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Abstract—We revisit sequential outlier hypothesis testing and
derive bounds on the achievable exponents. Specifically, the task
of outlier hypothesis testing is to identify the set of outliers
that are generated from an anomalous distribution among all
observed sequences where most are generated from a nominal
distribution. In the sequential setting, one obtains a sample
from each sequence per unit time until a reliable decision
could be made. We assume that the number of outliers is
known while both the nominal and anomalous distributions are
unknown. For the case of exactly one outlier, our bounds on the
achievable exponents are tight, providing exact large deviations
characterization of sequential tests and strengthening a previous
result of Li, Nitinawarat and Veeravalli (2017). In particular,
we propose a sequential test that has bounded average sample
size and better theoretical performance than the fixed-length test,
which could not be guaranteed by the corresponding sequential
test of Li, Nitinawarat and Veeravalli (2017). Our results are also
generalized to the case of multiple outliers.

Index Terms—Error Exponent, Large Deviations, Hypothesis
testing, Anomaly Detection

I. INTRODUCTION

Outlier hypothesis testing is a popular statistical inference

problem [1]–[4], where one is asked to identify a set of

outliers among a given number M of observed sequences.

The majority of sequences are generated i.i.d. from a nominal

distribution and the rest are generated i.i.d. from an anomalous

distribution different from the nominal distribution. Both the

nominal distribution and anomalous distributions are unknown.

The number of outliers can be assumed either known or

unknown. When the number of outliers is known, the task is

relatively simpler and corresponds to a generalization of clas-

sification [5], [6]. When the number of outliers is unknown,

one could estimate the number of outliers and subsequently

identify the set of outliers using a test for the known number

case. As a compromise, one could also consider the case of

at most T outliers, where an upper bound T on the number

of outliers is known. When T = 1, the case is termed at

most one [1], [3]. In this paper, for simplicity, we consider

the case of known number of outliers and our results could

be generalized to the case of unknown number of outliers by

having an additional step to estimate the number of outliers.

Depending on the test design, a test could be fixed-length or

sequential. When the sample size of each observed sequence

is fixed, the corresponding test is a fixed-length test. When the

sample size is a random variable depending on particular ob-

servations of sequences, the corresponding test is a sequential

test. In a sequential test, one obtains a new sample from each

sequence per unit time until one is confident to make a deci-

sion. The expected value of the sample size is also known as

the expected stopping time. Since the generating distributions

of sequences are unknown, for sequential tests, naturally, one

can put a universal constraint either on the error probability

or the average stopping time [7, Def. 2 and 3]. Specifically,

for any pair of nominal and anomalous distributions, the error

probability universality constraint requires the test to have the

error probability bounded by a tolerable value β ∈ (0, 1) under

each hypothesis while the expected stopping time universality

constraint requires that the expected stopping time under each

hypothesis is bounded. Correspondingly, for fixed-length tests,

only error probability universality constraint is valid since the

sample size is fixed a-priori.

For both cases of at most one outlier and of at most T out-

liers, Li, Nitinawarat and Veeravalli [1] proposed generalized

likelihood (GL) tests and proved the optimality of the test by

having largest exponential decay rates of error probabilities

when the number M of observed sequences tends to infinity.

Subsequently, Li, Nitinawarat and Veeravalli [2] generalized

the above results to the sequential setting under the error

probability universality constraint. However, there are several

limitations for the results in [2]. Firstly, only achievability

results under the error probability universality constraint were

derived. Without a matching converse result, the optimality

of error exponents could not be guaranteed. Furthermore, the

expected stopping time constraint was not considered, which

leads to the undesired fact that the sequential tests might stop

at very large sample sizes. Finally, it was only numerically

shown that the sequential test outperforms the fixed-length test

only when the average stopping time is relatively large [2, Figs.

1 and 2]. Without a theoretical guarantee, the benefit of the

sequential design is not fully uncovered.

In this paper, for a slightly easier setting of exactly one

outlier, we address all above limitations. Furthermore, we

generalize our results to the case of multiple outliers when

the number of outliers is known. Our main contribution is

summarized in the following subsection.

A. Main Contributions

For the case of exactly one outlier, we refine the result in [2,

Theorem 3.2] by deriving a matching converse result and re-
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proving a simpler achievability part under the error probability

universality constraint. Furthermore, we derive the exact error

exponents under the expected stopping time constraint. In

particular, in the achievability part, we propose a sequential

test that has bounded average sample size under any pair of

nominal and anomalous distributions and analytically show

that the test could have strictly better performance than the

fixed-length test in [1]. To compare the performance of the

sequential tests under both universality constraints, we provide

numerical examples to illustrate the achievable exponents and

the expected stopping time of both tests, which imply that our

proposed test under the expected stopping time universality

constraint has much smaller average sample size and even

better performance in certain scenarios. We also generalize

our results to the case of multiple outliers and derive bounds

on achievable exponents.

B. Other Related Works

We briefly recall other (non-exhausting) related works on

outlier hypothesis testing. Bu, Zou and Veeravalli [4] proposed

a low-complexity test for outlier hypothesis testing and showed

that the test ensures exponential decay of error probabilities.

Zhou, Wei and Hero [3] proposed an optimal threshold-based

test under the generalized Neyman-Pearson criterion [5] and

derived a second-order asymptotic approximation to the finite

sample size performance. Zou et al. [8] used the maximum

mean discrepancy metric to design a test for outlier hypothesis

testing of continuous sequences and showed that the test is

exponentially consistent

II. PROBLEM FORMULATION AND EXISTING RESULTS

Notation

We use R, R+, N to denote the set of real numbers, non-

negative real numbers, and natural numbers respectively. Given

any two integers (a, b) ∈ N
2, we use [a : b] to denote the set

of integers {a, a + 1, . . . , b} and use [a] to denote [1 : a].
Random variables and their realizations are denoted by upper

case variables (e.g., X) and lower case variables (e.g., x),

respectively. All sets are denoted in calligraphic font (e.g.,

X ). Given any integer N ∈ N, let XN := (X1, . . .XN ) be

a random vector of length N and let xN = (x1, . . . , xN )
be a particular realization of XN . The set of all probability

distributions on a finite set X is denoted as P(X ).

A. Problem Formulation

Consider a set of M observed sequences Xτ :=
{

Xτ
1 , . . . , X

τ
M

}

, where τ is a random stopping time with

respect to the filtration {Fn}n∈N and Fn is generated by

σ-algebra σ{X1, X2, . . . Xn}. Most sequences are generated

i.i.d. from an unknown nominal distribution PN while the rest

of few sequences known as outliers are generated i.i.d. from

an unknown anomalous distribution PA. We first consider the

case of exactly one outlier and then generalize the results to

multiple outliers with the number of outliers known.

