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Abstract

This note continues and extends the study from Spokoiny (2023a) about estimation for

parametric models with possibly large or even infinite parameter dimension. We consider

a special class of stochastically linear smooth (SLS) models satisfying three major condi-

tions: the stochastic component of the log-likelihood is linear in the model parameter, while

the expected log-likelihood is a smooth and concave function. For the penalized maximum

likelihood estimators (pMLE), we establish several finite sample bounds about its concen-

tration and large deviations as well as the Fisher and Wilks expansions and risk bounds. In

all results, the remainder is given explicitly and can be evaluated in terms of the effective

sample size n and effective parameter dimension p which allows us to identify the so-called

critical parameter dimension. The results are also dimension and coordinate-free. Despite

generality, all the presented bounds are nearly sharp and the classical asymptotic results

can be obtained as simple corollaries. Our results indicate that the use of advanced fourth-

order expansions allows to relax the critical dimension condition p3
≪ n from Spokoiny

(2023a) to p3/2
≪ n . Examples for classical models like logistic regression, log-density and

precision matrix estimation illustrate the applicability of general results.
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4 Estimation for SLS models: finite sample guarantees

1 Introduction

This paper presents some general results describing the properties of the penalized Maxi-

mum Likelihood Estimator (pMLE). Our starting point is a parametric assumption about

the distribution P of the data Y : P belongs a given parametric family (Pυ ,υ ∈ Υ )

dominated by a sigma-finite measure µ0 . This assumption is usually an idealization of

reality and the true distribution P is not an element of (Pυ) . However, a paramet-

ric assumption, even being wrong, may appear to be very useful, because it yields the

method of estimation. Namely, the MLE υ̃ is defined by maximizing the log-likelihood

function L(Y ,υ) = L(υ) = log dPυ

dµ0
(Y ) over the parameter set Υ :

υ̃ = argmax
υ∈Υ

L(υ).

For a penalty function penG(υ) on Υ , the penalized MLE υ̃G is defined by maximizing

the penalized MLE LG(υ) = L(υ)− penG(υ) :

υ̃G = argmax
υ∈Υ

LG(υ) = argmax
υ∈Υ

{
L(υ)− penG(υ)

}
.

The sub-index G in the penalty refers to its quadratic structure:

penG(υ) =
1

2
‖Gυ‖2

for a symmetric p× p positive definite matrix G ∈ Mp .

1.1 Challenges of the classical parametric theory

The classical Fisher parametric theory assumes that Υ is a subset of a finite-dimensional

Euclidean space Rp , the underlying data distribution P indeed belongs to the consid-

ered parametric family (Pυ) , that is, Y ∼ P = Pυ∗ for some υ∗ ∈ Υ . In addition,

some regularity of the family (Pυ) , or, equivalently, of the log-likelihood function L(υ)

is assumed. This, in particular, enables us to apply the third order Taylor expansion of

L(υ) around the point of maximum υ̃ and to obtain a Fisher expansion

υ̃ − υ∗ ≈ F−1∇L(υ∗).

Here F = F(υ∗) is the total Fisher information at υ∗ defined as a negative Hessian of

the expected log-likelihood function EL(υ) :

F(υ) = −∇2
EL(υ).
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Under standard parametric assumptions, F(υ) is symmetric positive definite, F(υ) ∈
Mp . Moreover, if the data Y is generated as a sample of independent random variables

Y1, . . . , Yn , then the log-likelihood has an additive structure: L(υ) =
∑n

i=1 ℓ(Yi,υ) .

This allows to establish asymptotic standard normality of the standardized score ξ
def
=

F

−1/2∇L(υ∗) and hence, to state Fisher and Wilks Theorems: as n→ ∞

F

1/2
(
υ̃ − υ∗) ≈ ξ

d−→ γ,

2L(υ̃)− 2L(υ∗) ≈ ‖ξ‖2 d−→ ‖γ‖2 ∼ χ2
p ,

(1.1)

where γ is a standard Gaussian vector in Rp and χ2
p is a chi-squared distribution

with p degrees of freedom. These results are fundamental and build the basis for most

statistical applications like analysis of variance, canonical and correlation analysis, un-

certainty quantification and hypothesis testing etc. We refer to van der Vaart (1998) for

a comprehensive discussion and a historical overview of the related results including the

general LAN theory by L. Le Cam. Modern statistical problems require to extend the

classical results in several directions.

Model misspecification and bias Very often, the underlying data generating mea-

sure P is not an element of the family (Pυ ,υ ∈ Υ ) . This means that the used log-

likelihood function is not necessarily a true log-likelihood. In particular, the condition

E expL(υ) = 1 does not hold. Also the target of estimation υ∗ has to be redefined as

the maximizer of the expected log-likelihood:

υ∗ def
= argmax

υ∈Υ
EL(υ)

leading to some modelling bias as the distance between P and Pυ∗ . This also concerns

the use of a penalty leading to some penalization bias. When operating with the penalized

log-likelihood LG(υ) , the target of estimation becomes

υ∗
G

def
= argmax

υ∈Υ
ELG(υ), (1.2)

which might be significantly different from υ∗ . This requires to carefully evaluate the

penalization bias υ∗
G − υ∗ .

Finite samples, general likelihood, effective sample size Another important is-

sue is a possibility of relaxing the assumption of i.i.d. or independent observations which

ensures an additive structure of the function L(υ) . Below we operate with the general

likelihood, its structure does not need to be specified. We can even proceed with just
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one observation. However, for stating our results about accuracy of estimation, we need

a notion of effective sample size n . This is given via the so-called Fisher information

matrix. Everywhere we use the notation

F(υ) = −∇2
EL(υ), FG(υ) = −∇2

ELG(υ) = F(υ) +G2.

We also write F = F(υ∗
G) , FG = FG(υ

∗
G) = F +G2 . If the Yi ’s are i.i.d. then F(υ)

is proportional to n . Therefore, we use the value n = ‖F−1‖−1 as a proxy for the

“sample size”.

Effective parameter dimension and critical dimension One more important issue

is the parameter dimension p . The classical theory assumes p fixed and n large. We

aim at relaxing both conditions by allowing a large/huge/infinite parameter dimension

and a small or moderate n . It appears that all the results below rely on the so-called

effective dimension pG defined as

pG
def
= tr

{
F

−1
G Var(∇L(υ∗

G))
}
.

This quantity replaces the original dimension p and it can be small or moderate even

for p infinite. One of the main intentions of our study is to understand the range

of applicability of the mentioned results in terms of the effective parameter dimension

pG and the effective sample size n . It appears that most of the results ahead about

concentration of the pMLE υ̃G apply under the condition pG ≪ n which replaces the

classical signal-to-noise relation: the effective number of parameters to be estimated is

smaller in order than the effective sample size. More advanced results like Fisher and

Wilks expansions and sharp risk bounds for a low dimensional sub-vector of υ may

require stronger conditions p2G ≪ n or p
3/2
G ≪ n .

1.2 Main steps of study

Now we briefly describe our setup and the main focus of our analysis. Below we limit

ourselves to a special class of stochastically linear smooth (SLS) statistical models. The

major feature of such models is that the stochastic component ζ(υ) = L(υ) −EL(υ)
of the log-likelihood L(υ) is linear in parameter υ . We also assume that the expected

log-likelihood is a concave and smooth function of the parameter υ . This class includes

popular Generalized Linear Models but it is much larger. In particular, by extending

the parameter space, one can consider many nonlinear models including nonlinear re-

gression or nonlinear inverse problems as a special case of SLS; see Spokoiny (2019). We
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also focus on the case of a quadratic penalization penG(υ) = ‖Gυ‖2/2 . This would

not affect the SLS conditions. The assumption of stochastic linearity helps to avoid

heavy tools of empirical process theory which is typically used in the analysis of pMLE

υ̃G ; see e.g. Birgé and Massart (1998), van der Vaart (1998), Geer (2000), Kosorok

(2005), Ginè and Nickl (2015) among many others. We only need some accurate devia-

tion bounds for quadratic forms of the errors; see Section B in the appendix. Our aim

is to establish possibly sharp and accurate results under realistic assumptions on a SLS

model and the amount of data. The study includes several steps.

Concentration of the pMLE The first step of our analysis is to establish a concen-

tration result for the pMLE υ̃G defined by maximization of LG(υ) . If the expected

log-likelihood ELG(υ) is strictly concave and smooth in υ then υ̃G well concentrates

in a small elliptic vicinity AG of the “target” υ∗
G from (1.2):

P

(
‖F1/2

G (υ̃G − υ∗
G)‖ > rG +

√
2x
)
≤ 3e−x,

where r2G ≍ pG . The result becomes sensible provided that pG ≪ n with n−1 ≍ ‖F−1
G ‖ .

In the classical parametric theory, such results about concentration of pMLE involve some

advanced tools from the empirical process theory. The use condition (ζ) about linearity

of the stochastic component ζ(υ) = L(υ) − EL(υ) allows to reduce the analysis to

deviation bounds of the quadratic form ‖F−1/2
G ∇ζ‖2 ; cf. condition (∇ζ) . Section B

presents several results in this direction under different assumptions on the stochastic

gradient ∇ζ .

3G Fisher and Wilks expansions Having established the concentration of υ̃G ∈
AG , we can restrict the analysis to this vicinity and use the Taylor expansion of the pe-

nalized log-likelihood function LG(υ) . This helps to derive rather precise approximations

for υ̃G − υ∗
G and LG(υ̃G)− LG(υ

∗
G) :

∥∥
F

1/2
G

(
υ̃G − υ∗

G

)
− ξG

∥∥ ≤ 3τ3
4

∥∥ξG
∥∥2,

∣∣∣∣LG(υ̃G)− LG(υ
∗
G)−

1

2

∥∥ξG
∥∥2
∣∣∣∣ ≤ τ3

∥∥ξG
∥∥3 ,

(1.3)

where

ξG
def
= F

−1/2
G ∇LG(υ

∗
G) = F

−1/2
G ∇ζ,

and ∇ζ = ∇ζ(υ) does not depend on υ due to linearity of ζ(υ) = LG(υ) −ELG(υ) .

The accuracy of approximation is controlled by the value τ3 which describes the accuracy
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of the third-order Taylor expansion of the function fG(υ) = ELG(υ) in terms of the

third directional derivative of fG . In typical examples τ3 ≍
√

1/n . The presented

results require τ23 pG ≪ 1 which again leads to the condition pG ≪ n . The first result

in (1.3) about the pMLE υ̃G will be referred to as the Fisher expansion, while the second

one about LG(υ̃G) is called the Wilks expansion. The main technical tool for deriving

these expansions is the so-called basic lemma; see Proposition A.9.

These two expansions provide a finite sample analog of the asymptotic statements

(1.1) and are informative even in the classical parametric situation. In fact, under stan-

dard assumptions, the normalized score vector ξG is asymptotically normal N (0, ΣG)

with ΣG = F
−1/2
G V 2

F

−1/2
G ∈ Mp and V 2 = Var

(
∇L(υ)

)
∈ Mp . Stochastic linearity

implies that the matrix V 2 does not depend on the point υ . If the model is correctly

specified, then ΣG approaches the identity as n→ ∞ , and we obtain the classical results

(1.1). Note that the use of stochastic linearity allows us to obtain much more accurate

bounds than in Spokoiny (2012) or Spokoiny (2017).

3G risk bounds The loss of υ̃G can be naturally expanded as

υ̃G − υ∗ = υ̃G − υ∗
G + υ∗

G − υ∗ . (1.4)

Due to the Fisher expansion (1.3),

υ̃G − υ∗
G ≈ F−1

G ∇ζ .

This expansion is based on the basic lemma; see Proposition A.9. Another application

of this result yields an expansion of the bias:

υ∗
G − υ∗ ≈ −F−1

G G2υ∗ .

Putting together these two expansions leads to the so-called bias-variance decomposition

of the squared risk: for any linear mapping Q : Rp →R

q

E

∥∥Q(υ̃G − υ∗)
∥∥2 ≈ RQ ,

where RQ is the squared risk in the approximating linear model:

RQ
def
=
∥∥QF−1

G (∇ζ −G2υ∗)
∥∥2 = trVar(QF−1

G ∇ζ) +
∥∥QF−1

G G2υ∗∥∥2 .

Theorem 2.7 provides sufficient conditions allowing to state a sharp risk bound:

(1− αQ)
2
RQ ≤ E

∥∥Q(υ̃G − υ∗)
∥∥2 ≤ (1 + αQ)

2
RQ .
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Of course, this result is only meaningful if αQ ≪ 1 . It appears that this value strongly

depends on the dimension q of the mapping Q . If Q = Ip or Q = F
1/2
G then pG ≪ n

is sufficient to ensure αQ ≪ 1 . In the case of a low dimensional target with q ≍ 1 , the

condition αQ ≪ 1 translates into p2G ≪ n .

4G expansions and risk bounds The critical dimension condition p2G ≪ n can be

very limiting. Fourth-order smoothness conditions on fG(υ) allow us to improve the

accuracy of expansion (1.4) by accounting for the third-order term and thus, relax the

critical dimension bound. Consider the third-order tensor T (u) = 1
6 〈∇3f(υ∗

G),u
⊗3〉 .

Let ∇T (u) = 1
2 〈∇3f(υ∗

G),u
⊗2〉 be its gradient. Define the vectors nG and mG by

nG = F−1
G

{
∇ζ +∇T (F−1

G ∇ζ)
}
,

mG = F−1
G G2υ∗ +F−1

G ∇T (F−1
G G2υ∗) .

(1.5)

Theorem 2.11 states the following bound:

‖Q (υ̃G − υ∗ − nG +mG)‖ ≤ ‖QF−1/2
G ‖

(τ4
3

+ τ23

) (
‖F−1/2

G ∇ζ‖3 + b
3
G

)
, (1.6)

where bG = ‖F−1/2
G G2υ∗‖ and τ4 controls the fourth derivative of fG . Typically

τ4 ≍ n−1 and (1.6) is an improvement of (1.3) because the full dimensional error term

in the right-hand side of (1.6) is of order p
3/2
G /n compared to p2G/n in (1.3). Therefore,

the corrections from (1.5) improves the critical dimension condition from p2G ≪ n to

p
3/2
G ≪ n . An interesting question of using a higher order expansion of fG for a further

relaxation of the critical dimension condition is still open because even for 4G case, a

closed-form solution of the corresponding 4G approximation problem is not available.

Tools The presented results are based on two kinds of statements. The results about

concentration of the PMLE heavily rely on deviation bounds for quadratic forms of a

centered and standardized score vector. Such results are collected in Section B. We sepa-

rately study the cases of Gaussian errors, sub-Gaussian errors, and sub-exponential errors.

The other important technical element of the proofs is the so-called “basic lemma”. It

describes the solution of a convex optimization problem after a linear perturbation. This

result only relies on the smoothness and convexity of the objective function and it can

be proved by elementary tools like a third of fourth-order Taylor expansions. Section A

presents this and similar results.
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1.3 Examples

Section 2 presents some general theoretical results. Section 3 illustrates how the general

conditions of Section 2 can be checked for the classical setups like logistic regression,

log-density, and precision matrix estimation. This enables us to apply the results of

Section 2 to such models which improve and extend the similar results from the earlier

paper Spokoiny (2023a). All the mentioned examples are particular cases of Generalized

Linear Models (GLM). However, the SLS approach goes far beyond the GLM setup.

In particular, the paper Spokoiny (2023b) explains, how the so-called calming device

can be used to bring a nonlinear regression problem to the SLS setup. The developed

results can be applied to models like deep neuronal networks, nonlinear inverse problems,

etc. One more class of examples is given by error-in-operator models. This class includes

random design regression, instrumental regression, functional data analysis, diffusion, and

McKean-Vlasov models, etc. The calming trick applies here as well; see Puchkin et al.

(2023) for the case of a high-dimensional random design. The other examples include

effective dimension reduction, Gaussian mixture estimation, low-rank matrix recovery,

covariance and precision matrix estimation, smooth functional estimation, among others.

However, a rigorous treatment of each problem requires a separate study with a careful

check of the conditions and specific results and will be done elsewhere.

2 Properties of the pMLE υ̃G

This section collects general results about concentration and expansion of the pMLE

which substantially improve the bounds from Spokoiny and Panov (2021) and Spokoiny

(2023a). We assume to be given a pseudo log-likelihood random function L(υ) , υ ∈
Υ ⊆Rp , p <∞ . Given a quadratic penalty ‖Gυ‖2/2 , define

LG(υ) = L(υ)− ‖Gυ‖2/2.

Consider in parallel three optimization problems defining the penalized MLE υ̃G , its

population counterpart υ∗
G , and the background truth υ∗ :

υ̃G = argmax
υ

LG(υ), υ∗
G = argmax

υ
ELG(υ), υ∗ = argmax

υ
EL(υ).

The corresponding Fisher information matrix FG(υ) is given by

F(υ) = −∇2
EL(υ), FG(υ) = −∇2

ELG(υ) = F(υ) +G2.



11

We assume FG(υ) to be positive definite for all considered υ . By DG(υ) we denote a

positive symmetric matrix with D2
G(υ) = FG(υ) , and FG = FG(υ

∗
G) , DG = F

1/2
G .

2.1 Basic conditions

Now we present our major conditions. The most important one is about linearity of the

stochastic component ζ(υ) = L(υ)−EL(υ) = LG(υ)−ELG(υ) .

(ζ) The stochastic component ζ(υ) = L(υ) −EL(υ) of the process L(υ) is linear in

υ . We denote by ∇ζ ≡ ∇ζ(υ) ∈Rp its gradient .

Below we assume some concentration properties of the stochastic vector ∇ζ . More

precisely, we require that ∇ζ obeys the following condition; see (B.51) of Theorem B.15.

(∇ζ) Let V 2 ≥ Var(∇ζ) , D2
G = D2

G(υ
∗
G) , pG = tr(D−2

G V 2) , and λG = ‖D−1
G V 2D−1

G ‖ .
Then for any considered x > 0

P

(
‖D−1

G ∇ζ‖ ≥ rG(x)
)
≤ 3e−x, (2.1)

rG(x)
def
=

√
pG +

√
2xλG . (2.2)

This condition can be effectively checked if the errors in the data exhibit sub-gaussian

or sub-exponential behavior; see Section B.3. The important value pG = tr(D−2
G V 2) can

be called the effective dimension; see Spokoiny (2017).

We also assume that the penalized log-likelihood LG(υ) or, equivalently, its deter-

ministic part ELG(υ) is a concave function. It can be relaxed using localization; see

Spokoiny (2023b).

(CG) The function ELG(υ) is concave on Υ which is open and convex set in Rp .

Later we will also need some smoothness conditions on the function f(υ) = EL(υ) .

The class of models satisfying the conditions (ζ) , (∇ζ) with a smooth function f(υ) =

EL(υ) will be referred to as stochastically linear smooth (SLS). This class includes linear

regression, generalized linear models (GLM), and log-density models; see Spokoiny and Panov

(2021) or Spokoiny (2023a). However, this class is much larger. For instance, nonlinear

regression and nonlinear inverse problems can be adapted to the SLS framework by an

extension of the parameter space; see Spokoiny (2023b).
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2.2 Concentration of the pMLE υ̃G . 2G expansions

This section discusses some concentration properties of the pMLE υ̃G = argmaxυ LG(υ)

under second-order smoothness conditions.

2.2.1 Local smoothness conditions

Given x and rG = rG(x) from (2.2), define for some ν < 1 the set UG by

UG
def
=
{
u : ‖DGu‖ ≤ ν−1rG

}
. (2.3)

The result of this section states the concentration properties of the pMLE υ̃G in the

local vicinity AG of υ∗
G of the form

AG
def
= υ∗

G + UG =
{
υ = υ∗

G + u : u ∈ UG

}
⊆ Υ ◦.

Local Gateaux-regularity of f(υ) = EL(υ) within AG will be measured by the error of

the second-order Taylor approximation

δ3(υ,u) = f(υ + u)− f(υ)− 〈∇f(υ),u〉 − 1

2
〈∇2f(υ),u⊗2〉,

δ′3(υ,u) = 〈∇f(υ + u),u〉 − 〈∇f(υ),u〉 − 〈∇2f(υ),u⊗2〉 .

More precisely, define

ωG
def
= sup

u∈UG

2|δ3(υ∗
G,u)|

‖DGu‖2
, ω′

G
def
= sup

u∈UG

|δ′3(υ∗
G,u)|

‖DGu‖2
. (2.4)

The quantities ωG and ω′
G can be effectively bounded under smoothness conditions

(T3) or (S3) given in Section A. Under (T3) at υ = υ∗
G with D2(υ∗

G) = D2
G and

r = rG , by Lemma A.1, it holds for a small constant τ3

ω′
G ≤ τ3 ν

−1rG , ωG ≤ τ3 ν
−1rG/3.

Also under (S3) , the same bounds apply with τ3 = c3n
−1/2 ; see Lemma A.3.

2.2.2 Concentration bound

Now we are prepared to state a very important concentration result for pMLE υ̃G .

Proposition 2.1. Suppose (ζ) , (∇ζ) , and (CG) . Let also

1− ν − ω′
G > 0; (2.5)
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see (2.4) and (2.3). Then υ̃G ∈ AG on a set Ω(x) with P
(
Ω(x)

)
≥ 1− 3e−x , i.e.

‖DG(υ̃G − υ∗
G)‖ ≤ ν−1rG . (2.6)

Proof. By (∇ζ) , on a the random set Ω(x) with P(Ω(x)) ≥ 1 − 3e−x , it holds

‖D−1
G ∇ζ‖ ≤ rG . Now the result follows from Proposition A.6 with f(υ) = ELG(υ) ,

g(υ) = LG(υ) , r = ν−1rG , and A = ∇ζ .

Remark 2.1. The result (2.6) continues to apply with any matrix D ≤ DG in place of

DG provided that (∇ζ) as well as (2.4), (2.5) hold after this change.

2.2.3 Fisher and Wilks expansions. 2G bounds

Here we show how the concentration of υ̃G around υ∗
G can be used to establish a version

of the Fisher expansion for the estimation error υ̃G − υ∗
G and the Wilks expansion for

the excess LG(υ̃G)− LG(υ
∗
G) . The result follows by Proposition A.7.

Theorem 2.2. Assume the conditions of Proposition 2.1. Then on Ω(x)

2LG(υ̃G)− 2LG(υ
∗
G)−

∥∥D−1
G ∇ζ

∥∥2 ≤ ωG

1− ωG

∥∥D−1
G ∇ζ

∥∥2 ,

2LG(υ̃G)− 2LG(υ
∗
G)−

∥∥D−1
G ∇ζ

∥∥2 ≥ −ωG

∥∥D−1
G ∇ζ

∥∥2.

Also

∥∥DG

(
υ̃G − υ∗

G

)
−D−1

G ∇ζ
∥∥2 ≤ 3ωG

(1− ωG)2

∥∥D−1
G ∇ζ

∥∥2 ,

∥∥DG

(
υ̃G − υ∗

G

)∥∥ ≤ 1 +
√
2ωG

1− ωG

∥∥D−1
G ∇ζ

∥∥ .

2.2.4 Effective sample size and critical dimension in pMLE

This section discusses the important question of the critical parameter dimension still

ensuring the validity of the presented results. An essential feature of our results is their

dimension-free and coordinate-free form. The true parametric dimension p can be very

large, it does not appear in the error terms. Also, we do not use any spectral decom-

position or sequence space structure, in particular, we do not require that the Fisher

information matrix F and the penalty matrix G2 are diagonal or can be jointly di-

agonalized. The results are stated for the general data Y and a quasi log-likelihood

function. In particular, we do not assume independent or progressively dependent obser-

vations and additive structure of the log-likelihood. The effective sample size n can be
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defined via the smallest eigenvalue of the matrix FG = D2
G = −∇2

ELG(υ
∗
G) :

n−1 def
= ‖F−1

G ‖.

Our results apply as long as this value is sufficiently small. Alternatively, the error terms

τ3, τ4 scale with n so that in typical examples, τ3 ≍ n−1/2 , τ4 ≍ n−1 . In typical

examples like regression or density modeling such defined value n is closely related to

the sample size of the data.

For the concentration result of Proposition 2.1 we need the basic conditions (ζ) and

(CG) . Further, (∇ζ) identifies the radius rG of the local vicinity AG . The final critical

condition is given by (2.5). Essentially it says that the values ωG and ω′
G are significantly

smaller than 1. Under (S3) , ω
′
G ≤ c3 ν

−1rG n
−1/2 ; see Lemma A.3. So, (2.5) means

r2G ≪ n . Moreover, definition (2.1) of rG yields that r2G ≍ tr(D−2
G V 2) = pG , where pG

is the effective dimension of the problem. We conclude that the main properties of the

pMLE υ̃G are valid under the condition pG ≪ n meaning sufficiently many observations

per effective number of parameters.

2.2.5 The use of D̃2
G instead of D2

G

The penalized information matrix D2
G = D2

G(υ
∗
G) = −∇2

ELG(υ
∗
G) plays an important

role in our results. In particular, DG describes the shape of the concentration set AG =

υ∗
G+UG . However, this matrix is unavailable as it involves the unknown point υ∗

G . If the

matrix function F(υ) is locally constant in AG , one can replace υ∗
G with its estimate

υ̃G . Variability of F(υ) , or, equivalently, FG(υ) = F(υ) +G2 can be measured under

the Fréchet smoothness of f(υ) = ELG(υ) by the value ω+
G from (A.6) with υ = υ∗

G ,

D(υ) = DG , and r = ν−1rG . Note that ω+
G ≤ τ3 r under (T ∗

3
) .

Proposition 2.3. Assume the conditions of Proposition 2.1 and let ω+
G ≤ 1/2 ; see

(A.6). The random matrix D̃2
G = FG(υ̃G) fulfills on Ω(x) for any u ∈Rp

∥∥D−1
G D̃2

GD
−1
G − Ip

∥∥ ≤ ω+
G ,

∥∥DG D̃
−2
G DG − Ip

∥∥ ≤ ω+
G

1− ω+
G

,

(1− ω+
G) ‖DGu‖2 ≤ ‖D̃Gu‖2 ≤ (1 + ω+

G) ‖DGu‖2.
(2.7)

Proof. The value υ̃G − υ∗
G belongs to UG on Ω(x) and (2.7) follows from (A.7).
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2.3 Expansions and risk bounds under third-order smoothness

The results of Theorem 2.2 can be refined if the second order smoothness conditions (2.4)

can be strengthened to the third order. Assume for f(υ) = EL(υ) and all u ∈ UG

∣∣∣f(υ∗ + u)− f(υ∗)− 〈∇f(υ∗),u〉 − 1

2
〈∇2f(υ∗),u⊗2〉

∣∣∣ ≤ τ3
6
‖DGu‖3 ,

∣∣∣〈∇f(υ∗ + u),u〉 − 〈∇f(υ∗),u〉 − 〈∇2f(υ∗),u⊗2〉
∣∣∣ ≤ τ3

2
‖DGu‖3 .

(2.8)

2.3.1 Fisher and Wilks expansions. 3G case

The first result substantially improves the remainder in the Fisher and Wilks expansions

of Theorem 2.2. It follows from Proposition A.9.

Theorem 2.4. Assume (ζ) , (∇ζ) , and (CG) . Let UG be given by (2.3) with ν ≤ 2/3

and (2.8) hold for all u ∈ UG with τ3 rG/2 < 1− ν . Then on Ω(x)

−2τ3
3

‖D−1
G ∇ζ‖3 ≤ 2LG(υ̃G)− 2LG(υ

∗
G)− ‖D−1

G ∇ζ‖2 ≤ τ3 ‖D−1
G ∇ζ‖3 .

Moreover, under (T ∗

3
)

∥∥DG

(
υ̃G − υ∗

G

)
−D−1

G ∇ζ
∥∥ ≤ 3τ3

4
‖D−1

G ∇ζ‖2 ,
∥∥DG

(
υ̃G − υ∗

G

)∥∥ ≤ ‖D−1
G ∇ζ‖+ 3τ3

4
‖D−1

G ∇ζ‖2 .
(2.9)

Remark 2.2. The presented results are meaningful under the condition τ3 ‖D−1
G ∇ζ‖ ≪

1 . A sufficient condition is τ3 rG ≪ 1 because ‖D−1
G ∇ζ‖ ≤ rG on Ω(x) .

2.3.2 Smoothness and bias. 3G bounds

Due to Proposition 2.1, the penalized MLE υ̃G is in fact an estimator of the vector

υ∗
G . However, υ∗

G depends on penalization which introduces some bias. This section

discusses whether one can use υ̃G for estimating the underlying truth υ∗ defined as

the maximizer of the expected log-likelihood: υ∗ = argmaxυEL(υ) . First, we describe

the bias υ∗
G − υ∗ induced by penalization. It is important to mention that the previous

results about the properties of the pMLE υ̃G require strong concavity of the expected

log-likelihood function ELG(υ) at least in a vicinity of the point υ∗
G . In some sense,

this strong concavity is automatically forced by the penalizing term in the definition of

υ∗
G . However, the underlying truth υ∗ = argmaxυEL(υ) is the maximizer of the non-

penalized expected log-likelihood, and the corresponding Hessian F(υ∗) = −∇2
EL(υ∗)

can degenerate. This makes the evaluation of the bias more involved. To bypass this
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situation, we assume later in this section that the Hessian ∇2
ELG(υ) cannot change

much in a reasonably large vicinity of υ∗ . This allows to establish an accurate quadratic

approximation of f(υ) and to evaluate the bias υ∗
G − υ∗ . Proposition A.13 yields the

following result.

Proposition 2.5. Let D2
G = FG(υ

∗) , ν ≤ 2/3 , and bG = ‖D−1
G G2υ∗‖ . Assume

(T ∗

3
) with r = ν−1

bG and let τ3 bG ≤ 1/2 . Then the bias υ∗
G − υ∗ fulfills

‖DG(υ
∗
G − υ∗)‖ ≤ ν−1

bG = ν−1 ‖D−1
G G2υ∗‖ ,

‖DG(υ
∗
G − υ∗) +D−1

G G2υ∗‖ ≤ 3τ3
4

b
2
G =

3τ3
4

‖D−1
G G2υ∗‖2. (2.10)

Corollary 2.6. Assume the conditions of Proposition 2.5. Let also Q be a linear oper-

ator Q : Rp →R

q . Then

‖Q(υ∗
G − υ∗ +D−2

G G2υ∗)‖ ≤ ‖QD−1
G ‖ 3τ3

4
b
2
G ,

‖Q(υ∗
G − υ∗)‖ ≤ ‖QD−2

G G2υ∗‖+ ‖QD−1
G ‖ 3τ3

4
b
2
G .

(2.11)

The same bounds apply with D2
G = FG(υ

∗
G) in place of D2

G = FG(υ
∗) .

Proof. Obviously

‖Q(υ∗
G − υ∗)‖ ≤ ‖QD−2

G G2υ∗‖+ ‖Q(υ∗
G − υ∗ +D−2

G G2υ∗)‖

≤ ‖QD−2
G G2υ∗‖+ ‖QD−1

G ‖ ‖DG(υ
∗
G − υ∗ +D−2

G G2υ∗)‖

and (2.11) follow from (2.10). The last statement is due to Remark A.2.

2.3.3 Loss and risk of the pMLE. 3G-bounds

Now we combine the previous results about the stochastic term υ̃G − υ∗
G and the bias

term υ∗
G−υ∗ to obtain sharp bounds on the loss and risk of the pMLE υ̃G . Everywhere

in this section, we fix Ω(x) as the random set from (∇ζ) on which ‖ξG‖ ≤ rG with

P

(
Ω(x)

)
≥ 1− 3e−x ; see condition (2.1) of Proposition 2.1.

