patient was first exposed to the drug, see eq. (5). The

values that the function fstart(·) can take are restricted to 1, 2, . . . , T − 1. Consequently, we

can formulate the optimization problem as

C = max
s∈{1,2,...,T−1}

{
exp

[
−1

2

(
s− µ

σ

)2
]
+ exp(−ρ · s)

}
,

which can be readily solved numerically. For an illustration of this model, see Figure 2i

where µ = 10, σ = 2 and ρ = 1.

Long-term Effects (Mlong-term)

The ADR can, in some cases, occur long after the patient was exposed for the first time, e.g.,

antipsychotics and type 2 diabetes [25]. We model these ‘long-term’ cases using a sigmoid

function. For all X ∈ DT ,

rMlong-term
(X(1 : t); ρ, κ) =

0 if never exposed, and

exp(−ρ(fstart(X(1 : t))− κ))−1 otherwise.

The risk function has two parameters: (ρ, κ) ∈ ΘMlong-term
= R2

+. See Figure 2j for an

example where ρ = 1
4
and κ = 50. In contrast to the other figures, the x-axis ranges from

t = 1 to t = 80 to illustrate the risk function more clearly.

Past Exposure (Mpast)

The risk level of the ADR in question occurring can be elevated from the start of the exposure

and remain elevated for a certain period of time, even when the patient is no longer exposed.

We model this as

rMpast (X(1 : t); p) =

0 if never exposed, and

1 if flast(X(1 : t)) ≤ p,
(6)
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for all X ∈ DT , where p ∈ {1, 2, . . . , T − 1} and flast(·) is given in eq. (3). Note that this

risk function is the only one proposed here that has a discrete parameter. See Figure 2k and

2l for an example where p = 5 and p = 10, respectively. Note that in this case, the x-axis

ranges from t = 1 to t = 30. An example of drug-ADR pair that approximately follows

the past exposure model are antiepileptic drugs and delayed allergic hypersensitive reactions

[37, 61].

2.4 Parameter Estimation

In this section, we describe how the parameters of an exposure model M, i.e., π0, π1 and

the parameter vector of the risk function θ, can be estimated on the basis of the data. We

first consider a general exposure model. Afterwards, we derive the estimators for the no

association, current use and past use exposure models as defined in the previous section

since, in their case, an analytical solution exists. We denote the data for all patients as

X∼ = {Xk}Nk=1 and Y∼ = {Y k}Nk=1. The likelihood function for the exposure model M is

given by

LM
(
π1, π0,θ;X∼ ,Y∼

)
=

N∏
k=1

T∏
t=1

[
(π1 − π0) rM

(
Xk(1 : t);θ

)
+ π0

]Y k(t) ×

[
1− (π1 − π0) rM

(
Xk(1 : t);θ

)
− π0

]1−Y k(t)
.

The corresponding log-likelihood function is then

ℓM
(
π1, π0,θ;X∼ ,Y∼

)
= logLM

(
π1, π0,θ;X∼ ,Y∼

)
=

N∑
k=1

T∑
t=1

[
Y k(t) log

(
(π1 − π0) rM

(
Xk(1 : t);θ

)
+ π0

)
+

(
1− Y k(t)

)
log

(
1− (π1 − π0) rM

(
Xk(1 : t);θ

)
− π0

) ]
.

(7)

Recall that the parameter vector θ = (ξ,ψ) can consist of both continuous (ξ) and discrete

parameters (ψ). The maximum likelihood estimator (MLE) can, therefore, be written as(
π̂1, π̂0, θ̂

)
= argmax

π1,π0∈[0,1],ξ∈ΞM,ψ∈ΨM

ℓM
(
π1, π0, (ξ,ψ) ;X∼ ,Y∼

)
= argmax

ψ∈ΨM

{
argmax

π1,π0∈[0,1],ξ∈ΞM

ℓM
(
π1, π0, (ξ,ψ) ;X∼ ,Y∼

)}
.

In other words, the original optimization problem can be subdivided into |ΨM| subproblems

(where | · | denotes the cardinality of the set), one for each value ψ ∈ ΨM. Analytical

solutions for these subproblems might not exist, but they can be solved numerically. We

employ Nelder-Mead’s algorithm since it allows for discontinuous risk functions as well [33, 5].
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No Association (M0)

Recall that the risk function for the null model is rM0(X) = 0 for all X ∈ DT . Let

Y + =
∑N

k=1

∑T
t=1 Y

k(t) be the total number of occurrences of the ADR in the data set. The

log-likelihood function reduces to

ℓM0

(
π0;X∼ ,Y∼

)
=

N∑
k=1

T∑
t=1

Y k(t) log (π0) +
(
1− Y k(t)

)
log(1− π0)

= Y + log (π0) +
(
NT − Y +

)
log (1− π0) .

Maximizing this function with respect to π0 gives the MLE π̂0 =
Y +

NT
.

Current use model (Mcurrent use)

We can determine the MLE for this model in a similar fashion. Let us first define the

following 2×2 contingency table represented by the random variables A, B, C and D, which

are given by

A =
N∑
k=1

T∑
t=1

Xk(t)Y k(t), B =
N∑
k=1

T∑
t=1

Xk(t)(1− Y k(t)),

C =
N∑
k=1

T∑
t=1

(1−Xk(t))Y k(t) and D =
N∑
k=1

T∑
t=1

(1−Xk(t))(1− Y k(t)).

