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Abstract: This paper presents the second part of the two-part survey series on decomposition-
based evolutionary multi-objective optimization where we mainly focus on discussing the literature re-
lated to multi-objective evolutionary algorithms based on decomposition (MOEA/D). Complementary
to the first part, here we employ a series of advanced data mining approaches to provide a compre-
hensive anatomy of the enormous landscape of MOEA/D research, which is far beyond the capacity
of classic manual literature review protocol. In doing so, we construct a heterogeneous knowledge
graph that encapsulates more than 5, 400 papers, 10, 000 authors, 400 venues, and 1, 600 institutions
for MOEA/D research. We start our analysis with basic descriptive statistics. Then we delve into
prominent research/application topics pertaining to MOEA/D with state-of-the-art topic modeling
techniques and interrogate their sptial-temporal and bilateral relationships. We also explored the col-
laboration and citation networks of MOEA/D, uncovering hidden patterns in the growth of literature
as well as collaboration between researchers. Our data mining results here, combined with the ex-
pert review in Part I1, together offer a holistic view of the MOEA/D research, and demonstrate the
potential of an exciting new paradigm for conducting scientific surveys from a data science perspective.

Keywords: Multi-objective optimization, decomposition, data mining, topic modeling, network
analysis, data visualization.

1 Introduction

In the first part of this survey series, we have developed a major methodological landscape of decomposition-
based evolutionary multi-objective optimization (EMO), particularly multi-objective evolutionary al-
gorithm based on decomposition (MOEA/D) [1], from the perspective of a domain expert with more
than 15 years’ experience. While our survey in Part I adheres to a systematic literature review (SLR)
protocol developed in [2], this approach, despite its thoroughness in terms of a methodological rigor,
has yet to capture the comprehensive landscape across thousands of relevant articles. Several aspects
remain unexplored, for instance:

? What types of interdisciplinary research have been facilitated by MOEA/D?

? What are the emerging trends pertaining to MOEA/D research and its applications?

? How are the research agendas in MOEA/D linked with each other or applications?

Moreover, for audiences who are relatively new to this field, they might also be interested in the
following question:

? What are the most active researchers or most prestigious venues in the MOEA/D community?

1The article of Part I can be downloaded from this link, while the Appendix file can be found in this link. Code is
available at this link
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Figure 1: The flowchart of the text mining framework underpinning our survey. It is a closed-loop
process where human experts’ feedback will be fed back into data collection, data cleaning, and topic
modeling steps to improve the quality of text mining results.

Step 1. Data collection: To identify relevant articles for this survey, we conducted a comprehensive
search across nine divserse academic databases including ScienceDirect, IEEE Xplore,
ACM Digital Library, Springer, Wiley, Taylor & Francis, Scopus, Web of Science,
as well as PMLR. Additionally, we leveraged three major search engines: Google Scholar,
Semantic Scholar, and CiteSeerX. Due to copyright protection from the major publishers,
instead of accessing PDFs, our information retrieval protocol primarily involved retrieving rele-
vant abstracts containing a range of search terms in various combinations. These terms included
hmulti-fidelity optimization, multi-level optimization, multi-discipline optimization, multi-source
optimizationi, hevolutionary algorithm, genetic algorithm, swarm intelligence, meta-heuristicsi,
hBayesian optimization, bandit optimizationi.

Step 2. Data cleaning : To curate the data collected in Step 1, we undertook a meticulous data clean-
ing process. This involved the removal of invalid articles, specifically those lacking content or
abstracts. Additionally, we excluded articles with extremely short abstracts, defined as those
containing fewer than 10 words.

Step 3. Topic modeling : To explore latent themes within the collected documents, we employed BERTopic [20],
a Transformer-based topic modeling tool, for creating dense clusters of topics. As shown in Fig. 1,
the topic modeling process consists of five steps. Each document is first transformed into an
embedded representation using the Sentence-BERT framework [21]. The document embeddings
then undergo dimensionality reduction through UMAP [22]. The reduced dimensions facilitate
document clustering via HDBSCAN [23]. Subsequently, topics are tokenized, and topic representa-
tions are extracted from the document clusters using a customized TF-IDF approach [24]. Lastly,
these extracted topics are fine-tuned using maximal marginal relevance [25] and part-of-speech
tagging in KeyBERT [26].

Step 4. Human insepction and feedback : Last but not the least, the generated analysis will undergo a
thorough inspection by human experts. Their valuable feedback will be fed back into each of
the previous three steps, thereby fine-tuning the text mining outcomes.

2.2 Text Mining Results

In this section, we present a detailed discussion of the analysis results derived from our text mining
framework. We begin by summarizing key statistics and patterns observed in the MFO literature.
This is followed by an exploration of the specific topics identified through our topic modeling process.
The insights gained from these exploratory analyses have been instrumental in shaping the structure
of this survey paper, and we aim to elucidate how they inform and guide the content in the subsequent
sections.
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Figure 1. High-level schematic workflow of our data-driven literature survey.