When there is exactly one outlier, the task is to design a

test Φ = {τ, φτ} : XMτ → {H1,H2, . . . ,HM} that consists

of a random stopping time τ and a decision rule φτ to classify

among the following M hypotheses:

• Hi, i ∈ [M ]: the i-th sequence is the outlier.

To evaluate the performance of a test, we consider the mis-

classification error probability and the expected stopping time

of a sequential test. Specifically, for each i ∈ [M ], the

misclassification error probability is defined as follows:

βi(Φ|PA, PN) := Pi{Φ(X
τ ) 6= Hi}, i ∈ [M ], (1)

where we define Pi(·) := Pr{·|Hi} to denote the joint

distribution of observed sequences Xτ , where Xτ
i is gener-

ated i.i.d. from the anomalous distribution PA and for each

j ∈ Mi := {j ∈ [M ] : j 6= i}, Xτ
j is generated i.i.d. from the

nominal distribution PN. Furthermore, the expected stopping

time under hypothesis Hi satisfies

Ei[τ ] =

∞
∑

k=1

Pi{τ > k}. (2)

Since there are two performance criteria, one could put a

universal constraint on either one. Motivated by the analyses

for sequential binary classification [7, Def. 2 and 3], we define

the following two universality constraints on sequential tests.

Definition 1. (Universality Constraint on the Error Probabil-

ity): Given β ∈ (0, 1) and a sequential test Φ, we say that

Φ satisfies the universality constraint on the error probability

with β if for any pair of distributions (PN, PA) ∈ P(X )2,

max
i∈[M ]

βi(Φ|PA, PN) ≤ β. (3)

For a sequential test satisfying the error probability uni-

versality constraint, we are interested in the following error

exponent for each i ∈ [M ]:

Ei(Φ|PA, PN) := lim inf
n→∞

− logβ

Ei[τ ]
. (4)

Definition 2. (Universality Constraint on the Expected Stop-

ping Time): Given n ∈ N and a sequential test Φ, we say that

Φ satisfies the universality constraint on the expected stopping

time with n if for any pair of distributions (PN, PA) ∈ P(X )2,

max
i∈[M ]

Ei[τ ] ≤ n. (5)

For a sequential test satisfying the expected stopping time

universality constraint, we are interested in the following error

exponent for each i ∈ [M ]:

Ei(Φ|PA, PN) := lim inf
n→∞

− logβi(Φ|PA, PN)

n
. (6)

B. Existing Results

To compare the performance of sequential tests and fixed-

length test, we first recall the results of the fixed-length test

ΦLi by Li, Nitinawarat and Veeravalli [1]. To present the

test, we need the following definition [3, Eq. (4)]. Given a

tuple of distributions Q = (Q1, . . . , QM ) ∈ P(X )M , for

each i ∈ [M ], define the following linear combination of



KL divergence terms between each single distribution and a

mixture distribution:

Gi(Q) :=
∑

j∈Mi

D

(

Qj

∥

∥

∥

∥

∑

l∈Mi
Ql

M − 1

)

, (7)

where Mi = {j ∈ [M ] : j 6= i}. Note that Gi(Q) is used

to measure the similarity of distributions Q except Qi. The

measure Gi(Q) = 0 if and only if Qj = Q for all j ∈ Mi

for an arbitrary Q ∈ P(X ).
For the case of exactly one outlier, the test in [1, Eq. (15)]

applies the following minimal scoring function decision rule:

ΦLi(x
n) = Hj , if j = argmin

i∈[M ]

Si(x
n), (8)

where Si(x
n) = Gi(T̂xn

1
, . . . , T̂xn

M
).

Li, Nitinawarat and Veeravalli derived the following re-

sult [1, Theorem 2].

Theorem 1. Given any pair of distributions (PN, PA) ∈
P(X )2, the achievable error exponent of the fixed-length test

satisfies that for each i ∈ [M ],

Ei(ΦLi|PA, PN)

= min
Q∈P(X )M :

G1(Q)≥G2(Q)

D(Q1||PA) +
∑

j∈[2,M ]

D(Qj ||PN). (9)

III. MAIN RESULTS FOR EXACTLY ONE OUTLIER

We characterize the optimal error exponent of sequential

outlier hypothesis testing under both the expected stopping

time universality constraint and the error probability univer-

sality constraint. Specifically, for each case, we propose a

corresponding sequential test using the empirical distributions

of observed sequences and derive exact large deviations for

error probabilities.

A. Error Probability Universality

1) Test Design and Intuition: Given any β ∈ (0, 1) and

k ∈ N, define the set

Ψk(x
k) :=

{

l ∈ [M ] : Sl(x
k) > g(β, k)

}

, (10)

where the scoring function Sl(x
k) = Gl(T̂xk

1
, . . . , T̂xk

M
) and

the threshold satisfies

g(β, k) :=
− log

(

β(|X | − 1)
)

k
+

(M + 1)|X | log(k + 1)

k
.

(11)

Under the error probability universality constraint, our sequen-

tial test ΦEp = (τ, φτ ) consists of a random stopping time and

the decision rule. The stopping time τ satisfies

τ := inf
{

k ∈ N : |Ψk(x
k)| ≥ M − 1

}

, (12)

Note that for each l ∈ [M ], Sl(x
k) measures the closeness

of types of all sequences except the l-th sequence. Thus,

sequential test ΦEp stops if the types of nominal samples and

the outlier are far away for all M − 1 possibilities of such

mixtures. The threshold g(β, k) determines how “far away” is

measured, which increases with β and decreases with k.

At stopping time τ , our test uses the following decision rule:

φτ (x
τ ) = Hi, if i = [M ]\Ψτ(x

τ ). (13)

The above test generalizes the test for sequential classification

in [9, Eq. (24)].

We now explain the intuitive reason why the above test

works using the weak law of large numbers. Under hypothesis

Hi, for each j ∈ Mi, as the sample size k increases, the

empirical distribution T̂xk
j

of a nominal sequence xk
j tends to

the nominal distribution PN while the empirical distribution

T̂xn
i

of the outlier tends to PA. Thus, as k increases, the scoring

function Si(x
k) tends to zero and scoring functions Sj(x

k)
for each j ∈ Mi tend to a positive real number. When k
is sufficiently large, it follows from the weak law of large

numbers that there exists M−1 scoring functions with positive

values greater than the vanishing value of g(β, k). Therefore,

a correct decision could always be made asymptotically.

2) Main Results and Discussion: We need the following

definition to present our results. Given any two distributions

(P,Q) ∈ P(X )2 and any positive real number α ∈ R+,

the generalized Jensen-Shannon divergence [6, Eq. (2.3)] is

defined as

GJS(P,Q, α) = αD

(

P
∥

∥

∥

αP +Q

1 + α

)

+D

(

Q
∥

∥

∥

αP +Q

1 + α

)

.