Theorem 2.7. Assume the conditions of Theorem 2.4 and Proposition 2.5. With bG =

‖D−1
G G2υ∗‖ and rG from (2.2), it holds on Ω(x)

‖DG {υ̃G − υ∗ −D−2
G (∇ζ −G2υ∗)}‖ ≤ 3τ3

4

(
‖D−1

G ∇ζ‖2 + b
2
G

)
,

‖DG (υ̃G − υ∗)‖ ≤ rG + bG +
3τ3
4

(
r2G + b

2
G

)
.

(2.12)
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Furthermore, with pG = E‖D−1
G ∇ζ‖2 , define the approximating risk RG by

RG
def
= E{‖D−1

G (∇ζ −G2υ∗)‖2 1IΩ(x)} .

Then RG ≤ pG + b
2
G and

E

{
‖DG(υ̃G − υ∗)‖ 1IΩ(x)

}
≤
√

RG +
3τ3
4

(
pG + b

2
G

)
. (2.13)

Finally, introduce αG by

αG
def
=

(3/4)τ3 (rG
√
pG + b

2
G)√

RG
.

If αG < 1 then

(1− αG)
2
RG ≤ E

{
‖DG(υ̃G − υ∗)‖2 1IΩ(x)

}
≤ (1 + αG)

2
RG . (2.14)

Proof. Define εG
def
= DG {υ̃G − υ∗ − D−2

G (∇ζ − G2υ∗)} and ξG = D−1
G ∇ζ . It follows

from (2.9) of Theorem 2.4 that on Ω(x)

∥∥εG
∥∥ ≤ 3τ3

4

(
‖ξG‖2 + b

2
G

)
.

This and (2.10) imply (2.12). Bound (2.13) follows from (2.12) in view of E‖ξG‖2 ≤
E‖ξG‖2 = pG . Now we check (2.14). As ‖ξG‖ ≤ rG on Ω(x) , it holds

E

{
‖εG‖2 1IΩ(x)

}
≤
(3τ3

4

)2
E

(
rG ‖ξG‖+ b

2
G

)2

≤
(3τ3

4

)2(
rG

√
E‖ξG‖2 + b

2
G

)2
=
(3τ3

4

)2 (
rG

√
pG + b

2
G

)2
(2.15)

and

E

{
‖DG (υ̃G − υ∗)‖2 1IΩ(x)

}
= E

{
‖D−1

G (∇ζ −G2υ∗) + εG‖2 1IΩ(x)

}

≤
(√
E{‖D−1

G (∇ζ −G2υ∗)‖2 1IΩ(x)}+
√
E{‖εG‖2 1IΩ(x)}

)2

≤
{√

RG +
3τ3
4

(
rG

√
pG + b

2
G

)}2
≤ (1 + αG)

2(pG + b
2
G). (2.16)

The lower bound in (2.14) is proved similarly.

Remark 2.3. The results of Theorem 2.7 implicitly assume that αG . τ3 (rG + bG) =

o(1) . Then bound (2.14) yields classical bias-variance decomposition

E

{
‖DG (υ̃G − υ∗)‖2 1IΩ(x)

}
= RG

{
1 + o(1)

}
. (2.17)
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With τ3 ≍ n−1/2 as in (S3) and rG ≈ √
pG , the condition τ3 rG = o(1) can be restated

as the critical dimension condition pG ≪ n . Our bound is sharp in the sense that for the

special case of linear models, (2.17) becomes equality. Under the so-called “small bias”

condition b
2
G = ‖D−1

G G2υ∗‖2 ≪ pG , the impact of the bias induced by penalization

is negligible. The relation ‖D−1
G G2υ∗‖2 ≍ pG is usually referred to as “bias-variance

trade-off”.

Similarly to Corollary 2.6, the bound can be easily extended to any mapping Q : Rp →
R

q in place of DG . Define BQ = Var(QD−2
G ∇ζ) = QD−2

G Var(∇ζ)D−2
G Q⊤ ,

pQ
def
= trBQ , rQ

def
=
√

trBQ +
√

2x‖BQ‖ . (2.18)

Conditions ensuring (∇ζ) also imply

P

(
‖QD−2

G ∇ζ‖ > rQ
)
≤ 3e−x.

Later we assume without significant loss of generality, that ‖QD−2
G ∇ζ‖ ≤ rQ on the

same set Ω(x) shown up in (∇ζ) .

Theorem 2.8. Assume the conditions of Theorem 2.7. For any linear mapping Q : Rp →
R

q , with bQ = ‖QD−2
G G2υ∗‖ and pQ , rQ from (2.18), it holds on Ω(x)

‖Q(υ̃G − υ∗)‖ ≤ ‖QD−2
G (∇ζ −G2υ∗)‖+ ‖QD−1

G ‖ 3τ3
4

(
‖D−1

G ∇ζ‖2 + b
2
G

)

≤ rQ + bQ + ‖QD−1
G ‖ 3τ3

4

(
r2G + b

2
G

)
. (2.19)

Also, define

RQ
def
= E{‖QD−2

G (∇ζ −G2υ∗)‖2 1IΩ(x)} .

Then RQ ≤ pQ + b
2
Q and it holds

E

{
‖Q(υ̃G − υ∗)‖ 1IΩ(x)

}
≤ R

1/2
Q + ‖QD−1

G ‖ 3τ3
4

(
pG + b

2
G

)
‖QD−1

G ‖ . (2.20)

Let αQ be given by

αQ
def
=

‖QD−1
G ‖ (3/4)τ3 (rG

√
pG + b

2
G)√

RQ

. (2.21)

If αQ < 1 then

(1− αQ)
2
RQ ≤ E

{
‖Q (υ̃G − υ∗)‖2 1IΩ(x)

}
≤ (1 + αQ)

2
RQ . (2.22)
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Proof. We follow the line of the proof of Theorem 2.7. It holds by (2.9) and (2.11)

‖Q(υ̃G − υ∗
G −D−2

G ∇ζ‖ ≤ ‖QD−1
G ‖ 3τ3

4
‖D−1

G ∇ζ‖2 ,

‖Q(υ∗
G − υ∗ +D−2

G G2υ∗)‖ ≤ ‖QD−1
G ‖ 3τ3

4
b
2
G ,

and hence

‖Q(υ̃G − υ∗ −D−2
G ∇ζ +D−2

G G2υ∗)‖ ≤ ‖QD−1
G ‖ 3τ3

4

(
‖D−1

G ∇ζ‖2 + b
2
G

)

yielding (2.19) and (2.20). Further, define

εG
def
= Q{υ̃G − υ∗ −D−2

G (∇ζ −G2υ∗)}.

Similarly to (2.15)

E

{
‖εQ‖2 1IΩ(x)

}
≤ ‖QD−1

G ‖2
(3τ3

4

)2 (
rG

√
pG + b

2
G

)2 ≤ α2
Q RQ ,

and as in (2.16)

E

{
‖Q (υ̃G − υ∗)‖2 1IΩ(x)

}
= E

{
‖QD−2

G (∇ζ −G2υ∗) + εQ‖2 1IΩ(x)

}
≤ (1 + αQ)

2
RQ .

This yields (2.22).

2.3.4 Critical dimension. 3G case

The results of Theorem 2.8 are meaningful only if αG in (2.21) is small. This condition

crucially depends on the operator Q . For the case Q = DG as in Theorem 2.7, it follows

from the relation pG ≪ n . However, in some other situations like semiparametric estima-

tion when Q projects onto a low dimensional target component, (2.21) requires p2G ≪ n

which can be very restrictive. An interesting question about a further improvement of

the error term in (2.19) will be discussed in the next section.

2.4 Risk bounds under fourth-order smoothness

This section explains how the accuracy of the expansions for pMLE can be improved

and the critical dimension condition can be relaxed under fourth-order smoothness of

fG(υ) = ELG(υ) .
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2.4.1 Fisher and Wilks expansions

Consider the third-order tensor T (u) = 1
6 〈∇3f(υ∗

G),u
⊗3〉 . Let ∇T (u) = 1

2〈∇3f(υ∗
G),u

⊗2〉
be its gradient. Define a random vector nG by

nG = D−2
G

{
∇ζ +∇T (D−2

G ∇ζ)
}
. (2.23)

The next result shows that by light modification of the term D−2
G ∇ζ to nG we can

substantially improve the accuracy of the Fisher expansion (2.9).

Proposition 2.9. Suppose (ζ) , (CG) , and (∇ζ) . Let (T ∗

3
) and (T ∗

4
) hold at υ∗

G

with D2 = FG and r = ν−1rG for rG from (2.2) and ν = 2/3 . Finally, let τ3 ν
−1rG ≤

1− ν . With nG from (2.23), it holds on Ω(x)

‖DG(υ̃G − υ∗
G − nG)‖ ≤

(τ4
3

+ τ23

)
‖D−1

G ∇ζ‖3 , (2.24)

‖DG nG −D−1
G ∇ζ‖ = ‖D−1

G ∇T (D−2
G ∇ζ)‖ ≤ τ3

2
‖D−1

G ∇ζ‖2 , (2.25)

and

∣∣LG(υ̃G)− LG(υ
∗
G)−

1

2
‖D−1

G ∇ζ‖2 − T (D−2
G ∇ζ)

∣∣

≤ τ4 + 7τ23
16

‖D−1
G ∇ζ‖4 + (τ4 + 3τ23 )

2

5
‖D−1

G ∇ζ‖6 .

Proof. See Proposition A.11 with A = ∇ζ , F = D2
G , and a = D−1

G ∇ζ .

Expansion similar to (2.24) applies to the bias term due to Proposition A.14. Define

mG = D−2
G G2υ∗ +D−2

G ∇T (D−2
G G2υ∗) . (2.26)

Proposition 2.10. Let bG = ‖D−1
G G2υ∗‖ . Assume (T ∗

3
) and (T ∗

4
) at υ∗

G with

r = ν−1
bG , and let τ3 satisfy τ3 bG ≤ 1/2 . With mG from (2.26), it holds

‖DG(υ
∗
G − υ∗ +mG)‖ ≤

(τ4
3

+ τ23

)
b
3
G .

‖DG mG −D−1
G G2υ∗‖ ≤ τ3

2
b
2
G . (2.27)

2.4.2 4G risk bounds

Putting together the results on the stochastic component υ̃G − υ∗
G and on the bias

υ∗
G − υ∗ yields the bound on the loss and risk of the estimator υ̃G . First, we consider

the approximation υ̃G − υ∗ ≈ nG −mG .
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Theorem 2.11. Under the conditions of Propositions 2.9 and 2.10, it holds on Ω(x)

for any linear mapping Q

‖Q (υ̃G − υ∗ −nG +mG)‖ ≤ ‖QD−1
G ‖

(τ4
3

+ τ23

) (
‖D−1

G ∇ζ‖3 + b
3
G

)
, (2.28)

‖Q{nG −mG −D−2
G (∇ζ −G2υ∗)}‖ ≤ τ3

2
‖QD−1

G ‖
(
‖D−1

G ∇ζ‖2 + b
2
G

)
.

Also

E

{
‖Q (υ̃G − υ∗)‖ 1IΩ(x)

}
≤ E

{
‖Q(nG −mG)‖ 1IΩ(x)

}

+ ‖QD−1
G ‖

(τ4
3

+ τ23

) (
rG pG + b

3
G

)
(2.29)

and

∣∣∣E
{
‖Q(nG −mG)‖ 1IΩ(x)

}
−E

{
‖QD−2

G ∇ζ −QD−2
G G2υ∗‖ 1IΩ(x)

}∣∣∣

≤ ‖QD−1
G ‖ τ3

2

(
pG + b

2
G

)
.

Proof. All the expansions for the loss Q (υ̃G − υ∗) follow directly from Propositions 2.9

and 2.10. Also

E

{
‖D−1

G ∇ζ‖3 1IΩ(x)

}
≤ rGE‖D−1

G ∇ζ‖2 = rG pG

yielding the ℓ1 -risk bound (2.29).

Now we study the quadratic risk of υ̃G . Define

RQ
def
= E

{
‖QD−2

G (∇ζ −G2υ∗)‖2 1IΩ(x)

}
. (2.30)

RQ,2
def
= E

{
‖Q(nG −mG)‖2 1IΩ(x)

}
. (2.31)

Theorem 2.12. Assume the conditions of Propositions 2.9 and 2.10. For a linear map-

ping Q and RQ,2 from (2.31), it holds

(
1− αQ,2

)2
RQ,2 ≤ E

{
‖Q (υ̃G − υ∗)‖2 1IΩ(x)

}
≤
(
1 + αQ,2

)2
RQ,2 (2.32)

provided that

αQ,2
def
=

‖QD−1
G ‖ (τ4/3 + τ23 ) (r

3
G + b

3
G)√

RQ,2

< 1 .

If another constant αQ,1 < 1 ensures

‖QD−1
G ‖ τ3

2

(
rG

√
pG + b

2
G

)
≤ αQ,1

√
RQ (2.33)
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with RQ from (2.30) then

RQ(1− αQ,1)
2 ≤ RQ,2 ≤ RQ(1 + αQ,1)

2 . (2.34)

Proof. Define εQ = Q(υ̃G−υ∗−nG+mG) . It can be bounded by (2.28): ‖εG‖ 1IΩ(x) ≤
αQ,2 . Therefore,

E

{
‖Q (υ̃G − υ∗)‖2 1IΩ(x)

}
= E

{
‖Q(nG −mG) + εG‖2 1IΩ(x)

}
≤
(√

RQ,2 + αQ,2

)2
,

and (2.32) follows. Further, denote

℘Q
def
= QD−2

G (∇ζ −G2υ∗),

δQ
def
= Q(D−2

G ∇ζ −nG)−Q(D−2
G G2υ∗ −mG).

By definition, RQ = E
{
‖℘Q‖2 1IΩ(x)

}
, RQ,2 = E

{
‖℘Q + δQ‖2 1IΩ(x)

}
, and

RQ,2 − RQ = E
{
‖δQ‖2 1IΩ(x)

}
+ 2E

{
〈℘Q, δQ〉 1IΩ(x)

}
.

Also (2.25) and (2.27) imply

‖δQ‖ 1IΩ(x) ≤ ‖QD−1
G ‖ τ3

2

(
‖D−1

G ∇ζ‖2 + b
2
G

)
1IΩ(x) ≤ ‖QD−1

G ‖ τ3
2

(
rG‖D−1

G ∇ζ‖+ b
2
G

)
,

and by (2.33)

√
E

(
‖δQ‖2 1IΩ(x)

)
≤ ‖QD−1

G ‖ τ3
2

√
E

{(
rG‖D−1

G ∇ζ‖+ b2G

)2
1IΩ(x)

}

≤ ‖QD−1
G ‖ τ3

2

(
rG

√
pG + b

2
G

)
≤ αQ,1

√
RQ .

This easily yields (2.34).

2.4.3 Critical dimension. 4G case

The results of Theorem 2.11 and 2.12 enable us to improve the issue of critical dimension.

For simplicity, let ‖QD−1
G ‖ = 1 . Then the derived bounds are meaningful if

(τ4
3

+ τ23

) (
rG pG + b

3
G

)
= o(1).

Assume τ4 ≍ 1/n and τ23 ≍ 1/n . As r2G ≈ pG , we obtain the critical dimension

condition p
3/2
G ≪ n which is much weaker than p3G ≪ n . Condition (2.33) ensuring

equivalence of RQ,2 and RQ requires τ3 pG ≪ RQ . The target risk RQ corresponds to

the target effective dimension after the mapping Q and it can be a fixed value. Therefore,

the mentioned condition requires pG ≪ 1/τ3 or pG ≪ n1/2 as in 3G case.
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3 Examples

This section illustrates the general notions on the particular examples including logistic

regression, log-density estimation, and precision matrix estimation. We mainly check the

general conditions. This enables us to apply the results of Section 2.

3.1 Anisotropic logistic regression

This section considers a popular logistic regression model. It is widely used e.g. in

binary classification in machine learning for binary classification or in binary response

models in econometrics. The results presented here can be viewed as an extension of

Spokoiny and Panov (2021) and Spokoiny (2023a).

Suppose we are given a vector of independent observations/labels Y = (Y1, . . . , Yn)
⊤

and a set of the corresponding feature vectors Ψ i ∈Rp . Each binary label Yi is modelled

as a Bernoulli random variable with the parameter θ∗i = P(Yi = 1) . Logistic regression

reduces this model to linear regression for the canonical parameter υ∗i = log
θ∗i

1−θ∗i
in

the form υ∗i = 〈Ψ i,υ
∗〉 , where υ is the parameter vector in Rp . The corresponding

log-likelihood reads

L(υ) =

n∑

i=1

{
Yi 〈Ψ i,υ〉 − φ

(
〈Ψ i,υ〉

)}

with φ(υ) = log
(
1 + eυ

)
. For simplicity we assume that the Ψ i ’s are deterministic,

otherwise, we condition on the design.

A penalized MLE υ̃G is defined by maximization of the penalized log-likelihood

LG(υ) = L(υ)− ‖Gυ‖2/2 for the quadratic penalty ‖Gυ‖2/2 :

υ̃G = argmax
υ∈Rp

LG(υ).

The truth and the penalized truth are defined via the expected log-likelihood

υ∗ = argmax
υ∈Rp

EL(υ),

υ∗
G = argmax

υ∈Rp
ELG(υ).

The Fisher matrix F(υ) at υ is given by

F(υ) =

n∑

i=1

φ′′
(
〈Ψ i,υ〉

)
Ψ iΨ

⊤
i , φ′′(υ) =

eυ

(1 + eυ)2
. (3.1)

We also write D2
G(υ) = FG(υ) = F(υ)+G2 and denote D2

G = D2
G(υ

∗
G) = F(υ∗

G)+G
2 .
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Now we check of general conditions from Section 2. Convexity of φ(·) yields concavity

of L(υ) and thus, (CG) . Let

ζ(υ) = L(υ)−EL(υ) =
n∑

i=1

(
Yi −EYi

)
〈Ψ i,υ〉

be the stochastic component of L(υ) . It is obviously linear in υ with

∇ζ =

n∑

i=1

(
Yi −EYi

)
Ψ i .

Therefore, (ζ) is granted by construction. Further, with Yi ∼ Bernoulli(θ∗i )

Var(∇ζ) =
n∑

i=1

Var(Yi)Ψ iΨ
⊤
i =

n∑

i=1

θ∗i (1− θ∗i )Ψ iΨ
⊤
i . (3.2)

If θ∗i = e〈Ψ i,υ∗〉/(1 + e〈Ψ i,υ∗〉) , then Var(∇ζ) = F(υ∗) ; see (3.1).

Lemma 3.1. Let V 2 ≥ 2Var(∇ζ) ; see (3.2), and D2
G = FG(υ

∗
G) ; see (3.1). Define

pG = tr
(
D−2

G V 2
)
, λG = ‖D−2

G V 2‖ . (3.3)

Let κ0 > 0 be such that

max
i≤n

‖V −1Ψ i‖ ≤ κ0 ≤ 0.5
√
λG/pG . (3.4)

Then (∇ζ) is fulfilled with for all x such that
√
2x ≤ 1/(2κ0)−

√
pG/λG .

Proof. Let g = log(2)/κ0 and xc be given by (B.50). By Theorem B.46,

P

(
‖D−1

G ∇ζ‖ ≥ √
pG +

√
2xλG

)
≤ 3e−x

for all x ≤ xc , and by (B.52),
√
xc ≥ g/2−

√
pG/(2λG) . This yields the assertion.

For checking the smoothness conditions (T ∗

3
) and (T ∗

4
) , we need one more condition

on regularity of the design Ψ1, . . . ,Ψn . It assumes a point υ ∈ Υ to be fixed. For any

vector u , it holds with wi(υ) = φ′′
(
〈Ψ i,υ〉

)

n∑

i=1

〈Ψ i,u〉2wi(υ) = ‖D(υ)u‖2;

see (3.1). Later we assume the following condition.
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(Ψ) For some constants κ and κ0 and a matrix D2 = D2(υ) with D2(υ) ≤ D2
G(υ)

max
i≤n

‖D−1Ψ i‖ ≤ κ0 , (3.5)

n∑

i=1

〈Ψ i,z〉4 wi(υ) ≤ κ
2 ‖Dz‖4, z ∈Rp. (3.6)

By (3.5)

n∑

i=1

〈Ψ i,z〉4 wi(υ) =
n∑

i=1

〈Ψ i,z〉2 〈D−1Ψ i,Dz〉2 wi(υ)

≤ κ
2
0‖Dz‖2

n∑

i=1

〈Ψ i,z〉2 wi(υ) = κ
2
0‖Dz‖4.

Therefore, κ ≤ κ0 . However, it might be that κ ≪ κ0 . As the final accuracy bound is

given in terms of κ , we keep the definition (3.6). The constant κ0 in (3.5) and in (3.4)

can be different. However, we expect that V 2 ≍ D2(υ) for υ close to υ∗ and use the

same notation.

Lemma 3.2. Assume (Ψ) for υ ∈ Υ . Let a radius r = r(υ) satisfies

κ0 r ≤ 1/2 . (3.7)

Then (T ∗

3
) and (T ∗

4
) hold at υ with τ3 =

√
eκ , and τ4 =

√
eκ2 .

Proof. We start with some technical statements. First, observe that the function φ(υ) =

log(1 + eυ) satisfies for all υ ∈R

|φ(k)(υ)| ≤ φ′′(υ), k = 3, 4. (3.8)

Indeed, it holds

φ′(υ) =
eυ

1 + eυ
,

φ′′(υ) =
eυ

(1 + eυ)2
,

φ(3)(υ) =
eυ

(1 + eυ)2
− 2e2υ

(1 + eυ)3
,

φ(4)(υ) =
eυ

(1 + eυ)2
− 6e2υ

(1 + eυ)3
+

6e3υ

(1 + eυ)4
.

It is straightforward to see that |φ(k)(υ)| ≤ φ′′(υ) for k = 3, 4 and any υ .
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Next, we check local variability of φ′′(υ) . Fix υ◦ < 0 . As the function φ′′(υ) is

monotonously increasing in υ , it holds

sup
|υ−υ◦|≤b

φ′′(υ)
φ′′(υ◦)

=
φ′′(υ◦ + b)

φ′′(υ◦)
≤ eb . (3.9)

Putting together (3.8) and (3.9) leads to a bound on variability of D(υ+u) . Let us fix

any u with ‖Du‖ ≤ r . By definition

D2(υ + u) =

n∑

i=1

Ψ i Ψ
⊤
i φ

′′(〈Ψ i,υ + u〉
)
.

By (3.7) and (Ψ) , for each i ≤ n , it holds
∣∣〈Ψ i,u〉

∣∣ ≤ ‖D−1Ψ i‖ ‖Du‖ ≤ κ0 r ≤ 1/2

and by (3.9)

φ′′
(
〈Ψ i,υ + u〉

)
≤ √

e φ′′
(
〈Ψ i,υ〉

)
.

This yields

D2(υ + u) ≤ √
eD2(υ). (3.10)

As the next step we evaluate the derivative ∇kf(υ + u) for f(υ) = EL(υ) . For any

u ∈ U with ‖Du‖ ≤ r and any z ∈Rp , it holds

〈
∇kf(υ + u),z⊗k

〉
= −

n∑

i=1

〈Ψ i,z〉k φ(k)
(
〈Ψ i,υ + u〉

)
.

With wi(υ) = φ′′
(
〈Ψ i,υ〉

)
, we derive by (Ψ) , (3.8), and (3.10)

∣∣〈∇3f(υ + u),z⊗3
〉∣∣ ≤

n∑

i=1

∣∣〈Ψ i,z〉
∣∣3 φ′′

(
〈Ψ i,υ + u〉

)

≤ √
e

n∑

i=1

∣∣〈Ψ i,z〉
∣∣3 wi(υ) ≤

√
e

( n∑

i=1

〈Ψ i,z〉2 wi(υ)

)1/2( n∑

i=1

〈Ψ i,z〉4 wi(υ)

)1/2

≤ √
eκ ‖Dz‖ ‖Dz‖2.

This yields (T ∗

3
) with τ3 =

√
eκ . Similarly (T ∗

4
) holds with τ4 =

√
eκ2 .

Now we can summarize.

Proposition 3.3. Let V 2 ≥ 2Var(∇ζ) ; see (3.2). Let also pG and λG be given in (3.3)

while rG =
√
pG +

√
2xλG . Assume (Ψ) , (3.4), and κ0 rG ≤ 1/2 . Then (T ∗

3
) and

(T ∗

4
) hold at υ with τ3 =

√
eκ and τ4 =

√
eκ2 . (∇ζ) applies with V 2 = Var(∇ζ)

from (3.2) for x with
√
2x ≤ 1/(2κ0)−

√
pG/λG .
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3.2 Log-density estimation

Suppose we are given a random sample X1, . . . ,Xn in Rd . The density model assumes

that all these random variables are independent identically distributed from some mea-

sure P with a density f(x) with respect to a σ -finite measure µ0 in Rd . This density

function is the target of estimation. By definition, the function f is non-negative, mea-

surable, and integrates to one:
∫
f(x) dµ0(x) = 1 . Here and in what follows, the integral

∫
without limits means the integral over the whole space Rd . If f(·) has a smaller sup-

port X , one can restrict integration to this set. Below we parametrize the model by a

linear decomposition of the log-density function. Let
{
ψj(x), j = 1, . . . , p

}
with p ≤ ∞

be a collection of functions in Rd (a dictionary). For each υ = (υj) ∈Rp , define

ℓ(x,υ)
def
= υ1ψ1(x) + . . .+ υpψp(x)− φ(υ) =

〈
Ψ(x),υ

〉
− φ(υ),

where Ψ (x) is a vector with components ψj(x) . Let φ(υ) be given by

φ(υ)
def
= log

∫
e〈Ψ(x),υ〉 dµ0(x). (3.11)

It is worth stressing that the data point x only enters in the linear term
〈
Ψ(x),υ

〉
of the

log-likelihood ℓ(x,υ) . The function φ(υ) is entirely model-driven. Below we restrict υ

to a subset Υ in Rp such that φ(υ) is well defined and the integral
∫
e〈Ψ (x),υ〉 dµ0(x)

is finite. Linear log-density modeling assumes

log f(x) = ℓ(x,υ∗) =
〈
Ψ (x),υ∗〉− φ(υ∗) (3.12)

for some υ∗ ∈ Υ . A nice feature of such representation is that the function log f(x) ,

in contrary to the density itself, does not need to be non-negative. Another important

benefit of using the log-density is that the stochastic part of the corresponding log-

likelihood is linear w.r.t. the parameter υ . With S =
∑n

i=1 Ψ(Xi) , the log-likelihood

L(υ) reads as

L(υ) =
n∑

i=1

〈
Ψ (Xi),υ

〉
− nφ(υ) = 〈S,υ〉 − nφ(υ).

The truth can be defined as its population counterpart:

υ∗ = argmax
υ∈Υ

EL(υ) = argmax
υ∈Υ

{
〈ES,υ〉 − nφ(υ)

}
= argmax

υ∈Υ

{
〈sΨ,υ〉 − φ(υ)

}
, (3.13)

where sΨ = n−1
ES . This yields the identity

∇φ(υ∗) = sΨ.
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For a given penalty operator G2 , the penalized log-likelihood LG(υ) reads as

LG(υ) = L(υ)− 1

2
‖Gυ‖2 = 〈S,υ〉 − nφ(υ)− 1

2
‖Gυ‖2.

The penalized MLE υ̃G and its population counterpart υ∗
G are defined as

υ̃G = argmax
υ∈Υ

LG(υ), υ∗
G = argmax

υ∈Υ
ELG(υ).

We are interested in sufficient conditions on the model which enables us to apply the

general results of Section 2 for quantifying the error terms υ̃G − υ∗
G , υ∗

G − υ∗ , and the

corresponding risk E‖Q(υ̃G − υ∗)‖2 .

Assumptions

First note that the generalized linear structure of the model automatically yields condi-

tions (CG) and (ζ) . Indeed, convexity of φ(·) implies that EL(υ) = 〈ES,υ〉−nφ(υ)

is concave. Further, for the stochastic component ζ(υ) = L(υ)−EL(υ) , it holds

∇ζ(υ) = ∇ζ = S −ES =

n∑

i=1

[
Ψ(Xi)−EΨ(Xi)

]
,

and (ζ) follows. Further, the representation EL(υ) = 〈ES,υ〉 − nφ(υ) implies

F(υ) = −∇2
EL(υ) = −∇2L(υ) = n∇2φ(υ).

To simplify our presentation, we assume that X1, . . . ,Xn are indeed i.i.d. and the density

f(x) can be represented in the form (3.12) for some parameter vector υ∗ . This can be

easily extended to a non i.i.d. case at the cost of more complicated notations. Then

sΨ = n−1
ES = E Ψ(X1) . Moreover, by (3.11), ∇2φ(υ∗) = Var

{
Ψ(X1)

}
and

Var(∇ζ) = n∇2φ(υ∗) = F(υ∗). (3.14)

For any υ ∈ Υ and ̺ > 0 , consider the elliptic set B̺(υ) ⊂Rp with

B̺(υ)
def
=
{
u ∈Rp : 〈∇2φ(υ),u⊗2〉 ≤ ̺2

}
.

Assume the following conditions.

(f) X1, . . . ,Xn are i.i.d. from a density f satisfying log f(x) = Ψ(x)⊤υ∗ − φ(υ∗) .

(Υ ) The set Υ is open and convex, the value φ(υ) from (3.11) is finite for all υ ∈ Υ ,

υ∗ from (3.13) is an internal point in Υ such that B2̺(υ
∗) ⊂ Υ for a fixed ̺ > 0 .
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(φ) For the Bregman divergence φ(υ;u)
def
= φ(υ + u)− φ(υ)− 〈∇φ(υ),u〉 , it holds

sup
υ∈B̺(υ∗)

sup
u∈B̺(υ)

expφ(υ;u) ≤ C̺ . (3.15)

Introduce a measure Pυ by the relation:

dPυ

dµ0
(x) = exp

{〈
Ψ(x),υ

〉
− φ(υ)

}
. (3.16)

Identity (3.11) ensures that Pυ is a probabilistic measure. Moreover, under (3.12), the

data generating measure P coincides with P⊗n
υ∗ .

(Ψ4) There are CΨ,3 ≥ 0 and CΨ,4 ≥ 3 such that for all υ ∈ B̺(υ
∗) and z ∈Rp

∣∣Eυ

〈
Ψ (X1)− EυΨ(X1),z

〉3∣∣ ≤ CΨ,3E
3/2
υ

〈
Ψ (X1)−EυΨ (X1),z

〉2
,

Eυ

〈
Ψ (X1)−EυΨ (X1),z

〉4 ≤ CΨ,4E
2
υ

〈
Ψ(X1)− EυΨ (X1),z

〉2
.

In fact, conditions (φ) and (Ψ4) follow from (Υ ) and can be considered as a kind

of definition of important quantities C̺ , CΨ,3 , and CΨ,4 which will be used for describing

the smoothness properties of φ(υ) .

For a penalty operator G2 , define F = F(υ∗) , FG = F +G2 , and

pG
def
= tr(F−1

G F), rG =
√
pG +

√
2x .

Proposition 3.4. Assume (f) , (Υ ) , (φ) , and (Ψ4) , and let rG ≤ ̺
√
n/2 . Then,

for any υ ∈ B̺(υ
∗) , the function f(υ) = Eυ∗L(υ) satisfies (S3) and (S4) with

h(υ) = 〈∇φ(υ∗),υ〉 − φ(υ) , m2(υ) = ∇2φ(υ) , and constants c3 and c4 satisfying

c3 = CΨ,3 c
3/2
φ , c4 = (CΨ,4 − 3) c2φ , cφ =

√
CΨ,4 C̺ .

Moreover, (∇ζ) holds with V 2 = 2n∇2φ(υ∗) for x ≤ (̺
√
n/2−√

pG)
2/4 .

Proof. Let Pυ be defined by (3.16). It is straightforward to check that EυΨ (X1) =

∇φ(υ) and Varυ(Ψ (X1)) = ∇2φ(υ) . Further, if u ∈ B̺(υ) and υ + u ∈ Υ , then

φ(υ + u) = logE0 exp{〈Ψ (X1),υ + u〉} = logEυ exp
{〈

Ψ(X1),u
〉
+ φ(υ)

}
.