The count A represent the number of time points the patients were exposed to the drug

and experienced the ADR, B is the number of times the patient was exposed, but did not

experience the ADR, etc. Note that the sum of these counts are the total number of observed

time points, i.e., A+B+C+D = NT . Using these definitions, we can express the exposure

model’s log-likelihood as

ℓMcurrent use

(
π1, π0;X∼ ,Y∼

)
= A log (π1) +B log (1− π1) + C log (π0) +D log (1− π0) .

If A+B > 0 and C +D > 0, the MLE can be calculated as

(π̂1, π̂0) =

(
A

A+B
,

C

C +D

)
.
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Past Exposure (Mpast)

In order to derive the MLE for the past use model, we first define the counts A(p), B(p),

C(p) and D(p) for p = 1, 2, . . . , T − 1 as follows:

A(p) =
N∑
k=1

T∑
t=1

Y k(t)1
{
∃τ ∈ {max{1, t− p}, . . . , t} such that Xk(t) = 1

}
,

B(p) =
N∑
k=1

T∑
t=1

(
1− Y k(t)

)
1
{
∃τ ∈ {max{1, t− p}, . . . , t} such that Xk(t) = 1

}
,

C(p) =
N∑
k=1

T∑
t=1

Y k(t)1
{
∀τ ∈ {max{1, t− p}, . . . , t} : Xk(t) = 0

}
and

D(p) =
N∑
k=1

T∑
t=1

(
1− Y k(t)

)
1
{
∀τ ∈ {max{1, t− p}, . . . , t} : Xk(t) = 0

}
,

where A(p) denotes the number of occurrences of the ADR when the patient was exposed

during the last p time points, B(p) denotes the number of time points when the patient did

not experience the ADR, but was exposed during the last p time points etc. We can express

the log-likelihood function of this exposure model for a fixed p as

ℓMpast

(
π1, π0, p;X∼ ,Y∼

)
= A(p) log (π1) +B(p) log (1− π1) +C(p) log (π0) +D(p) log (1− π0)

which gives the following MLE of (π1, π0), if A(p) +B(p) > 0 and C(p) +D(p) > 0:

(π̂1, π̂0) =

(
A(p)

A(p) +B(p)
,

C(p)

C(p) +D(p)

)
.

Using the result in eq. (7), the estimator for the past use model can be expressed as

(π̂1, π̂0, p̂) = argmax
p∈{1,2...,T−1}

{
argmax
π1,π0∈[0,1]

ℓMpast

(
π1, π0, p;X∼ ,Y∼

)}

= argmax
p∈{1,2...,T−1}

{
A(p) log

(
A(p)

A(p) +B(p)

)
+B(p) log

(
B(p)

A(p) +B(p)

)
+

C(p) log

(
C(p)

C(p) +D(p)

)
+D(p) log

(
D(p)

C(p) +D(p)

)}
.

2.5 Model Selection

There is a variety of model selection approaches available in the literature that can aid in

selecting the ‘best’ exposure model after fitting it to the data [14]. Here we opt for the
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Bayesian Information Criterion (BIC) due to its connection to the posterior probabilities of

the models [43]. The BIC for an exposure model M is given by

BIC = (q + 2) log(N)− 2ℓM

(
π∗
1, π

∗
0,θ

∗;x∼,y∼

)
,

where q is the number of parameters of the risk function, i.e., the dimensionality of the

parameter space ΘM, x∼ = {xk}Nk=1 and y
∼
= {yk}Nk=1 are the observed data, and π∗

1, π
∗
0 and

θ∗ are the values for which the log-likelihood is maximal. Note that with the BIC, one tries

to strike a balance between the fit (log-likelihood) and the model’s complexity expressed by

the total number of parameters (q + 2).

Suppose we consider the exposure models M1,M2, . . . ,MV , where V = 8 in our case,

and let BICv be the BIC-score for the v-th model. The model with the lowest BIC-score

is preferred. Schwarz[43] shows that the posterior probability of the v-th model can be

approximated by

P
(
Mv | x∼,y∼

)
≈

exp
(
−1

2
BICv

)∑V
w=1 exp

(
−1

2
BICw

) .
This result is especially useful in our case for two reasons. First, one might be interested in

determining whether there is an association between the drug and ADR in question and not

in identifying which exposure model fits the data ‘best’ in itself. To this end, one can use

the posterior probability of the no association exposure model. For example, if the posterior

probability P(M0 | x∼,y∼) ≥
1
2
, there is no association and the drug-ADR pair is not reported

as a signal.

The second reason why the use of the posterior probabilities is convenient, is its ability to

facilitate a comparison of various drug-ADR pairs and establish a ranking from ‘interesting’

to less ‘interesting’. Let xi∼ and yj
∼

be the observed data for the i-th drug and the j-th ADR,

respectively, and let P(Mij
0 | xi∼ ,yj∼ ) be the posterior probability of the null model for the

drug-ADR pair (i, j). We can create a ranking of pairs based on these scores, where the

lower the posterior probability is, the stronger the signal for the pair is deemed to be. An

advantage of this approach is that one can employ Bayesian false discovery rate control

procedures, see, for example, the work by Storey[46], to determine which signals to present

to the committee of medical experts.