(14)

Theorem 2. For any pair of distributions (PN, PA) ∈ P(X )2,

our sequential test satisfies the error probability universality

constraint with β ∈ (0, 1) and the error exponent of our test

satisfies that for each i ∈ [M ],

Ei(ΦEp|PA, PN) ≥ GJS(PN, PA,M − 2). (15)

Conversely, for any sequential test Φβ satisfying the error

probability universality constraint with β ∈ (0, 1), under any

pair of distributions (PA, PN) ∈ P(X )2, the error exponent

satisfies that for each i ∈ [M ],

Ei(Φβ |PA, PN) ≤ GJS(PN, PA,M − 2). (16)

The proof of Theorem 3 is provided in Appendix A and

B, which is inspired by the proof of [7, Theorem 2] for

sequential binary classification under the error probability

universality constraint. In the achievability proof, we show that

for our sequential test, the random variable τ
log β

is uniformly

integrable and subsequently we obtain the desired exponent

by analyzing the convergence properties of − log β
E[τ ] . In the

converse part, we use the binary KL divergence and apply the

data processing inequality to upper bound error exponents.

Theorem 2 strengthens [2, Theorem 3.2] by deriving a

matching converse result. We manage to do so for a slightly

easier setting of exactly one outlier by excluding the null

hypothesis where there might be no outliers. Furthermore, we

propose another sequential test in addition to [2, Eq. (3.11)]

and provide a relatively simpler achievability proof using our

sequential test.



Since GJS(P,Q, α) increases in α, it follows that as the

number M of observed sequences increases, the achievable

error exponent increases. This is consistent with our intuition

because with more samples, our estimation of the nominal

distribution is more accurate. Thus, it is easier to identify the

outlier. In the extreme case of M → ∞, the exponent equals

to D(PA‖PN), which is exactly the performance of knowing

the nominal distribution [2, Prop. 3.1].

B. Expected Stopping Time Universality

1) Test Design and Intuition: Under the expected stopping

time universality constraint, our sequential test ΦEst = (τ, φτ )
consists of a random stopping time and a decision rule. The

stopping time τ satisfies

τ := inf{k ≥ n− 1 : ∃ i ∈ [M ] s.t. Si(x
k) ≤ f(k)}, (17)

where the scoring function Si(x
k) = Gi(T̂xk

1
, . . . , T̂xk

M
) and

the threshold is given by f(k) = (M+1)|X | log(k+1)
k

.

Note that the sequential test ΦEst stops if the types of all

sequences except for outlying sequences are “close enough”

to each other, where the threshold f(k) is used to characterize

the closeness level.

At the stopping time τ , using M observed sequences

xτ
M , our test applies the following minimal scoring function

decision rule:

φτ (x
τ ) = Hi, if i = i∗(xτ ), (18)

where i∗(xτ ) is the index of the scoring function with smallest

value, i.e.,

i∗(xτ ) := argmin
i∈[M ]

Si(x
τ ). (19)

Our test generalizes the sequential classification test under

expected stopping time universality in [7, Def. 7].

We now explain the intuitive reason why the above test

works using the weak law of large numbers. As discussed

below (13), under hypothesis Hi, the scoring function Si(x
k)

tends to zero and scoring functions Sj(x
k) for each j ∈ Mi

tend to a positive real number as the sample size k increases.

Therefore, when k is sufficiently large, for each i ∈ [M ], if i-
th sequence is the outlier, our test stops and makes the correct

decision Hi.

We remark that if the sample size is not large enough,

the empirical distributions could be rather different from

generating distributions, which might lead to decision error. To

avoid such errors, similarly to [7, Def. 7], we set the minimal

stopping time as n− 1 for some integer n ∈ N.

2) Main Results and Discussions: Given any pair of dis-

tributions (P,Q) ∈ P(X )2 and any α ∈ R+, the Rényi

Divergence of order α [10, Eq. (1)] is defined as

Dα(P ||Q) :=
1

α− 1
log

∑

x∈X

P (x)αQ(x)1−α. (20)

The Rényi Divergence has the following variational form [7,

Eq. (7)]:

D α
1+α

(P ||Q) := min
V ∈P(X )

αD(V ||P ) +D(V ||Q). (21)

Theorem 3. Under any pair of distributions (PN, PA) ∈
P(X )2, our sequential test satisfies the expected stopping

time universality constraint and the error exponent of our test

satisfies: for each i ∈ [M ],

Ei(ΦEst|PA, PN) ≥ DM−2
M−1

(PN||PA). (22)

Conversely, for any sequential test Φn satisfying the expected

stopping time universality constraint, under any pair of distri-

butions (PA, PN) ∈ P(X )2, the error exponent satisfies that

for each i ∈ [M ],

Ei(Φn|PA, PN) ≤ DM−2
M−1

(PN||PA). (23)

The proof of Theorem 3 is provided in Appendix C and D.

In the achievability part, we derive the lower bound of error

exponents using method of types. In the converse part, we

use the binary KL divergence and apply the data processing

inequality to upper bound error exponents.

We make several remarks.

Firstly, Theorem 3 strengthens [2, Theorem 3.2] by con-

sidering sequential tests satisfying the expected stopping time

universality constraint and deriving exact exponential decay

rates of error probabilities. Compared with the error probabil-

ity universality constraint in [2, Sec. 3.1.1] and Sec. III-A1,

our proposed sequential test in this subsection has the property

of having a bounded expected stopping time under any pair of

nominal and anomalous distributions. This property is highly

desired in practice since one desires the tests to stop early

while the tests in [2, Sec. 3.1.1] and Sec. III-A1 could stop

at very large sample sizes (cf. Section III-C for a numerical

example).

Secondly, in contrast to lack of theoretical evidence that

the sequential test of [2, Sec. 3.1.1] has better performance

than the fixed-length test in (8), our sequential test has better

theoretic performance than the fixed-length test in (8). This

property is desired since the motivation of using sequential

tests is to yield better performance. To clarify, we compare

the exponents in Theorems 1 and 3. Given any distribu-

tion Q ∈ P(X ), the distributions Q = (Q,Q, . . . , Q, PN)
satisfy the constraints that G1(Q) ≥ G2(Q), it follows

from (9) that Ei(ΦLi|PA, PN) ≤ min
Q∈P(X )

D(Q||PA) + (M −

2)D(Q||PN) = DM−2
M−1

(PN||PA) = Ei(ΦEst|PA, PN). We

numerically verify that Ei(ΦEst|PA, PN) could be strictly

greater than Ei(ΦLi|PA, PN). Specifically, Under the nominal

distribution PN = [0.3, 0.7] and the anomalous distribution

PA = [0.1, 0.9], we have Ei(ΦEst|PA, PN) = 0.0934 >
Ei(ΦLi|PA, PN) = 0.0471.