This yields in view of EυΨ (X1) = ∇φ(υ) that ε = Ψ(X1)− EυΨ (X1) fulfills

logEυ exp(〈ε,u〉) = φ(υ + u)− φ(υ)− 〈EυΨ (X1),u〉

= φ(υ + u)− φ(υ)− 〈∇φ(υ),u〉. (3.17)
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Lemma 3.5. The function φ(υ) satisfies for any υ ∈ B̺(υ
∗) and z ∈Rp

|〈∇3φ(υ),z⊗3〉| ≤ CΨ,3 〈∇2φ(υ),z⊗2〉3/2 , (3.18)

|〈∇4φ(υ),z⊗4〉| ≤ (CΨ,4 − 3) 〈∇2φ(υ),z⊗2〉2. (3.19)

Proof. Denote ε = X1 − EυX1 . By (3.17) with u = tz for t sufficiently small

χ(t)
def
= logEυ exp(t〈ε,z〉) = φ(υ + tz)− φ(υ)− 〈∇φ(υ), tz〉,

and by (Ψ4) with CΨ,4 ≥ 3

∣∣χ(3)(0)
∣∣ =

∣∣Eυ〈ε,z〉3
∣∣ ≤ CΨ,3E

3/2
υ 〈ε,z〉2 ,

∣∣χ(4)(0)
∣∣ =

∣∣Eυ〈ε,z〉4 − 3E2
υ〈ε,z〉2

∣∣ ≤ (CΨ,4 − 3)E2
υ〈ε,z〉2.

This implies the assertion.

Lemma 3.6. If υ ∈ B̺(υ
∗) then with cφ =

√
CΨ,4 C̺

sup
u∈B̺(υ)

sup
z∈Rp

〈∇2φ(υ + u),z⊗2〉
〈∇2φ(υ),z⊗2〉 ≤ cφ . (3.20)

Proof. Let 〈∇2φ(υ),u⊗2〉 ≤ ̺2 . By (3.17) with ε = X1 − EυX1

∇2φ(υ + u) = ∇2 logEυe
〈ε,u〉 =

Eυ{εε⊤e〈ε,u〉}
(Eυ e〈ε,u〉)2

− Eυ{ε e〈ε,u〉}Eυ{ε e〈ε,u〉}⊤
(Eυ e〈ε,u〉)2

and by (3.19) and (3.15) in view of Eυ e〈ε,u〉 ≥ 1

〈
∇2φ(υ + u),z⊗2

〉
≤ Eυ

{
〈ε,z〉2e〈ε,u〉

}

≤ E
1/2
υ 〈ε,z〉4 E1/2

υ e2〈ε,u〉 ≤
√
CΨ,4 C̺

〈
∇2φ(υ),z⊗2

〉

and the assertion follows.

Now we are prepared to finalize the check of (S3) and (S4) . Let υ ∈ B̺(υ
∗) . For

any u with ‖m(υ)u‖ ≤ rG/
√
n ≤ ̺ , by (3.18) and (3.20)

|〈∇3φ(υ + tu),z⊗3〉|
‖m(υ)z‖3 ≤ CΨ,3 ‖m(υ + tu)z‖3

‖m(υ)z‖3 ≤ CΨ,3 c
3/2
φ ,

and (S3) follows with c3 = CΨ,3 c
3/2
φ . The proof of (S4) is similar.



31

Now we check the deviation bound for ∇ζ = S−ES . I.i.d. structure of S =
∑

iXi

and (3.14) yield Var(S) = n∇2φ(υ∗) . Further, for any u ∈ B̺(υ
∗) , again by the i.i.d.

assumption and by (3.17)

n−1 logEυ∗ exp
{
〈∇ζ,u〉

}
= logEυ∗e〈ε,u〉 = φ(υ∗ + u)− φ(υ∗)− 〈∇φ(υ∗),u〉.

For rG ≤ ̺n1/2 , consider all u with n〈∇2φ(υ∗),u⊗2〉 ≤ r2G . If c3 rG ≤ 3n1/2 , then by

(S3) and (A.5) of Lemma A.3

φ(υ∗ + u)− φ(υ∗)− 〈∇φ(υ∗),u〉 ≤ 1 + c3 rG n
−1/2/3

2
〈∇2φ(υ∗),u⊗2〉 ≤ 〈∇2φ(υ∗),u⊗2〉.

This implies (B.46) with V 2 = 2nφ(υ∗) , g = ̺
√
n/2 and thus, the deviation bound

(B.51) of Theorem B.15 implies (∇ζ) for x ≤ xc ≤ (̺
√
n/2−√

pG)
2/4 .

3.3 Precision matrix estimation

Let X1, . . . ,Xn be i.i.d. zero mean Gaussian vector in Rp with a covariance Σ : Xi ∼
N (0, Σ) . Our goal is to estimate the corresponding precision matrix υ = Σ−1 . Later

we identify the matrix υ with the point in the linear subspace Υ of Rp×p composed

by symmetric matrices. The ML approach leads to the log-likelihood

L(υ) = −1

2

n∑

i=1

〈Âi,υ〉+
n

2
log det(υ) (3.21)

with Âi = XiX
⊤
i . Here and later 〈A,B〉 means tr(AB) for A,B ∈ Υ . The corre-

sponding MLE υ̃ maximizes L(υ) :

υ̃ = argmax
υ∈Υ

L(υ).

The target of estimation υ∗ can be defined as its population counterpart:

υ∗ = argmax
υ∈Υ

EL(υ).

Now introduce a quadratic penalization on υ in the form ‖Kυ‖2Fr/2 for a linear operator

K on the space Υ . One typical example corresponds to the case with

‖Kυ‖2Fr =
p∑

m=1

‖Kmυm‖2, υ = (υ1, . . . ,υp),
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for a family of linear mappings K1, . . . ,Kp in Rp . The corresponding penalized MLE

υ̃K is defined by maximizing the penalized log-likelihood LK(υ) = L(υ)− ‖Kυ‖2Fr :

υ̃K = argmax
υ

LK(υ) = argmax
υ

{
L(υ)− 1

2
‖Kυ‖2Fr

}

= argmin
υ

{ n∑

i=1

〈Âi,υ〉 − n log det(υ) + ‖Kυ‖2Fr
}
.

Define also the penalized target υ∗
K as

υ∗
K = argmax

υ

{
EL(υ)− 1

2
‖Kυ‖2Fr

}
= argmin

υ

{
n〈Σ,υ〉 − n log det(υ) + ‖Kυ‖2Fr

}
.

We intend to state some sharp bounds on the loss and risk of υ̃K by applying the general

results of Section 2. Model (3.21) is a special case of an exponential family. Therefore,

the basic assumptions (ζ) and (CG) are fulfilled automatically. Next, we check the

smoothness properties of EL(υ) in terms of the Gatoux derivatives.

Lemma 3.7. Let υ ∈ Υ be positive definite. For any z ∈ Υ and U = υ−1/2 z υ−1/2 ,

it holds

− d2

dt2
EL(υ + t z)

∣∣∣∣
t=0

=
n

2
trU 2 =

n

2
tr{(υ−1z)2}. (3.22)

Similarly

d3

dt3
EL(υ + tz)

∣∣∣∣
t=0

= n trU3 ,
d4

dt4
EL(υ + tz)

∣∣∣∣
t=0

= −3n trU4 . (3.23)

Proof. Fix some z ∈ Υ . It holds by (3.21) with U = υ−1/2 z υ−1/2

− d2

dt2
EL(υ + t z)

∣∣∣∣
t=0

= −n
2

d2

dt2
log det(υ + t z)

∣∣∣∣
t=0

= −n
2

d2

dt2
log det(Ip + tU)

∣∣∣∣
t=0

=
n

2
trU2 =

n

2
‖υ−1/2 z υ−1/2‖2Fr .

This formula can easily be checked when U is diagonal, the general case is reduced to

this one by an orthogonal transform. (3.23) can be checked similarly.

Bounds (3.23) help to check condition (T ∗

3
) and (T ∗

4
) .

Lemma 3.8. For υ ∈ Υ positive definite, define D2(υ) by

‖D(υ)z‖2Fr =
n

2
‖υ−1/2 z υ−1/2‖2Fr , z ∈ Υ .
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Then (T ∗

3
) and (T ∗

4
) are fulfilled with

τ3 =
√
8
(
1−

√
2r2/n

)−3
n−1/2 , τ4 = 12

(
1−

√
2r2/n

)−4
n−1 .

Proof. Consider u ∈ Υ such that ‖D(υ)u‖Fr ≤ r . Fix z ∈ Υ and define U = (υ +

u)−1/2z (υ + u)−1/2 . Then by (3.23) and by
∣∣trU3

∣∣ ≤
(
trU2

)3/2
, the function f(υ)

satisfies

∣∣〈∇3f(υ + u),z⊗3〉
∣∣ ≤ n

∣∣trU3
∣∣ ≤ n

(
trU2

)3/2 ≤ n‖(υ + u)−1/2z (υ + u)−1/2‖3Fr

Further, ‖D(υ)u‖Fr ≤ r implies

‖υ−1/2(υ + u)υ−1/2 − I‖2 = ‖υ−1/2uυ−1/2‖2 ≤ ‖υ−1/2uυ−1/2‖2Fr ≤ 2r2/n

yielding

‖(υ + u)−1/2υ1/2‖2 = ‖(I + υ−1/2uυ−1/2)−1‖ ≤ 1

1−
√

2r2/n
.

Therefore, for any z ∈ Υ

‖(υ + u)−1/2z (υ + u)−1/2‖Fr ≤ ‖(υ + u)−1/2υ‖2 ‖υ−1/2z υ−1/2‖Fr

≤ 1

1−
√

2r2/n
‖υ−1/2z υ−1/2‖Fr .

Therefore,

∣∣〈∇3f(υ + u),z⊗3〉
∣∣ ≤ n

(
1−

√
2r2/n

)−3‖υ−1/2z υ−1/2‖3Fr

and condition (T ∗

3
) is fulfilled with τ3 =

√
8
(
1−

√
2r2/n

)−3
n−1/2 . Similarly, one can

check (T ∗

4
) .

By (3.22), the Fisher matrix F(υ)
def
= −∇2

EL(υ) is a linear operator in Υ with

〈F(υ),u⊗2〉 = n

2
trU2 =

n

2
tr{(υ−1u)2} , U = υ−1/2 z υ−1/2 .

The penalized Fisher information operator D2
K = F(υ∗) +K2 is given by

‖DKu‖2Fr =
n

2
tr{(Σu)2}+ ‖Ku‖2Fr ; u ∈ Υ . (3.24)

The next condition to be verified is (∇ζ) .
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Lemma 3.9. Let DK be given by (3.24). Define also

B2
K

def
= D

−1
K Σ2

D

−1
K . (3.25)

If pK < n/8 , then (∇ζ) is fulfilled with

rK(x)
def
=

√
pK +

√
2x , pK

def
= (trBK)

2 + trB2
K .

Proof. The stochastic component ζ(υ) = L(υ)−EL(υ) reads

ζ(υ) = L(υ)−EL(υ) = −1

2

n∑

i=1

〈Ei,υ〉

with Ei = Âi −EÂi = XiX
⊤
i − Σ . Clearly ζ(υ) is linear in υ and condition (ζ) is

fulfilled. Moreover, for any direction u in the parameter space Υ ,

〈∇ζ,u〉 = −1

2

n∑

i=1

〈Ei,u〉 = −1

2

n∑

i=1

(X⊤
i uXi − 〈Σ,u〉) = −1

2

n∑

i=1

{
γ⊤
i Uγi − tr(U )

}

with γi = Σ−1/2Xi standard Gaussian and U = Σ1/2uΣ1/2 . By Lemma B.1

Var〈∇ζ,u〉 =
n

4
Var
(
γ⊤
1 Uγ1

)
=
n

2
tr(U 2) =

n

2
tr(Σu)2.

In particular, for υ = υ∗ = Σ−1 , the operator D2 = F(υ∗) coincides with Var(∇ζ) :

‖Du‖2Fr =
n

2
tr(Σu)2.

This is in agreement with the fact that under the true parametric assumption, it holds

−∇2
EL(υ∗) = Var

(
∇ζ
)
. One can easily check for any u ∈ Υ

Var〈D−1
K ∇ζ,u〉 = Var〈∇ζ,D−1

K u〉 = n

2
tr(uD−1

K Σ2
D

−1
K u) =

n

2
tr(uB2

K u)

with BK from (3.25). Moreover, Theorem B.26 yields under pK < n/8

P

(
‖D−1

K ∇ζ‖Fr ≥ rK(x)
)
≤ 3e−x;

see (B.81), and (∇ζ) is verified.
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A Local smoothness and a linearly perturbed optimization

This section discusses the problem of linearly and quadratically perturbed optimization

of a smooth and concave function f(υ) , υ ∈Rp .

A.1 Smoothness and self-concordance in Gateaux sense

Below we assume the function f(υ) to be strongly concave with the negative Hessian

F (υ)
def
= −∇2f(υ) ∈ Mp positive definite. Also, assume f(υ) three or sometimes even

four times Gateaux differentiable in υ ∈ Υ . For any particular direction u ∈ Rp , we

consider the univariate function f(υ + tu) and measure its smoothness in t . Local

smoothness of f will be described by the relative error of the Taylor expansion of the

third or fourth order. Namely, define

δ3(υ,u) = f(υ + u)− f(υ)− 〈∇f(υ),u〉 − 1

2
〈∇2f(υ),u⊗2〉,

δ′3(υ,u) = 〈∇f(υ + u),u〉 − 〈∇f(υ),u〉 − 〈∇2f(υ),u⊗2〉 ,

and

δ4(υ,u)
def
= f(υ + u)− f(υ)− 〈∇f(υ),u〉 − 1

2
〈∇2f(υ),u⊗2〉 − 1

6
〈∇3f(υ),u⊗3〉 .

Now, for each υ , suppose to be given a positive symmetric operator D(υ) ∈ Mp with

D2(υ) ≤ F (υ) = −∇2f(υ) defining a local metric and a local vicinity around υ :

U(υ) =
{
u ∈Rp : ‖D(υ)u‖ ≤ r

}

for some radius r .

Local smoothness properties of f are given via the quantities

ω(υ)
def
= sup

u : ‖D(υ)u‖≤r

2|δ3(υ,u)|
‖D(υ)u‖2 , ω′(υ) def

= sup
u : ‖D(υ)u‖≤r

|δ′3(υ,u)|
‖D(υ)u‖2 . (A.1)

The definition yields for any u with ‖D(υ)u‖ ≤ r

∣∣δ3(υ,u)〉
∣∣ ≤ ω(υ)

2
‖D(υ)u‖2 ,

∣∣δ′3(υ,u)
∣∣ ≤ ω′(υ)‖D(υ)u‖2 . (A.2)

The introduced quantities ω(υ) , ω′(υ) strongly depend on the radius r of the local

vicinity U(υ) . The results about Laplace approximation can be improved provided a

homogeneous upper bound on the error of Taylor expansion. Assume a subset Υ ◦ of Υ

to be fixed.
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(T3) There exists τ3 such that for all υ ∈ Υ ◦

∣∣δ3(υ,u)
∣∣ ≤ τ3

6
‖D(υ)u‖3 ,

∣∣δ′3(υ,u)
∣∣ ≤ τ3

2
‖D(υ)u‖3 , u ∈ U(υ).

(T4) There exists τ4 such that for all υ ∈ Υ ◦

∣∣δ4(υ,u)
∣∣ ≤ τ4

24
‖D(υ)u‖4 , u ∈ U(υ).

We also present a version of (T3) resp. (T4) in terms of the third (resp. fourth)

derivative of f .

(T ∗

3
) f(υ) is strongly concave, D2(υ) ≤ −∇2f(υ) , and

sup
u : ‖D(υ)u‖≤r

sup
z∈Rp

∣∣〈∇3f(υ + u),z⊗3〉
∣∣

‖D(υ)z‖3 ≤ τ3 .

(T ∗

4
) f(υ) is strongly concave, D2(υ) ≤ −∇2f(υ) , and

sup
u : ‖D(υ)u‖≤r

sup
z∈Rp

∣∣〈∇4f(υ + u),z⊗4〉
∣∣

‖D(υ)z‖4 ≤ τ4 .

By Banach’s characterization Banach (1938), (T ∗

3
) implies

∣∣〈∇3f(υ + u),z1 ⊗ z2 ⊗ z3〉
∣∣ ≤ τ3‖D(υ)z1‖ ‖D(υ)z2‖ ‖D(υ)z3‖ (A.3)

for any u with ‖D(υ)u‖ ≤ r and all z1,z2,z3 ∈Rp . Similarly under (T ∗

4
)

∣∣〈∇4f(υ + u),z1 ⊗ z2 ⊗ z3 ⊗ z4〉
∣∣ ≤ τ4

4∏

k=1

‖D(υ)zk‖ , z1,z2,z3,z4 ∈Rp . (A.4)

Lemma A.1. Under (T3) or (T ∗

3
) , the values ω(υ) and ω′(υ) from (A.1) satisfy

ω(υ) ≤ τ3 r

3
, ω′(υ) ≤ τ3 r , υ ∈ Υ ◦.

Proof. For any u ∈ U(υ) with ‖D(υ)u‖ ≤ r

∣∣δ3(υ,u)
∣∣ ≤ τ3

6
‖D(υ)u‖3 ≤ τ3 r

6
‖D(υ)u‖2,

and the bound for ω(υ) follows. The proof for ω′(υ) is similar.
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Lemma A.2. Assume (T ∗

3
) . Then

∥∥D(υ)−1
{
∇f(υ + u)−∇f(υ)− 〈∇2f(υ),u〉

∥∥ ≤ τ3
2
‖D(υ)u‖2 .

Moreover, under (T ∗

4
)

∥∥D(υ)−1
{
∇f(υ + u)−∇f(υ)− 〈∇2f(υ),u〉 − 1

2
〈∇3f(υ),u⊗2〉

}∥∥ ≤ τ4
6
‖D(υ)u‖3 .

Proof. We write D in place of D(υ) . Denote

A
def
= ∇f(υ + u)−∇f(υ)− 〈∇2f(υ),u〉 .

For any vector w , (T ∗

3
) and (A.3) imply

∣∣〈A,w〉
∣∣ ≤ τ3

2
‖Du‖2 ‖Dw‖.

Therefore,

‖D−1A‖ = sup
‖w‖=1

∣∣〈D−1A,w〉
∣∣ = sup

‖w‖=1

∣∣〈A,D−1w〉
∣∣ ≤ τ3

2
‖Du‖2

which yields the first statement. For the second one, apply A
def
= ∇f(υ +u)−∇f(υ)−

〈∇2f(υ),u〉− 1
2 〈∇3f(υ),u⊗2〉 and use (T ∗

4
) and (A.4) instead of (T ∗

3
) and (A.3).

The values τ3 and τ4 are usually very small. Some quantitative bounds are given

later in this section under the assumption that the function f(υ) = ELG(υ) can be

written in the form −f(υ) = nh(υ) for a fixed smooth function h(υ) with the Hessian

∇2h(υ) . The factor n has meaning of the sample size.

(S3) −f(υ) = nh(υ) for h(υ) convex with ∇2h(υ) ≥ m2(υ) = D2(υ)/n and

sup
u : ‖m(υ)u‖≤r/

√
n

∣∣〈∇3h(υ + u),u⊗3〉
∣∣

‖m(υ)u‖3 ≤ c3 .

(S4) the function h(·) satisfies (S3) and

sup
u : ‖m(υ)u‖≤r/

√
n

∣∣〈∇4h(υ + u),u⊗4〉
∣∣

‖m(υ)u‖4 ≤ c4 .

(S3) and (S4) are local versions of the so-called self-concordance condition; see Nesterov

(1988). It is also referred to as L4−L2 norm equivalence; see e.g. Mendelson and Zhivotovskiy

(2020). In fact, they require that each univariate function h(υ + tu) of t ∈ R is self-

concordant with some universal constants c3 and c4 . Under (S3) and (S4) , we can

use D2(υ) = nm2(υ) and easily bound the values δ3(υ,u) , δ4(υ,u) , and ω(υ) , ω′(υ) .
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Lemma A.3. Suppose (S3) . Then (T3) follows with τ3 = c3n
−1/2 . Moreover, for

ω(υ) and ω′(υ) from (A.1), it holds

ω(υ) ≤ c3 r

3n1/2
, ω′(υ) ≤ c3 r

n1/2
. (A.5)

Also (T4) follows from (S4) with τ4 = c4n
−1 .

Proof. For any u ∈ U(υ) and t ∈ [0, 1] , by the Taylor expansion of the third order

|δ(υ,u)| ≤ 1

6

∣∣〈∇3f(υ + tu),u⊗3〉
∣∣ = n

6

∣∣〈∇3h(υ + tu),u⊗3〉
∣∣ ≤ n c3

6
‖m(υ)u‖3

=
n−1/2

c3

6
‖D(υ)u‖3 ≤ n−1/2

c3 r

6
‖D(υ)u‖2 .

This implies (T3) as well as (A.5); see (A.2). The statement about (T4) is similar.

A.2 Smoothness of the Hessian

For evaluation of the bias, we also need stronger smoothness conditions. Let f be a

strongly concave function. Essentially we need some continuity of the negative Hessian

F (υ) = −∇2f(υ) . Let us fix r and for any υ ∈ Υ , some D(υ) ≤ F 1/2(υ) , and define

ω+(υ)
def
= sup

u : ‖D(υ)u‖≤r

sup
z∈Rp

|〈F (υ + u)− F (υ),z⊗2〉|
‖D(υ)z‖2 . (A.6)

This definition of ω+(υ) is, of course, stronger than the one-directional definition of

ω(υ) in (A.1). However, in typical examples these quantities ω(υ) and ω+(υ) are

similar.

Lemma A.4. Condition (T ∗

3
) yields (A.6) with ω+(υ) ≤ τ3 r and

‖F−1/2(υ) F (υ + u) F−1/2(υ)− Ip‖ ≤ τ3 ‖D(υ)u‖ ≤ τ3 r , ‖D(υ)u‖ ≤ r. (A.7)

Proof. Let ‖D(υ)u‖ ≤ r . By (T ∗

3
) , for any z ∈Rp , it holds with δ = F−1/2(υ)z

∣∣〈F−1/2(υ) F (υ + u) F−1/2(υ)− Ip,z⊗2
〉∣∣ ≤ sup

t∈[0,1]

∣∣〈∇3f(υ + tu),u⊗ δ⊗2〉
∣∣

≤ τ3 ‖D(υ)u‖ ‖D(υ) δ‖2 ≤ τ3 r ‖D(υ) F−1/2(υ)z‖2 ≤ τ3 r ‖z‖2.

This yields (A.7).



39

A.3 Optimization after linear perturbation. A basic lemma

Let f(υ) be a smooth concave function,

υ∗ = argmax
υ

f(υ),

and F = −∇2f(υ∗) . Later we study the question of how the point of maximum and the

value of maximum of f change if we add a linear or quadratic component to f .

A.3.1 A linear perturbation

This section studies the case of a linear change of f . More precisely, let another function

g(υ) satisfy for some vector A

g(υ)− g(υ∗) =
〈
υ − υ∗,A

〉
+ f(υ)− f(υ∗). (A.8)

A typical example corresponds to f(υ) = EL(υ) and g(υ) = L(υ) for a random

function L(υ) with a linear stochastic component ζ(υ) = L(υ) −EL(υ) . Then (A.8)

is satisfied with A = ∇ζ . Define

υ◦ def
= argmax

υ
g(υ), g(υ◦) = max

υ
g(υ). (A.9)

The aim of the analysis is to evaluate the quantities υ◦ − υ∗ and g(υ◦) − g(υ∗) . The

results will be stated in terms of the norm ‖F−1/2A‖ . First, we consider the case of a

quadratic function f .

Lemma A.5. Let f(υ) be quadratic with ∇2f(υ) ≡ −F . If g(υ) satisfy (A.8), then

υ◦ − υ∗ = F−1A, g(υ◦)− g(υ∗) =
1

2
‖F−1/2A‖2. (A.10)

Proof. If f(υ) is quadratic, then, of course, under (A.8), g(υ) is quadratic as well with

−∇2g(υ) ≡ F . This implies

∇g(υ∗)−∇g(υ◦) = F (υ◦ − υ∗).

Further, (A.8) and ∇f(υ∗) = 0 yield ∇g(υ∗) = A . Together with ∇g(υ◦) = 0 , this

implies υ◦ − υ∗ = F−1A . The Taylor expansion of g at υ◦ yields by ∇g(υ◦) = 0

g(υ∗)− g(υ◦) = −1

2
‖F 1/2(υ◦ − υ∗)‖2 = −1

2
‖F−1/2A‖2

and the assertion follows.
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The next result describes the concentration properties of υ◦ from (A.9) in a local

elliptic set of the form

A(r)
def
= {υ : ‖F 1/2(υ − υ∗)‖ ≤ r}, (A.11)

where r is slightly larger than ‖F−1/2A‖ .

Proposition A.6. Let f(υ) be a strongly concave function with f(υ∗) = maxυ f(υ)

and F = −∇2f(υ∗) . Let further g(υ) and f(υ) be related by (A.8) with some vector

A . Fix ν < 1 and r such that ‖F−1/2A‖ ≤ ν r . Suppose now that f(υ) satisfy (A.1)

for υ = υ∗ , D(υ∗) = F 1/2 = D , and ω′ such that

1− ν − ω′ > 0. (A.12)

Then for υ◦ from (A.9), it holds

‖F 1/2(υ◦ − υ∗)‖ ≤ r .

Proof. With D = F 1/2 , the bound ‖D−1A‖ ≤ ν r implies for any u

∣∣〈A,u〉
∣∣ =

∣∣〈D−1A,Du〉
∣∣ ≤ ν r‖Du‖ .

Let υ be a point on the boundary of the set A(r) from (A.11). We also write u = υ−υ∗ .

The idea is to show that the derivative d
dtg(υ

∗ + tu) < 0 is negative for t > 1 . Then all

the extreme points of g(υ) are within A(r) . We use the decomposition

g(υ∗ + tu)− g(υ∗) = 〈A,u〉 t+ f(υ∗ + tu)− f(υ∗).

With h(t) = f(υ∗ + tu)− f(υ∗) + 〈A,u〉 t , it holds

d

dt
f(υ∗ + tu) = −〈A,u〉+ h′(t). (A.13)

By definition of υ∗ , it also holds h′(0) = 〈A,u〉 . The identity ∇2f(υ∗) = −D2 yields

h′′(0) = −‖Du‖2 . Bound (A.2) implies for |t| ≤ 1

∣∣h′(t)− h′(0)− th′′(0)
∣∣ ≤ t

∣∣h′′(0)
∣∣ω′ .

For t = 1 , we obtain by (A.12)

h′(1) ≤ −〈A,u〉+ h′′(0)− h′′(0)ω′ ≤ −
∣∣h′′(0)

∣∣(1− ω′ − ν) < 0.
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Moreover, concavity of h(t) imply that h′(t)− h′(0) decreases in t for t > 1 . Further,

summing up the above derivation yields

d

dt
g(υ∗ + tu)

∣∣∣
t=1

≤ −‖Du‖2(1− ν − ω′) < 0.

As d
dtg(υ

∗ + tu) decreases with t ≥ 1 together with h′(t) due to (A.13), the same

applies to all such t . This implies the assertion.

The result of Proposition A.6 allows to localize the point υ◦ = argmaxυ g(υ) in the

local vicinity A(r) of υ∗ . The use of smoothness properties of g or, equivalently, of f ,

in this vicinity helps to obtain rather sharp expansions for υ◦−υ∗ and for g(υ◦)−g(υ∗) ;

cf. (A.10).

Proposition A.7. Under the conditions of Proposition A.6

− ω

1 + ω
‖D−1A‖2 ≤ 2g(υ◦)− 2g(υ∗)− ‖D−1A‖2 ≤ ω

1− ω
‖D−1A‖2 . (A.14)

Also

‖D(υ◦ − υ∗)− D−1A‖2 ≤ 3ω

(1− ω)2
‖D−1A‖2 ,

‖D(υ◦ − υ∗)‖ ≤ 1 +
√
2ω

1− ω
‖D−1A‖ .

(A.15)

Proof. By (A.1), for any υ ∈ A(r)

∣∣∣f(υ∗)− f(υ)− 1

2
‖D(υ − υ∗)‖2

∣∣∣ ≤ ω

2
‖D(υ − υ∗)‖2. (A.16)

Further,

g(υ)− g(υ∗)− 1

2
‖D−1A‖2

=
〈
υ − υ∗,A

〉
+ f(υ)− f(υ∗)− 1

2
‖D−1A‖2

= −1

2

∥∥D(υ − υ∗)− D−1A
∥∥2 + f(υ)− f(υ∗) +

1

2
‖D(υ − υ∗)‖2. (A.17)

As υ◦ ∈ A(r) and it maximizes g(υ) , we derive by (A.16)

g(υ◦)− g(υ∗)− 1

2
‖D−1A‖2 = max

υ∈A(r)

{
g(υ)− g(υ∗)− 1

2
‖D−1A‖2

}

≤ max
υ∈A(r)

{
−1

2

∥∥D(υ − υ∗)− D−1A
∥∥2 + ω

2
‖D(υ − υ∗)‖2

}
.
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Further, maxu
{
ω‖u‖2 − ‖u− ξ‖2

}
= ω

1−ω‖ξ‖2 for ω ∈ [0, 1) and ξ ∈Rp , yielding

g(υ◦)− g(υ∗)− 1

2
‖D−1A‖2 ≤ ω

2(1 − ω)
‖D−1A‖2.

Similarly

g(υ◦)− g(υ∗)− 1

2
‖D−1A‖2 ≥ max

υ∈A(r)

{
−1

2

∥∥D(υ − υ∗)− D−1A
∥∥2 − ω

2
‖D(υ − υ∗)‖2

}

= − ω

2(1 + ω)
‖D−1A‖2. (A.18)

These bounds imply (A.14).

Now we derive similarly to (A.17) that for υ ∈ A(r)

g(υ)− g(υ∗) ≤
〈
υ − υ∗,A

〉
− 1− ω

2
‖D(υ − υ∗)‖2.

A particular choice υ = υ◦ yields

g(υ◦)− g(υ∗) ≤
〈
υ◦ − υ∗,A

〉
− 1− ω

2
‖D(υ◦ − υ∗)‖2.

Combining this result with (A.18) allows to bound

〈
υ◦ − υ∗,A

〉
− 1− ω

2
‖D(υ◦ − υ∗)‖2 − 1

2
‖D−1A‖2 ≥ − ω

2(1 + ω)
‖D−1A‖2.

Further, for ξ = D−1A , u = D(υ◦ − υ∗) , and ω ∈ [0, 1/3] , the inequality

2
〈
u, ξ

〉
− (1− ω)‖u‖2 − ‖ξ‖2 ≥ − ω

1 + ω
‖ξ‖2

implies

∥∥u− 1

1− ω
ξ
∥∥2 ≤ 2ω

(1 + ω)(1− ω)2
‖ξ‖2

yielding for ω ≤ 1/3

‖u− ξ‖ ≤
(
ω +

√
2ω

1 + ω

) ‖ξ‖
1− ω

≤
√
3ω‖ξ‖
1− ω

,

‖u‖ ≤
(
1 +

√
2ω

1 + ω

) ‖ξ‖
1− ω

≤ 1 +
√
2ω‖ξ‖

1− ω
,

and (A.15) follows.

Remark A.1. The roles of the functions f and g are exchangeable. In particular, the

results from (A.15) apply with D2 = −∇2g(υ◦) = −∇2f(υ◦) provided that (A.1) is

fulfilled at υ = υ◦ .
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A.3.2 Basic lemma under third order smoothness

In this section, we assume that f satisfies the local smoothness conditions (T3) with

some D2 ≤ F = −∇2f(υ∗) , a small constant τ3 , and some radius r to be specified

below.