3 Simulating Electronic Healthcare Data

In this section, we describe the simulator for EHC data used for the simulation study. We

start with how we model drug exposures over time, after which we show how to generate

ADR occurrences given the drug exposure history and an exposure model. We finish with

the pseudo-algorithm.
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Drug Exposures

We model the exposure of a patient to the drug of interest over time as a Markov chain. Let

X = (X(1), X(2), . . . , X(T )) be the binary time series. We then specify the Markov chain

by

P(X(1) = 1) = ν0 and P(X(t) = 1 | X(t− 1) = x) =

ν0 if x = 0

ν1 if x = 1
(8)

for t = 2, 3, . . . , T . Rather than thinking in terms of the probabilities ν0 and ν1, we find it

more intuitive to consider 1) the probability of the patient to be exposed to the drug at least

once, and 2) the average duration of the exposure once exposed. Let E be a binary random

variable representing whether the patient was exposed at least once (E = 1) or not (E = 0),

and let D ∈ N be a random variable denoting the duration of the exposure once exposed.

We find that the probability of being exposed can be expressed as

µE = P(E = 1) = 1−P(E = 0) = 1−P(X(1) = 0, X(2) = 0, . . . , X(T ) = 0) = 1−(1− ν0)
T .

So, rather than choosing ν0 directly, we select the probability of a patient to be exposed (µE)

and set ν0 = 1− (1− µE)
1
T .

Once a patient is exposed, the probability that he/she is exposed at the following time

point is ν1. The duration D of the exposure, therefore, follows a geometric distribution with

probability density function

P(D = d) = (ν1)
d (1− ν1)

with mean

δ = E(D) = (1− ν1)
−1.

Once one chooses the average duration of the exposure, δ, one can set ν1 = (δ− 1)/δ. In our

simulation set-up, we choose an average duration of δ = 5 time points, i.e., ν1 = .8.

Adverse Drug Reactions

Let X = x = (x(1), x(2), . . . , x(T )) be a simulated drug history. Given an exposure model

M with risk function rM(·;θ) and probabilities π0 and π1, the random binary variable Y (t)

follows, conditional on the drug history, a Bernoulli distribution, i.e.,

Y (t) |X(1 : t) = x(1 : t) ∼ Bernoulli ((π1 − π0)rM(x(1 : t);θ) + π0) . (9)

Pseudo-Algorithm

Combining these steps, we propose the following procedure for generating EHC data for a

single drug-ADR pair:
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1. Select the number of patients (N), an exposure model M = ⟨π1, π0, T, rM(·;θ),Θ⟩, the
probability of a patient to be exposed (µE), and the average duration of the exposure

once exposed (δ);

2. Determine the probabilities ν0 = 1 − (1 − µE)
1
T and ν1 = (δ − 1)/δ governing the

Markov chain in eq. (8);

3. For all patients k = 1, 2, . . . , N perform the following two steps:

(a) Sample a drug history for patient k according to eq. (8). We denote the resulting

drug history by xk, and

(b) Generate the ADR history yk = (yk(1), yk(2), . . . , yk(T )) for patient k by sampling

from the Bernoulli distribution in eq. (9) given the drug history xk from the

previous step.

An implementation of this algorithm is publicly available as an R package at https://

github.com/bips-hb/expard.

4 Simulation Set-Up

In our simulation, we simulate one drug-ADR pair at the time following the procedure as

described in the previous section. The drug-ADR pair can follow one out of twelve exposure

models. We list them here. For a visual representation, see Figure 2;

1. no association;

2. current use;

3. a withdrawal effect with a rate of ρ = 1;

4. a withdrawal effect with a rate of ρ = 1
2
;

5. a delayed effect with its ‘peak’ at time point µ = 2, and σ = 2;

6. a delayed effect with its ‘peak’ at time point µ = 5, and σ = 2;

7. a decaying effect with a rate of ρ = 1;

8. a decaying effect with a rate of ρ = 1
2
;

9. a combination of a delayed and decaying effect where (µ, σ, ρ) = (10, 2, 1);

10. a long-term effect with rate ρ = 1
4
and κ = 50;
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11. a past use model with p = 5, and

12. a past use model with p = 10.

The number of patients and time points are fixed at N = 1, 000 and T = 100, respectively.

The probability for a patient to be exposed to the drug (µE) is varied from .01, .1 to .5.

The average duration of an exposure once exposed (δ) is 5 time points. The probability π1

is .01, .1, .2 or .3; the probability π0 is either 10−4 or 10−3. See Table 1 for an overview of

all the parameter settings. We, thus, consider a total of 288 parameter settings. We repeat

the simulation for each setting 20 times.

Table 1: Parameter settings used in the EHC simulation study

Description Notation Values

Number of patients N 1000

Number of time points T 100

Probability being exposed µE .01, .1 or .5

Average duration exposure δ 5

Probability ADR minimal risk π0 10−4 or 10−3

Probability ADR maximal risk π1 .01, .1, .2 or .3

5 Performance Assessment

We assess the method’s effectiveness by considering two aspects: 1) its ability to accurately

identify the correct exposure model (model selection), and 2) its capacity to ascertain the

presence or absence of an association between the drug and the ADR (signal detection).