Finally, we compare the optimal error exponents in Theo-

rems 2 and 3, i.e., GJS(PN, PA,M − 2) and DM−2

M−1

(PN||PA)

respectively. It follows from [7, Remark 3] that for any

α ∈ R+ and any (P0, P1) ∈ P(X )2, D α
1+α

(P1||P0) ≥
GJS(P0, P1, α). Thus, setting α = M − 2 leads to

DM−2
M−1

(PN||PA) ≥ GJS(PA, PN,M − 2), which implies

that when M = 3, the sequential test under the expected

stopping time constraint achieves better error exponent be-

cause D 1
2
(PN||PA) ≥ GJS(PA, PN, 1) = GJS(PN, PA, 1).



TABLE I
COMPARISON OF ACHIEVABLE ERROR EXPONENTS OF TWO SEQUENTIAL

TESTS UNDER DIFFERENT UNIVERSALITY CONSTRAINTS

Parameters DM−2
M−1

(PN||PA) GJS(PN, PA,M − 2)

M = 3
PN = [0.2, 0.8] 0.0493 0.0483
PA = [0.4, 0.6]

M = 4
PN = [0.2, 0.8] 0.0642 0.0659

PA = [0.4, 0.6]
M = 4

PN = [0.3, 0.7] 0.0939 0.0830
PA = [0.1, 0.9]

However, since GJS(PA, PN,M −2) 6= GJS(PN, PA,M −2)
when M > 3, the performance comparison of sequential tests

under two universality constraints depends on the nominal and

anomalous distributions. To illustrate, in Table I, we calculate

the exponents in Theorems 2 and 3 for various pairs of

distributions.

C. Numerical Example

Consider the binary alphabet X = {0, 1} and set M = 4.

We set the nominal distribution PN = [0.25, 0.75] and the

anomalous distribution PA = [0.3, 0.7]. We simulate the

expected stopping times of our tests under two universality

constraints using 5× 104 independent experiments. The sim-

ulation shows that the test ΦEst under the expected stopping

time universality has expected stopping time of 6000 while

the test ΦEp under the error probability universality test has

expected stopping time of 20015. Thus, the numerical results

verifies the advantage of sequential tests under the expected

stopping time universality in terms of sample complexity.

IV. GENERALIZATION TO MULTIPLE OUTLIERS

Let S denote the set of all subsets of [M ] whose size is T ,

i.e., S := {B ⊂ [M ] : |B| = T }. Our task now is to design a

test Φ = {τ, φτ} : XMτ → {{HB}B∈S} with a stopping time

τ and a corresponding decision rule φτ to classify among the

following |S| hypotheses:

• HB where B ∈ S: the set of outlying sequences are

sequences Xτ
j with j ∈ B.

To evaluate the performance of a test, we use the following

misclassification error exponent under each hypothesis HB

with B ∈ S:

EB(Φ|PA, PN) := lim inf
n→∞

− logPB{Φ(X
τ ) 6= HB}

n
. (24)

To present our tests, we need the following definition [3,

Eq. (42)]. Given a tuple of distributions Q = (Q1, . . . , QM ) ∈
P(X )M , for each B ∈ S, define

GB(Q) =
∑

j∈MB

D
(

Qj

∥

∥

∥

∑

l∈MB
Ql

M − |B|

)

, (25)

where MB := [M ]\B = {i ∈ [M ] : i /∈ B}. Note that GB(Q)
measures the similarity of distributions Q except {Qi}i∈B.

The measure GB(Q) = 0 if and only if Qj = Q for all

j ∈ MB for an arbitrary distribution Q ∈ P(X ).
Under the expected stopping time universality constraint,

our sequential test ΦEst = (τ, φτ ) consists of the random

stopping time and the decision rule. The stopping time τ is

defined as follows:

τ := inf{k ≥ n− 1 : ∃ B ∈ S s.t. SB(x
k) ≤ f(k)}. (26)

where the scoring function SB(x
k) = GB(T̂xk

1
, . . . , T̂xk

M
) and

the threshold f(k) = (M+1)|X | log(k+1)
k

. Our test applies the

following minimal scoring function decision rule:

φτ (x
τ ) = argmin

B∈S
SB(x

τ ). (27)

To present our results, we need the following two error

exponent functions. Given any B ∈ S, for any nominal

distribution PN and anomalous distribution PA, define

LDB(PN, PA,M) := min
Q∈P(X )

min
C∈SB

|B ∩MC |D(Q||PA)

+ (M − |B ∪ C|)D(Q||PN), (28)

L̃DB(PN, PA,M) := min
(Q1,Q2)∈P(X )2

min
C∈SB

|B ∩MC|D(Q1||PA) + (M − |B ∪ C|)D(Q1||PN)

+ |C ∩MB|D(Q2||PN) + |B ∩ C|D(Q2||PA). (29)

Theorem 4. Under any nominal distribution PN and anoma-

lous distribution PA, our sequential test satisfies the expected

stopping time universality constraint and the error exponent

of our test satisfies that for each B ∈ S,

EB(ΦEst|PA, PN) ≥ LDB(PN, PA,M). (30)

Conversely, for any sequential test Φn satisfying the expected

stopping time universality constraint, under any pair of nomi-

nal distribution PN and anomalous distribution PA, the error

exponent satisfies that for each B ∈ S,

EB(Φn|PA, PN) ≤ L̃DB(PN, PA,M). (31)

The proof of Theorem 4 is similar to that of Theorem 3.

The upper and lower bounds are not tight in general. However,

when T = 1, the result in Theorem 4 specializes to Theorem

3.

V. CONCLUSION

We revisited sequential outlier hypothesis testing by propos-

ing tests under two universality constraints and deriving

bounds on the achievable error exponents. For the case of

exactly one outlier, our results strengthen a previous result

of [2] by having a matching converse result and analytically

demonstrating the advantage of our sequential test. We also

generalized our results to the case of multiple outliers when

the number of outliers is known. In future, one can generalize

our results to the case with an unknown number of outliers [3],

[11], consider continuous observed sequences [8], [12] or pro-

pose low complexity tests [4], [13] that achieve performance

close to the theoretical benchmarks derived in this paper.
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APPENDIX

A. Achievability Proof of Theorem 2

1) Error probability universality constraint: We first prove our sequential test in Sec. III-A1 satisfies the error probability

universality constraint with β. Specifically, given any β ∈ (0, 1), for each i ∈ [M ],

βi(φτ |PA, PN)

= Pi{φτ (X
τ ) 6= Hi} (32)

≤

∞
∑

k=1

Pi{φτ (X
k) 6= Hi} (33)

≤

∞
∑

k=1

Pi

{

Si(X
k) > g(β, k)

}

(34)

≤
∞
∑

k=1

∑

Q∈Pk(X )M :
Gi(Q)>g(β,k)

exp
{

− k
(

D(Qi||PA) +
∑

t∈Mi

D(Qt||PN)
)}

(35)