Proposition A.8. Let f(υ) be a strongly concave function with f(υ∗) = maxυ f(υ)

and F = −∇2f(υ∗) . Let g(υ) fulfill (A.8) with some vector A . Suppose that

• ‖F−1/2A‖ ≤ ν r for ν ≤ 2/3 and some r ;

• f(υ) follows (T3) with this r and some D2 ≤ F and τ3 ≥ 0 ;

• τ3 r/2 < 1− ν .

Then υ◦ = argmaxυ g(υ) satisfies

‖F 1/2(υ◦ − υ∗)‖ ≤ r . (A.19)

Proof. Let υ be a point on the boundary of the set A(r) from (A.11). We also write

υ − υ∗ = F−1/2u for ‖u‖ = r . The idea is to show that the derivative d
dtg(υ

∗ +

t F−1/2u) < 0 is negative for t > 1 . Then all the extreme points of g(υ) are within

A(r) . We use the decomposition

g(υ∗ + t F−1/2u)− g(υ∗) = 〈A, F−1/2u〉 t+ f(υ∗ + t F−1/2u)− f(υ∗).

With h(t) = f(υ∗ + t F−1/2u)− f(υ∗)− 〈A, F−1/2u〉 t , it holds

d

dt
f(υ∗ + t F−1/2u) = 〈A, F−1/2u〉+ h′(t).

By definition of υ∗ , it also holds ∇f(υ∗) = 0 and

|h′(0)| =
∣∣〈A, F−1/2u〉

∣∣ ≤
∣∣〈F−1/2A,u〉

∣∣ ≤ ‖F−1/2A‖ ‖u‖ ≤ ν r2.

By ∇2f(υ∗) = −F , it holds h′′(0) = −‖u‖2 = −r2 , and (T3) implies by D2 ≤ F

∣∣h′(t)− h′(0) − t h′′(0)
∣∣ ≤ τ3 t

3 ‖u‖3/2 = τ3 t
3 r3/2 , |t| ≤ 1.

For t = 1 , we obtain by τ3 r/2 ≤ 1− ν

h′(1) ≤ h′(0) + h′′(0) + τ3 r
3/2 ≤ ν r2 − r2 + τ3 r

3/2 < 0.

Moreover, concavity of h(t) implies that h′(t) − h′(0) decreases in t for t > 1 and

hence, h′(t) ≤ h′(1) < 0 for |t| ≥ 1 . This implies the assertion.
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The result of Proposition A.8 allows to localize the point υ◦ = argmaxυ g(υ) in the

local vicinity A(r) of υ∗ . The use of smoothness properties of g or, equivalently, of f ,

in this vicinity helps to obtain rather sharp expansions for υ◦−υ∗ and for g(υ◦)−g(υ∗) .

Proposition A.9. Under the conditions of Proposition A.8

−2τ3
3

‖F−1/2A‖3 ≤ 2g(υ◦)− 2g(υ∗)− ‖F−1/2A‖2 ≤ τ3 ‖F−1/2A‖3 . (A.20)

Moreover, under (T ∗

3
)

‖F 1/2(υ◦ − υ∗)− F−1/2A‖ ≤ 3τ3
4

‖F−1/2A‖2 ,

‖F 1/2(υ◦ − υ∗)‖ ≤ ‖F−1/2A‖+ 3τ3
4

‖F−1/2A‖2 .
(A.21)

Proof. By (T3) and ∇f(υ∗) = 0 , for any υ ∈ A(r)

∣∣∣f(υ∗)− f(υ)− 1

2
‖F 1/2(υ − υ∗)‖2

∣∣∣ ≤ τ3
6
‖D(υ − υ∗)‖3 ≤ τ3

6
‖F 1/2(υ − υ∗)‖3. (A.22)

Further,

g(υ)− g(υ∗)− 1

2
‖F−1/2A‖2

=
〈
υ − υ∗,A

〉
+ f(υ)− f(υ∗)− 1

2
‖F−1/2A‖2

= −1

2

∥∥F 1/2(υ − υ∗)− F−1/2A
∥∥2 + f(υ)− f(υ∗) +

1

2
‖F 1/2(υ − υ∗)‖2.

As υ◦ ∈ A(r) and it maximizes g(υ) , we derive by (A.22) and Lemma A.10

g(υ◦)− g(υ∗)− 1

2
‖F−1/2A‖2 = max

υ∈A(r)

{
g(υ)− g(υ∗)− 1

2
‖F−1/2A‖2

}

≤ max
υ∈A(r)

{
−1

2

∥∥F 1/2(υ − υ∗)− F−1/2A
∥∥2 + τ3

6
‖F 1/2(υ − υ∗)‖3

}
≤ τ3

2
‖F−1/2A‖3 .

Similarly

g(υ◦)− g(υ∗)− 1

2
‖F−1/2A‖2

≥ max
υ∈A(r)

{
−1

2

∥∥F 1/2(υ − υ∗)− F−1/2A
∥∥2 − τ3

6
‖F 1/2(υ − υ∗)‖3

}
≥ −τ3

3
‖F−1/2A‖3 .

These bounds imply (A.20). For proving (A.21) use that ∇f(υ∗) = 0 , ∇g(υ◦) = 0 ,

∇f(υ◦) = ∇g(υ◦)−A = −A , and −∇2f(υ∗) = F . By Lemma A.2 with u = F−1A

∥∥F−1/2{∇f(υ∗ + F−1A) +A}
∥∥ ≤ τ3

2
‖F−1/2A‖2 .
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Further, by (A.8)

∥∥F−1/2∇g(υ∗ + F−1A)
∥∥ =

∥∥F−1/2{∇g(υ∗ + F−1A)−A+A}
∥∥

≤
∥∥F−1/2{∇f(υ∗ + F−1A) +A}

∥∥ ≤ τ3
2
‖F−1/2A‖2.

By definition ∇g(υ◦) = 0 . This yields

‖F−1/2{∇g(υ∗ + F−1A)−∇g(υ◦)}‖ ≤ τ3
2
‖F−1/2A‖2 . (A.23)

Now we can use with ∆ = υ∗ + F−1A− υ◦

F−1/2{∇g(υ∗ + F−1A)−∇g(υ◦)} =

(∫ 1

0
F−1/2 ∇2g(υ◦ + t∆) F−1/2 dt

)
F 1/2∆ .

By (A.8) ∇2g(υ) = ∇2f(υ) for all υ . If ‖F 1/2(υ − υ∗)‖ ≤ r , then (T ∗

3
) implies

‖F−1/2 ∇2f(υ) F−1/2 + Ip‖ ≤ ω+ with ω+ ≤ τ3 r ≤ 1/3 . Hence,

‖F−1/2{∇g(υ∗ + F−1A)−∇g(υ◦)}‖ ≥ (1− ω+)‖F 1/2(υ◦ − υ∗ − F−1A)‖ .

This and (A.23) yield

‖F 1/2(υ◦ − υ∗ − F−1A)‖ ≤ τ3
2(1 − ω+)

‖F−1/2A‖2 ≤ 3τ3
4

‖F−1/2A‖2 ,

and (A.21) follows.

Lemma A.10. For any ξ ∈Rp with ‖ξ‖ ≤ 2r/3 and τ with τ r ≤ 1/2 , it holds

max
‖u‖≤r

(τ
3
‖u‖3 − ‖u− ξ‖2

)
≤ τ

2
‖ξ‖3 , (A.24)

min
‖u‖≤r

(τ
3
‖u‖3 + ‖u− ξ‖2

)
≤ τ

3
‖ξ‖3 . (A.25)

Proof. Any maximizer u of the left-hand side of (A.24) satisfies

τ‖u‖1/2u− 2(u− ξ) = 0 .

Therefore, u = ρξ for some ρ , reducing the problem to the univariate case:

max
‖u‖≤r

(τ
3
‖u‖3 − ‖u− ξ‖2

)
= ‖ξ‖2 max

ρ : ‖ρξ‖≤r

(τ‖ξ‖
3

ρ3 − (ρ− 1)2
)
.

Define a = τ‖ξ‖ . The conditions ‖ξ‖ ≤ 2r/3 and τ r ≤ 1/2 imply a ≤ 1/3 and

‖ρξ‖ ≤ r implies |ρ| ≤ 3/2 . The function aρ3/3 − (ρ − 1)2 is concave on the interval
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|ρ| ≤ 3/2 and hence, the maximizer ρ fulfills aρ2 − 2ρ+ 2 = 0 yielding

ρ =
1±

√
1− 2a

a
, |ρ| ≤ 3/2.

As a ∈ [0, 1/3] , we can only use

ρa =
1−

√
1− 2a

a
=

2

1 +
√
1− 2a

, ρa − 1 =
1−

√
1− 2a

1 +
√
1− 2a

=
2a

(1 +
√
1− 2a)2

.

Therefore,

max
‖u‖≤r

(τ
3
‖u‖3 − ‖u− ξ‖2

)
=
τ‖ξ‖3ρ3a

3
− ‖ξ‖2(ρa − 1)2

=
τ‖ξ‖3

3

8(1 +
√
1− 2a)− 12a

(1 +
√
1− 2a)4

≤ τ‖ξ‖3
3

max
a∈[0,1/3]

8(1 +
√
1− 2a)− 12a

(1 +
√
1− 2a)4

≤ τ‖ξ‖3
2

.

The function φ(a)
def
= 8(1+

√
1−2a)−12a

(1+
√
1−2a)4

increases with a ∈ [0, 1/3] . To see this, represent

with y = 1 +
√
1− 2a or −2a = (y − 1)2 − 1 = y2 − 2y ,

φ(a) =
8(1 +

√
1− 2a)− 12a

(1 +
√
1− 2a)4

=
8y + 6y2 − 12y

y4
=

6y − 4

y3
,

and the latter decreases with y ≥ 1 . Moreover, φ(1/3) ≤ 3/2 , and (A.24) follows. The

proof of (A.25) is similar. The general case can be reduced to the univariate one by using

u = ρξ . With a = τ‖ξ‖ , the minimizer ρa reads as

ρa =

√
1 + 2a− 1

a
=

2

1 +
√
1 + 2a

, 1− ρa =

√
1 + 2a− 1√
1 + 2a+ 1

=
2a

(
√
1 + 2a+ 1)2

,

yielding for a ∈ [0, 1/3]

min
‖u‖≤r

(τ
3
‖u‖3 + ‖u− ξ‖2

)
=
τ‖ξ‖3ρ3a

3
+ ‖ξ‖2(ρa − 1)2

≤ τ‖ξ‖3
3

max
a∈[0,1/3]

8(1 +
√
1 + 2a) + 12a

(1 +
√
1 + 2a)4

,

and with y = 1 +
√
1 + 2a or 2a = y2 − 2y ,

max
a∈[0,1/3]

8(1 +
√
1 + 2a) + 12a

(1 +
√
1 + 2a)4

≤ max
y≥2

8y + 6y2 − 12y

y4
= max

y≥2

6y − 4

y3
= 1,

and (A.25) follows.

Remark A.2. As in Remark A.1, the roles of f and g can be exchanged. In particular,

(A.21) applies with F = F (υ◦) provided that (T ∗

3
) is also fulfilled at υ◦ .
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A.3.3 Advanced approximation under fourth order smoothness

The bounds of Proposition A.9 can be made more accurate if f follows (T ∗

3
) and (T ∗

4
)

and one can apply the Taylor expansion of the fourth order.

Proposition A.11. Let f(υ) be a strongly concave function with f(υ∗) = maxυ f(υ)

and F = −∇2f(υ∗) . Denote T (u) = 1
6 〈∇3f(υ∗),u⊗3〉 for u ∈ Rp . Let g(υ) fulfill

(A.8) with some vector A . Suppose that

• ‖F−1/2A‖ ≤ ν r for ν ≤ 2/3 and some r ;

• f(υ) follows (T ∗

3
) and (T ∗

4
) with this r and some D2 ≤ F ;

• τ3 from (T ∗

3
) satisfies τ3 r < 1/3 .

Then υ◦ = argmaxυ g(υ) satisfies (A.19) ‖F 1/2(υ◦ − υ∗)‖ ≤ r . Further, define

a = F−1{A+∇T (F−1A)}. (A.26)

Then

‖F 1/2a− F−1/2A‖ ≤ τ3
2
‖F−1/2A‖2 ≤ τ3 ν r

2
‖F−1/2A‖,

‖F 1/2a‖ ≤
(
1 +

τ3 ν r

2

)
‖F−1/2A‖ ,

(A.27)

and

‖F 1/2(υ◦ − υ∗ − a)‖ ≤ τ4 + 3τ23
6(1− τ3 r)

‖F 1/2a‖3 ≤ τ4 + 3τ23
3

‖F−1/2A‖3 . (A.28)

Also

∣∣∣g(υ◦)− g(υ∗)− 1

2
‖F−1/2A‖2 − T (F−1A)

∣∣∣

≤ τ4 + 7τ23
16

‖F−1/2A‖4 + (τ4 + 3τ23 )
2

5
‖F−1/2A‖6 . (A.29)

Proof. Proposition A.8 yields (A.19). W.l.o.g. assume υ∗ = 0 . It holds by (T ∗

3
) in

view of D ≤ F 1/2

‖F 1/2a− F−1/2A‖ = ‖F−1/2∇T (F−1A)‖

= sup
‖u‖=1

3
∣∣〈T , F−1A⊗ F−1A⊗ F−1/2u〉

∣∣ ≤ τ3
2
‖F−1/2A‖2 (A.30)
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yielding (A.27) by ‖F−1/2A‖ ≤ ν r . Similarly for any υ

‖F−1/2 ∇2T (F−1/2υ) F−1/2‖ = sup
‖u‖=1

6
∣∣〈T , F−1/2υ ⊗ (F−1/2u)⊗2〉

∣∣ ≤ τ3‖υ‖ .

Furthermore, the tensor ∇2T (u) is linear in u and hence,

sup
t∈[0,1]

‖F−1/2 ∇2T (ta+ (1− t)F−1A) F−1/2‖

= max{‖F−1/2 ∇2T (F−1A) F−1/2‖, ‖F−1∇2T (a)‖} ≤ τ3 max{‖F−1/2A‖, ‖F 1/2a‖} .

Later we assume ‖F 1/2a‖ ≥ ‖F−1A‖ in view of (A.27). This and (A.30) yield

‖F−1/2∇T (a)− F−1/2∇T (F−1A)‖

≤ sup
t∈[0,1]

‖F−1/2 ∇2T (ta+ (1− t)F−1A) F−1/2‖ ‖F 1/2(a− F−1A)‖ ≤ τ23
2

‖F 1/2a‖3 .

Further, by Lemma A.2 in view of ∇T (a) = 1
2〈∇3f(υ∗),a ⊗ a〉

∥∥F−1/2{∇f(a) + Fa−∇T (a)}
∥∥ ≤ τ4

6
‖F 1/2a‖3 .

Now we can bound the norm of F−1/2∇g(a) . In view of (A.8) and (A.26), it holds

∥∥F−1/2∇g(a)
∥∥ =

∥∥F−1/2{∇g(a) + Fa−∇T (A)−A}
∥∥

≤
∥∥F−1/2{∇f(a) + Fa−∇T (a)}

∥∥ + ‖F−1/2{∇T (a)−∇T (A)}‖

≤ τ4 + 3τ23
6

‖F 1/2a‖3.

By definition ∇g(υ◦) = 0 . This yields

‖F−1/2{∇g(a)−∇g(υ◦)}‖ ≤ τ4 + 3τ23
6

‖F 1/2a‖3 . (A.31)

Now we can use with ∆ = a− υ◦

F−1/2{∇g(a)−∇g(υ◦)} =

(∫ 1

0
F−1/2∇2g(υ◦ + t∆) F−1/2 dt

)
F 1/2∆ .

By (A.8) ∇2g(υ) = ∇2f(υ) for all υ . If ‖F 1/2(υ − υ∗)‖ ≤ r , then (T ∗

3
) implies

‖F−1/2 ∇2f(υ) F−1/2 + Ip‖ ≤ ω+ with ω+ ≤ τ3 r ≤ 1/3 . Hence,

‖F−1/2{∇g(a)−∇g(υ◦)}‖ ≥ (1− τ3 r)‖F 1/2(υ◦ − a)‖ .
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This, (A.27), and (A.31) yield in view of τ3 r ≤ 1/3 and ν = 2/3

‖F 1/2(υ◦ − a)‖ ≤ τ4 + 3τ23
6(1− τ3 r)

‖F 1/2a‖3 ≤ τ4 + 3τ23
3

‖F−1/2A‖3 , (A.32)

and (A.28) follows. It remains to bound g(υ◦)− g(0) . By (A.30)

1

2
‖F−1/2A‖2 − 〈A,a〉+ 1

2
‖F 1/2a‖2 =

1

2
‖F 1/2a− F−1/2A‖2 ≤ τ23

8
‖F−1/2A‖4 .

First consider g(a)−g(0) . One more use of (T ∗

4
) yields with υ∗ = 0 and −∇2f(0) = F

∣∣∣g(a)− g(0) − 1

2
‖F−1/2A‖2 − T (a)

∣∣∣

=
∣∣∣f(a)− f(0) + 〈A,a〉 − 1

2
‖F−1/2A‖2 − T (a)

∣∣∣

≤
∣∣∣f(a)− f(0) +

1

2
‖F 1/2a‖2 − T (a)

∣∣∣+ τ23
8
‖F−1/2A‖4

≤ τ4
24

‖F 1/2a‖4 + τ23
8
‖F−1/2A‖4 ≤ τ4 + 2τ23

16
‖F−1/2A‖4 .

Also by ∇g(υ◦) = 0 and (A.32), it holds for some υ ∈ [a,υ◦] as in (A.32)

∣∣g(a)− g(υ◦)
∣∣ ≤ 1

2
‖F−1/2 ∇2g(υ) F−1/2‖ ‖F 1/2(a − υ◦)‖2

≤ (τ4 + 3τ23 )
2

72(1 − τ3 r)3
‖F 1/2a‖6 < (τ4 + 3τ23 )

2

5
‖F−1/2A‖6 ,

Moreover, similarly to (A.30)

∣∣T (a)− T (F−1A)
∣∣ ≤ sup

t∈[0,1]

∥∥F−1/2∇T (tF−1A+ (1− t)a)
∥∥ ∥∥F 1/2a− F−1/2A

∣∣

≤ τ23
4
‖F 1/2a‖2 ‖F−1/2A‖2 ≤ 5τ23

16
‖F−1/2A‖4 .

Summing up the obtained bounds yields (A.29).

A.3.4 Quadratic penalization

Here we discuss the case when g(υ) − f(υ) is quadratic. The general case can be

reduced to the situation with g(υ) = f(υ) − ‖Gυ‖2/2 . To make the dependence of G

more explicit, denote fG(υ)
def
= f(υ)− ‖Gυ‖2/2 ,

υ∗ = argmax
υ

f(υ), υ∗
G = argmax

υ
fG(υ) = argmax

υ

{
f(υ)− ‖Gυ‖2/2

}
.

We study the bias υ∗
G−υ∗ induced by this penalization. To get some intuition, consider

first the case of a quadratic function f(υ) .
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Lemma A.12. Let f(υ) be quadratic with F ≡ −∇2f(υ) and FG = F +G2 . Then

υ∗
G − υ∗ = −F−1

G G2υ∗,

fG(υ
∗
G)− fG(υ

∗) =
1

2
‖F−1/2

G G2υ∗‖2 .

Proof. Quadraticity of f(υ) implies quadraticity of fG(υ) with ∇2fG(υ) ≡ −FG and

∇fG(υ∗
G)−∇fG(υ∗) = −FG (υ∗

G − υ∗).

Further, ∇f(υ∗) = 0 yielding ∇fG(υ∗) = −G2υ∗ . Together with ∇fG(υ∗
G) = 0 , this

implies υ∗
G − υ∗ = −F−1

G G2υ∗ . The Taylor expansion of fG at υ∗
G yields

fG(υ
∗)− fG(υ

∗
G) = −1

2
‖F 1/2

G (υ∗ − υ∗
G)‖2 = −1

2
‖F−1/2

G G2υ∗‖2

and the assertion follows.

Now we turn to the general case with f satisfying (T ∗

3
) .

Proposition A.13. Let f be concave, υ∗ = argmaxυ f(υ) , F = −∇2f(υ∗) , and

FG = −∇2f(υ∗) +G2 . Define

bG = ‖F−1/2
G G2υ∗‖ .

With ν = 2/3 , assume (T ∗

3
) for r = ν−1

bG and D2 ≤ FG . Then ‖F 1/2
G (υ∗

G − υ∗)‖ ≤
ν−1

bG or, equivalently,

υ∗
G ∈ AG

def
= {υ : ‖F 1/2

G (υ − υ∗)‖ ≤ ν−1
bG}. (A.33)

Moreover,

∥∥F 1/2
G (υ∗

G − υ∗) + F
−1/2
G G2υ∗∥∥ ≤ 3τ3

4
b
2
G ,

∣∣2fG(υ∗
G)− 2fG(υ

∗)− b
2
G

∣∣ ≤ τ3 b
3
G .

Proof. Define gG(υ) by

gG(υ)− gG(υ
∗
G) = fG(υ)− fG(υ

∗
G) + 〈G2υ∗,υ − υ∗

G〉. (A.34)

The function fG is concave, the same holds for gG from (A.34). Now we show that

υ∗ = argmax gG(υ) . It suffices to check that ∇gG(υ∗) = 0 . By definition, ∇f(υ∗) = 0 ,

and hence, ∇fG(υ∗) = −G2υ∗+G2υ∗ = 0 . Now the results follow from Proposition A.9

applied with f(υ) = gG(υ) = fG(υ)− 〈A,υ〉 , g(υ) = fG(υ) , and A = G2υ∗ .
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The bound on the bias can be further improved under fourth-order smoothness of f

using the results of Proposition A.11.

Proposition A.14. Let f be concave and υ∗ = argmaxυ f(υ) . With FG = −∇2f(υ∗)+

G2 and ν = 2/3 , assume (T ∗

3
) and (T ∗

4
) for D2 ≤ FG and r = rG

def
= ν−1

bG , where

bG = ‖F−1/2
G G2υ∗‖ . Then (A.33) holds. Furthermore, define

mG = F−1
G {G2υ∗ +∇T (F−1

G G2υ∗)}

with T (u) = 1
6 〈∇3f(υ∗),u⊗3〉 . Then ‖F 1/2

G mG‖ ≤ rG ,

‖F 1/2mG − F
−1/2
G G2υ∗‖ ≤ τ3

2
b
2
G ≤ τ3 ν rG

2
bG,

‖F 1/2mG‖ ≤
(
1 +

τ3 ν rG
2

)
bG ,

and

‖F 1/2
G (υ∗ − υ∗

G −mG)‖ ≤ τ4 + 3τ23
6(1− τ3 r)

‖F 1/2mG‖3 ≤ τ4 + 3τ23
3

b
3
G .

Also

∣∣∣fG(υ∗
G)− fG(υ

∗)− 1

2
b
2
G − T (mG)

∣∣∣ ≤ τ4 + 2τ23
16

b
4
G +

(τ4 + 3τ23 )
2

5
b
6
G .

B Deviation bounds for quadratic forms

Here we collect some useful results from probability theory mainly concerning Gaussian

and non-Gaussian quadratic forms.

B.1 Moments of a Gaussian quadratic form

Let Z be standard normal in Rp for p ≤ ∞ . Given a self-adjoint trace operator B ,

consider a quadratic form
〈
BZ,Z

〉
.

Lemma B.1. It holds

E

〈
BZ,Z

〉
= trB.
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Moreover,

E

(〈
BZ,Z

〉
− trB

)2
= 2 trB2,

E

(〈
BZ,Z

〉
− trB

)3
= 8 trB3,

E

(〈
BZ,Z

〉
− trB

)4
= 48 trB4 + 12(trB2)2,

E

(〈
BZ,Z

〉
− trB

)5
= 512 trB5 + 32 trB2 trB3,

and

E

〈
BZ,Z

〉2
= (trB)2 + 2 trB2,

E

〈
BZ,Z

〉3
= (trB)3 + 6 trB trB2 + 8 trB3,

E

〈
BZ,Z

〉4
= (trB)4 + 12(trB)2 trB2 + 32(trB) trB3 + 48 trB4 + 12(trB2)2,

Var
〈
BZ,Z

〉2
= 8(trB)2 trB2 + 32(trB) trB3 + 48 trB4 + 8(trB2)2.

Moreover, if B ≤ Ip and p = trB , then trBm ≤ p‖B‖m−1 for m ≥ 1 and

E

〈
BZ,Z

〉2 ≤ p2 + 2p‖B‖ ≤ (p+ ‖B‖)2,

E

〈
BZ,Z

〉3 ≤ p3 + 6p2‖B‖+ 8p‖B‖2 ≤ (p+ 2‖B‖)3,

E

〈
BZ,Z

〉4 ≤ p4 + 12p3‖B‖+ 44p2‖B‖2 + 48p‖B‖3 ≤ (p+ 3‖B‖)4,

E

〈
BZ,Z

〉5 ≤ p5 + 20p4‖B‖+ 140p3‖B‖2 + 272p2‖B‖3 + 512p‖B‖4 ≤ (p+ 4‖B‖)5 .

Var
〈
BZ,Z

〉2 ≤ 8p3 + 40p2‖B‖+ 48p‖B‖2.

Finally,

E(ZZ⊤ − Ip)B(ZZ⊤ − Ip) = B + tr(B)Ip

yielding

E‖B(ZZ⊤ − Ip)‖2Fr = (trB)2 + trB2. (B.1)

Proof. Let χ = γ2 − 1 for γ standard normal. Then Eχ = 0 , Eχ2 = 2 , Eχ3 = 8 ,

Eχ4 = 60 . Without loss of generality assume B diagonal: B = diag(λ1, λ2, . . . , λp) .

Then

ξ
def
=
〈
BZ,Z

〉
− trB =

p∑

j=1

λj(γ
2
j − 1),
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where γj are i.i.d. standard normal. This easily yields with pm = tr(Bm)

Eξ2 =

p∑

j=1

λ2jE(γ2j − 1)2 = Eχ2 trB2 = 2p2 ,

Eξ3 =

p∑

j=1

λ3jE(γ2j − 1)3 = Eχ3 trB3 = 8p3 ,

Eξ4 =

p∑

j=1

λ4j (γ
2
j − 1)4 +

∑

i 6=j

λ2iλ
2
jE(γ2i − 1)2E(γ2j − 1)2

=
(
Eχ4 − 3(Eχ2)2

)
trB4 + 3(Eχ2 trB2)2 = 48p4 + 12p22,

Eξ5 =

p∑

j=1

λ5j (γ
2
j − 1)5 +

∑

i 6=j

λ2iλ
3
jE(γ2i − 1)2E(γ2j − 1)3

=
{
E(γ2 − 1)5 −E(γ2 − 1)2E(γ2 − 1)3

}
trB5 +E(γ2 − 1)2E(γ2 − 1)3 trB2 trB3

= 512p5 + 32p2 p3 .

and

E

〈
BZ,Z

〉2
=
(
E

〈
BZ,Z

〉)2
+Eξ2 = p2 + 2p2 ,

E

〈
BZ,Z

〉3
= E(ξ + p)3 = p3 +Eξ3 + 3p Eξ2 = p3 + 6p p2 + 8p3,

E

〈
BZ,Z

〉4
= E

(
ξ + p

)4
= p4 + 6p2Eξ2 + 4pEξ3 +Eξ4

= p4 + 12p2 p2 + 32pp3 + 48p4 + 12p22,

and

Var
〈
BZ,Z

〉2
= E(ξ + p)4 −

(
p2 + 2p2

)2

= p4 + 6p2Eξ2 + 4pEξ3 +Eξ4 −
(
p2 + 2p2

)2
= 8p2 p2 + 32pp3 + 48p4 + 8p22 .

Also

E

〈
BZ,Z

〉5
= E

(
ξ + p

)5
= p5 + 10p3Eξ2 + 10p2Eξ3 + 5pEξ4 +Eξ5

= p5 + 20p3 p2 + 80p2p3 + 5p(48p4 + 12p22) + 512p5 + 32p2 p3 .
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Assume ‖B‖ = 1 yielding pm ≤ p . Then

E

〈
BZ,Z

〉2 ≤ p2 + 2p ≤ (p+ 1)2 ,

E

〈
BZ,Z

〉3 ≤ p3 + 6p2 + 8p ≤ (p+ 2)3,

E

〈
BZ,Z

〉4 ≤ p4 + 12p3 + 44p2 + 48p ≤ (p+ 3)4,

E

〈
BZ,Z

〉5 ≤ p5 + 20p4 + 140p3 + 272p2 + 512p ≤ (p+ 4)5 .

For the last result of the lemma, observe that with B = diag(λ1, λ2, . . . , λp) , the matrix

E(ZZ⊤ − Ip)B(ZZ⊤ − Ip) is diagonal with the i th diagonal entry

p∑

j=1

λiλjE(γiγj − δi,j)
2 =

p∑

j=1

λiλj + λ2i

yielding

E‖B1/2(ZZ⊤ − Ip)B1/2‖2Fr =

p∑

i,j=1

λiλjE(γiγj − δi,j)
2 =

(
p∑

i=1

λi

)2

+

p∑

i=1

λ2i

and assertion (B.1) follows.

Now we compute the exponential moments of centered and non-centered quadratic

forms.

Lemma B.2. Let ‖B‖op = λ and Z ∼ N (0, Ip) . Then for any µ ∈ (0, λ−1) ,

E exp
{µ
2
〈BZ,Z〉

}
= det(Ip − µB)−1/2 .

Moreover, with p = trB and v2 = trB2

logE exp
{µ
2

(
〈BZ,Z〉 − p

)}
≤ µ2v2

4(1− λµ)
. (B.2)

If B is positive semidefinite, λj ≥ 0 , then

logE exp
{
−µ
2

(
〈BZ,Z〉 − p

)}
≤ µ2v2

4
. (B.3)

For any complex valued µ with |λµ| < 1 ,

∣∣∣∣logE exp
{µ
2

(
〈BZ,Z〉 − p

)
− µ2 trB2

4

}∣∣∣∣ ≤
λ|µ|3v2

6(1− λ|µ|) . (B.4)
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Proof. W.l.o.g. assume λ = 1 . Let λj be the eigenvalues of B , |λj | ≤ 1 . By an

orthogonal transform, one can reduce the statement to the case of a diagonal matrix

B = diag
(
λj
)
. Then 〈BZ,Z〉 =∑p

j=1 λjγ
2
j and by independence of the γj ’s

E

{µ
2
〈BZ,Z〉

}
=

p∏

j=1

E exp
(µ
2
λjε

2
j

)
=

p∏

j=1

1√
1− µλj

= det
(
Ip − µB

)−1/2
.

Below we use the simple bounds:

− log(1− u)− u =
∞∑

k=2

uk

k
≤ u2

2

∞∑

k=0

uk =
u2

2(1 − u)
, u ∈ (0, 1),

− log(1− u) + u =
∞∑

k=2

uk

k
≤ u2

2
, u ∈ (−1, 0).

Now it holds for µ > 0

logE
{µ
2

(
〈BZ,Z〉 − p

)}
= log det(Ip − µB)−1/2 − µp

2

= −1

2

p∑

j=1

{
log(1− µλj) + µλj

}
≤

p∑

j=1

µ2λ2j
4(1− µλj)

≤ µ2v2

4(1− µλ)
.