Although these two tasks are related, it is important to note that it might be of interest to

understand the nature of the relationship between the drug and ADR or to simply confirm

the existence of a relationship. In the following two sections, we detail how we measure the

method’s performance with regard to these aspects.

5.1 Model Selection

We consider two approaches for model selection. We either select 1) the model with the

lowest BIC (or, conversely, the highest posterior probability), see Section 2.5, or 2) the

model with the highest likelihood. The former approach considers the complexity of the
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models in terms of the number of parameters, while the latter solely focuses on the model’s

fit.

For every combination of µE, π0, and π1 (see Section 4), we evaluate the performance

by examining the confusion matrix. Examples of such a confusion matrix can be found in

Figures 3, 4 and 5. The horizontal axis represents the twelve true exposure models (see

Section 4 for an overview), while the vertical axis indicates the model selected based on

the BIC. The values within each cell indicate the number of times the respective selected

model was chosen when the data was simulated based on the corresponding true model. For

readability, cells with the value 0 are left empty. The difference between the number of true

models (twelve) and selectable models (eight) is due to the fact that true models serve as

the foundation for the simulation with predetermined parameters, whereas the parameters of

the chosen model are estimated based on the data (see Section 2.4). Note that each column

in the confusion matrix always adds up to 20, corresponding to the number of repetitions.

To clarify, Figure 3 presents the ideal confusion matrix, where each true model is correctly

identified. For example, withdrawal models with rates 1 and 1
2
are both identified as the

withdrawal model.

Figure 3: The confusion matrix in the ideal scenario where the method classifies each case perfectly.

The twelve true models utilized in the simulation study (see Section 4) are represented along the

horizontal axis. On the vertical axis, the exposure model that was selected is shown. Note that, for

instance, choosing ‘withdrawal’ is correct for both true withdrawal models where the rate is either

1 or 1
2 . The number 20 denotes the total number of repetitions.
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5.2 Signal Detection

Our focus here lies in evaluating the the method’s performance in detecting the presence or

absence of an association between the drug and ADR of interest. Recall that we simulate

twelve exposure models for every combination of µE, π0, and π1, as outlined in Section 4.

We repeat this process 20 times, resulting in a total of 12 · 20 = 240 runs. A drug-ADR pair

is not associated when the true model is the no association model M0, and associated if the

true model is one of the remaining eleven. To frame this as a binary classification problem,

we define two sets: let I∗ = {I∗1 , I∗2 , . . . , I∗240} represent the truth, where I∗l = 0 if, for the

l-th run, the true model is the null model, and 1 otherwise. Note that only 20 values in I∗

are 0. Let I = {I1, I2, . . . , I240} represent the method’s decisions, where Il is 0 if the method

indicates no association, and 1 otherwise. We can then define the number of true positives

(TP), true negatives (TN), false positives (FP), and false negatives (FN) as

TP =
240∑
l=1

I∗l Il, TN =
240∑
l=1

(1− I∗l ) (1− Il) ,

FP =
240∑
l=1

(1− I∗l ) Il and FN =
240∑
l=1

I∗l (1− Il) .

In situations involving unbalanced data, as is the case here, it is recommended to use precision

and recall as performance measures [40]. These metrics are defined as

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
. (10)

The F1 score is their harmonic mean, i.e.,

F1 = 2 · Precision · Recall
Precision + Recall

. (11)

To highlight the impact of using either the posterior probability (linked to the BIC) or the

likelihood directly, we decide on the presence of an association between the drug and ADR

based on whether: 1) the posterior probability of the null model exceeds .5, or 2) the model

with the highest likelihood is not the null model.

6 Case Study

To demonstrate our exposure model framework, we implement the suggested approach using

data from the German Pharmacoepidemiological Research Database (GePaRD; [23]). The

data is from two statutory health insurance (SHI) providers in Germany: hkk Krankenkasse

and AOK Bremen/Bremerhaven. Our analysis focuses solely on in-patient data and individ-

uals who were insured 1) during the years 2004 until 2017, and 2) for a consecutive period
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of time, allowing for a maximum gap of 14 days. The total number of patients considered

exceeds 1.2 million. The temporal resolution is set to quarter years.

We consider four drug-ADR pairs for which the temporal relationship is known in the

literature:

1. Penicillin (ATC: J01C) and anaphylaxis (ICD: T88.6): In the case of a penicillin allergy,

the reaction typically occurs almost immediately, with the associated risk diminishing

rapidly over time. This aligns closely with the decaying exposure model [34]. However,

it is important to note that detecting this pattern requires high time resolution (days

rather than quarters). Consequently, the current use model is anticipated to offer a

more fitting description of the relationship;

2. Direct oral anticoagulants (DOACs; ATC: B01AF) and gastrointestinal (GI) bleeding†:

The probability of bleeding increases with prolonged exposure, reaches a ‘peak’ and

decreases afterwards. This pattern aligns most closely with the delayed exposure model

[19];

3. Antipsychotics (ATC: N05A) and type 2 diabetes (ICD: E11): Prolonged use of an-

tipsychotics has been associated with weight gain and the onset of type 2 diabetes.