≤

∞
∑

k=1

∑

Q∈Pk(X )M :
Gi(Q)>g(β,k)

exp
{

− k
(

D(Qi||PA) + (M − 1)D
(

∑

t∈Mi
Qt

M − 1

∥

∥

∥
PN

)

+ g(β, k)
)}

(36)

≤

∞
∑

k=1

(k + 1)M|X | exp{−kg(β, k)} (37)

=
∞
∑

k=1

(k + 1)M|X |β(|X | − 1)(k + 1)−(M+1)|X | (38)

≤ β(|X | − 1)
∞
∑

k=1

(k + 1)−|X | (39)

≤ β(|X | − 1)

∫ ∞

0

(u+ 1)−|X |du (40)

= β(|X | − 1)
1

−|X |+ 1
(u+ 1)−|X |+1

∣

∣

∣

u=∞

u=0
(41)

= β, (42)

where (35) follows from the upper bound on the probability of the type class, (36) follows from Gi(Q) > g(β, k) and

∑

j∈Mi

D(Qj ||PN) = (M − 1)D
(

∑

t∈Mi
Qt

M − 1

∥

∥

∥
PN

)

+Gi(Q), (43)

(37) follows from the fact that the number of the set of types of length n satisfies |Pn(X )| ≤ (n + 1)|X |, (38) follows from

the definition of g(β, k) in Eq. (11), (40) follows from the similar manner as [7, Appendix C: 1)].

Then we have given any β ∈ (0, 1), for each i ∈ [M ], our sequential test satisfies βi(φτ |PA, PN) ≤ β.

2) Achievable error exponents: Given i ∈ [M ], define the stopping time

τi := inf
{

k ∈ N : ∀j ∈ Mi, Sj(x
k) > g(β, k)

}

. (44)

We first prove − τi
log β

converge to 1
GJS(PN,PA,M−2) in probability.

Proof. Under hypothesis Hi, by the definition of the stopping time τi, we have

min
j∈Mi

Sj(x
τi) > g(β, τi). (45)

In the following, we show that τi → ∞ as β → 0. Given k ∈ N, we have

Pi{τi ≤ k} = Pi

{

∀j ∈ Mi, Sj(x
τi) > g(β, τi), τi ≤ k

}

(46)

≤ Pi

{

kM log(M − 1) > − log
(

β(|X | − 1)
}

(47)



where (46) follows from Eq. (45) and (47) follows from ∀j ∈ Mi,
∑

t∈Mj

D
(

Qt

∥

∥

∥

∑
l∈Mj

Ql

M−1

)

≤ M log(M − 1) and g(β, τi) ≥

g(β, k) ≥ − log(β(|X |−1))
k

. Thus we can obtain that for each i ∈ [M ],

Pi{τi ≤ k} = 0, ∀k <
− log

(

β(|X | − 1)

M log(M − 1)
. (48)

Now we have τi → ∞ as β → 0.

Furthermore, given i ∈ [M ], we obtain ∀ t ∈ Mi, T̂x
τi
t

→ PN and T̂x
τi
i

→ PA under hypothesis Hi when τi → ∞ as

β → 0 by the strong law of large numbers. Then with the continuity of KL-divergence, when τi → ∞, we have for each

j ∈ Mi,

Sj(x
τi) → D

(

PA

∥

∥

∥

PA + (M − 2)PN

M − 1

)

+ (M − 2)D
(

PN

∥

∥

∥

PA + (M − 2)PN

M − 1

)

= GJS(PN, PA,M − 2). (49)

Recall the definition of the stopping time τi, we have

min
j∈Mi

Sj(x
τi−1) ≤ g(β, τi − 1). (50)

When τi → ∞, both g(β, τi) and g(β, τi − 1) → − logβ
τi

. Combining (50) and (49), we have

lim
β→0

−
logβ

τi
≥ GJS(PN, PA,M − 2). (51)

Then combining (45) and (49), we have

lim
β→0

−
logβ

τi
≤ GJS(PN, PA,M − 2). (52)

Consequently, we conclude that

lim
β→0

−
τi

log β
=

1

GJS(PN, PA,M − 2)
. (53)

To go from the convergence in probability to convergence in mean, it suffices to prove that the sequence of random variables

− τi
log β

is uniformly integrable as β → 0. To prove the uniformly integrable, we need the following lemma.

Lemma 5. Given k ∈ N, k ≥ 1, there exists (n′, c) ∈ R
2
+ such that Pi{τi ≥ k} ≤ 1

β
exp{−ck} for any k ≥ n′.

Proof. Given ε ∈ R+ and i ∈ [M ], we have

Pi{τi ≥ k}

≤ Pi

{

∃ j ∈ Mi, Sj(x
k−1) ≤ g(β, k − 1)

}

(54)

≤
∑

j∈Mi

Pi

{

Sj(x
k−1) ≤ g(β, k − 1)

}

(55)

≤
∑

j∈Mi

Pi

{

Sj(x
k−1) ≤ g(β, k − 1) and D

(

T̂
x
k−1

i

∥

∥PN

)

≤ ε and D
(

T̂
x
k−1
t

∥

∥PN

)

≤ ε, ∀ t ∈ Mi

}

+ Pi

{

D
(

T̂
x
k−1
i

∥

∥PN

)

> ε or D
(

T̂
x
k−1
t

∥

∥PN

)

> ε, ∃ t ∈ Mi

}

. (56)

The first term of (56) can be upper bounded as follows:
∑

j∈Mi

Pi

{

Sj(x
k−1) ≤ g(β, k − 1) and D

(

T̂
x
k−1

i

∥

∥PA

)

≤ ε and D
(

T̂
x
k−1
t

∥

∥PN

)

≤ ε, ∀ t ∈ Mi

}

≤
∑

j∈Mi

Pi

{

Sj(x
k−1) ≤ g(β, k − 1) + Si(x

k−1) and D
(

T̂
x
k−1

i

∥

∥PA

)

≤ ε and D
(

T̂
x
k−1
t

∥

∥PN

)

≤ ε, ∀ t ∈ Mi

}

(57)

≤ (M − 1)Pi

{

α(PN, PA) ≤ g(β, k − 1) + Si(x
k−1)

}

(58)

≤
M − 1

β(|X | − 1)
k(2M+1)|X | exp{−(k − 1)α(PN, PA)}, (59)



where (57) follows from Si(x
k) ≥ 0, (58) follows from that when ε is sufficiently small, if D(T̂xk

i
||PA) ≤ ε and D(T̂xk

t
||PN) ≤

ε for all t ∈ Mi, ∃ α(PN, PA) > 0 such that Sj(x
k) > α(PN, PA) [2, Lemma B.1] and (59) follows from the upper bound

on the probability of the type class and the number of the set of types. The second term of (56) can be upper bounded as

follows using the upper bound of the probability of a type class:

Pi

{

D
(

T̂
x
k−1

i

∥

∥PA

)

> ε or D
(

T̂
x
k−1
t

∥

∥PN

)