Similarly for any complex µ with |µ|λ < 1

∣∣∣∣logE
{µ
2

(
〈BZ,Z〉 − p

)
− µ2 trB2

4

}∣∣∣∣ =
∣∣∣∣log det(Ip − µB)−1/2 − µp

2
− µ2 trB2

4

∣∣∣∣

=
1

2

∣∣∣∣∣∣

p∑

j=1

{
log(1− µλj)− µλj −

µ2λ2j
2

}∣∣∣∣∣∣
≤

p∑

j=1

|µλj|3
6(1− |µ|) =

|µ|3λv2
6(1− |µ|) .

Statement (B.3) can be proved similarly.

Now we consider the case of a non-centered quadratic form 〈BZ,Z〉/2 + 〈A, Z〉 for

a fixed vector A .

Lemma B.3. Let ‖B‖ = λmax(B) < 1 . Then for any A

E exp
{1
2
〈BZ,Z〉+ 〈A, Z〉

}
= exp

{‖(Ip −B)−1/2A‖2
2

}
det(Ip −B)−1/2.
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Moreover, for any µ ∈ (0, 1)

logE exp
{µ
2

(
〈BZ,Z〉 − p

)
+ 〈A, Z〉

}

=
‖(Ip − µB)−1/2A‖2

2
+ log det(Ip − µB)−1/2 − µp

≤ ‖(Ip − µB)−1/2A‖2
2

+
µ2v2

4(1− µ‖B‖) . (B.5)

Proof. Denote a = (Ip − B)−1/2A . It holds by change of variables (Ip − B)1/2x = u

for Cp = (2π)−p/2

E exp
{1
2
〈BZ,Z〉+ 〈A, Z〉

}
= Cp

∫
exp
{
−1

2
〈(Ip −B)x,x〉+ 〈A,x〉

}
dx

= Cp det(Ip −B)−1/2

∫
exp
{
−1

2
‖u‖2 + 〈a,u〉

}
du = det(Ip −B)−1/2 e‖a‖

2/2.

The last inequality (B.5) follows by (B.2).

B.2 Deviation bounds for Gaussian quadratic forms

The next result explains the concentration effect of ‖Qξ‖2 for a centered Gaussian vector

ξ ∼ N (0,V 2) and a linear operator Q : Rp → R

q , p, q ≤ ∞ . We use a version from

Laurent and Massart (2000). For completeness, we present a simple proof.

Theorem B.4. Let ξ ∼ N (0,V 2) be a Gaussian element in Rp and let Q : Rp →R

q

be such that B = QV 2Q⊤ is a trace operator in Rq . Then with p = tr(B) , v2 =

tr(B2) , and λ = ‖B‖ , it holds for each x ≥ 0

P

(
‖Qξ‖2 − p > 2v

√
x+ 2λx

)
≤ e−x, (B.6)

P

(
‖Qξ‖2 − p ≤ −2v

√
x

)
≤ e−x. (B.7)

It also implies

P

(∣∣‖Qξ‖2 − p
∣∣ > z2(B, x)

)
≤ 2e−x,

with

z2(B, x)
def
= 2v

√
x+ 2λx . (B.8)
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Proof. W.l.o.g. assume that λ = ‖B‖ = 1 . We use the identity ‖Qξ‖2 = 〈BZ,Z〉 with

Z ∼ N (0, Iq) . We apply Markov’s inequality: with µ > 0

P

(
〈BZ,Z〉 − p > z2(B, x)

)
≤ E exp

(µ
2

(
〈BZ,Z〉 − p

)
− µ z2(B, x)

2

)
.

Given x > 0 , fix µ < 1 by the equation

µ

1− µ
=

2
√
x

v
or µ−1 = 1 +

v

2
√
x
. (B.9)

Let λj be the eigenvalues of B , |λj | ≤ 1 . It holds with p = trB in view of (B.2)

logE
{µ
2

(
〈BZ,Z〉 − p

)}
≤ µ2v2

4(1− µ)
. (B.10)

For (B.6), it remains to check that the choice µ by (B.9) yields

µ2v2

4(1 − µ)
− µ z2(B, x)

2
=

µ2v2

4(1− µ)
− µ

(
v
√
x+ x

)
= µ

(
v
√
x

2
− v

√
x− x

)
= −x.

The bound (B.7) is obtained similarly from Markov’s inequality applied to −〈BZ,Z〉+p

with µ = 2v−1√x . The use of (B.3) yields

P

(
〈BZ,Z〉 − p < −2v

√
x

)
≤ E exp

{µ
2

(
−〈BZ,Z〉+ p

)
− µ v

√
x

}

≤ exp
(µ2v2

4
− µ v

√
x

)
= e−x

as required.

Corollary B.5. Assume the conditions of Theorem B.4. Then for z > v

P

(∣∣‖Qξ‖2 − p
∣∣ ≥ z

)
≤ 2 exp

{
− z2
(
v+

√
v2 + 2λz

)2
}

≤ 2 exp

(
− z2

4v2 + 4λz

)
. (B.11)

Proof. Given z , define x by 2v
√
x+ 2λx = z or 2λ

√
x =

√
v2 + 2λz − v . Then

P

(
‖Qξ‖2 − p ≥ z

)
≤ e−x = exp

{
−
(√

v2 + 2λz − v
)2

4λ2

}
= exp

{
− z2
(
v+

√
v2 + 2λz

)2
}
.

This yields (B.11) by direct calculus.

Of course, bound (B.11) is sensible only if z ≫ v .
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Corollary B.6. Assume the conditions of Theorem B.4. If also B ≥ 0 , then

P

(
‖Qξ‖2 ≥ z2(B, x)

)
≤ e−x

with

z2(B, x)
def
= p+ 2v

√
x+ 2λx ≤

(√
p+

√
2λx

)2
.

Also

P

(
‖Qξ‖2 − p < −2v

√
x

)
≤ e−x.

Proof. The definition implies v2 ≤ pλ . One can use a sub-optimal choice of the value

µ(x) =
{
1 + 2

√
λp/x

}−1
yielding the statement of the corollary.

As a special case, we present a bound for the chi-squared distribution corresponding

to Q =V 2 = Ip , p <∞ . Then B = Ip , tr(B) = p , tr(B2) = p and λ(B) = 1 .

Corollary B.7. Let Z be a standard normal vector in Rp . Then for any x > 0

P

(
‖Z‖2 ≥ p+ 2

√
p x+ 2x

)
≤ e−x,

P

(
‖Z‖ ≥ √

p+
√
2x
)

≤ e−x,

P

(
‖Z‖2 ≤ p− 2

√
p x
)

≤ e−x.

The bound of Theorem B.4 can be represented as a usual deviation bound.

Theorem B.8. Assume the conditions of Theorem B.4. For y > 0 , define

x(y)
def
=

(
√
y+ p−√

p)2

4λ
.

Then

P

(
‖Qξ‖2 ≥ p+ y

)
≤ e−x(y), (B.12)

E

{
(‖Qξ‖2 − p) 1I

(
‖Qξ‖2 ≥ p+ y

)}
≤ 2

(
y+ p

λ x(y)

)1/2
e−x(y) . (B.13)

Moreover, let µ > 0 fulfill ǫ = µλ+ µ
√
λp/x(y) < 1 . Then

E

{
eµ(‖Qξ‖2−p)/2 1I(‖Qξ‖2 ≥ p+ y)

}
≤ 1

1− ǫ
exp{−(1− ǫ)x(y)} . (B.14)
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Proof. Normalizing by λ reduces the statements to the case with λ = 1 . Define η =

‖Qξ‖2 − p and

z(x) = 2
√
p x + 2x. (B.15)

Then by (B.6) P(η ≥ z(x)) ≤ e−x . Inverting the relation (B.15) yields

x(z) =
1

4

(√
z + p−√

p
)2

and (B.12) follows by applying z = y . Further,

E

{
η 1I(η ≥ y)

}
=

∫ ∞

y

P(η ≥ z) dz ≤
∫ ∞

y

e−x(z) dz =

∫ ∞

x(y)
e−x z′(x) dx .

As z′(x) = 2 +
√

p/x monotonously decreases with x , we derive

E

{
η 1I(η ≥ y)

}
≤ z′(x(y))e−x(y) =

1

x′(y)
e−x(y) =

4
√
y+ p√

y+ p−√
p
e−x(y)

and (B.13) follows.

In a similar way, define z(x) from the relation µ−1 log z(x) =
√
p x+ x yielding

z(x) = exp
(
µ
√
p x+ µ x

)
.

The inverse relation reads

xe(z) =
(√

µ−1 log z+ p/4 −
√

p/4
)2
.

Then with x(y) = xe(e
µy/2) =

(√
y+ p−√

p
)2
/4

E

{
eµη/2 1I(η ≥ y)

}
=

∫ ∞

eµy/2
P(eµη/2 ≥ z) dz =

∫ ∞

eµy/2
P(η ≥ 2µ−1 log z) dz

≤
∫ ∞

eµy/2
e−xe(z) dz =

∫ ∞

x(y)
e−x

z
′(x) dx.

Further, in view of µ+ 0.5µ
√

p/x < µ+ µ
√

p/x(y) = ǫ < 1 for x ≥ x(y) , it holds

z
′(x) =

(
µ+ 0.5µ

√
p/x

)
exp
(
µ
√
p x+ µ x

)
≤ exp

(
µ x
√

p/x(y) + µ x
)
= exp(ǫ x)

and

E

{
eµη/2 1I(η ≥ y)

}
≤
∫ ∞

x(y)
e−(1−ǫ)x dx =

1

1− ǫ
e−(1−ǫ)x(y)

and (B.14) follows.
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B.3 Deviation bounds for sub-gaussian quadratic forms

This section collects some probability bounds for sub-gaussian quadratic forms.

B.3.1 A rough upper bound

Let ξ be a random vector in Rp , p ≤ ∞ , with Eξ = 0 . We suppose that there exists

an operator V in Rp such that

logE exp
(
〈u,V−1ξ〉

)
≤ ‖u‖2

2
, u ∈Rp. (B.16)

In the Gaussian case, one can take V 2 = Var(ξ) . In general, V 2 ≥ Var(ξ) . We

consider a quadratic form ‖Qξ‖2 , where ξ satisfies (B.16) and Q is a given linear

operator Rp →R

q . Denote

B
def
= QV 2Q⊤, p

def
= tr(B), v2

def
= tr(B2). (B.17)

We show that under (B.16), the quadratic form ‖Qξ‖2 follows the same upper deviation

bound P
(
‖Qξ‖2 − trB ≥ z2(B, x)

)
≤ e−x with z2(B, x) from (B.8) as in the Gaussian

case. Similar results can be found e.g. in Hsu et al. (2012). We present an independent

proof for reference convenience.

Theorem B.9. Suppose (B.16). With notation from (B.17), it holds for any µ < 1/‖B‖

E exp
(µ
2
‖Qξ‖2

)
≤ exp

( µ2v2

4(1− ‖B‖µ) +
µp

2

)

and for any x > 0

P

(
‖Qξ‖2 > p+ 2v

√
x+ 2x

)
≤ e−x. (B.18)

Proof. Normalization by ‖B‖ reduces the proof to ‖B‖ = 1 . For µ ∈ (0, 1) ,

E exp
(
µ‖Qξ‖2/2

)
= EEγ exp

(
µ1/2〈VQ⊤γ,V−1ξ〉

)
, (B.19)

where γ is standard Gaussian in Rq under Eγ independent on ξ . Application of

Fubini’s theorem, (B.16), and (B.10) yields

E exp
(µ
2
‖Qξ‖2

)
≤ Eγ exp

(µ
2
‖VQ⊤γ‖2

)
≤ exp

(µ2 tr(B2)

4(1− µ)
+
µ tr(B)

2

)
.

Further, we proceed as in the Gaussian case; see the proof of Theorem B.4.



61

The bound (B.18) looks identical to the Gaussian case, however, there is an essential

difference: p = tr(B) can be much larger than E‖Qξ‖2 = tr
{
QVar(ξ)Q⊤} . The result

from (B.18) is not accurate enough for supporting the concentration phenomenon that

‖Qξ‖2 concentrates around its expectation E‖Qξ‖2 . The next section presents some

sufficient conditions for obtaining sharp Gaussian-like deviation bounds.

B.3.2 Concentration of the squared norm of a sub-gaussian vector

Let ξ be a centered random vector in Rp with sub-gaussian tails. We study concen-

tration effect of the squared norm ‖QX‖2 for a linear mapping Q and for X =V−1ξ

being the standardized version of ξ , where V 2 = Var(ξ) . More generally, we allow

V

2 ≥ Var(ξ) yielding Var(X) ≤ Ip to incorporate the case when Var(ξ) is ill-posed.

The aim is to establish the results similar to (B.6) with B = QV 2Q⊤ as in Gaussian

case. Later we assume the following condition.

(X) A random vector X ∈ Rp satisfies EX = 0 , Var(X) ≤ Ip for the identity

matrix Ip . The function φ(u)
def
= logEe〈u,X〉 is finite and fulfills for some Cφ

φ(u)
def
= logEe〈u,X〉 ≤ Cφ‖u‖2

2
, u ∈Rp . (B.20)

The constant Cφ can be quite large, it does not show up in the leading term of the

obtained bound. Also, we will only use this condition for ‖u‖ ≥ g for some sufficiently

large g . For ‖u‖ ≤ g , we use smoothness properties of φ(u) in terms of its third and

fourth derivatives.

The bounds in (B.6) and in (B.18) are uniform in the sense that they apply for all x

and all B . The results of this section are limited to a high dimensional situation with

tr(B) ≫ ‖B‖ and apply only for x ≪ tr(B)/‖B‖ . This corresponds to high dimensional

concentration of ‖QX‖2 for X Gaussian. As compensation for this local behavior, the

bounds are surprisingly sharp. In fact, they perfectly replicate bounds (B.6) from the

Gaussian case, the upper and lower quantiles are exactly as in (B.6) and the deviation

probability is increased from e−x to (1 +∆µ)e
−x for a small value ∆µ . For larger x ,

one can still apply rough upper bound (B.18) involving Cφ .

With γ standard normal in Rq , define

p
def
= E‖QX‖2 = tr{QVar(X)Q⊤} = tr(B) ,

pQ
def
= E‖Q⊤γ‖2 = tr(QQ⊤).

(B.21)
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The presented results apply to a high-dimensional situation when p and hence pQ is a

large number. Define for u ∈Rp , define a measure Eu by

Eu η
def
=
E(η e〈u,X〉)
Ee〈u,X〉 . (B.22)

Also fix some g > 0 and introduce

τ3
def
= sup

‖u‖≤g

1

‖u‖3
∣∣
Eu〈u,X −EuX〉3

∣∣ , (B.23)

τ4
def
= sup

‖u‖≤g

1

‖u‖4
∣∣
Eu〈u,X −EuX〉4 − 3

{
Eu〈u,X −EuX〉2

}2∣∣ . (B.24)

The quantities τ3 and τ4 are typically not only finite but also very small. Indeed, for

X Gaussian they just vanish. If X is a normalized sum of independent centred random

vectors ξ1, . . . , ξn then τ3 ≍ n−1/2 and τ4 ≍ n−1 ; see Section B.3.3.

First, we present an upper bound which nicely replicates (B.6) under some restric-

tions; see Section B.3.4 for a further discussion.

Theorem B.10. Let X satisfy EX = 0 , Var(X) ≤ Ip , and (X) . For any linear

mapping Q with ‖Q‖ = 1 , set B = QVar(X)Q⊤ and define p, pQ by (B.21). Fix

g such that g2 ≥ 3pQ and g τ3 ≤ 2/3 for τ3 from (B.23). For any x > 0 with
√
4x ≤

√
tr(B2)/(3Cφ) , it holds

P

(
‖QX‖2 > tr(B) + 2

√
x tr(B2) + 2x

)
≤ (1 +∆µ)e

−x , (B.25)

where µ = µ(x) is given by µ−1 = 1 +
√

tr(B2)/(4x) and ∆µ depends on τ3 , τ4 ,

p, pQ only and will be given explicitly in the proof. Moreover, ∆µ ≪ 1 under pQ ≫ 1 ,

(τ23 + τ4)p
2
Q ≪ 1 .

The key step of the proof is the following statement.

Proposition B.11. Assume the conditions of Theorem B.10. If µ > 0 satisfies

Cφ µ ≤ 1/3 , (B.26)

then it holds

∣∣
E exp(µ‖QX‖2/2) − det(Iq − µB)−1/2

∣∣ ≤ ∆µ det(Iq − µB)−1/2 (B.27)

for some constant ∆µ such that ∆µ ≪ 1 under pQ ≫ 1 , (τ23 + τ4)p
2
Q ≪ 1 ; see the

proof for a closed-form representation.
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Proof. We use (B.19) and Fubini theorem: with Eγ = Eγ∼N (0,Iq)

E exp
(
µ‖QX‖2/2

)
= EEγ exp

(
µ1/2〈Q⊤γ,X〉

)
= Eγ expφ(µ1/2Q⊤γ). (B.28)

Further, with g2 = 3pQ ,

Eγ expφ(µ1/2Q⊤γ) = Eγ expφ(µ1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ ≤ g)

+Eγ expφ(µ1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ > g). (B.29)

Each summand here will be bounded separately starting from the second one. Define

zµ
def
=

1

4

(√
C
−1
φ µ−1g2 −√

pQ

)2
, ωµ

def
= Cφ µ+ Cφ µ

√
pQ/zµ .

Then (B.26) ensures that zµ ≥
(√

9pQ −√
pQ
)2
/4 = pQ and ωµ ≤ 2/3 . By (B.20) and

(B.14) of Theorem B.8, it holds under the condition ωµ ≤ 2/3

Eγ expφ(µ1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ > g)

≤ Eγ exp
(
Cφ µ‖Q⊤γ‖2/2

)
1I(‖Q⊤γ‖2 > µ−1g2)

≤ exp
(
Cφ µpQ/2

)
Eγ exp

(
Cφ µ(‖Q⊤γ‖2 − pQ)/2

)
1I(‖Q⊤γ‖2 > µ−1g2)

≤ 1

1− ωµ
exp{Cφ µpQ/2− (1− ωµ)zµ} . (B.30)

Note that ωµ ≤ 2/3 , zµ ≥ pQ , and Cφ µ ≤ 1/3 imply

1

1− ωµ
exp{Cφ µpQ/2− (1− ωµ)zµ} ≤ 3e−pQ/6 . (B.31)

Now we check that φ(u) satisfies conditions (D∗

3
) and (D4) :

|〈∇3φ(x),u⊗3〉| ≤ τ3‖u‖3 , u ∈Rp, (B.32)

and

|δ4(u)| def
=
∣∣∣φ(u)− 1

2
〈φ′′(0),u⊗2〉 − 1

6
〈φ′′′(0),u⊗3〉

∣∣∣ ≤ τ4
24

‖u‖4 , ‖u‖ ≤ g . (B.33)

Consider first the univariate case. Let X satisfy EX = 0 and EX2 ≤ σ2 . Define for

any t ∈ [0, g] a measure Pt such that for any random variable η

Et η
def
=
E(η etX)

EetX
.
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Consider φ(t)
def
= logEetX as a function of t ∈ [0, λ] . It is well defined and satisfies

φ(0) = φ′(0) = 0 , φ′′(0) = EX2 ≤ σ2 , and

φ′′′(t) = Et(X −EtX)3 ,

φ(4)(t) = Et(X −EtX)4 − 3
{
Et(X −EtX)2

}2
.

Therefore, conditions (D∗

3
) and (D4) follow from (B.23) and (B.24). The multivariate

case can be reduced to the univariate one by fixing a direction u ∈Rp and considering

the function φ(tu) of t .

Next, consider the first term on the right-hand side of (B.29). Define W = {w ∈
R

q : ‖µ1/2Q⊤w‖ ≤ g} . Then with Cq = (2π)−q/2 and γ ∼ N (0, Ip)

Eγ expφ(µ1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ ≤ g) = Cq

∫

W
efµ(w) dw ,

where for w ∈Rq

fµ(w) = φ(µ1/2Q⊤w)− ‖w‖2/2

so that fµ(0) = 0 , ∇fµ(0) = 0 . Also, define

D2
µ

def
= −∇2fµ(0) = −µQVar(X)Q⊤ + Iq = Iq − µB,

pµ
def
= tr

{
D−1

µ (µQQ⊤)D−1
µ

}
,

αµ
def
= ‖D−1

µ (µQQ⊤)D−1
µ ‖.

Note that ‖B‖ ≤ 1 implies (1− µ)Ip ≤ D2
µ ≤ Ip and with pQ = tr(QQ⊤)

pµ ≤ sµpQ, αµ ≤ sµ , sµ
def
=

µ

1− µ
.

The function fµ(w) inherits smoothness properties of φ(µ1/2Q⊤w) . In particular,

∣∣〈∇3fµ(0),u
⊗3〉
∣∣ ≤ τ3‖µ1/2Q⊤u‖3 ≤ τ3 sµ3/2‖Dµu‖3 = τ3,µ‖Dµu‖3,

and for any w with ‖µ1/2Q⊤w‖ ≤ g

∣∣〈∇4fµ(w),u⊗4〉
∣∣ ≤ τ4‖µ1/2Q⊤u‖4 ≤ τ4 sµ2 ‖Dµu‖4 = τ4,µ‖Dµu‖4 .

Also w ∈ W implies sµ‖Dµw‖2 ≤ g2 . We apply Proposition B.43 to fµ(w) yielding

∣∣∣∣

∫
W efµ(w) dw −

∫
W e−‖Dµw‖2/2 dw∫

e−‖Dµw‖2/2 dw

∣∣∣∣ ≤ ♦ . (B.34)
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The quantity ♦ here is computed as follows. Let T (u) = 〈∇3fµ(0),u
⊗3〉 , γµ ∼

N (0,D−2
µ ) . Define

ǫµ =
τ3,µ g

2√αµ

2sµ
≤ 1

2
τ3 g

2 ,

σ2µ = ET 2(γµ) ≤
√

5/12 τ3,µ pµ ≤
√

5/12 τ3 pQ ,

δ4,µ = EU δ
2
4(γµ) ≤

1

24
τ4,µ(pµ + 3αµ)

2 ≤ 1

24
τ4(pQ + 3)2 .

Then

∣∣∣♦−
σ2µ
2

∣∣∣ ≤ σµ δ4,µ +
δ24,µ
2

+
5

3
ǫ3µ exp(ǫ

2
µ) , ♦ ≤ 1

2
(σµ + δ4,µ)

2 +
5

3
ǫ3µ exp(ǫ

2
µ) . (B.35)

Furthermore, it holds

ρµ
def
= 1−

∫
W e−‖Dµw‖2/2 dw∫
e−‖Dµw‖2/2 dw

= P
(
‖µ1/2Q⊤D−1

µ γ‖ > g
)

≤ P

(
‖Q⊤γ‖2 > (1− µ)µ−1g2

)
. (B.36)

By (B.26), it holds µ−1g2 ≥ 9Cφ pQ ≥ 9pQ and µ ≤ 1/(3Cφ) ≤ 1/3 , and hence

ρµ ≤ P
(
‖Q⊤γ‖2 > 6pQ

)
≤ e−pQ . (B.37)

By (B.34) and (B.36)

∣∣∣∣

∫
W efµ(w) dw∫
e−‖Dµw‖2/2 dw

− 1

∣∣∣∣ ≤ ♦+ ρµ . (B.38)

It remains to be noted that

Cq

∫
e−‖Dµw‖2/2 dw =

1

detDµ
= det(Iq − µB)−1/2 ≤ 1

and (B.27) follows from (B.30) and (B.38) with

∆µ ≤ ♦+ ρµ +
1

1− ωµ
exp{Cφ µpQ/2− (1− ωµ)zµ} . (B.39)

Moreover, the last two quantities on the right-hand side of (B.39) are small for pQ large

in view of (B.31) and (B.37) while ♦ is small provided that (τ23 + τ4)p
2
Q is small.

Proof of Theorem B.10. Upper deviation bounds for ‖QX‖2 can now be derived as

in the Gaussian case by applying (B.27) with a proper choice of µ . Let x satisfy
√
4x ≤

√
tr(B2)/(3Cφ) . We check (B.26) for µ = µ(x) . Indeed, the definition µ−1 =
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1 +
√

tr(B2)/(4x) implies µ ≤
√

4x/ tr(B2) . Therefore,
√
4x ≤

√
tr(B2)/(3Cφ) yields

µ ≤ 1/(3Cφ) and (B.26) is fulfilled for g2 = 3 tr(B) . The bound (B.25) follows from

(B.27) as in the Gaussian case of Theorem B.4.

For getting the bound on the lower deviation probability, we need an analog of (B.27)

for µ negative. Representation (B.28) reads as

E e−µ‖QX‖2/2 = EEγ e
i
√
µ〈Q⊤γ,X〉 = EγE ei

√
µ〈Q⊤γ,X〉 (B.40)

with i =
√
−1 . For our approach, it is necessary that the characteristic function

E exp
(
i〈u,X〉

)
does not vanish. This allows to define

f(u)
def
= logE ei〈u,X〉 .

Later we assume that the function f(u) is bounded on the ball ‖u‖ ≤ g . On the

contrary to (X) , we don’t require finite exponential moments for the vector X .

(iX) For some fixed g and Cf , the function f(u) = logE ei〈u,X〉 satisfies

|f(u)| = | logE ei〈u,X〉| ≤ Cf , ‖u‖ ≤ g .

Note that this condition can easily be ensured by replacing X with X+αγ for any

positive α and γ ∼ N (0, Ip) . The constant Cf is unimportant, it does not show up in

our results. It, however, enables us to define similarly to (B.24)

τ4
def
= sup

‖u‖≤g

1

‖u‖4
∣∣
Eiu〈iu,X −EiuX〉4 − 3

{
Eiu〈iu,X −EiuX〉2

}2∣∣ . (B.41)

Theorem B.12. Let X satisfy EX = 0 , Var(X) ≤ Ip . Let also Q be a linear

mapping Q with ‖Q‖ = 1 , pQ = tr(QQ⊤) , B = QVar(X)Q⊤ , v2 = tr(B2) . Assume

(iX) for some g with g2 ≥ 4p2Q/v
2 . Let also τ3 be given by (B.23) and ω

def
= g τ3/2 ≤

1/3 . Then for any x ≤ v2/4 , it holds

P

(
‖QX‖2 < tr(B)− 2v

√
x
)
≤ (2 +♦+ ρµ)e

−x , (B.42)

where µ
def
= 2v−1√x and

ρµ
def
= P

(
‖Q⊤γ‖2 ≥

4µ−1p2Q

v2

)
≤ exp

{
−

p2Q

4v2
(2µ−1/2 − 1)2

}
≤ exp

(
−

p2Q

4v2

)
. (B.43)

The value ♦ is described in the proof of Theorem B.11 and it is small provided pQ ≫ 1

and (τ23 + τ4)pQ ≪ 1 .
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This result is based on an approximation Ee−µ‖QX‖2/2 ≈ det(Iq + µB)−1/2 .

Proposition B.13. Assume the conditions of Theorem B.12. For any µ ∈ (0, 1) , it

holds with B = QVar(X)Q⊤

∣∣
Ee−µ‖QX‖2/2 − det(Iq + µB)−1/2

∣∣ ≤ (♦+ ρµ) det(Iq + µB)−1/2 + ρµ ,

ρµ ≤ Pγ

(
‖Q⊤γ‖2 ≥ 4µ−1pQ

)
≤ exp

{
−pQ

4
(2µ−1/2 − 1)2

}
.

(B.44)

Proof. We follow the line of the proof of Theorem B.11 replacing everywhere φ(u) with

f(u) . In particular, we start with representation (B.40) and apply with g2 = 4pQ

E e−µ‖QX‖2/2 = Eγ e
f(
√
µQ⊤γ)

= Eγ e
f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ ≤ g) +Eγ e

f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ > g).

It holds

f(0) = 0, ∇f(0) = 0, −∇2f(0) = Var(X) ≤ Ip .

Moreover, smoothness conditions (B.32), (B.33) are automatically fulfilled for f(u) with

the same τ3 and τ4 from (B.41). The most important observation for the proof is that

the bound (B.38) continues to apply for µ < 0 and

fµ(w) = f(
√
µQ⊤w)− ‖w‖2/2,

with ♦ from (B.35) and

D2
µ

def
= −∇2fµ(0) = µQVar(X)Q⊤ + Iq = Iq + µB,

pµ
def
= tr

{
D−2

µ (µQQ⊤)
}

≤ µ

1 + µ
tr(QQ⊤) ≤ µpQ ,

αµ
def
= ‖D−1

µ (µQQ⊤)D−1
µ ‖ ≤ µ

1 + µ
,

and ρµ ≤ P
(
‖Q⊤γ‖2 ≥ µ−1g2

)
; cf. (B.36). This yields

∣∣∣∣Eγ e
f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ ≤ g)− 1

det(Iq + µB)1/2

∣∣∣∣ ≤
♦+ ρµ

det(Iq + µB)1/2
.

Finally we use |ef(u)| ≤ 1 and thus,

∣∣
Eγ e

f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ > g)

∣∣ ≤ P
(
‖√µQ⊤γ‖ > g

)
= Pγ

(
‖Q⊤γ‖2 ≥ 4µ−1pQ

)

and (B.44) follows in view of (B.12) of Theorem B.8.
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Proof of Theorem B.12. By the exponential Chebyshev inequality and (B.44)

P

(
tr(B)− ‖QX‖2 > 2v

√
x
)
≤ exp(−µ v√x)E exp

{
µ tr(B)/2− µ‖QX‖2/2

}

≤ exp(µ tr(B)/2 − µ v
√
x)
{
(1 +♦+ ρµ) det(Iq + µB)−1/2 + ρµ

}
.

In view of x− log(1+x) ≤ x2/2 and µ = 2v−1√x , it holds as in the proof of Lemma B.2

−µ v√x+ µ tr(B)/2 + log det(Iq + µB)−1/2 ≤ −µ v√x+ µ2v2/4 = −x.

Also µ tr(B)/2 − µ v
√
x = v−1 tr(B)

√
x − 2x ≤ v−1pQ

√
x − 2x . The bound on ρµ in

(B.43) follows from (B.12) of Theorem B.8 in view of pQ ≥ v2 and hence, pQ ≤ p2Q/v
2 .

Finally, observe that

ρµ exp
(
v−1pQ

√
x− 2x

)
≤ exp

(
−

p2Q

4v2
+

pQ
√
x

v
− 2x

)

≤ exp
{
−
(pQ
2v

−√
x

)2
− x

}
≤ e−x

and (B.42) follows as well.

B.3.3 Sum of i.i.d. random vectors

Here we specify the obtained results to the case when X = n−1/2
∑n

i=1 ξi and ξi are

i.i.d. in Rp with Eξi = 0 and Var(ξi) = Σ ≤ Ip . In fact, only independence of

the ξi ’s is used provided that all the moment conditions later on are satisfied uniformly

over i ≤ n . However, the formulation is slightly simplified in the i.i.d case. Let some

Q : Rp →R

q be fixed with ‖Q‖ = 1 . It holds

p = E‖QX‖2 = tr(B), B = QΣQ⊤.

Also define pQ = QQ⊤ . We study the concentration phenomenon for ‖QX‖2 . The

goal is to apply Theorem B.10 and Theorem B.12 claiming that ‖QX‖2 − p can be

sandwiched between −2v
√
x and 2v

√
x + 2x with probability at least 1 − 2e−x . The

major required condition is sub-gaussian behavior of ξ1 . The conditions are summarized

here.

(ξ1) A random vector ξ1 ∈Rp satisfies Eξ1 = 0 , Var(ξ1) = Σ ≤ Ip . Also

1. The function φ1(u)
def
= logEe〈u,ξ1〉 is finite and fulfills for some Cφ

φ1(u)
def
= logEe〈u,ξ1〉 ≤ Cφ‖u‖2

2
, u ∈Rp .
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2. For some ̺ > 0 and some constants c3 and c4 , it holds with Eu from (B.22)

sup
‖u‖≤̺

1

‖u‖3
∣∣
Eu〈u, ξ1〉3

∣∣ ≤ c3 ;

sup
‖u‖≤̺

1

‖u‖4
∣∣
Eu〈u, ξ1 −Euξ1〉4 − 3

{
Eu〈u, ξ1 −Euξ1〉2

}2∣∣ ≤ c4 .