The long-term exposure model seems to be most appropriate [25], and

4. Antibiotics (ATC: J01) and GI bleeding: This combination is our negative control,

as there is no evidence that the use of antibiotics elevates the risk of GI bleeding.

We incorporate this negative control to evaluate the effectiveness of our method in

identifying the null model.

7 Results

We present the results from both the simulation and the case study.

7.1 Simulation Study

Initially, we investigate the method’s capability to select the true exposure model. Subse-

quently, we evaluate its effectiveness in accurately determining the existence of an association

between the drug and the ADR.

†The ICD-codes related to gastrointestinal (GI) bleeding are: I98.3, K22.6, K22.8, K22.80, K22.81,

K22.88, K25.0, K25.2, K25.4, K25.6, K26.0, K26.2, K26.4, K26.6, K27.0, K27.2, K27.4, K27.6, K28.0,

K28.2,K 28.4, K28.6, K29.0, K31.8, K55.2, K55.3, K55.8, K57.0, K57.1, K57.2, K57.3, K57.4, K57.5, K57.8,

K57.9, K62.5, K66.1, K92.0, K92.1, K92.2.
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7.1.1 Model Selection

In this section, we show the simulation results for a select number of parameter settings.

You can interactively explore the results for the other parameter settings at https://

exposuremodels.bips.eu. The trends shown here in this section are applicable to the

broader range of parameter settings as well.

Figures 4 and 5 display a set of confusion matrices (see Section 5.1), where the probability

of being exposed to the drug at least once (µE) is, respectively, relatively low, i.e., around

1% of the patients, and high, i.e., around 50%. Both figures are organized as follows: rows

represent different values of π0, signifying the probability of experiencing the ADR when

the patient is at minimal risk (a risk level of 0). The top and bottom rows correspond to

π0 = 10−4 and π0 = 10−3, respectively. Columns represent different values of π1, denoting

the probability of the ADR occurring when the patient is at maximal risk (a risk level of 1).

The left and right columns correspond to π1 = .01 and π1 = .3, respectively.

Figure 5 illustrates the simulation results when the probability of exposure is high (µE =

.5). The figure follows the same structure as Figure 4, with the rows presenting the results

for π0 values of 10
−4 and 10−3, respectively, and with the columns containing the results for

π1 values of .01 and .3, in that order.

The lowest performance observed shows the confusion matrix in the lower left corner of

the figure. Two factors contribute to the poor performance: 1) the probability of experiencing

the ADR at maximal risk, denoted as π1, is relatively low (π1 = .01), and 2) the difference

between the probabilities of experiencing the ADR at maximal and minimal risk, represented

as |π1−π0|, is smaller compared to the top row of the figure. A reduced disparity between π1

and π0 makes it more challenging to detect an association between the drug and the specific

ADR. While the performance in the top left corner is slightly better, reliably identifying a

signal under these conditions remains impossible. The suboptimal results in the left column

of the figure are not surprising; only a limited number of patients are exposed, and even

when individuals are at risk, occurrences of the ADR are infrequent.

The outcomes in the right column of Figure 4 show significant improvement, mainly

because the difference |π1−π0| is considerably larger than in the left column. The probability

of the ADR occurring is significantly higher when the patient is at risk, making it easier to

accurately identify the exposure model.

The exposure models delayed or delayed + decaying, see Section 2.3, are frequently

misclassified as the past use model. This misclassification arises due to the fact that these

models share important characteristics; namely, the delayed, delayed + decaying, and past

use models all indicate that the patient is at an increased risk of experiencing the ADR

during or after being exposed to the drug, see Figure 2. Given our use of the BIC for model

selection, the past use model is favored due to its fewer parameters – three as opposed to
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four and five parameters for the delayed and delayed + decaying models, see Section 2.3.

The available data do not provide sufficient support for differentiating between these three

models. However, this scenario changes in Figure 5 where the number of exposed patients

is significantly higher.

For most exposure models, detection improves as the difference |π1−π0| increases. How-
ever, this trend does not apply to the withdrawal model, which, surprisingly, becomes easier

to detect when the difference decreases slightly. Although this effect is less pronounced in

this figure, it becomes more evident in Figure 5.

Detecting long-term models proves to be very challenging under the settings considered.

Let us consider the results in Figure 5 when the probability of exposure is high (µE =

.5). The performance significantly improves compared to the scenario depicted in Figure 4.

This improvement is expected since approximately half of the patients are now exposed, a

substantial increase from the previous 1%. Similarly, we observe that the performance is

influenced by the difference between the probability of the ADR occurring when the patient

is at maximal or minimal risk, i.e., |π1 − π0|. Specifically, the top row, where this difference

is larger, exhibits better performance than the bottom row.

Furthermore, the delayed and decaying models and their combination are still frequently

misclassified as the past use model for the same reason mentioned earlier. The optimal

performance occurs in the upper right corner, indicating that under these conditions, the

data supports choosing these models over the past use model. The withdrawal model is easier

to detect when the difference |π1 − π0| is smaller, contrary to the other models. However,

the long-term model remains challenging to detect when π1 is .01 (left column) but becomes

detectable when π1 is .3 (right column).