> ε, ∃ t ∈ Mi

}

≤ Mk|X | exp{−(k − 1)ε}. (60)

Thus combining (59) and (60), we have that for all k ≥ n′ and for some c and n′ > 0,

Pi{τi ≥ k} ≤
1

β
exp{−ck}. (61)

Using Lemma 5 and [7, Lemma 5], we have that {τi/ log β}β∈(0,0.9] is uniformly integrable. Therefore, we can obtain the

convergence in mean of {τi/ logβ}β∈(0,0.9] from the convergence in probability in Eq. (53). Furthermore, we have τ ≤ τi by

definition in (44). Then we have

Ei(φτ |PA, PN) = lim inf
β→0

− logβ

Ei[τ ]
(62)

≥ lim inf
β→0

− logβ

Ei[τi]
(63)

= GJS(PN, PA,M − 2). (64)

B. Converse Proof of Theorem 2

Given (p, q) ∈ (0, 1)2, define the binary KL-divergence as follows:

d(p, q) := p log
p

q
+ (1− p) log

1− p

1− q
. (65)

The first-order derivative of d(p, q) on q is:

∂d(p, q)

∂q
=

q − p

q(1− q)
. (66)

Thus, d(p, q) is increasing in q when q > p and decreasing in q when p > q.

Given j ∈ [M ] and any i ∈ Mj , define the event W := {φτ (x
τ ) = i}. For any two pairs of distributions (PA, PN) ∈ P(X )2

and (P̃A, P̃N) ∈ P(X )2, and any sequential test Φ = (τ, φτ ), we have

d
(

Pi(W), P̃j(W)
)

≤ D(Pi||P̃j)|Fτ
(67)

≤ Ei

[

∑

t∈[M ]:t6=i,j

τ
∑

k=1

log
PN(Xt,k)

P̃N(Xt,k)
+

τ
∑

k=1

log
PA(Xi,k)

P̃N(Xi,k)
+

τ
∑

k=1

log
PN(Xj,k)

P̃A(Xj,k)

]

(68)

≤ (M − 2)Ei[τ ]D(PN||P̃N) + Ei[τ ]D(PA||P̃N) + Ei[τ ]D(PN||P̃A), (69)

where (67) follows from data processing inequality of divergence and (69) follows from Doob’s Optional Stopping Theorem.

Since βi(φτ |PA, PN) → 0 for each i ∈ [M ] as n → ∞, we have

Pi(W) = Pi(φτ (x
τ ) = i) = 1− βi(Φ|PA, PN) → 1, (70)

P̃j(W) = P̃j(φτ (x
τ ) = i) ≤ β̃j(Φ|P̃A, P̃N) → 0. (71)

Thus we obtain Pi(W) > P̃j(W) and 1− βi(Φ|PA, PN) > β̃j(Φ|P̃A, P̃N). Furthermore, we have

d
(

Pi(W), P̃j(W)
)

≥ d
(

1− βi(Φ|PA, PN), β̃j(Φ|P̃A, P̃N)
)

(72)

= − log β̃j(Φ|P̃A, P̃N) (73)

≥ − logβ. (74)

where (72) follows from that d(p, q) is decreasing in q when p > q, (73) follows from [7, Lemma 2] when n → ∞ and (74)

follows from the definition of error probability universality constraint.

Given i ∈ [M ], combining (69) and (74), we have

− logβ ≤(M − 2)Ei[τ ]D(PN||P̃N) + Ei[τ ]D(PA||P̃N) + Ei[τ ]D(PN||P̃A). (75)



Therefore, for any sequential test Φ = (τ, φτ ) satisfying the expected stopping time universality constraint and any two pairs

of distributions (PA, PN) ∈ P(X )2 and (P̃A, P̃N) ∈ P(X )2, the type-i error exponent satisfies

Ei(Φ|PA, PN) ≤ (M − 2)D(PN||P̃N) +D(PA||P̃N) +D(PN||P̃A). (76)

Since (76) is true for all (P̃A, P̃N) ∈ P(X )2, we can minimize the RHS of (76) with respect to (P̃A, P̃N) and obtain

Ei(Φ|PA, PN) ≤ min
Q∈P(X )

(M − 2)D(PN||Q) +D(PA||Q) (77)

= GJS(PN, PA,M − 2). (78)

C. Achievability Proof of Theorem 3

1) Expected stopping time universality constraint: We first prove our sequential test in Sec. III-B1 satisfies the expected

stopping time universality constraint. The average stopping time can be expressed as the following form: for each i ∈ [M ]

Ei[τ ] =

∞
∑

k=1

Pi{τ > k} = n− 1 +

∞
∑

k=n−1

Pi{τ > k}. (79)

Then we upper bound the term
∞
∑

k=n−1

Pi{τ > k} as follows,

Pi{τ > k}

≤ Pi

{

k
⋂

t=1

Si(X
t) ≥ f(t)

}

(80)

≤ Pi

{

Si(X
k) ≥ f(k)

}

(81)

=
∑

xk∈XMk:Si(xk)≥f(k)

PA(x
k
i )×

(

∏

j∈Mi

PN(x
k
j )
)

(82)

=
∑

Q∈Pk(X )M :Gi(Q)≥f(k)

PA(T
k
Qi

)×
(

∏

j∈Mi

PN(T
k
Qj

)
)

(83)

≤
∑

Q∈Pk(X )M :Gi(Q)≥f(k)

exp
{

− kD(Qi||PA)− k
∑

j∈Mi

D(Qj ||PN)
}

(84)

≤
∑

Q∈Pk(X )M :Gi(Q)≥f(k)

exp
{

− k
(

D(Qi||PA) + (M − 1)D
(

∑

t∈Mi
Qt

M − 1

∥

∥

∥
PN

)

+ f(k)
)}

(85)

≤
∑

Q∈Pk(X )M :Gi(Q)≥f(k)

exp{−kf(k)} (86)

≤ (k + 1)M|X |(k + 1)−(M+1)|X | (87)

= (k + 1)−|X |, (88)

where (84) follows from the upper bound on the probability of the type class, (85) follows from the equation in Eq. (43) and

Gi(Q) ≥ f(k) when τ > t, (87) follows from the fact that the number of the set of types of length n satisfies |Pn(X )| ≤
(n+ 1)|X |.

Thus for n ≥ 2, we have

∞
∑

k=n−1

Pi{τ > k} ≤

∞
∑

k=n−1

(k + 1)−|X | ≤

∫ ∞

n−2

(u+ 1)−|X |du =
1

−|X |+ 1
(u+ 1)−|X |+1

∣

∣

∣

u=∞

u=n−2
(89)

=
(n− 1)−(|X |−1)

|X | − 1
≤ 1. (90)

Combining with Eq. (79), we obtain that for each i ∈ [M ], under hypothesis Hi, Ei[τ ] ≤ n.