3. The function logE ei〈u,ξ1〉 is well defined and

sup
‖u‖≤̺

1

‖u‖4
∣∣
Eiu〈iu, ξ1 −Eiuξ1〉4 − 3

{
Eiu〈iu, ξ1 −Eiuξ1〉2

}2∣∣ ≤ c4 .

We are now well prepared to state the result for the i.i.d. case. Apart (ξ1) , we need

tr(B2) to be sufficiently large to ensure the condition tr(B2) ≫ C2φ . Also we require n

to be large enough for the relation p2Q ≪ n ; see Section B.3.4 for a further discussion.

Theorem B.14. Let X = n−1/2
∑n

i=1 ξi , where ξi are i.i.d. in Rp satisfying Eξ1 = 0

and Var(ξ1) = Σ ≤ Ip , and (ξ1) . For a fixed Q with ‖Q‖ = 1 , assume n ̺2 ≥ 4pQ

and n≫ p2Q . Then with B = QΣQ⊤ , it holds

P

(
‖QX‖2 − tr(B) > 2

√
x tr(B2) + 2x

)
≤ (1 +∆µ)e

−x , if
√
4x ≤

√
tr(B2)

3Cφ
,

P

(
‖QX‖2 − tr(B) < −2

√
x tr(B2)

)
≤ (2 +∆µ)e

−x , if x ≤ tr(B2)/4,

where

∆µ .
p2Q

n
. (B.45)

Proof. The definition and i.i.d structure of the ξi ’s yield

φ(u) = logEe〈X,u〉 = nφ1(n
−1/2u).

Moreover,

E〈u,X〉2 = E〈u, ξ1〉2, E〈u,X〉3 = n−1/2
E〈u, ξ1〉3,

and for any u

Eu〈u,X −EuX〉4 − 3
{
Eu〈u,X −EuX〉2

}2

= n−1
Eu〈u, ξ1 −Euξ1〉4 − 3n−1

{
Eu〈u, ξ1 −Euξ1〉2

}2
.
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This implies (B.24) for any g with g/
√
n ≤ ̺ and

τ3 ≤ n−1/2
c3 , τ4 ≤ n−1

c4 .

Moreover, the quantity ♦ from (B.35) satisfies ♦ . p2Q/n yielding (B.45). Now the

upper bound follows from Theorem B.10. Similar arguments can be used for checking

the lower bound by Theorem B.12.

B.3.4 Range of applicability, critical dimension

This section discusses the range of applicability of the presented results, in particular, of

the concentration phenomenon. It was already mentioned earlier that concentration of

the squared norm ‖QX‖2 is only possible in a high dimensional situation, even for X

Gaussian. This condition can be written as tr(B)/‖B‖ ≫ 1 . In our results, this condition

is further detailed. For instance, bound (B.25) of Theorem B.10 is only meaningful if

tr(B2) ≫ C2φ . This is the only place where the value Cφ shows up.

Another important issue is the value ∆µ which is presented in all our results. It

should be small to make the results meaningful. A sufficient condition for this property

are (τ23 + τ4)p
2
Q ≪ 1 . For the case of additive structure of X , this condition transforms

into “critical dimension” condition p2Q ≪ n . Recent results from Katsevich (2023)

indicate that Laplace approximation could fail if p2Q ≪ n is not fulfilled even for a

simple generalized linear model. One can guess that a further relaxation of the “critical

dimension” condition p2Q ≪ n is not possible and approximation P
(
‖QX‖ > z(B, x)

)
≈

P

(
‖QX̃‖ > z(B, x)

)
with X̃ gaussian can fail if p2Q ≫ n .

B.4 Deviation bounds under light exponential tails

Let ξ be a zero mean random vector in Rp with covariance Var(ξ) and let Q : Rp →
R

q be a linear mapping. This section presents some deviation bounds on the norm

‖Qξ‖ for the case of light exponential tails of ξ . Namely,

(g) for some fixed g > 0 and some self-adjoint operator V 2 in Rp with V 2 ≥ Var(ξ) ,

φ(u)
def
= logE exp

(
〈u,V−1ξ〉

)
≤ ‖u‖2

2
, u ∈Rp, ‖u‖ ≤ g, (B.46)

In fact, it is sufficient to assume that

sup
‖u‖≤g

E exp
(
〈u,V−1ξ〉

)
≤ C . (B.47)
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The quantity C can be very large but it is not important. Indeed, the function φ(u) is

analytic on the disk ‖u‖ ≤ g , and condition (B.47) implies an analog of (B.46):

φ(u) ≤ ‖u‖2
2

+
τ3‖u‖3

6
≤ ‖u‖2

2

(
1 +

τ3g

3

)
, ‖u‖ ≤ g ,

for a fixed value τ3 . Moreover, reducing g allows to take V 2 equal or close to Var(ξ)

and τ3 close to zero. The next section presents our main results under (g) . The proofs

are postponed until the end of the section.

B.4.1 Main results

Let a random vector ξ satisfy Eξ = 0 and (g) . The goal is to establish possibly sharp

deviation bounds on ‖Qξ‖2 for a given linear mapping Q : Rp →R

q . Define

B
def
= QV 2Q⊤, p

def
= tr(B), v2

def
= tr(B2), λ

def
= ‖B‖,

z2(B, x)
def
= trB + 2

√
x tr(B2) + 2x‖B‖ = p+ 2v

√
x+ 2xλ.

(B.48)

Also fix some ρ < 1 , a standard choice is ρ = 1/2 . Our main result applies for all x

satisfying the condition

z2(B, x) ≤ ρ

(
g
√
λ

µ(x)
−
√

p

µ(x)

)2

(B.49)

with z(B, x) from (B.48) and µ(x) defined by µ−1(x) = 1 + v

2λ
√
x
; see (B.9). One can

see that the left hand-side of (B.49) increases with x while the right hand-side decreases.

Therefore, there exists a unique root xc such that with µc = µ(xc)

z2(B, xc) = ρ

(
g
√
λ

µc
−
√

p

µc

)2

. (B.50)

The value xc is important, it describes the phase transition effect: the upper quantile

function of ‖Qξ‖ exhibits the Gaussian-like behavior for x ≤ xc , while it grows linearly

with x/g for x > xc as in a sub-exponential case.

Theorem B.15. Assume (g) . Fix xc by (B.50) for some ρ ≤ 1/2 . It holds

P

(
‖Qξ‖ ≥ z(B, x)

)
≤ 3e−x, x ≤ xc . (B.51)

For ρ = 1/2 , the value xc from (B.50) fulfills

1

4

(
g−

√
2p

λ

)2

+

≤ xc ≤ g2

4
. (B.52)
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If g >
√

2p/λ then zc = z(B, xc) follows

g
√
λ/2− (1− 2−1/2)

√
p ≤ zc ≤ g

√
λ/2 +

√
p . (B.53)

The results of Theorem B.15 state nearly Gaussian deviation bounds for the norm

of the vector Qξ satisfying (g) . Namely, the Gaussian deviation bound P
(
‖Qξ‖ ≥

z(B, x)
)
≤ e−x from Theorem B.4 applies with the additional factor 3 for all x ≤ xc .

Condition g ≫
√

p/λ is important. Otherwise, the value xc is not significantly large

and the zone x ≤ xc with Gaussian-like quantiles is too narrow. It turns out that out of

this range, the norm ‖Qξ‖ exhibits a sub-exponential behavior.

Theorem B.16. Assume (g) . With xc from (B.50) and zc = z(B, xc) , set κ =
√
ρ g

(2+
√
ρ)
√
λ
. It holds

P

(
‖Qξ‖ > zc + κ

−1(x− xc)
)
≤ 3e−x, x ≥ xc ,

P

(
‖Qξ‖ > z

)
≤ 3 exp{−xc − κ(z − zc)}, z ≥ zc .

(B.54)

The obtained deviation bounds of Theorem B.15 and Theorem B.16 can be fused into

one. To be more specific, we fix ρ = 1/2 .

Corollary B.17. Assume (g) . Let xc be defined by (B.50) with ρ = 1/2 . For all

x > 0

P

(
‖Qξ‖ > zc(B, x)

)
≤ 3e−x, (B.55)

where with κ

def
= g

(
√
8+1)

√
λ

and x ∧ xc
def
= min{x, xc}

zc(B, x)
def
= z(B, x ∧ xc) + κ

−1(x− xc)+ =




z(B, x), x ≤ xc ,

z(B, xc) +
x− xc

κ

, x > xc .
(B.56)

Moreover, xc follows (B.52) and zc = z(B, xc) satisfies (B.53) provided g ≥
√

2p/λ .

If g ≫
√

p/λ then xc is large and zc(B, x) = z(B, x) ≤ √
p+

√
2xλ for all reasonable

x . For g <
√

2p/λ , the accurate bound (B.56) can be simplified by a linear majorant

which does not involve xc .

Theorem B.18. Assume (g) . Fix κ = g

(
√
8+1)

√
λ
. Then (B.55) applies with

zc(B, x) ≤ √
p+

κ√
2
+ κ

−1x .
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The next result provides some upper bounds on the exponential moments of ‖Qξ‖ .
We distinguish between zones z ≤ zc and z > zc with zc = z(B, xc) ; see (B.50).

Theorem B.19. Assume (g) . Let xc fulfill (B.50) and zc = z(B, xc) . For any z ∈
[
√
p, zc] and any ν ≤ z−√

p

2
√
λ

, it holds

Eeν‖Qξ‖ 1I(‖Qξ‖ ≥ z) ≤ 6 exp
{
νz − (z −√

p)2

2λ

}
. (B.57)

Further, for any ν < κ

def
=

g
√
ρ√

λ (2+
√
ρ)

Eeν‖Qξ‖ 1I(‖Qξ‖ > zc) ≤
3κ

κ − ν
exp

{
νzc −

(zc −
√
p)2

2λ

}
. (B.58)

Moreover, for z ≥ zc

Eeν‖Qξ‖ 1I(‖Qξ‖ > z) ≤ 3κ

κ − ν
exp
{
νzc −

(zc −
√
p)2

2λ
− (κ − ν)(z − zc)

}
. (B.59)

B.4.2 Proof of Theorem B.15

By normalization, one can easily reduce the study to the case ‖B‖ = 1 . Moreover,

replacing ξ with V−1ξ and Q with QV reduces the proof to the situation with

V = Ip . This will be assumed later on. For µ ∈ (0, 1) and z(µ) = g/µ −
√

p/µ > 0 ,

define trimming tµ(u) of u ∈Rp as

tµ(u)
def
=




u, if ‖u‖ ≤ z(µ),

z(µ)
‖u‖ u, otherwise.

(B.60)

By construction ‖tµ(u)‖ ≤ z(µ) for all u ∈Rp .

Lemma B.20. Assume (g) and let ‖B‖ = 1 . Fix µ ∈ (0, 1) s.t. z(µ) = g/µ−
√

p/µ >

0 . Then with tµ(·) from (B.60)

E exp
{µ
2
t2µ(Qξ)

}
≤ 2 exp{Φ(µ)}, (B.61)

where

Φ(µ)
def
=

µ2v2

4(1− µ)
+
µp

2
. (B.62)

Furthermore, for any z < z(µ)

P

(
‖Qξ‖ > z, ‖Qξ‖ ≤ z(µ)

)
≤ 2 exp

{
−µ z

2

2
+ Φ(µ)

}
. (B.63)
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Proof. Let us fix any value of ξ . We intend to show that

exp
{µ
2
‖tµ(Qξ)‖2

}
≤ 2Eγ exp{µ1/2γ⊤tµ(Qξ)}. (B.64)

Here Eγ means conditional expectation w.r.t. γ ∼ N (0, Ip) given ξ . Obviously, with

A = {u : µ1/2‖Q⊤u‖ ≤ g} , it suffices to check that

Iµ(ξ) def
= Eγ exp

{
µ1/2γ⊤tµ(Qξ)− µ

2
‖tµ(Qξ)‖2

}
1I(γ ∈ A) ≥ 1/2. (B.65)

With Cp = (2π)−p/2 , it holds

Iµ(ξ) = Cp

∫

A
exp
(
µ1/2u⊤tµ(Qξ)− µ

2
‖tµ(Qξ)‖2 − 1

2
‖u‖2

)
du

= Cp

∫

A
exp
(
−1

2
‖u− µ1/2tµ(Qξ)‖2

)
du = Pγ(γ − µ1/2tµ(Qξ) ∈ A).

The definition of A and the condition ‖tµ(Qξ)‖ ≤ z(µ) imply in view of ‖Q‖ ≤ 1

Pγ(γ − µ1/2tµ(Qξ) ∈ A) = Pγ

(
‖Q⊤(γ − µ1/2tµ(Qξ))‖ ≤ g/µ1/2

)

≥ Pγ

(
‖Q⊤γ‖ ≤ g/µ1/2 − µ1/2z(µ)

)
≥ Pγ

(
‖Q⊤γ‖ ≤ √

p
)
≥ 1/2

and (B.65) follows. Taking expectation for both sides of (B.64) and the use of Fubini’s

theorem yield

E exp
{µ
2
‖tµ(Qξ)‖2

}
≤ 2Eγ

{
E exp{µ1/2γ⊤tµ(Qξ)} 1I(µ1/2‖Q⊤γ‖ ≤ g)

}
.

Obviously, for any u ∈Rp

exp{u⊤tµ(Qξ)}+ exp{−u⊤tµ(Qξ)} ≤ exp{u⊤Qξ}+ exp{−u⊤Qξ}

and by (B.46)

E exp
{µ
2
‖tµ(Qξ)‖2

}
≤ 2Eγ

{
exp
(1
2
‖µ1/2γ⊤Q‖2

)
1I(µ1/2‖Q⊤γ‖ ≤ g)

}

≤ 2Eγ exp
(1
2
‖µ1/2γ⊤Q‖2

)
= 2det(Ip − µQ⊤Q)−1/2.

We also use that for any µ > 0 by (B.10),

log det
(
I − µB

)−1/2 ≤ µ tr(B)

2
+
µ2 tr(B2)

4(1− µ)
= Φ(µ) ,

and the first statement follows. Moreover, by Markov’s inequality

P

(
‖Qξ‖ > z, ‖Qξ‖ ≤ z(µ)

)
≤ e−µ z2/2

E exp
{µ
2
‖tµ(Qξ)‖2

}
≤ 2 exp

{
−µ z

2

2
+ Φ(µ)

}
,
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and (B.63) follows as well.

The use of µ = µ(x) from (B.9) in (B.61) yields

−µz
2(B, x)

2
+ Φ(µ) = −x , (B.66)

and similarly to the proof of Theorem B.4

P

(
‖Qξ‖2 > z2(B, x), ‖Qξ‖ ≤ z(µ)

)
≤ 2e−x. (B.67)

It remains to consider the probability of large deviation P
(
‖Qξ‖ > z(µ)

)
.

Lemma B.21. Assume ‖B‖ = 1 . Given x > 0 , fix µ = µ(x) and z(µ) = g/µ−
√

p/µ .

Assume (B.49) for some ρ ≤ 1/2 . Then

P

(
‖Qξ‖ > z(µ)

)
≤ e−x. (B.68)

Proof. Denote η = ‖Qξ‖ . By (B.67)

P

(
η > z(B, x), η ≤ z(µ)

)
≤ 2e−x, (B.69)

For µ = µ(x) , it holds (B.66) with Φ(µ) given by (B.62). Bounding the tails of η in the

region η > z(µ) requires another choice of µ . Namely, we apply (B.63) with ρµ instead

of µ yielding

P

(
η > z(µ), η ≤ z(ρµ)

)
≤ 2 exp

{
−ρµ z

2(µ)

2
+ Φ(ρµ)

}
.

In a similar way, applying (B.69) with ρ2µ in place of µ and using that

ρ z(ρµ) = g/µ−
√
ρp/µ ≤ z(µ) (B.70)

yields

P

(
η > z(ρµ), η ≤ z(ρ2µ)

)
≤ 2 exp

{
−ρ

2µ z2(ρµ)

2
+ Φ(ρ2µ)

}

≤ 2 exp
{
−µ z

2(µ)

2
+ Φ(ρ2µ)

}
.
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This trick can be applied again and again yielding in view of (B.70)

P

(
η > z(µ)

)
≤

∞∑

k=0

P

(
η > z(ρkµ), η ≤ z(ρk+1µ)

)

≤
∞∑

k=0

2 exp
{
−ρk+1µ z2(ρkµ)/2 + Φ(ρk+1µ)

}

≤
∞∑

k=0

2 exp
{
−ρ−k+1µ z2(µ)/2 + Φ(ρk+1µ)

}
.

Condition ρ z2(µ) ≥ z2(B,µ)/2 and (B.66) ensure for ρ ≤ 1/2

P

(
η > z(µ)

)
≤

∞∑

k=0

2 exp
{
−ρ−kµ z2(B,µ)/2 + Φ(ρk+1µ)

}

≤ 2
∞∑

k=0

exp
{
Φ(ρk+1µ)− ρ−kΦ(µ)− ρ−kx

}
≤ e−x.

This yields (B.68).

Putting together (B.67) and (B.68) yields (B.51).

Now we check (B.52). Normalization by λ reduces the proof to the case ‖B‖ =

‖QV 2Q⊤‖ = 1 . We use the simplified bounds z(B, x) ≤ √
p +

√
2x and µ−1 = 1 +

√
p/(4x) . Now (B.49) with ρ = 1/2 can be rewritten as

g ≥ √
µp+ µ

√
2
(√

p+
√
2x
)
. (B.71)

The use of µ =
√
4x/(

√
4x +

√
p) yields

µ
√
2
(√

p+
√
2x
)
=

√
8x

√
p+

√
2x

√
p+

√
4x

≥
√
4x ,

and (B.71) is not possible for x > g2/4 . Further, with y =
√
4x/g and α =

√
p/g

√
µp+ µ

√
2
(√

p+
√
2x
)

g
=

√
yα2

α+ y
+

y(
√
2α+ y)

α+ y
≤ α+ y+

y(
√
2− 1)α

α+ y
≤ y+

√
2α.

Together with (B.71), this yields y ≥ 1 −
√
2α and (B.52) follows. For (B.53) we use

zc ≤
√
p+

√
2λxc and zc ≥

√
p/2 +

√
2λxc .
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B.4.3 Proof of Theorem B.16

Assume w.l.o.g. λ = 1 . First we present an accurate deviation bound, which, however,

does not provide a closed form quantile function for ‖Qξ‖ . Then we show how it implies

a rough linear upper bound on this quantile function. For xc from (B.50) and x > xc ,

fix µ by the relation

ρµ z2(µ)

2
= x+ Φ(µ) = x+

µp

2
+

µ2v2

4(1− µ)
, (B.72)

where z(µ) = g/µ −
√

p/µ ; cf. (B.66). It is easy to see that the solution µ exists and

unique. Moreover, if x = xc then µ = µc and z2(µc) = z2(B, xc) ; see (B.50). If x > xc ,

then µ < µc and z2(µ) > z2(B, x) .

Lemma B.22. For x > xc , define µ by (B.72). Then with z(µ) = g/µ−
√

p/µ

P

(
‖Qξ‖2 > ρ z2(µ)

)
≤ 3e−x . (B.73)

Proof. We again apply Lemma B.20, however, the choice µ = µ(x) from (B.9) is not

possible anymore in view of z(B, x) > z(µ) . More precisely, for x large, the value µ(x)

approaches one and this choice of µ yields the value z(µ) smaller than we need. To cope

with this problem, we apply (B.63) of Lemma B.20 with a sub-optimal µ from (B.72)

ensuring ρµ z2(µ)− Φ(µ) = x . By (B.63) of Lemma B.20

P

(
‖Qξ‖ > √

ρ z(µ), ‖Qξ‖ ≤ z(µ)
)
≤ 2 exp

{
−ρµ z

2(µ)

2
+ Φ(µ)

}
= 2e−x.

Repeating the arguments from the proof of Lemma B.21 implies

P

(
‖Qξ‖2 > ρ z2(µ)

)
≤

∞∑

k=0

2 exp
{
−1

2
ρk+1µ z2(ρkµ) + Φ(ρkµ)

}

≤
∞∑

k=0

2 exp
{
−1

2
ρ−k+1µ z2(µ) + Φ(ρkµ)

}

≤ 2e−x + 2e−x

∞∑

k=1

exp
{
−1

2
(ρ−k − 1)ρµ z2(µ) + Φ(ρkµ)− Φ(µ)

}
≤ 3e−x.

as stated in (B.73).

It remains to evaluate ρ z2(µ) with µ from (B.72) and z(µ) = g/µ−
√

p/µ . For µ ≤ µc

ρ

2

(
g√
µ
−√

p

)2

= x+ Φ(µ)
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and
√
ρ g

√
µ

=
√

2x + 2Φ(µ) +
√
ρp .

This results in

√
ρ z(µ) =

√
ρ

√
µ

(
g√
µ
−√

p

)
≤ 1√

ρ g

(√
2x+ 2Φ(µ) +

√
ρp
)√

2x + 2Φ(µ)

≤ 1√
ρ g

(
2x+ 2Φ(µc) +

√
ρp(2x + 2Φ(µc))

) def
= sz(x) .

By (B.50), this inequality becomes equality for x = xc and µ = µc with
√
ρ z(µc) =

sz(xc) = z(B, xc) . Furthermore, the derivative of sz(x) w.r.t. x satisfies

d

dx
sz(x) =

1√
ρ g

(
2 +

√
ρp√

2x+ 2Φ(µc)

)
≤ 1√

ρ g

(
2 +

√
ρp√

2xc + 2Φ(µc)

)
.

Moreover, 2xc + 2Φ(µc) = z2(B, xc) and

d

dx
sz(x) ≤ 1√

ρ g

(
2 +

√
ρp

z(B, xc)

)
≤ 2 +

√
ρ

√
ρ g

yielding

sz(x) ≤ sz(xc) +
2 +

√
ρ

√
ρ g

(x− xc) = z(B, xc) +
2 +

√
ρ

√
ρ g

(x− xc)

and hence,

√
ρ z(µ) ≤ z(B, xc) +

2 +
√
ρ

√
ρ g

(x− xc) = zc +
x− xc

κ

. (B.74)

This implies (B.54).

B.4.4 Proof of Theorem B.18

As previously, assume λ = 1 . We use z(B, xc) ≤
√
p+

√
2xc . Further, κ

−1xc −
√
2xc +

κ/
√
2 ≥ 0 and thus,

√
2xc − κ

−1xc ≤ κ/
√
2 .

Therefore, for x ≥ xc , it holds

zc(B, x) = z(B, xc) +
x− xc

κ

≤ √
p+

√
2xc −

xc

κ

+
x

κ

≤ √
p+

κ√
2
+

x

κ

.

In the zone x ≤ xc , it holds zc(B, x) = z(B, x) ≤ √
p+

√
2x and it remains to note that

√
2x ≤ κ/

√
2 + κ

−1x .



79

B.4.5 Proof of Theorem B.19

Assume w.o.l.g. λ = 1 . First consider z ≥ zc . By (B.74) of Theorem B.16, it holds

with κ = g
√
ρ/(2 +

√
ρ) and xc = (zc −

√
p)2/2

P

(
‖Qξ‖ ≥ z

)
= P

(
‖Qξ‖ ≥ zc + z − zc

)
≤ 3e−xc−κ(z−zc) .

In particular, P(‖Qξ‖ ≥ zc) ≤ 3e−xc . Integration by parts yields for ν < κ

Eeν(‖Qξ‖−zc) 1I(‖Qξ‖ > zc) = −
∫ ∞

zc

eν(z−zc)dP(‖Qξ‖ ≥ z)

= P(‖Qξ‖ ≥ zc) + ν

∫ ∞

zc

eν(z−zc)
P(‖Qξ‖ ≥ z) dz

≤ 3e−xc + ν

∫ ∞

zc

eν(z−zc)−xc−κ(z−zc) dz =

(
3 +

3ν

κ − ν

)
e−xc (B.75)

and (B.58) follows. Similarly, for z ≥ zc , we derive (B.59) as follows

Eeν‖Qξ‖ 1I(‖Qξ‖ > z) = −
∫ ∞

z
eνtdP(‖Qξ‖ ≥ t)

≤ 3eνzc−xc−κ(z−zc) +
3ν

κ − ν
eνzc−xc−κ(z−zc) =

3κ

κ − ν
eνzc−xc−(κ−ν)(z−zc) .

Now fix z◦ with z◦ −
√
p ≥ 2ν but z◦ ≤ zc . Then

Eeν‖Qξ‖ 1I(‖Qξ‖ > z◦) = −
∫ ∞

z◦

eνzdP(‖Qξ‖ ≥ z)

= eνz◦P(‖Qξ‖ ≥ z◦) + ν

(∫ zc

z◦

+

∫ ∞

zc

)
eνzP(‖Qξ‖ ≥ z)dz .

By (B.51), for any z ∈ [z◦, zc] , it holds in view of z(B, x) ≤ √
p+

√
2x

P(‖Qξ‖ ≥ z) ≤ 3e−(z−√
p)2/2.

As (νz − (z −√
p)2/2)′ = ν − z +

√
p ≤ −ν for z −√

p ≥ 2ν , it holds

ν

∫ zc

z◦

eνz−(z−√
p)2/2dz ≤ eνz◦−(z◦−√

p)2/2 ν

∫ zc

z◦

e−ν(z−z◦)dz ≤ eνz◦−(z◦−√
p)2/2

and also νz◦− (z◦ −
√
p)2/2 > νzc− (zc−

√
p)2/2 . Putting this together with the above

bound on
∫∞
zc

eνzP(‖Qξ‖ ≥ z)dz as in (B.75) completes the proof of (B.57).
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B.5 Frobenius norm losses for empirical covariance

Let X i ∼ N (0, Σ) be i.i.d. zero mean Gaussian vectors in Rp with a covariance matrix

Σ ∈ Mp . By Σ̂ we denote the empirical covariance

Σ̂
def
=

1

n

n∑

i=1

XiX
⊤
i .

Our goal is to establish sharp dimension free deviation bounds on the squared Frobenius

norm ‖Σ̂ −Σ‖2Fr :

‖Σ̂ −Σ‖2Fr = tr(Σ̂ −Σ)2.

We demonstrate how the general results of Section B.4 can be used for obtaining accurate

deviation bounds for ‖Σ̂ −Σ‖2Fr and for supporting the concentration phenomenon.

B.5.1 Upper bounds

First we establish a tight upper bound on ‖Σ̂ − Σ‖2Fr . We identify the matrix Σ̂ with

the vector in the linear subspace of Rp×p composed by symmetric matrices. Our aim is

in showing that the quantiles of ‖Σ̂ − Σ‖2Fr mimic well similar quantiles of ‖Σ̃ − Σ‖2Fr
for a Gaussian matrix Σ̃ with the same covariance structure as Σ̂ . Define

p(Σ) = (trΣ)2 + trΣ2, v2(Σ) =
(
trΣ2

)2
+ trΣ4. (B.76)

Later we show that p(Σ) = E‖Σ̂ −Σ‖2Fr = trVar(Σ̃) and v2(Σ) = tr{Var(Σ̃)}2 while

λ(Σ) = ‖Var(Σ̃)‖ = 2‖Σ‖2 . In our results we implicitly assume a high dimensional

situation with p(Σ) large. The presented bounds also require that n≫ p(Σ) .

Theorem B.23. Assume ‖Σ‖ = 1 and p(Σ) < n/8 . Given x with 4
√
x <

√
n/8 −

√
p(Σ) , fix ρ < 1 by

ρ(1− ρ)
√
n/8 =

√
p(Σ) + 4

√
x . (B.77)

Then

P

(
n‖Σ̂ −Σ‖2Fr >

1

1− ρ

{
p(Σ) + 2v(Σ)

√
x+ 4x

})
≤ 3e−x . (B.78)

B.5.2 Lower bounds

This section presents a lower bound on the Frobenius norm of Σ̂ − Σ . Later in Sec-

tion B.5.3 we state the concentration phenomenon for ‖Σ̂ −Σ‖2Fr .
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Theorem B.24. Let ‖Σ‖ = 1 and p(Σ) and v(Σ) be defined by (B.76). For x > 0

with 2
√
x ≤ p(Σ)/v(Σ) , define µ = µ(x) = 2

√
x/v(Σ) and assume that there is α < 1/2

satisfying

α

√
1− 2α

1− α
≥
√
µ(x)

n

(√
2p(Σ) +

√
2p(Σ)

v(Σ)

)
. (B.79)

Then

P

(
n‖Σ̂ −Σ‖2Fr <

1− 2α

1− α
p(Σ)− 2v(Σ)

√
x

)
≤ 2e−x.

B.5.3 Concentration of the Frobenius loss

Putting together Theorem B.23 and Theorem B.24 yields the following corollary.

Corollary B.25. Under conditions of Theorem B.23 and Theorem B.24, it holds for any

x resolving (B.77) and (B.79) on a random set Ω(x) with P
(
Ω(x)

)
≥ 1− 5e−x

1− 2α

1− α
p(Σ) − 2v(Σ)

√
x ≤ n‖Σ̂ −Σ‖2Fr ≤

1

1− ρ

{
p(Σ) + 2v(Σ)

√
x+ 4x

}
. (B.80)

This result mimics similar bound of Theorem B.4 for Σ̂ Gaussian and of Theo-

rem B.15 for Σ̂ sub-Gaussian. However, the empirical covariance Σ̂ is quadratic in the

Xi ’s and thus, only sub-exponential. We pay an additional factor (1−ρ)−1 in the upper

quantile function and the factor 1−2α
1−α in the lower quantile function for this extension.

Further we discuss the concentration phenomenon for the Frobenius error n‖Σ̂ −
Σ‖2Fr around its expectation p(Σ) . Even in the Gaussian case, it meets only in high-

dimensional situation with p(Σ) large. As v2(Σ) ≤ p(Σ)λ(Σ) = 2p(Σ) , this also

implies v(Σ) ≪ p(Σ) . Statement (B.80) can be rewritten as

−αp(Σ)

1− α
− 2v(Σ)

√
x ≤ n‖Σ̂ −Σ‖2Fr − p(Σ) ≤ ρp(Σ)

1− ρ
+

2v(Σ)
√
x+ 4x

1− ρ
.

Therefore, concentration effect of the loss n‖Σ̂ − Σ‖2Fr requires p(Σ) large and α and

ρ small. Then for x ≪ p(Σ) , quantiles of n‖Σ̂ − Σ‖2Fr − p(Σ) are smaller in order

than p(Σ) . Definition (B.77) of ρ ensures ρ ≍
√

p(Σ)/n , and hence, “ ρ ≪ 1 ” is

equivalent to “p(Σ) ≪ n ”. Condition ensuring α ≪ 1 is similar. To see this, assume

v2(Σ) ≍ p(Σ) . Then x ≪ p(Σ) yields µ(x) = 2
√
x/v(Σ) ≪ 1 and definition (B.79) of

α implies

α .

√
µ

n

(√
2p(Σ) +

√
2p(Σ)

v(Σ)

)
.

√
p(Σ)

n
.
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B.5.4 Weighted Frobenius norm

The result can be easily extended to the case of a weighted Frobenius norm. Consider

for any linear mapping A : Rp →R

q the value n‖A(Σ̂ −Σ)A⊤‖2Fr .

Theorem B.26. Let ‖Σ‖ = 1 and A : Rp → R

q be a linear operator with ‖A‖ =

‖A⊤A‖ = 1 . Define ΣA
def
= AΣA⊤ ,

pA
def
= p(ΣA) = tr2(ΣA) + tr(ΣA)

2, v2A
def
= v2(ΣA) =

{
tr(Σ2

A)
}2

+ tr(ΣA)
4, (B.81)

and assume pA < n/8 . The the statements of Theorem B.23 and Theorem B.24 apply

to n‖A(Σ̂ −Σ)A⊤‖2Fr after replacing p(Σ) and v(Σ) with pA and vA .