7.1.2 Signal Detection

The results are presented in Table 2, where the first three columns display the parameter

settings, the next three columns showcase the results when the posterior probability is uti-

lized, and the last three columns illustrate the outcomes when the decision is based on the

likelihood of the model.

Similar patterns emerge here as those observed in the previous section on model selection.

Performance tends to be poor when the number of patients exposed at least once is low,

improving as this number increases. As the probability of experiencing the ADR at maximal

risk (π1) increases, performance also improves, aligning with expectations. Comparing cases

where µE and π1 remain constant show better performance when π0 = 10−4 is low, since the

difference between π1 and π0 is larger.

Utilizing the posterior probability results in overly conservative decisions, as evidenced

by a precision of 1 for all parameter settings, indicating a reluctance to produce a signal.
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The use of maximum likelihood improves the situation, although precision may decrease in

some instances. Notably, when there are more patients exposed or the frequency of the ADR

increases, the performance of the method based on the posterior probability surpasses that

of the maximum likelihood-based approach.

Table 2: The performance when either the posterior probability or the maximum likelihood is

used for determining whether there is an association between the drug and ADR in question. The

parameters used in the simulation are the probability to be exposed (µE) and the probabilities for

the ADR to occur when the patient is at minimal (π0) or maximal risk (π1). See for the definitions

of the precision, recall and F1 score eq. (10) and (11).

Parameter settings Posterior probability Max. likelihood

µE π0 π1 Precision Recall F1 Precision Recall F1

.01 10−4 .01 1 .08 .14 1 .22 .36

.01 10−4 .10 1 .50 .67 1 .58 .74

.01 10−4 .20 1 .70 .82 1 .71 .83

.01 10−4 .30 1 .72 .84 1 .73 .85

.01 10−3 .01 1 .02 .04 .95 .27 .42

.01 10−3 .10 1 .45 .62 .98 .62 .76

.01 10−3 .20 1 .69 .81 .98 .75 .85

.01 10−3 .30 1 .75 .86 .98 .77 .86

.10 10−4 .01 1 .53 .69 1 .64 .78

.10 10−4 .10 1 .75 .86 1 .75 .86

.10 10−4 .20 1 .77 .87 1 .77 .87

.10 10−4 .30 1 .78 .88 1 .78 .88

.10 10−3 .01 1 .27 .43 .95 .77 .85

.10 10−3 .10 1 .87 .93 .95 .87 .91

.10 10−3 .20 1 .87 .93 .96 .87 .91

.10 10−3 .30 1 .88 .93 .96 .88 .91

.50 10−4 .01 1 .83 .91 .98 .85 .91

.50 10−4 .10 1 .85 .92 .98 .85 .91

.50 10−4 .20 1 .85 .92 .98 .85 .91

.50 10−4 .30 1 .85 .92 .98 .85 .91

.50 10−3 .01 1 .77 .87 .92 1 .96

.50 10−3 .10 1 1 1 .92 1 .96

.50 10−3 .20 1 1 1 .92 1 .96

.50 10−3 .30 1 1 1 .92 1 .96
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7.2 Case Study

This section presents the outcomes of the case study (see Section 6), where the proposed

method was applied to the four drug-ADR pairs introduced above. Three of these drug-ADR

pairs are known to be associated, while the combination of antibiotics and GI bleeding serves

as our negative control. The data set contains information on over 1.2 million insurants from

2004 until 2017. Given that the data are in quarter-years and we consider a time period of

14 years, there are a total of T = 56 time points.

We treat drug dispensation as synonymous with drug exposure. This is a strong assump-

tion for several reasons, e.g., it assumes perfect adherence and overlooks potential changes

in the treatment plan.

Table 3 displays four 2×2 contingency tables, one for each drug-ADR pair. In each table,

the entries represent the number of individuals who were dispensed the drug at least once

and/or experienced the ADR at least once. For example, the observed number of patients

who were dispensed penicillin at any time and experienced anaphylactic shock during their

coverage period is 25. Similarly, the count of patients who experienced anaphylactic shock

throughout their observed period but were not dispensed penicillin is 171, and so forth.

Table 3: The 2× 2 contingency tables for the four drug-ADR pairs considered in the case study.

Each table shows the number of patients that were dispensed the drug and/or experienced the

ADR.

ADR not ADR total

drug 25 74,068 74,093

not drug 171 1,179,093 1,179,264

total 196 1,253,161 1,253,357

(a) Penicillin and anaphylaxis

ADR not ADR total

drug 852 16,111 16,963

not drug 10,252 1,226,142 1,236,394

total 11,104 1,242,253 1,253,357

(b) DOACs and GI bleeding

ADR not ADR total

drug 2,079 59,515 61,594

not drug 6,634 1,185,129 1,191,763

total 8,713 1,244,644 1,253,357

(c) Antipsychotics and type 2 diabetes

ADR not ADR total

drug 9,082 716,990 726,072

not drug 2,022 525,263 527,285

total 11,104 1,242,253 1,253,357

(d) Antibiotics and GI bleeding

Figure 6 shows the BIC scores for all eight exposure models for the four drug-ADR pairs.