2) Achievable error exponents: Given any pair of distributions (PN, PA) ∈ P(X )2 and any n ∈ N, i ∈ [M ], define the error

exponent function

∆i(n, PN, PA) := min
j∈Mi

min
Q∈Pn(X )M :
Gj(Q)≤f(n)

D(Qi||PA) +
∑

t∈Mi

D(Qt||PN). (91)



We upper bound the misclassification error probability as follows: under hypothesis Hi,

βi(φτ |PA, PN)

= Pi{φτ (X
τ ) 6= i} (92)

= Pi

{

⋃

j∈Mi

Sj(X
τ ) ≤ f(τ)

}

(93)

≤ Pi

{

⋃

j∈Mi

∞
⋃

k=n−1

Sj(X
k) ≤ f(k)

}

(94)

≤ (M − 1) max
j∈Mi

Pi

{

∞
⋃

k=n−1

Sj(X
k) ≤ f(k)

}

(95)

≤ (M − 1) max
j∈Mi

∞
∑

k=n−1

Pi{Sj(X
k) ≤ f(k)} (96)

≤ (M − 1) max
j∈Mi

∞
∑

k=n−1

∑

Q∈Pk(X )M :Gj(Q)≤f(k)

exp
{

− k
(

D(Qi||PA) +
∑

t∈Mi

D(Qt||PN)
)}

(97)

≤ (M − 1)
∞
∑

k=n−1

exp
{

− k
(

∆i(k, PN, PA)−
M |X | log(k + 1)

k

)}

(98)

≤ (M − 1)
∞
∑

k=n−1

exp
{

− k
(

∆i(n− 1, PN, PA)−
M |X | logn

n− 1

)}

, (99)

where (97) follows from the same argument as Eq. (84) and (99) follows from both the function ∆i(n, PN, PA) is increasing

and
M|X | log n

n−1 is decreasing in n.

As f(n− 1) → 0,
M|X | logn

n−1 tends to 0 and ∆i(n− 1, PN, PA) tends to

min
(Q1,Q2)∈P(X )2

D(Q1||PA) + (M − 2)D(Q1||PN) +D(Q2||PN)

= min
Q∈P(X )

D(Q||PA) + (M − 2)D(Q||PN) (100)

= DM−2
M−1

(PN||PA), (101)

where the last equality follows from the variational form of the Rényi Divergence in (21). Then (99) can be upper bounded as

(M − 1)

∞
∑

k=n−1

exp
{

− kDM−2
M−1

(PN||PA)
}

= (M − 1)
exp

{

− (n− 1)DM−2
M−1

(PN||PA)
}

1− exp
{

−DM−2

M−1

(PN||PA)
} . (102)

Finally, we obtain the error exponent of misclassification error probability satisfies: for each i ∈ [M ],

Ei(φτ |PA, PN) ≥ lim inf
n→∞

{n− 1

n
DM−2

M−1
(PN||PA)−

log(M − 1)

n
+

1

n
log

(

1− exp
{

DM−2
M−1

(PN||PA)
}

)}

(103)

= DM−2
M−1

(PN||PA). (104)

D. Converse Proof of Theorem 3

Recall the definition of the binary KL-divergence in Eq. (65) and its increasing and decreasing in Appendix B.

Given j ∈ [M ] and any i ∈ Mj , define the event W := {φτ (x
τ ) = i}. For any two pairs of distributions (PA, PN) ∈ P(X )2

and (P̃A, P̃N) ∈ P(X )2, and any sequential test Φ = (τ, φτ ), we have

d
(

Pi(W), P̃j(W)
)

≤ (M − 2)Ei[τ ]D(PN||P̃N) + Ei[τ ]D(PA||P̃N) + Ei[τ ]D(PN||P̃A) (105)

≤ (M − 2)nD(PN||P̃N) + nD(PA||P̃N) + nD(PN||P̃A), (106)

where (105) follows from the similar argument as Eq. (69) and (106) follows from the definition of expected stopping time

universality constraint.

Analogously to Eq. (73) in Appendix B, we have

d
(

Pi(W), P̃j(W)
)

≥ − log β̃j(Φ|P̃A, P̃N). (107)



Given j ∈ [M ], combining (106) and (107), we have

− log β̃j(Φ|P̃A, P̃N) ≤ (M − 2)nD(PN||P̃N) + nD(PA||P̃N) + nD(PN||P̃A). (108)

Therefore, for any sequential test Φ = (τ, φτ ) satisfying the expected stopping time universality constraint and any two pairs

of distributions (PA, PN) ∈ P(X )2 and (P̃A, P̃N) ∈ P(X )2, the type-j error exponent satisfies

Ẽj(Φ|P̃A, P̃N) ≤ (M − 2)D(PN||P̃N) +D(PA||P̃N) +D(PN||P̃A). (109)

Since (109) is true for all (PA, PN) ∈ P(X )2, we can minimize the RHS of (109) with respect to (PA, PN) and obtain

Ẽj(Φ|P̃A, P̃N) ≤ min
Q∈P(X )

(M − 2)D(Q||P̃N) +D(Q||P̃A) (110)

= DM−2
M−1

(PN||PA). (111)

E. Achievability Proof of Theorem 4

1) Expected stopping time universality constraint: The average stopping time can be expressed as the following form: for

each B ∈ S,

EB[τ ] =

∞
∑

k=1

PB{τ > k} = n− 1 +

∞
∑

k=n−1

PB{τ > k}. (112)

Analogously to Appendix C1, we have that for each B ∈ S,

PB{τ > k}

≤ PB

{

Si(X
k) ≥ f(k)

}

(113)

=
∑

Q∈Pk(X )M :GB(Q)≥f(k)

(

∏

i∈B

PA(T
k
Qi
)
)

×
(

∏

j∈MB

PN(T
k
Qj

)
)

(114)

≤
∑

Q∈Pk(X )M :GB(Q)≥f(k)

exp
{

− k
∑

i∈B

D(Qi||PA)− k
∑

j∈MB

D(Qj ||PN)
}

(115)

≤
∑

Q∈Pk(X )M :GB(Q)≥f(k)

exp
{

− k
(

∑

i∈B

D(Qi||PA) + (M − T )D
(

∑

t∈MB
Qt

M − T

∥

∥

∥
PN

)

+ f(k)
)}

(116)

≤
∑

Q∈Pk(X )M :GB(Q)≥f(k)

exp{−kf(k)} (117)

= (k + 1)−|X |, (118)

where (116) follows from

∑

j∈MB

D(Qj ||PN) = (M − T )D
(

∑

t∈MB
Qt

M − T

∥

∥

∥
PN

)

+GB(Q), (119)

and GB(Q) ≥ f(k) when τ > t. Then we obtain that

∞
∑

k=n−1

PB{τ > k} ≤

∞
∑

k=n−1

(k + 1)−|X | ≤ 1, (120)

and thus

EB[τ ] = n− 1 +
∞
∑

k=n−1

PB{τ > k} ≤ n. (121)

2) Achievable error exponents: We need the following definitions to present our proof. Recall the definition of MB = [M ]\B.