Proof. We can represented

√
nA(Σ̂ −Σ)A⊤ = AΣ1/2E Σ1/2A⊤

with E from (B.82). This reduces the result to the previous case with ΣA = AΣA⊤ in

place of Σ .

B.5.5 Proof of Theorem B.23

Each vector γi = Σ−1/2Xi is standard normal. Define

E =
1

n1/2

n∑

i=1

(γiγ
⊤
i − Ip). (B.82)

We will use the representation Σ̂ −Σ = n−1/2Σ1/2 E Σ1/2 and

n‖Σ̂ −Σ‖2Fr = tr(Σ1/2E Σ E Σ1/2) = ‖Σ1/2E Σ1/2‖2Fr .

The main step is in applying Theorem B.15 to the quadratic form ‖QE‖2Fr with QE =

Σ1/2 E Σ1/2 . First check (B.46) for ξ = E .

Lemma B.27. For any symmetric Γ ∈ Mp with ‖Γ‖Fr ≤ g <
√
n/2 , it holds

E〈Γ, E〉2 = 2‖Γ‖2Fr , (B.83)

logE exp〈Γ, E〉 ≤ 1

1− 2n−1/2‖Γ‖ ‖Γ‖2Fr ≤
1

1− 2n−1/2g
‖Γ‖2Fr .

Proof. Let us fix any symmetric Γ ∈ Mp with ‖Γ‖Fr ≤ g . For the scalar product

〈Γ, E〉 , we use the representation

〈Γ, E〉 = tr(ΓE) = 1

n1/2

n∑

i=1

{
γ⊤
i Γγi −E(γ⊤

i Γγi)
}
.
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Then by independence of the γi ’s and Lemma B.1, it holds

E〈Γ, E〉2 =
1

n

n∑

i=1

E

{
γ⊤
i Γγi −E(γ⊤

i Γγi)
}2

= 2 trΓ 2.

Now consider the exponential moment of 〈Γ, E〉 . Again, independence of the γi ’s yields

logE exp〈Γ, E〉 =

n∑

i=1

logE exp
γ⊤
i Γγi√
n

−√
n trΓ

=
n

2
log det

(
Ip −

2√
n
Γ
)
−√

n trΓ

provided that 2Γ <
√
nIp . Moreover, by Lemma B.2

∣∣∣n
2
log det(Ip − 2n−1/2Γ )−√

n trΓ
∣∣∣ ≤ trΓ 2

1− 2n−1/2‖Γ‖ =
‖Γ‖2Fr

1− 2n−1/2‖Γ‖ ,

and the assertion follows in view of ‖Γ‖ ≤ ‖Γ‖Fr ≤ g .

We now fix g = ρ
√
n/2 . Then the random matrix ξ = E follows condition (B.46)

with V 2 = 2(1 − ρ)−1
I . This enables us to apply Theorem B.15 to the quadratic form

‖QE‖2Fr for QE = Σ1/2 E Σ1/2 . By (B.83), it holds Var(E) = 2I . Now introduce a

Gaussian element Ẽ with the same covariance structure. One can use Ẽ = (ζ+ζ⊤)/
√
2 ,

where ζ = (ζij) is a random p -matrix with i.i.d. standard normal entries ζij . Indeed,

for any symmetric p -matrix Γ ,

E〈Ẽ, Γ 〉2 = 2E〈ζ, Γ 〉2 = 2.

Statement (B.51) of Theorem B.15 yields nearly the same deviation bounds for ‖QE‖2Fr
as for ‖QẼ‖2Fr with Ẽ ∼ N (0,Var(E)) . Theorem B.4 claims

P

(
‖QẼ‖2Fr > z2(B̃, x)

)
≤ e−x ,

where B̃ = Var(QẼ) and the quantile z(B, x) is defined as

z2(B, x) = trB + 2
√
x tr(B2) + 2x‖B‖. (B.84)

Lemma B.28. Let Ẽ = (ζ+ ζ⊤)/
√
2 , where ζ = (ζij) is a random p -matrix with i.i.d.

standard normal entries ζij . Consider QẼ = Σ1/2 Ẽ Σ1/2 . It holds for B̃ = Var(QẼ)

tr B̃ = p(Σ) , tr B̃2 = v2(Σ) , ‖B̃‖ = 2.
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Proof. We may assume Σ = diag{λ1, . . . , λp} . Then it holds by Lemma B.1

‖QẼ‖2Fr = ‖Σ1/2 Ẽ Σ1/2‖2Fr =
1

2

p∑

i,j=1

λi λj (ζij + ζji)
2 d
= 2

∑

i≤j

λi λj ζ
2
ij (B.85)

and thus

tr B̃ = E‖QẼ‖2Fr = 2
∑

i≤j

λi λj =

( p∑

i=1

λi

)2

+

p∑

i=1

λ2i = p(Σ) .

Further we compute v2(Σ) = tr B̃2 . Note that Var(‖QẼ‖2Fr) 6= Var(‖QE‖2Fr) . Due to

Lemma B.1, it holds v2(Σ) = Var(‖QẼ‖2Fr)/2 yielding by (B.85)

v2(Σ) = 2
∑

i≤j

λ2i λ
2
j Var(ζ

2
ij) = 2

∑

i 6=j

λ2i λ
2
j + 2

p∑

i=1

λ4i =
(
trΣ2

)2
+ trΣ4.

Finally, Var(E) = 2I and ‖Σ‖ = 1 implies λ(Σ) = ‖QVar(E)Q⊤‖ = 2 .

Now we apply Theorem B.15 to n‖Σ̂ − Σ‖2Fr = ‖QE‖2Fr . Following to Lemma B.27,

define B = (1− ν)−1B̃ . Then with z2(B, x) from (B.84)

P

(
n‖Σ̂ −Σ‖2Fr > z2(B, x)

)
= P

(
‖QE‖2Fr > z2(B, x)

)
≤ 3e−x, x ≤ xc ,

and assertion (B.78) follows in view of Lemma B.28 and z2(B, x) = (1 − ν)−1z2(B̃, x) .

However, it is still necessary to check that the upper bound (B.78) applies for a given x .

(B.52) provides a sufficient condition g/λ ≥
√

p/λ +
√
8x with p = p(Σ)/(1 − ρ) and

λ = 2/(1 − ρ) for g = ρ
√
n/2 . By (B.77)

g

λ
−
√

p

λ
=
ρ
√
n

2λ
−
√

p(Σ)

2
≥ ρ(1− ρ)

√
n

4
−
√

p(Σ)

2
>

√
8x

and the result follows.

B.5.6 Proof of Theorem B.24

As in the proof of the upper bound, we apply Markov’s inequality

P

(
n‖Σ̂ −Σ‖2Fr < z

)
≤ eµz/2E exp

(
−µ
2
n‖Σ̂ −Σ‖2Fr

)
. (B.86)

However, now we are free to choose any positive µ . Later we evaluate the exponential

moments of −n‖Σ̂ − Σ‖2Fr for all µ > 0 and then, given x , fix µ and z similarly to

the Gaussian case to ensure the prescribed deviation probability e−x .
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Denote by ζ = (ζij) a random p × p matrix with i.i.d. standard Gaussian entries

ζij and sζ
def
= (ζ + ζ⊤)/2 . Then for any µ > 0

exp
(
−µn‖Σ̂ −Σ‖2Fr/2

)
= Eζ exp

{
i
√
µn 〈Σ̂ −Σ, ζ〉

}
= Eζ exp

{
i
√
µn 〈Σ̂ −Σ, sζ〉

}
.

Therefore, by independence of the Xi ’s

E exp
(
−µn‖Σ̂ −Σ‖2Fr/2

)
= EζE exp

(
i
√
µn 〈Σ̂ −Σ, sζ〉

)

= Eζ

{
E exp

(
i
√
µ/n 〈X1X

⊤
1 −Σ, sζ〉

)}n

= Eζ

{
E exp

(
i
√
µ/n 〈γγ⊤ − Ip , Σ1/2 sζΣ1/2〉

)}n
.

Further, by Lemma B.2, with B = Σ1/2 sζΣ1/2

{
E exp

(
i
√
µ/n 〈γγ⊤ − Ip ,B〉

)}n

= exp
{
n log det

(
Ip − 2i

√
µ/nB

)−1/2 − i
√
µn tr(B)

}
. (B.87)

Let some x > 0 and some α ∈ (0, 1/2) be fixed. Define

µ
def
=

2
√
x

v(Σ)
, µα

def
=

1− α

1− 2α
µ =

1− α

1− 2α

2
√
x

v(Σ)
, (B.88)

and introduce a random set Ω(α) with

Ω(α)
def
=
{
ζ : 2

√
µα/n ‖B‖ ≤ α

}
, B = Σ1/2 (ζ + ζ⊤)Σ1/2/2. (B.89)

It holds on Ω(α) by (B.87) similarly to (B.4) of Lemma B.2

E

n exp
{
i
√
µα/n 〈γγ⊤ − Ip,B〉

}
≤ exp

(
−µα tr(B2) +

µα α tr(B2)

1− α

)

= exp

(
−1− 2α

1− α
µα tr(B2)

)
= exp

(
−µ tr(B2)

)
. (B.90)

Exponential moments of tr(B2) from (B.91) under Pζ can be easily computed. We

proceed assuming Σ = diag{λj} and using that ζij + ζji ∼ N (0, 2) for i 6= j , and all

ζij + ζji are mutually independent for i ≤ j . This implies

tr(B2) =
1

4

p∑

i,j=1

λi λj (ζij + ζji)
2 d
=
∑

i≤j

λi λj ζ
2
ij (B.91)
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and

Eζ tr(B2) =
∑

i≤j

λi λj =
p(Σ)

2
, (B.92)

Eζ exp{−µ tr(B2)} = Eζ exp

(
−µ
∑

i≤j

λi λj ζ
2
ij

)
= exp

(
−1

2

∑

i≤j

log(1 + 2µλi λj)

)
.

The latter expression can be evaluated by using (B.3) of Lemma B.2:

Eζ exp{−µ tr(B2)} ≤ exp

(
−µ
∑

i≤j

λi λj + µ2
∑

i≤j

λ2i λ
2
j

)
= exp

(
−µp(Σ)

2
+
µ2v2(Σ)

4

)
.

This and (B.90) yield

E exp

(
−µα

2
n‖Σ̂ −Σ‖2Fr

)
≤ Pζ

(
Ω(α)c

)
+ exp

(
−µp(Σ)

2
+
µ2v2(Σ)

4

)

and for any z by Markov’s inequality (B.86)

P

(
n‖Σ̂ −Σ‖2Fr < z

)
≤ eµαz/2

Pζ

(
Ω(α)c

)
+ exp

(
µαz

2
− µp(Σ)

2
+
µ2v2(Σ)

4

)
.

With µ = 2
√
x/v(Σ) , we define z by

µα z = µ{p(Σ) − 2v(Σ)
√
x} =

2
√
xp(Σ)

v(Σ)
− 4x (B.93)

yielding

µαz

2
− µp(Σ)

2
+
µ2v2(Σ)

4
=
µ

2

{
p(Σ)− 2v(Σ)

√
x
}
− µp(Σ)

2
+
µ2v2(Σ)

4
= −x

and

P(n‖Σ̂ −Σ‖2Fr < z) ≤ e−x + eµαz/2
Pζ

(
Ω(α)c

)

where

z =

(
1− α

1− α

){
p(Σ)− 2v(Σ)

√
x
}
≥ p(Σ)− α

1− α
p(Σ)− 2v(Σ)

√
x .

For bounding the probability of the set Ω(α)c from (B.89), one can apply the advanced

results from the random matrix theory. To keep the proof self-contained, we use a simple

bound ‖B‖2 ≤ ‖B‖2Fr = tr(B2) . For any matrix Γ , it holds

Var〈sζ, Γ 〉 =
1

4
E

( p∑

i,j=1

Γij(ζij + ζji)

)2

= ‖Γ‖2Fr
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yielding ‖Var(sζ)‖ ≤ 1 and ‖Var(B)‖ ≤ 1 . Also by (B.92) E‖B‖2Fr = p(Σ)/2 . There-

fore, by Theorem B.4 applied to ‖B‖2Fr , it holds for any x◦

Pζ

(
‖B‖Fr >

√
p(Σ)/2 +

√
2x◦
)
≤ e−x◦ .

By (B.88) and (B.93), it holds

x◦
def
= x+

µαz

2
≤ p(Σ)

√
x

v(Σ)
− x ≤ p2(Σ)

4v2(Σ)

and

Pζ

(
‖B‖Fr >

√
p(Σ)

2
+

p(Σ)√
2 v(Σ)

)
≤ e−x−µαz/2.

Therefore, by definition (B.89) and condition (B.79)

eµαz/2
Pζ

(
Ω(α)c

)
≤ eµαz/2

P

(
‖B‖Fr >

α
√
n

2
√
µα

)
≤ e−x

and the result follows.

B.6 Concentration for a family of second order tensors

Suppose to be given a family of Gaussian quadratic forms

Ti =

p∑

j,k=1

Ti,j,k γj γk , i = 1, . . . , p,

with standard Gaussian r.v.’s γj . Without loss of generality assume that each matrix

Ti = (Ti,j,k)j,k≤p is symmetric. The value Ti can be written as

Ti = γ⊤Tiγ = 〈Tiγ,γ〉 = 〈Ti, γ⊗2〉.

We study the concentration phenomenon of the vector T around its expectation in

terms of its covariance matrix S2 = Var(T ) . Note that the use of S2 = Var(T ) is

not mandatory. All the results presented later apply with any matrix S2 satisfying

S2 ≥ Var(T ) . Denote

‖T ‖2Fr
def
=

p∑

i,j,k=1

T 2
i,j,k .

Given u ∈Rp , define

T [u]
def
=

p∑

i=1

ui Ti . (B.94)
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First, describe the covariance structure of T .

Lemma B.29. Denote

〈Ti,Ti′〉 def
=

p∑

j,k=1

Ti,j,k Ti′,j,k , i, i′ = 1, . . . , p.

Then

S2 def
= Var(T ) =

(
2〈Ti,Ti′〉

)
i,i′=1,...,p

, (B.95)

trS2 = 2

p∑

i=1

‖Ti‖2Fr = 2

p∑

i,j,k=1

T 2
i,j,k = 2‖T ‖2Fr .

Moreover,

‖Su‖2 = 2
∥∥T [u]

∥∥2
Fr
, u ∈Rp. (B.96)

Proof. For any i, i′ , it holds in view of E(γjγk − δj,k)
2 = 1 + δj,k for all j, k ≤ p

E(Ti −ETi)(Ti′ −ETi′) = E




p∑

j,k=1

Ti,j,k (γjγk − δj,k)

p∑

j′,k′=1

Ti′,j′,k′ (γj′γk′ − δj′,k′)




= 2

p∑

j,k=1

Ti,j,k Ti′,j,k = 2〈Ti,Ti′〉.

This yields (B.95). Further

trS2 = 2

p∑

i=1

〈Ti,Ti〉 = 2

p∑

i=1

‖Ti‖2Fr
def
= 2‖T ‖2Fr .

Similarly, for any u = (ui) ∈Rp

‖Su‖2 = u⊤S2u = 2

p∑

i,i′=1

ui ui′〈Ti,Ti′〉 = 2

∥∥∥∥
p∑

i=1

uiTi
∥∥∥∥
2

Fr

= 2
∥∥T [u]

∥∥2
Fr

(B.97)

completing the proof.

Given V 2 ≥ S2 we characterize regularity of the family (Ti) by the value δ such that

sup
u : ‖Vu‖≤1

2
∥∥T [u]

∥∥ ≤ δ . (B.98)
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Remark B.1. With V 2 = S2 , by (B.97), bound (B.98) follows from the condition

√
2
∥∥T [u]

∥∥ ≤ δ
∥∥T [u]

∥∥
Fr
, u ∈Rp .

Clearly this condition meets for δ =
√
2 . We, however, need this condition to be fulfilled

with sufficiently small δ . This can be ensured by choosing another matrix V 2 ≥ S2 .

For instance, with V 2 = C2S2 , the inequalities
√
2
∥∥T [u]

∥∥ ≤ δ
∥∥T [u]

∥∥
Fr

and ‖Vu‖ ≤ 1

imply 2
∥∥T [u]

∥∥ ≤ δ/C .

B.6.1 An upper bound on ‖Q(T −ET )‖

This section presents an upper bound on the norm of QE for E = T −ET and a linear

mapping Q . With V 2 ≥ S2 , define B = QV 2Q⊤ and z2(B, x) = p+ 2v
√
x+ 2λx with

p
def
= trB = tr(QV 2Q⊤) ,

v2 = trB2 = tr(QV 2Q⊤)2 ,

λ
def
= ‖B‖ = ‖QV 2Q⊤‖ .

(B.99)

A “high dimensional” situation means p/λ large. As pλ ≥ v2 , this implies p ≫ v .

Theorem B.30. Assume (B.98) and let g fulfill δg < 1 . Given Q , consider

Z =
√
1− δg ‖Q(T −ET )‖.

Then with B = QV 2Q⊤ , p, v, λ from (B.99), and xc from (B.50), it holds

P

(
Z > z(B, x)

)
≤ 3e−x, x ≤ xc . (B.100)

Moreover, with zc = z(B, xc) , κ = g√
λ (

√
8+1)

, it holds

P

(
Z ≥ zc + κ

−1(x− xc)
)
≤ 3e−x, x ≥ xc ,

P

(
Z ≥ z

)
≤ 3 exp{−xc − κ(z − zc)}, z ≥ zc .

(B.101)

For any z ≤ zc and ν with 2ν ≤ z−√
p√

λ
, it holds

E eνZ 1I(Z ≥ z) ≤ 6 exp

{
νz − (z −√

p)2

2λ

}
, (B.102)

while the condition 2ν < κ = g√
λ (

√
8+1)

ensures

E eνZ 1I(Z > z) ≤ 6 exp

{
νzc −

(zc −√
p)2

2λ
− (κ − ν)(z − zc)

}
, z ≥ zc . (B.103)
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Proof. Let ξ = V−1E . For any v ∈Rp with 2
∥∥T [V−1v]

∥∥ < 1 , we check

logE exp
(
〈ξ,v

〉)
≤ ‖v‖2

2
(
1− 2

∥∥T [V−1v]
∥∥) . (B.104)

Fix v ∈Rp and define w = 2V−1v and T [w] by (B.94). By Lemma B.2,

logE exp〈ξ,v〉 = logE exp〈E ,V−1v〉

= logE exp
(1
2
〈T [w],γ⊗2〉 − 1

2
E〈T [w],γ⊗2〉

)

= exp

{
−tr(T [w])

2
+ log det

(
Ip − T [w]

)−1/2
}

≤ tr(T [w])2

4(1− ‖T [w]‖) . (B.105)

By (B.96)

tr(T [w])2 =
∥∥2T [V−1v]

∥∥2
Fr

= 2v⊤V−1S2 V−1v ≤ 2‖v‖2, (B.106)

and (B.104) follows. If ‖v‖ ≤ g , then by (B.98) 2
∥∥T [V−1v]

∥∥ ≤ δg , and condition (B.46)

is fulfilled with V 2 = (1−δg)−1
Ip . Now Theorem B.15 applied to Z =

√
1− δg ‖QVξ‖

implies (B.100). Furthermore, Theorem B.16 with ρ = 1/2 yields (B.101) while Corol-

lary B.17 yields (B.102) and (B.103).

B.6.2 A lower bound

We also present a lower bound on the quadratic forms ‖QE‖2 . Here we assume V 2 = S2 .

Theorem B.31. Assume (B.98) with V 2 = S2 . Fix x ≤ p2/(4v2) , µ = 2
√
x/v , and

α < 1/2 s.t.

α

√
1− α

1− 2α
≥ δ

√
p

(
1 +

√
pλ

2v2

)
. (B.107)

Then

P

(
‖QE‖2 − p < − α p

1− α
− 2v

√
x

)
≤ 2e−x. (B.108)

Proof. The main step of the proof is a bound on negative exponential moments of ‖QE‖2 .
Then we apply Markov’s inequality with a proper choice of the exponent. Namely, given

µ = 2
√
x/v and α < 1/2 , define µα by

1− 2α

1− α
µα = µ.
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For ζ ∼ N (0, Ip) independent of G and i =
√
−1

E exp
(
−µα

2
‖QE‖2

)
= EEζ exp

{
iµ1/2α

〈
QE , ζ

〉}

= EζE
[
exp
{
iµ1/2α

〈
E , Q⊤ζ

〉} ∣∣ ζ
]
, (B.109)

and similarly to (B.105), it holds by Lemma B.2 with w = 2µ
1/2
α Q⊤ζ

E

{
exp
(
iµ1/2α 〈E , Q⊤ζ〉

) ∣∣∣ ζ
}

= exp

{
−i tr(T [w])

2
+ log det

(
Ip − iT [w]

)−1/2
}
.

Now introduce a random set

Ω(α)
def
=
{
2µ1/2α

∥∥T [Q⊤ζ]
∥∥ ≤ α

}
.

Then ‖T [w]‖ ≤ α on this set and by (B.4) of Lemma B.2

∣∣∣∣log det
(
Ip − iT [w]

)−1/2 − i tr(T [w])

2
+

tr(T [w])2

4

∣∣∣∣ ≤
α tr(T [w])2

6(1− α)
.

This implies on Ω(α) in view of (B.106)

∣∣∣E
{
exp
(
iµ1/2α 〈QE , ζ〉

) ∣∣∣ ζ
}∣∣∣ ≤ exp

(
−(1− 2α) tr(T [w])2

4(1− α)

)

= exp
(
−(1− 2α)µα tr(2T [Q⊤ζ])2

4(1 − α)

)

= exp
{
−µα(1− 2α)

1− α

‖SQ⊤ζ‖2
2

}
= exp

(
−µ
2
‖SQ⊤ζ‖2

)
.

Now, by (B.109) and by (B.3) of Lemma B.2

E exp
{
−µα

2
‖QE‖2

}
≤ Eζ exp

{
−µ
2
‖SQ⊤ζ‖2

}
+P

(
Ω(α)

)

= det
(
Ip + µB

)−1/2
+P

(
Ω(α)

)
≤ exp

{
−µ tr(B)

2
+
µ2 tr(B2)

4

}
+P

(
Ω(α)

)
.

For any fixed z , by Markov’s inequality

P

(
‖QE‖2 < z

)
≤ exp

(µαz
2

)
E exp

(
−µα

2
‖QE‖2

)

≤ exp
{µαz

2
− µ tr(B)

2
+
µ2 tr(B2)

4

}
+ exp

(µαz
2

)
P

(
Ω(α)

)
. (B.110)

With p = trB , v2 = trB2 , and µ = 2
√
x/v , define z by

µα z

2
=
µ

2

(
p− 2v

√
x
)
=

p
√
x

v
− 2x
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yielding

µαz

2
− µp

2
+
µ2v2

4
=
µ

2

(
p− 2v

√
x
)
− µp

2
+
µ2v2

4
= −x (B.111)

while

z =
1− 2α

1− α
(p− 2v

√
x) ≥ p− α

1− α
p− 2v

√
x .

Now we check that eµαz/2
P

(
Ω(α)c

)
≤ e−x . By (B.98) 2

∥∥T [Q⊤ζ]
∥∥ ≤ δ‖SQ⊤ζ‖ , and

P

(
Ω(α)c

)
≤ P

(
2
√
µα
∥∥T [Q⊤ζ]

∥∥ > α
)
≤ P

(
δ
√
µα‖SQ⊤ζ‖ > α

)
.

Gaussian deviation bound (B.6) yields for any x◦ > 0 by ‖SQ⊤ζ‖2 = ζ⊤Bζ

P

(
‖SQ⊤ζ‖ > √

p+
√

2x◦λ
)
≤ e−x◦ .

By construction,

x+
µα z

2
= x+

µ

2
(p− 2v

√
x) =

p
√
x

v
− x ≤ p2

4v2
,

and the use of x◦ = p2/(4v2) ensures under (B.107)

eµαz/2
P

(
Ω(α)c

)
= eµαz/2

P

(
‖SQ⊤ζ‖ > α

δ
√
µα

)

≤ eµαz/2
P

(
‖SQ⊤ζ‖ > √

p+
p
√
λ√

2 v

)
≤ e−x.

Putting this together with (B.110) and (B.111) yields (B.108).

B.7 Some bounds for a third order Gaussian tensor

Let T =
(
Ti,j,k

)
be a third order symmetric tensor, that is, Ti,j,k = Tπ(i,j,k) for any per-

mutation π of the triple (i, j, k) . This section present a deviation bound for a Gaussian

tensor sum T (γD)
def
= 〈T ,γ⊗3

D
〉 for a Gaussian zero mean vector γD ∼ N (0,D−2) in

R

p . Much more general results for higher order tensors are available in the literature,

see e.g. Götze et al. (2021) and Adamczak and Wolff (2013) and references therein. We,

however, present an independent self-contained study which delivers finite sample and

sharp results. Later we use notations

‖T ‖ = sup
‖u1‖=‖u2‖=‖u3‖=1

∣∣〈T ,u1 ⊗ u2 ⊗ u3〉
∣∣ .
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Banach’s characterization Banach (1938); Nie (2017) yields

‖T ‖ = sup
‖u‖=1

∣∣〈T ,u⊗3〉
∣∣ . (B.112)

Define

T (u) = 〈T ,u⊗3〉 =
p∑

i,j,k=1

Ti,j,k ui uj uk , u = (ui) ∈Rp .

Clearly T (u) is a third order polynomial function on Rp . Define also its gradient

∇T (u) ∈ Rp . Each entry of the gradient vector ∇T (u) is a second order polynomial

of u . Symmetricity of T implies for any u ∈Rp

∇T (u) =

(
3

p∑

j,k=1

Ti,j,k uj uk
)

i=1,...,p

= 3
(
u⊤Ti u

)
i=1,...,p

,

∇2T (u) =

(
6

p∑

i=1

Ti,j,k ui
)

j,k=1,...,p

= 6T [u] ,

(B.113)

where Ti is the sub-tensor of order 2 with (Ti)j,k = Ti,j,k and

T [u]
def
=

p∑

i=1

ui Ti .

Also

T (u) =
1

3
〈∇T (u),u〉 = 1

6
〈∇2T (u),u⊗2〉 .

Denote

T (1)(u)
def
=

1

3
∇T (u) =

(
u⊤Tiu

)
i=1,...,p

,

T (2)(u)
def
=

1

6
∇2T (u) = T [u].

(B.114)

For the norm of the vector T (1)(u) and of the matrix T (2)(u) , it holds by (B.112)

‖T (1)(u)‖ = sup
φ∈Rp : ‖φ‖=1

〈T (1)(u),φ〉 = sup
φ∈Rp : ‖φ‖=1

〈T ,u⊗ u⊗ φ〉 = ‖T ‖ ‖u‖2,

‖T (2)(u)‖ = sup
φ∈Rp : ‖φ‖=1

∣∣φ⊤T (2)(u)φ
∣∣ = sup

φ∈Rp : ‖φ‖=1

∣∣〈T ,u⊗ φ⊗ φ〉
∣∣ = ‖T ‖ ‖u‖.
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B.7.1 Moments of a Gaussian 3-tensor

Consider a Gaussian 3-tensor T (γ) = 〈T ,γ⊗3〉 . Define

Mi =

p∑

j=1

Ti,j,j = tr Ti , i = 1, . . . , n .

Lemma B.32. Let T = (Ti,j,k) be a 3-dimensional symmetric tensor in Rp and T (γ) =

〈T ,γ⊗3〉 for γ ∼ N (0, Ip) . With M = (Mi) ∈Rp and ‖T ‖2Fr =
∑p

i,j,k=1 T 2
i,j,k , it holds

E

(
T (γ)− 3〈M ,γ〉

)2
= 6‖T ‖2Fr ,

E T 2(γ) = 6‖T ‖2Fr + 9‖M‖2 . (B.115)

Proof. By definition

T (γ)− 3〈M ,γ〉 =
p∑

i,j,k=1

Ti,j,k γiγjγk − 3

p∑

i=1

γi

p∑

j,k=1

Ti,j,k δj,k . (B.116)

It is easy to see that for each i by symmetricity of T

E

(
γi

p∑

i,j,k=1

Ti,j,k γiγjγk
)

= 3
∑

j∈Ici

Ti,j,jE(γ2i γ
2
j ) +

p∑

i=1

Ti,i,iEγ4i = 3

p∑

j=1

Ti,j,j = 3Mi ,

where the index set Ici = {1, . . . , i− 1, i+ 1, . . . , p} is obtained by removing the index i

from 1, . . . , p . This implies orthogonality

E

{(
T (γ)− 3〈M ,γ〉

)
〈M ,γ〉

}
= 0. (B.117)

Introduce the index set I = {(i, j, k) : i 6= j 6= k} :

I def
= {(i, j, k) : 1I(i = j) + 1I(i = k) + 1I(j = k) = 0} .

Represent (B.116) as

T (γ)− 3〈M ,γ〉 =
∑

I
Ti,j,k γi γj γk + 3

p∑

i=1

∑

j∈Ici

Ti,j,j γi(γ2j − 1) +

p∑

i=1

Ti,i,i (γ3i − 3γi) .

All terms in the right hand-side are orthogonal to each other allowing to compute

E

(
T (γ)− 3〈M ,γ〉

)2
:

E

(
T (γ)− 3〈M ,γ〉

)2
= E

(∑

I
Ti,j,k γi γj γk

)2

+E

(
3

p∑

i=1

∑

j∈Ici

Ti,j,j γi(γ2j − 1)

)2

+E

( p∑

i=1

Ti,i,i (γ3i − 3γi)

)2

.
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Further, by symmetricity of T

E

(∑

I
Ti,j,k γi γj γk

)2

= E

(∑

I
Ti,j,k γi γj γk

∑

I
Ti′,j′,k′ γi′ γj′ γk′

)

= E

(∑

I
Ti,j,k γi γj γk

∑

(i′,j′,k′)=π(i,j,k)

Ti′,j′,k′ γi′ γj′ γk′
)

= 6
∑

I
T 2
i,j,k .

Similarly

E

(
3

p∑

i=1

∑

j∈Ici

Ti,j,j γi(γ2j − 1)

)2

= 9

p∑

i=1

∑

j∈Ici

T 2
i,j,jE

{
γ2i (γ

2
j − 1)2

}
= 18

p∑

i=1

∑

j∈Ici

T 2
i,j,j ,

E

( p∑

i=1

Ti,i,i (γ3i − 3γi)

)2

=

p∑

i=1

T 2
i,i,iE(γ3i − 3γi)

2 = 6

p∑

i=1

T 2
i,i,i

yielding again by symmetricity of T

E

(
T (γ)− 3〈M ,γ〉

)2
= 6

∑

I
T 2
i,j,k + 18

p∑

i=1

∑

j∈Ici

T 2
i,j,j + 6

p∑

i=1

T 2
i,i,i = 6‖T ‖2Fr

and assertion (B.115) follows in view of orthogonality (B.117).

Similarly we study the moments of the scaled gradient vector

T = T (1)(γ) =
1

3
∇T (γ).

The entries Ti of T can be written as Ti = γ⊤Ti γ ; see (B.113).

Lemma B.33. It holds ET = M ,

Var(T ) = S2 =
(
2〈Ti,Ti′〉

)
i,i′=1,...,p

, (B.118)

trS2 = 2

p∑

i=1

‖Ti‖2Fr = 2

p∑

i,j,k=1

T 2
i,j,k = 2‖T ‖2Fr , (B.119)

E‖T‖2 = ‖M‖2 + 2‖T ‖2Fr ≤
1

3
ET 2(γ) .

Moreover, for any u ∈Rp

‖Su‖2 = 2
∥∥T [u]

∥∥2
Fr
. (B.120)
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Proof. The first statement follows directly from ETi = Eγ⊤Ti γ = tr Ti . For any i, i′ ,

it holds in view of E(γjγk − δj,k)
2 = 1 + δj,k for all j, k ≤ p

E(Ti −ETi)(Ti′ −ETi′) = E




p∑

j,k=1

Ti,j,k (γjγk − δj,k)

p∑

j′,k′=1

Ti′,j′,k′ (γj′γk′ − δj′,k′)




= 2

p∑

j,k=1

Ti,j,k Ti′,j,k = 2〈Ti,Ti′〉.