The models are arranged from the best (based on the BIC) on the left to the worst on the

right. In all figures, except for the lower right plot, the BIC value for the no association
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model is notably higher than the other BIC scores, surpassing the limits of the y-axis. We

have included the rounded value of the BIC in white on the corresponding bars. We discuss

each drug-ADR pair individually.

Figure 6: The BIC values for the eight exposure models outlined in Section 2.3 across the four

drug-ADR pairs examined in the case study. The models are arranged from the best (based on the

BIC) on the left to the worst on the right. In three of the four cases, the BIC value for the null

model far exceeds the range of y-axis. The rounded BIC values are added to the respective bars.

The results for penicillin and anaphylaxis, presented in the upper left corner, align with

the anticipated model: current use. The BIC score, and consequently the posterior probabil-

ity of the null model, strongly indicate the presence of an association. As mentioned earlier,

29



although the decaying model may be more appropriate, the time resolution in quarter years

is inadequate for distinguishing between this model and the current use model.

For DOACs and GI bleeding, the past use model attains the best BIC score. Analogous

to the previous drug-ADR pair, the BIC score for the null model substantially exceeds the

scores of the other models, suggesting a strong association.

A similar pattern emerges for antipsychotics and type 2 diabetes, with the past use model

yielding the best fit, closely followed by the current use model. Once more, the inadequacy

of the null model’s fit implies an association between the drug and ADR.

For the negative control, antibiotics and GI bleeding, the past use model performs best

as well. Despite the null model having the least favorable performance, its BIC score is

comparable to the scores of the other models. In contrast, for the other three drug-ADR

pairs, the difference between the null model’s BIC score and the BIC scores of the other

models was much larger.

To investigate why the past use model is clearly preferred in three out of the four drug-

ADR pairs under consideration, we delve deeper into this preference and examine the BIC

values for the past use exposure model across all values of the parameter p. This exposure

model represents a scenario where the patient is at maximal risk during and for an extended

period after dispensation, where the length of the period equals p. See equation (6) for the

definition and Figures 2k and 2l for examples. The parameter p ranges from 1 to T − 1

(equaling 55 in our case). Figure 7 presents the BIC values for both the current use model

and past use models across all permissible values of p. The current use model is represented

in orange and positioned at p = 0 since the past use model is, in that case, equivalent to the

current use model.

For DOACs and GI bleeding, the BIC score reaches its minimum at p = 3, suggesting

that the risk of experiencing GI bleeding remains elevated for approximately 3 quarters after

the last dispensation. A similar trend is noted for antipsychotics and type 2 diabetes, with

the lowest BIC value occurring at p = 4, corresponding to one year. In other words, the

risk of being diagnosed with type 2 diabetes stays heightened and decreases after one year

following the last dispensation.

The change in BIC scores with the parameter p for the negative control, antibiotics and

GI bleeding, reveals an interesting pattern that may partially explain why the past use

model is favored in a scenario where the drug and the ADR considered are unrelated. The

minimum occurs around p = 26, corresponding to 6 or 7 years after the last dispensation. It

is highly improbable that exposure to antibiotics increases the risk of GI bleeding so many

years later. The method likely detects the natural increase in risk with age, rather than

indicating a genuine relationship between antibiotics and the ADR GI bleeding.
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Figure 7: The BIC values for the current use and past use models for three drug-ADR pairs, for

all possible parameter values of p (corresponding to quarter years). The value of the current use

model is depicted in orange and positioned at p = 0, as the past use model is equivalent to the

current use model for that specific parameter value.

8 Conclusions and Discussion

In this paper, we introduced a versatile exposure model framework designed to capture

various longitudinal relationships that can occur between a drug and an ADR. The framework

allows for the estimation of model parameters based on EHC data using maximum likelihood.

We suggest the utilization of the BIC to select the most suitable model. Furthermore, the

BIC has a direct connection with the models’ posterior probabilities, see Section 2.5. This

feature makes the approach applicable in a pharmacovigilance context, where the posterior

probability of the null model, representing no association, can be used to decide whether a

drug-ADR pair yields a signal. Additionally, it facilitates the use of Bayesian false discovery

rate procedures [46] to create a shortlist for the committee of medical experts. A main

feature of the proposed framework is that it cannot only aid in signal detection, but also

allows for exploring the nature of the relationship between the drug and ADR.

We explored the effectiveness of this approach through a simulation and case study. For

the simulation study, we developed a unique EHC data simulator capable of simulating any

exposure model.

The simulation study demonstrates the capacity to, under certain conditions, determine

the presence of an association between a drug and ADR, and accurately identify the correct

exposure models. Key factors influencing the performance include: 1) the number of patients

that were exposed to the drug (µE), 2) the probability of experiencing the ADR when the
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patient is at maximal risk (π1), and 3) the disparity between the probabilities of experiencing

the ADR when the patient is at maximal and minimal risk (|π1 − π0|). Detecting signals

becomes challenging when both the number of exposed patients (approximately 1%) and the

frequency with which the ADR occurs are low. Performance improves with a higher number

of exposed patients and/or increased ADR frequency.