Given any nominal distribution PN and anomalous distributions PB, define

∆B(n, PN, PA) := min
C∈SB

min
Q∈Pn(X )M :
GC(Q)≤f(n)

∑

i∈B

D(Qi||PA) +
∑

t∈MB

D(Qt||PN). (122)

Define SB := {C ∈ S : C 6= B} for any B ∈ S.



Analogously to Appendix C2, we upper bound the misclassification error probability under hypothesis HB as follows,

βB(φτ |PA, PN)

= PB

{

⋃

C∈SB

SC(X
τ ) ≤ f(τ)

}

(123)

≤ PB

{

⋃

C∈SB

∞
⋃

k=n−1

SC(X
k) ≤ f(k)

}

(124)

≤ (|S| − 1) max
C∈SB

∞
∑

k=n−1

PB{SC(X
k) ≤ f(k)} (125)

≤ (|S| − 1) max
C∈SB

∞
∑

k=n−1

∑

Q∈Pk(X )M :GC(Q)≤f(k)

exp
{

− k
(

∑

i∈B

D(Qi||PA) +
∑

t∈MB

D(Qt||PN)
)}

(126)

≤ (|S| − 1)

∞
∑

k=n−1

exp
{

− k
(

∆B(k, PN, PA)−
M |X | log(k + 1)

k

)}

(127)

≤ (|S| − 1)

∞
∑

k=n−1

exp
{

− k
(

∆B(n− 1, PN, PA)−
M |X | logn

n− 1

)}

. (128)

As f(n− 1) → 0,
M|X | logn

n−1 → 0 and ∆B(n− 1, PN, PA) →

min
(Q,{Qj}j∈C)∈P(X )T+1

min
C∈SB

|B ∩MC|D(Q||PA) + (M − |B ∪ C|)D(Q||PN) +
∑

l∈C∩MB

D(Ql||PN) +
∑

t∈B∩C

D(Qt||PA)

= min
Q∈P(X )

min
C∈SB

|B ∩MC |D(Q||PA) + (M − |B ∪ C|)D(Q||PN) (129)

:= LDB(PN, PA,M). (130)

Then (128) can be upper bounded as follows:

(|S| − 1)

∞
∑

k=n−1

exp{−k · LD(PN, PA,M)} = (|S| − 1)
exp{−(n− 1)LD(PN, PA,M)}

1− exp{−LD(PN, PA,M)}
. (131)

Thus we obtain that the achievable error exponent of misclassification error probability satisfies: for each B ∈ S,

EB(φτ |PB, PN) ≥ LDB(PN, PA,M). (132)

F. Converse Proof of Theorem 4

We have stated that the function d(p, q) in Eq. (65) is increasing in q when q > p and decreasing in q when p > q in

Appendix D. Given B ∈ S, define the event W := {φτ (x
τ ) = B}. Given B ∈ S and C ∈ SB , for any two pairs of distributions

(PA, PN) ∈ P(X )2 and (P̃A, P̃N) ∈ P(X )2, and any sequential test Φ = (τ, φτ ), we have

d
(

PB(W), P̃C(W)
)

≤ D(PB||P̃C)|Fτ
(133)

≤ EB

[

∑

t∈MB∪C

τ
∑

k=1

log
PN(Xt,k)

P̃N(Xt,k)
+

∑

i∈B∩MC

τ
∑

k=1

log
PA(Xi,k)

P̃N(Xi,k)
+

∑

j∈C∩MB

τ
∑

k=1

log
PN(Xj,k)

P̃A(Xj,k)
+

∑

l∈B∩C

τ
∑

k=1

log
PA(Xl,k)

P̃A(Xl,k)

]

(134)

≤ EB[τ ]
(

(M − |B ∪ C|)D(PN||P̃N) + |B ∩MC |D(PA||P̃N) + |C ∩MB|D(PN||P̃A) + |B ∩ C|D(PA||P̃A)
)

(135)

≤ n
(

(M − |B ∪ C|)D(PN||P̃N) + |B ∩MC |D(PA||P̃N) + |C ∩MB|D(PN||P̃A) + |B ∩ C|D(PA||P̃A)
)

, (136)

where (133) follows from data processing inequality of divergence, (135) follows from Doob’s Optional Stopping Theorem

and (136) follows from the definition of expected stopping time universality constraint.

Since βB(Φ|PA, PN) → 0 for each i ∈ [M ] as n → ∞, we have

PB(W) = PB(φτ (x
τ ) = B) = 1− βB(Φ|PA, PN) → 1, (137)

P̃C(W) = P̃C(φτ (x
τ ) = B) ≤ β̃C(Φ|P̃A, P̃N) → 0. (138)



Thus we obtain PB(W) > P̃C(W) and 1− βB(Φ|PA, PN) > β̃C(Φ|P̃A, P̃N). Furthermore, we have

d
(

PB(W), P̃C(W)
)

≥ d
(

1− βB(Φ|PA, PN), β̃C(Φ|P̃A, P̃N)
)

(139)

= − log β̃C(Φ|P̃A, P̃N), (140)

where (139) follows from that d(p, q) is decreasing in q when p > q and (140) follows from [7, Lemma 2] when n → ∞.

Given C ∈ S, combining (136) and (140), we have

− log β̃C(Φ|P̃A, P̃N)

≤ n min
B∈SC

(M − |B ∪ C|)D(PN||P̃N) + |B ∩MC |D(PA||P̃N) + |C ∩MB|D(PN||P̃A) + |B ∩ C|D(PA||P̃A). (141)

Therefore, for any sequential test Φ = (τ, φτ ) satisfying the expected stopping time universality constraint and any two pairs

of distributions (PA, PN) ∈ P(X )2 and (P̃A, P̃N) ∈ P(X )2, the error exponent satisfies: given C ∈ S

ẼC(φτ |P̃A, P̃N)

≤ min
B∈SC

(M − |B ∪ C|)D(PN||P̃N) + |C ∩MB|D(PN||P̃A) + |B ∩MC |D(PA||P̃N) + |B ∩ C|D(PA||P̃A). (142)

Since (142) is true for all (PA, PN) ∈ P(X )T+1, we can minimize the RHS of (142) with respect to (PA, PN) and obtain

ẼC(φτ |P̃A, P̃N) ≤ min
(Q1,Q2)∈P(X )2

min
B∈SC

(M − |B ∪ C|)D(Q1||P̃N) + |C ∩MB|D(Q1||P̃A)

+ |B ∩MC |D(Q2||P̃N) + |B ∩ C|D(Q2||P̃A) (143)

= L̃DC(P̃N, P̃A,M). (144)
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