This yields (B.118). Further

trS2 = 2

p∑

i=1

〈Ti,Ti〉 = 2

p∑

i=1

‖Ti‖2Fr
def
= 2‖T ‖2Fr ,

which proves (B.119). Similarly, for any u = (ui) ∈Rp

‖Su‖2 = u⊤S2u = 2

p∑

i,i′=1

ui ui′〈Ti,Ti′〉 = 2

∥∥∥∥
p∑

i=1

uiTi
∥∥∥∥
2

Fr

= 2
∥∥T [u]

∥∥2
Fr

completing the proof.

B.7.2 ℓ3 − ℓ2 condition

This section introduces a special ℓ3 − ℓ2 condition for a symmetric 3-tensor T .

(Γ ) For some symmetric p -matrix Γ and τ > 0 , T (u) = 〈T ,u⊗3〉 fulfills

|T (u)| ≤ τ ‖Γu‖3, u ∈Rp . (B.121)

Lemma B.34. Suppose that the tensor T satisfies (Γ ) . Then

|〈T ,u1 ⊗ u2 ⊗ u3〉| ≤ τ ‖Γu1‖ ‖Γu2‖ ‖Γu3‖ , u1 ,u2 ,u3 ∈Rp , (B.122)

and it holds for T (1)(u) = 1
3∇T (u) , T (2)(u) = T [u] from (B.114), any u ∈Rp

‖T (1)(u)‖ ≤ τ ‖Γu‖2 ‖Γ‖ , (B.123)

T [u] ≤ τ ‖Γu‖Γ 2 , (B.124)

yielding

‖T [u]‖2Fr ≤ τ2 ‖Γu‖2 tr(Γ 4) , u ∈Rp ,

‖T ‖2Fr ≤ τ2 tr(Γ 2) tr(Γ 4) .
(B.125)



97

Further, for M = (Mi) ∈Rp with Mi = tr Ti , it holds

‖M‖ ≤ τ ‖Γ‖ tr(Γ 2) ,

The matrix S2 from (B.118) fulfills

S2 ≤ 2τ2 tr(Γ 4)Γ 2. (B.126)

It holds for the Gaussian tensor T (γ)

E T 2(γ) ≤ 6τ2 tr(Γ 2) tr(Γ 4) + 9τ2 ‖Γ‖2 tr2(Γ 2) ≤ 15τ2 ‖Γ‖2 tr2(Γ 2). (B.127)

Proof. Define 3-tensor TΓ by TΓ (u) = T (Γ−1u) . Then condition (B.121) reads |TΓ (u)| ≤
τ for all ‖u‖ ≤ 1 while (B.122) can be written as

|〈TΓ ,u1 ⊗ u2 ⊗ u3〉| ≤ τ , ∀‖uj‖ ≤ 1, j = 1, 2, 3.

The latter holds by Banach’s characterization as in (B.112). Further,

‖T (1)(u)‖ = sup
‖u1‖=1

∣∣〈T (1)(u),u1〉
∣∣ = sup

‖u1‖=1

∣∣〈T ,u⊗ u⊗ u1〉
∣∣

≤ τ ‖Γu‖2 sup
‖u1‖=1

‖Γu1‖ ≤ τ ‖Γu‖2 ‖Γ‖ ,

‖T [u]‖ = sup
‖u1‖=1

〈T [u],u⊗2
1 〉 = sup

‖u1‖=1
〈T ,u⊗ u1 ⊗ u1〉

≤ τ ‖Γu‖ sup
‖u1‖=1

‖Γu1‖2 ≤ τ ‖Γu‖ ‖Γ 2‖ ,

yielding (B.124). Further, 〈M ,u〉 = tr T [u] and by (B.124)

‖M‖ = sup
‖u‖=1

∣∣〈M ,u〉
∣∣ = sup

‖u‖=1

∣∣tr T [u]
∣∣ ≤ τ ‖Γ‖ tr(Γ 2) .

Similarly for u ∈Rp

∥∥T [u]
∥∥2
Fr

= tr(T [u]2) ≤ τ2 ‖Γu‖2 tr(Γ 4) .

Finally, the use of Ti = T [ei] for the canonic basis vectors ei ∈Rp yields

‖T ‖2Fr =
p∑

i=1

tr(T [ei]
2) ≤ τ2

p∑

i=1

‖Γei‖2 tr(Γ 4) = τ2 tr(Γ 2) tr(Γ 4) ,

and (B.125) follows. By (B.120) and (B.124), it holds for any u ∈Rp

‖Su‖2 = 2
∥∥T [u]

∥∥2
Fr

≤ 2τ2 tr(Γ 4)‖Γu‖2 .

This yields (B.126). The obtained bounds lead to (B.127) in view of (B.115).
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B.7.3 Colored case

This section extends the established upper bound to the case when the standard Gaussian

vector γ is replaced by a general zero mean Gaussian vector γD ∼ N (0,D−2) for a

symmetric covariance matrix D
2 . Then γD = D

−1γ with γ standard normal and

T (γD) = T (D−1γ) = T̃ (γ) with T̃ (u) = T (D−1u) . If T satisfies (Γ ) then T̃ does as

well but Γ 2 has to be replaced by v2 = D
−1Γ 2

D
−1 .

Lemma B.35. Let T (u) satisfies (Γ ) with some Γ and τ . Then T̃ (u) = T (D−1u)

satisfies (Γ ) with v2 = D
−1Γ 2

D
−1 in place of Γ 2 and the same τ . In particular, with

T̃ = (T̃i) , M̃ = (tr T̃i) , and S̃2 def
=
(
2〈T̃i, T̃i′〉

)
i,i′=1,...,p

, it holds

‖T̃ ‖2Fr ≤ τ2 tr(v2) tr(v4), (B.128)

‖M̃‖ ≤ τ ‖v‖ tr(v2) , (B.129)

S̃2 ≤ 2τ2 tr(v4) v2,

Moreover, for any u ∈Rp

‖T̃ (1)(u)‖ =
1

3
‖∇T̃ (u)‖ ≤ τ ‖v u‖2 ‖v‖ .

∥∥T̃ [u]
∥∥2
Fr

≤ τ2 ‖v u‖2 tr v4 ,

Proof. By definition, for any u ∈Rp

T̃ (u) = T (D−1u) ≤ τ‖ΓD−1u‖3 = τ‖v u‖3

yielding (Γ ) for T̃ . Now Lemma B.35 enables us to apply the results of Lemma B.34

with v in place of Γ . Finally, for any u with ‖v u‖ ≤ r , it holds by (B.123)

‖T̃ (1)(u)‖ ≤ τ ‖v u‖2 ‖v‖ ≤ τ r2 ‖v‖ .

This completes the proof.

Lemma B.36. For the Gaussian tensor T (γD) , it holds

E T 2(γD) ≤ 15τ2 ‖v‖2 tr2(v2). (B.130)

Moreover, with c2 =??? ,

√
E T 4(γD) ≤ c2 τ

2 ‖v‖2 tr2(v2).

Proof. Apply (B.115) of Lemma B.32 to T (γD) = T̃ (γ) and use (B.128) and (B.129).
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B.7.4 An exponential bound on T (γD)

Let δ(u) be a smooth function on Rp . A typical example we have in mind is δ(u) =

T (u) , where T is a symmetric 3-tensor satisfying (Γ ) with some Γ 2 and τ . Let

also γD ∼ N (0,D−2) . Our aim is a possibly accurate exponential bound for δ(γD) ,

in particular, for the Gaussian tensor T (γD) = 〈T ,γ⊗3
D

〉 . We use δ(γD) = δ(D−1γ) =

δ̃(γ) for δ̃(u) = δ(D−1u) and γ standard normal. The results use a bound on the

norm ‖∇δ̃(u)‖ which is hard to verify on the whole domain Rp . Therefore, we limit

the domain of δ(u) to a subset U on which the Gaussian measure N (0,D−2) well

concentrates. Clearly, for any u with D
−1u ∈ U

∇δ̃(u) = D
−1∇δ(D−1u).

For the rest of this section, we assume that ‖∇δ̃(u)‖ is uniformly bounded over the set

of u with D−1u ∈ U for the set U with the elliptic shape

U def
= {u : ‖Γu‖ ≤ r}. (B.131)

This applies to δ(u) = T (u) for a tensor T satisfying (Γ ) . We consider local behavior

of δ(γD) for γD ∼ N (0,D−2) . With U fixed, introduce the notation

EU ξ
def
= Eξ 1I(γD ∈ U).

Remind the definition

v2
def
= D

−1Γ 2
D
−1.

The next lemma explains the choice of the radius r to ensure a concentration effect of

γD on U .

Lemma B.37. For a fixed x , set r = r(x) = z(v2, x) with

z2(v2, x) = tr(v2) + 2
√
x tr(v4) + 2x‖v2‖.

For the set U from (B.131), suppose

sup
v : D−1v∈U

‖∇δ̃(v)‖ = sup
u∈U

‖D−1∇δ(u)‖ ≤ ǫ . (B.132)

Then it holds for X = δ(γD)−EU δ(γD) , with any µ and any integer k

EU eµX ≤ exp
(
µ2ǫ2/2

)
, (B.133)

EU |X|2k ≤ C2kǫ
2k , C2k = 2k+1k! . (B.134)
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Also

P

(
X > ǫ

√
2x
)
≤ 2e−x.

Proof. With γ ∼ N (0, Ip) and γD ∼ N (0,D−2) , it holds

P(γD 6∈ U) = P
(
‖ΓD−1γ‖ > r

)
.

For r = z(v2, x) , Gaussian concentration bound yields

P(γD 6∈ U) = P
(
‖ΓD−1γ‖ > z(v2, x)

)
≤ e−x.

Further, δ(γD) = δ(D−1γ) = δ̃(γ) for γ standard normal and by (B.132), the norm of

the gradient ∇δ̃(v) is bounded by ǫ for all v with D
−1v ∈ U . The use of log-Sobolev

inequality and Herbst’s arguments yields (B.133) for X = δ(D−1γ) − EU δ(D−1γ) ;

see Theorem 5.5 in Boucheron et al. (2013) or Proposition 5.4.1 in Bakry et al. (2013).

Result (B.133) also implies the probability bound

P

(
X >

√
2x ǫ

)
≤ P(γD 6∈ U) +P

(
X > ǫ

√
2x , γD ∈ U

)
≤ 2e−x;

see (5.4.2) in Bakry et al. (2013). Now Lemma B.38 and (B.133) imply (B.134).

Lemma B.38 (Boucheron et al. (2013), Theorem 2.1). Let a random variable X satisfy

E exp(µX) ≤ exp(µ2ǫ2/2) for all µ with some ǫ2 > 0 . Then for any integer k

E|X|2k ≤ C2k ǫ
2k , C2k = 2k+1k! . (B.135)

In particular, C1 = 2 , C2 = 4 , C3 =
√
96 ≤ 10 , C4 = 16

√
3 ≤ 28 .

Proof. Conditions of the lemma and Markov inequality imply for any u > 0 with µ = u

P

(
X/ǫ > u

)
≤ e−µu

E exp(µX/ǫ) ≤ exp(−u2/2)

and similarly for P
(
−X/ǫ > u

)
hence,

E|X/s|2k =

∫ ∞

0
P

(
|X/s|2k > x

)
dx = 2k

∫ ∞

0
x2k−1

P

(
|X/s| > x

)
dx

≤ 4k

∫ ∞

0
x2k−1e−x2/2 dx = 4k

∫ ∞

0
(2t)k−1e−t dt = 2k+1k!

as claimed.
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Let X satisfy E exp(µX) ≤ exp(µ2ǫ2/2) for all µ with some ǫ small. One can

expect that eX can be well approximated for k ≥ 2 by

Ek(X)
def
= 1 +X + . . .+

Xk−1

(k − 1)!
. (B.136)

Lemma B.39. Let a random variable X satisfy E exp(µX) ≤ exp(µ2ǫ2/2) for all µ

with some ǫ2 > 0 . Then for a random variable ξ such that |ξ| ≤ 1 and any integer k

with Ck from (B.134) and Ek(X) from (B.136)

∣∣
E

(
eX − Ek(X)

)
ξ
∣∣ ≤ Ck

k!
ǫkeǫ

2

.

In particular, with C2 = 4 and C23 = 96

∣∣
E

(
eX − 1−X

)
ξ
∣∣ ≤ 2ǫ2 eǫ

2

,

∣∣
E

(
eX − 1−X − X2

2

)
ξ
∣∣ ≤ 5

3
ǫ3 eǫ

2

.

If ξ is not bounded but Eξ2k+2 <∞ , then with ρ = k/(k + 1)

∣∣
E

(
eX − Ek(X)

)
ξ
∣∣ ≤

C
ρ
k+1

k!
ǫk eǫ

2 (
Eξ2k+2

) 1

2k+2 . (B.137)

In particular, with C
2/3
3 = 961/3 ≤ 4.6 and C

3/4
4 ≤ 12

∣∣
E

(
eX − 1−X

)
ξ
∣∣ ≤ 2.3 ǫ2 eǫ

2 (
Eξ6

)1/6
, (B.138)

∣∣
E

(
eX − 1−X − X2

2

)
ξ
∣∣ ≤ 2 ǫ3 eǫ

2 (
Eξ8

)1/8
. (B.139)

Proof. Define

R(t)
def
= E

{(
etX − Ek(tX)

)
ξ
}
.

Obviously R(0) = R′(0) = . . . = R(k−1)(0) = 0 . The Taylor expansion of order k yields

∣∣R(1)
∣∣ ≤ 1

k!
sup
t∈[0,1]

|R(k)(t)|.

Further,

R
(k)(t) = E(Xk ξ etX ) .

Consider first the case |ξ| ≤ 1 a.s. By the Cauchy-Schwarz inequality, (B.133) of

Lemma B.37, and (B.135), it holds for any t ∈ [0, 1]

|R(k)(t)|2 ≤ E|X|2k E e2tX ≤ C2kǫ
2ke2ǫ

2

.
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For a general ξ , in a similar way, it holds with ρ = k/(k + 1)

|R(k)(t)|2 ≤ E(|X|2kξ2) E e2tX ≤
(
E|X|2k+2

)ρ(
Eξ2k+2

)1−ρ
E e2ǫ

2

≤ C
2ρ
k+1ǫ

2ke2ǫ
2 (
Eξ2k+2

)1−ρ
,

and (B.137) follows.

This result with ξ = 1 yields an approximation EeX ≈ 1 +EX +EX2/2 and with

ξ = X an approximation E(XeX) ≈ EX +EX2 .

Lemma B.40. Let a random variable X satisfy E exp(µX) ≤ exp(µ2ǫ2/2) for all µ

with some ǫ2 > 0 . Then

∣∣
EeX − 1−EX −EX2/2)

∣∣ ≤ 2ǫ3eǫ
2

,

∣∣
E(XeX)−EX −EX2)

∣∣ ≤ 5ǫ3eǫ
2

.

Proof. The first bound follows from (B.139) with ξ ≡ 1 . Further, (B.135) for k = 3

implies EX6 ≤ 96ǫ6 and (B.138) with ξ = X yields the second bound.

Now we specify the obtained bounds for two scenarios. Let f be a function on Rp .

First we consider a symmetric 3-tensor T which can be viewed as third order derivative

of f at some point x and define X = T (γD) for γD ∼ N (0,D−2) .

Lemma B.41. Let T be a symmetric 3-tensor T satisfying (Γ ) and γD ∼ N (0,D−2) .

Consider the set U from Lemma B.37. Then all the statements of Lemma B.37 and

Lemma B.39 continue to apply with X = T (γD) and ǫ
def
= 3 τ r2‖v‖ . In particular, it

holds for any µ and any integer k

EU eµT (γD) ≤ exp
(
µ2ǫ2/2

)
,

EU |T (γD)|2k ≤ C2kǫ
2k , Ck = 2k+1k! .

Proof. Condition (Γ ) ensures that the gradient of T (D−1u) is uniformly bounded by

ǫ = 3 τ r2‖v‖ on the local set U ; see Lemma B.35. This enables the statements of

Lemma B.37 and Lemma B.39.

For the second scenario, let δ(u) be the third order remainder in the Taylor expansion

of f(x+ u) at a fixed point x :

δ(u)
def
= f(x+ u)− f(x)− 〈∇f(x),u〉 − 1

2
〈∇2f(x),u⊗2〉 (B.140)

and consider δ(γD) . In this case we assume that f satisfies the following condition.
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(Γ3) For some Γ and τ3 > 0 , it holds for any u ∈ U = {u : ‖Γu‖ ≤ r} ,

|〈∇3f(x+ u),u⊗3
1 〉| ≤ τ3 ‖Γu1‖3, u1 ∈Rp.

Banach’s characterization Banach (1938) yields for any u1,u2,u3 ∈Rp

∣∣〈∇3f(x+ u),u1 ⊗ u2 ⊗ u3〉
∣∣ ≤ τ3 ‖Γu1‖ ‖Γu2‖ ‖Γu3‖ ; (B.141)

see Lemma B.34.

Lemma B.42. Let a function f satisfy (Γ3) and γD ∼ N (0,D−2) . Define v by

v2 = D
−1Γ 2

D
−1 . Then all the statements of Lemma B.37 and Lemma B.39 continue to

apply with X = δ(γD) for δ(u) from (B.140) and ǫ
def
= τ3 r

2‖v‖/2 .

Proof. Define δ̃(u) = δ(D−1u) . Note that D
−1u ∈ U means ‖ΓD−1u‖ = ‖vu‖ ≤ r .

We only have to check that condition (Γ3) implies with ǫ = τ3 r
2‖v‖/2

sup
u : ‖vu‖≤r

‖∇δ̃(u)‖ = sup
u : ‖vu‖≤r

‖D−1∇δ(u)‖ ≤ ǫ.

Indeed, the Taylor expansion at u = 0 yields by ∇δ(0) = 0 and ∇2δ(0) = 0

‖D−1∇δ(u)‖ ≤ sup
‖w‖=1

〈∇δ(u),D−1w〉 = sup
‖w‖=1

〈∇δ(u)−∇δ(0) −∇2δ(0)u,D−1w〉

=
1

2
sup

‖w‖=1
〈∇3δ(tu),u⊗ u⊗ D

−1w〉

By (B.141)

‖D−1∇δ(u)‖ ≤ 1

2
sup

‖w‖=1
〈∇3δ(tu),u⊗ u⊗D

−1w〉 ≤ τ3
2

sup
‖w‖=1

‖Γu‖ ‖Γu‖ ‖ΓD−1w‖

≤ τ3
2
r2 sup

‖w‖=1
‖vw‖ =

τ3
2
r2 ‖v‖

as required.

B.8 Local Laplace approximation

This section presents the bounds on the error of local Laplace approximation. Let f(x)

be a function in a high-dimensional Euclidean space Rp such that
∫
ef(x) dx = C <∞ ,

where the integral sign
∫

without limits means the integral over the whole space Rp .



104 Estimation for SLS models: finite sample guarantees

Then f determines a distribution Pf with the density C−1ef(x) . Let x∗ be a point of

maximum:

f(x∗) = sup
u∈Rp

f(x∗ + u).

We also assume that f(·) is at least three time differentiable. Introduce the negative

Hessian F = −∇2f(x∗) and assume F strictly positive definite. Moreover, implicitly we

assume that the negative Hessian F = −∇2f(x∗) is sufficiently large in the sense that

the Gaussian measure N (0, F−1) concentrates on a small local set U . This allows to use

a local Taylor expansion for f(x∗;u) ≈ −‖F 1/2u‖2/2 in u on U . For this local set U ,

we evaluate the quantity

♦ def
=

∣∣∣∣

∫
U ef(x

∗+u)−f(x∗) du−
∫
U e−‖F1/2u‖2/2 du∫

e−‖F1/2u‖2/2du

∣∣∣∣ .

As x∗ = argmaxx f(x) , it holds ∇f(x∗) = 0 and

♦ =

∣∣∣∣

∫
U ef(x

∗;u) du−
∫
U e−‖F1/2u‖2/2 du∫

e−‖F1/2u‖2/2du

∣∣∣∣, (B.142)

where f(x;u) is the Bregman divergence

f(x;u) = f(x+ u)− f(x)−
〈
∇f(x),u

〉
. (B.143)

Our setup is motivated by Bayesian inference. Assume for a moment that

f(x) = ℓ(x)− ‖G(x − x0)‖2/2

for some x0 and a symmetric p -matrix G2 ≥ 0 . Here ℓ(·) stands for a log-likelihood

function while the quadratic penalty ‖G(x − x0)‖2/2 corresponds to a Gaussian prior

N (x0, G
−2) . Let also D2 def

= −∇2ℓ(x∗) > 0 . Then

F = −∇2f(x∗) = −∇2ℓ(x∗) +G2 = D2 +G2. (B.144)

With decomposition (B.144) in mind, define

D2
G = F = D2 +G2 , v2

def
= D−1

G D2D−1
G ,

Also, given r , define the local set U as

U =
{
u : ‖Du‖ ≤ r

}
. (B.145)
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Assume that f(·) be a four times continuously differentiable function on Rp . We fix

a local region around x∗ given by the local set U ⊂ Rp from (B.145). Consider the

remainder of the second and third order Taylor approximation

δ3(u) = f(x∗;u)−
〈
∇2f(x∗),u⊗2

〉
/2,

δ4(u) = f(x∗;u)−
〈
∇2f(x∗),u⊗2

〉
/2−

〈
∇3f(x∗),u⊗3

〉
/6,

where f(x;u) is given by (B.143). We will use the decomposition

f(x∗;u) = −1

2
‖D−1

G u‖2 + δ3(u) = −1

2
‖D−1

G u‖2 + T (u) + δ4(u), (B.146)

where T (u) = 〈∇3f(x∗),u⊗3〉/6 is the third order tensor corresponding to the third

derivative in the fourth order Taylor expansion for f(x∗;u) . For ease of notation, we

skip dependence of T , δ3 , and δ4 on x∗ .

Introduce the following conditions.

(D∗

3
) For some τ3 > 0 ,

sup
x : x−x∗∈U

|〈∇3f(x),u⊗3〉| ≤ τ3
6
‖Du‖3, u ∈Rp .

(D4) For some τ4 > 0 and the local set U from (B.145),

|δ4(u)| ≤
τ4
24

‖Du‖4, u ∈ U .

Expansion (B.146) allows to represent the error ♦ from (B.142) as

♦ =

∫
U ef(x;u) du−

∫
U e−‖DGu‖2/2 du∫

e−‖DGu‖2/2du
= EU

[{
exp δ3(γG)− 1

}]
,

where γG ∼ N (0,D−2
G ) and EU ξ means E{ξ 1I(γG ∈ U)} .

Proposition B.43. Assume (D∗

3
) , (D4) . Then with ǫ = τ3 r

2‖v‖/2 , v2 = D−1
G D2D−1

G ,

σ2G = ET 2(γG) , and δ4,G = EU δ24(γG) , it holds

∣∣∣♦− σ2G
2

∣∣∣ ≤ σG δ4,G +
δ24,G
2

+
5

3
ǫ3eǫ

2

, ♦ ≤ 1

2
(σG + δ4,G)

2 +
5

3
ǫ3eǫ

2

. (B.147)

Moreover,

δ4,G ≤ 1

24
τ4
{
tr(v2) + 3‖v2‖

}2
, (B.148)

σG ≤
√

5

12
τ3 ‖v‖ tr(v2) . (B.149)
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Moreover, with σ1,G = E|T (γG)|

∣∣
EU T (γG) g(γG)

∣∣ ≤ σ1,G ≤ σG ≤
√

5

12
τ3 ‖v‖ tr(v2) .

If g(u) is centrally symmetric, g(u) = g(−u) , then EU {T (γG) g(γG)} = 0 .

Proof. We start with a technical assertion.

Lemma B.44. Assume (D∗

3
) and (D4) . Then for any g with supu∈U |g(u)| ≤ 1 ,

∣∣∣EU
{(

eδ̂3(γG) − 1− δ̂3(γG)−
δ̂23(γG)

2

)
g(γG)

}∣∣∣ ≤ 5

3
ǫ3eǫ

2

, (B.150)

and with σ1,G = EU |T (γG)| , σG =
√
EU T 2(γG)

EU
∣∣δ̂3(γG)− T (γG)

∣∣ = EU
∣∣δ̂4(γG)

∣∣ ≤ δ4,G ,

EU
∣∣δ̂23(γG)− T 2(γG)

∣∣ ≤ 2σG δ4,G + δ24,G .
(B.151)

Proof. Condition (D∗

3
) enables us to apply Lemma B.42 with X = δ̂3(γG) and k = 3 .

This yields (B.150). Further, by (D4) and Lemma B.1

EU δ
2
4(γG) ≤ τ24

242
E‖DD−1

G γ‖8 ≤ τ24
242

{
tr(v2) + 3‖v2‖

}4

and (B.148) follows. As δ̂3(γG) = T (γG) + δ̂4(γG) , it holds

EU |δ̂3(γG)− T (γG)| = EU |δ̂4(γG)| ≤
√
EU δ̂24(γG) ≤

√
EU δ24(γG) ,

and by δ̂4(γG) = δ4(γG)−EU δ4(γG)

EU
∣∣δ̂23(γG)− T 2(γG)

∣∣ ≤ 2EU
∣∣δ̂4(γG)T (γG)

∣∣+EU δ̂
2
4(γG)

≤ 2

√
ET 2(γG)EU δ̂24(γG) +EU δ̂

2
4(γG) ≤ 2σG δ4,G + δ24,G ,

and (B.151) follows as well.

Now we are prepared to finalize the proof of the proposition. As EU δ̂3(γG) = 0 ,

(B.150) with g(·) ≡ 1 and (B.151) imply (B.147). The use of (B.130) from Lemma B.36

with τ = τ3/6 yields

EU |T (γG)| ≤
√
EU T 2(γG) ≤

1

6

√
15τ23 ‖v‖2 tr2(v2)

and (B.149) follows as well.
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B.9 Deviation bounds for Bernoulli vector sums

Let Yi be independent Bernoulli(θ∗i ) , i = 1, . . . , n . We denote Y = (Yi) ∈ Rn .

Weighted sums of the Yi naturally appear in various statistical tasks including classifi-

cation, binary response models, logistic regression etc. Recent applications include e.g.

stochastic block modeling; see e.g. Gao et al. (2017), Abbe (2018) and references therein,

or ranking from pairwise comparison Chen et al. (2022) among many others. We show

how the general bounds of Section B.4 can be used for vector sums of Bernoulli r.v.s.

For a linear mapping Ψ : Rn → R

p , define ξ = Ψ(Y − EY ) . Below we state some

deviation bounds on the squared norm ‖ξ‖2 starting from the univariate case.

B.9.1 Weighted sums of Bernoulli r.v.’s: univariate case

Given a collections of weights (wi) , define

S =

n∑

i=1

Yiwi ,

V 2 = Var(S) =

n∑

i=1

θ∗i (1− θ∗i )w
2
i ,

w∗ = max
i

|wi|.

First we state a deviation bound for a centered sum S −ES .

Proposition B.45. Let Yi be independent Bernoulli(θ∗i ) and wi ∈ R , i = 1, . . . , n .

Then S =
∑n

i=1 Yiwi satisfies

logE exp
{λ(S −ES)

V

}
≤ λ2, λ ≤ log(2)V

w∗ . (B.152)

Furthermore, suppose that given x ≥ 0 ,

V ≥ 3

2
w∗√x . (B.153)

Then

P

(
V −1|S −ES| ≥ 2

√
x
)
≤ 2e−x. (B.154)

Without (B.153), the bound (B.154) applies with V replaced by Vx = V ∨ (3w∗√x /2) .
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Proof. Without loss of generality assume w∗ = 1 , otherwise just rescale all the weights

by the factor 1/w∗ . We use that

f(u)
def
= logE exp

{
u(S −ES)

}
=

N∑

i=1

[
log
(
θ∗i e

uwi + 1− θ∗i
)
− uwiθ

∗
i

]
.

This is an analytic function of u for |u| ≤ log 2 satisfying f(0) = 0 , f ′(0) = 0 , and,

with υ∗i = log θ∗i − log(1− θ∗i ) ,

f ′′(u) =
N∑

i=1

w2
i θ

∗
i (1− θ∗i ) e

uwi

(θ∗i e
uwi + 1− θ∗i )

2
=

N∑

i=1

w2
i e

υ∗

i +uwi

(eυ
∗

i +uwi + 1)2
=

N∑

i=1

θi(u)
{
1− θi(u)

}
w2
i

for θi(u) = eυ
∗

i +uwi/(eυ
∗

i +uwi+1) . Clearly θi(u) and thus, θi(u)
{
1−θi(u)

}
monotonously

increases with u and it holds for θ∗i = θi(0)

θi(u)
{
1− θi(u)

}
≤ e|u| θ∗i (1− θ∗i ) ≤ 2 θ∗i (1− θ∗i ), |u| ≤ log 2.

This yields

f(u) ≤ V 2 u2 |u| ≤ log 2.

As x ≤ 4V 2/9 , the value λ =
√
x fulfills λ/V =

√
x/V ≤ log 2 ≤ 2−1/2 . Now by the

exponential Chebyshev inequality

P

(
V −1(S −ES) ≥ 2

√
x

)
≤ exp

{
−2λ

√
x+ f(λ/V )

}

≤ exp
(
−2λ

√
x+ λ2

)
= e−x.

Similarly one can bound ES − S .

B.9.2 Deviation bounds for Bernoulli vector sums

Now we present an upper bound on the norm of a vector ξ = Ψ (Y −EY ) , where Ψ is

a linear mapping Ψ : Rn →R

p . It holds

Var(ξ) = Var(ΨY ) = Ψ Var(Y )Ψ⊤.

We aim at bounding the squared norm ‖Qξ‖2 for another linear mapping Q : Rp →R

q .

Theorem B.46. Let Yi ∼ Bernoulli(θ∗i ) , i = 1, . . . , n . Consider ξ = Ψ(Y − EY ) ,

and let V 2 ≥ 2Var(ξ) . Define

w∗ = max
i≤n

‖V−1Ψ i‖ , g = log(2)/w∗ .



109

Then with B = QV 2Q⊤ and zc(B, x) from (B.56), it holds

P

(
‖Qξ‖ ≥ zc(B, x)

)
≤ 3e−x.

Proof. We apply the general result of Corollary B.17 under conditions (B.46). For any

vector u , consider the scalar product 〈V−1ξ,u〉 = 〈V−1Ψ (Y −EY ),u〉 . It is obviously
a weighted centered sum of the Bernoulli r.v.’s Yi − θ∗i with

Var〈V−1ξ,u〉 ≤ ‖u‖2/2.

One can write with εi = Yi − θ∗i and ε = (εi)

〈V−1ξ,u〉 =
〈
ε,Ψ⊤

V

−1u
〉
.

By the Cauchy-Schwarz inequality, it holds

‖Ψ⊤
V

−1u‖∞ = max
i

∣∣(V−1Ψ i)
⊤u
∣∣ ≤ w∗‖u‖.

Bound (B.152) of Proposition B.45 on the exponential moments of 〈V−1ξ,u〉 implies

logE exp
{
〈V−1ξ,u〉

}
≤ ‖u‖2/2, ‖u‖ ≤ log(2)/w∗ .

Therefore, (B.46) is fulfilled with g = log(2)/w∗ . The deviation bound (B.55) of Corol-

lary B.17 yields the assertion.
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