The performance in confirming an association and identifying the correct model improves

when there is a larger difference between the probabilities of the ADR occurring when at

minimal and maximal risk. However, this principle does not hold for the withdrawal model.

Exposure models reflecting delayed effects are frequently misidentified as the past use model,

see Section 7.1. This misattribution can occur since, for such models, the ADR risk increases

when the exposure starts and remains high until after exposure, not unlike the trend modeled

by the past use model (see Figure 2). Correctly identifying the long-term model poses a

significant challenge under almost all of the considered simulation settings. For an interactive

exploration of all simulation study results, visit https://exposuremodels.bips.eu.

In the case study outlined in Sections 6 and 7.2, we applied the exposure model method

to four drug-ADR pairs where the true temporal relationships are, at least approximately,

known. Utilizing a data set consisting of insurants from two German SHIs, totaling over 1.2

million individuals, we successfully identified penicillin and anaphylaxis, where the current

use model is chosen based on the BIC/posterior probability. For the other three drug-ADR

pairs, the past use model was selected. While this is partly expected for the pairs DOACs

and GI bleeding, and antipsychotics and type 2 diabetes, it was surprising for the negative

control, antibiotics and GI bleeding.

When examining the BIC scores associated with the parameter values of the past use

model, see Figure 7, we found that for the drug-ADR pairs DOACs and GI bleeding, as well

as antipsychotics and type 2 diabetes, the optimal value tends to center around one year after

the last dispensation. In contrast, for the negative control, the optimal value lies around 6

to 7 years. The preference for the past use model in the negative control case appears to be

driven by the natural increase in the risk of GI bleeding with age, rather than indicating a

genuine relationship between the drug and the ADR. The assumption of the exposure model

that the baseline risk (π0) remains constant over time may lead to misclassification. It would

be interesting to explore how the age of an individual could be included to address this issue.

Prior efforts to employ exposure models were undertaken by Van Gaalen et al. [54, 55].

However, their approach considers a limited number of exposure models, and the process of

estimating model parameters based on the available data is not clearly defined. Furthermore,

the application of their method in a pharmacovigilance context is unclear as well.

One aspect to consider in the current study is that it does not include a comparison with

other signal detection methods available in the literature[13]. To undertake such a com-
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parison, a significant expansion of the simulation set-up is required. This expansion would

involve simulating multiple drug-ADR pairs with varying exposure models simultaneously.

Moreover, it is important to take into account different types of thresholds used to define a

signal, as these can vary considerably from one method to another [11]. We plan to explore

this comparison in future research.

The formalization of EHC data, see Section 2.1, disregards differences in dosage [54] and

only captures whether the patient was exposed or not. One could account for dosages by

defining the drug history as a real-valued random vector, i.e., Xk ∈ R
Tk
+ , rather than a

binary one. The reason why we opt for a binary representation is that other signal detection

methods do not account for dosage as well, with notable exception of the work by Van Gaalen

et al.[54].

As discussed in Section 2.2, we assume that the occurrences of an ADR at different time

points are independent given the drug exposure history. However, this assumption may be

particularly strong for certain types of ADRs, such as anaphylaxis and myocardial infarction,

where a patient is unlikely to be treated with the same drug again after experiencing such a

reaction. One potential extension to the model is to incorporate not only the drug history

but also the ADR history. This extension involves modeling the conditional probability

distribution P(Y (t) | X(1 : t),Y (1 : t− 1)) rather than just P(Y (t) | X(1 : t)). While our

framework could accommodate this extension, it would drastically increase its complexity.

Nevertheless, it could prove to be a valuable avenue for future research.

Furthermore, it would be intriguing to explore the influence of model misspecification,

particularly in scenarios where the true simulated model deviates from the predefined set

of models considered by the method. Investigating such scenarios can provide insights into

the method’s ability to detect associations between a drug and ADR, even when temporal

relationships differ from those explicitly considered. Encouragingly, the results of the case

study suggest that, to some extent, the correct exposure model can still be identified even

in the presence of disparities between the true and selectable models.

In theory, there is no restriction on the number of exposure models that can be simul-

taneously considered. Nevertheless, it is important to take into account that as the number

of exposure models increases, so does the likelihood of selecting one of them over the null

model. As a result, the likelihood of generating a signal for a drug and ADR increases with

the number of exposure models. One potential approach to address this is by applying a false

discovery rate correction to the models for each drug-ADR pair individually. However, the

challenge lies in determining how to incorporate this correction alongside a false discovery

rate control procedure for all drug-ADR pairs when creating a shortlist.

Employing a Bayesian approach for estimating exposure model parameters provides the

advantage of incorporating prior knowledge into the modeling process. This is particularly
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valuable when existing knowledge is available, e.g., the probabilities of experiencing the

ADR at maximal and minimal risk are close to zero. Similarly, applying a Bayesian prior to

the exposure models themselves enables consideration of how frequently a specific temporal

relationship is expected to occur. However, it is challenging to select an appropriate prior,

given the difference in power to detect various models, as seen in the simulation study, see

Section 7.1.

Exploring alternative methods for model selection beyond the BIC could be worthwhile.

Even though the BIC has the advantage of being related to the posterior probability, it might

be beneficial to consider other selection techniques, particularly since the BIC appears to be

excessively conservative.
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