There are many more such inquiries whose exploration can be very important for charting fu-
ture research trajectories. For instance, understanding major applications can be a springboard for
catalyzing new research challenges, while insights into the methodological evolution can equip re-
searchers and practitioners from various disciplines with the knowledge pertinent to state-of-the-art
algorithmic advancements. Nonetheless, given the daunting volume of literature within the niche of
decomposition-based EMO, comprehensively synthesizing this body of work exceeds the capacity of
any individual human expert and is susceptible to subjective biases [3].

In the past decade and beyond, we have seen an influx of exploratory analysis approaches for dif-
ferent forms of data, which significantly facilitate research in a wide range of disciplines. For example,
topic modeling [4] from the natural language processing (NLP) community has assisted in extracting
latent topics from large-scale text corpora like tweets on climate change [5] or hotel reviews [6]. Com-
munity detection [7] developed for complex networks are able to identify groups of individuals in social
networks [8] or functional regions in brains [9]. More recently, the proliferation of large language mod-
els (LLMs) [10] has demonstrated unparalleled capability in performing labor-intensive tasks like data
annotation [11] and wrangling [12] as well as text summarization [13]. Meanwhile, scholarly databases
like Web of Science (WoS), Scopus and Semantic Scholar have incorporated tremendous amount of
bibliographic entries with enriched metadata such as abstracts, publication venue and year, author
information, and citation data, to name a few. This deluge of digital data on scholarly, combined
with the abundance of data mining approaches, provides unprecedented opportunities not only for
conducting large-scale mapping of the research landscape pertaining to specific domains [14–17], but
also to uncover important patterns characterizing the structure and evolution of science [18–22].
� Contributions: Bearing the above consideration in mind, in Part II, we developed an end-to-
end workflow for conducting a data-driven literature review, a bold step forward beyond conventional
SLR approaches. This workflow, sketched in Fig. 1, leverages a broad collection of data mining
tools—from descriptive statistics and data visualization to advanced NLP techniques, network science
approaches, and machine learning (ML) algorithms. We merged, processed, and structured diverse
bibliographic data for 5, 400+ papers, 10, 000+ authors, 1, 400+ venues and 1, 600+ institutions in the
decomposition-based EMO community as a heterogeneous knowledge graph, and applied this workflow
to obtain an atlas of the research landscape by a series of dedicated retrospective analysis. Specifically:

• Section 2 introduces our data collection protocol, including the data sources, selected papers
and the metadata relevant to our data analysis. Further, we also delineate the methods for data
cleaning and the construction of the bibliographic knowledge graph. All these constitute the
foundation for the subsequent analyses.

• By using the constructed knowledge graph, Section 3 conducts a general analysis of MOEA/D
research on the trends and distributions of publications, venues, authors, and research disciplines.

• In Section 4, we systematically explore the underlying research topics and applications in
MOEA/D literature by analyzing paper contents using topic modeling. We also interrogate
the sptial-temporal distribution of these topics and interrogate their relationships with each
other.
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• In Section 5, we offer a complementary perspective for discovering research topics by exploring
communities in the citation network of MOEA/D research. Further, we explore the evolution-
ary dynamics of this network as well as the disruptiveness of research. Additionally, we employ
a main path analysis to identify landmark studies.

• In Section 6, we investigate several intriguing properties of the collaboration network of
MOEA/D researchers. We also identify the most active researchers in the community, and
explore the collaboration pattern among them.

Our data-driven workflow is further aided by EMO experts, wherein the results are iteratively
validated and curated to align with their expertise via a human-AI collaboration paradigm.
È Related works: While such practices have also been seen in some survey papers on other fields
(e.g., [14–17]), they are either at ‘narrow’ breadth (e.g., focusing on a single type of data analysis) or
‘shallow’ depth (e.g., employing simple or out-dated methods). For instance, [14] and [17] restricted
their reviews to citation network analysis, while [16] relied solely on topic modeling. [15] adopted both
types of analysis, but they only reported basic network metrics and used non-negative matrix factor-
ization for the topic model, which has been significantly outperformed by recent deep learning-based
approaches [4]. In contrast, our literature mining workflow incorporates four analytical perspectives
(see Fig. 1), each supported by a collection of state-of-the-art techniques.

In a another line, data-driven discovery in scholarly literature, often discussed under terms like
‘science of science’, ‘scientometrics’, or ‘bibliometrics’ [18–22], explores the characteristics of scientific
research itself. We note that these works are orthogonal to our aim, as they primarily focus on
general patterns, such as the sociology, psychology, economics, and information flow associated with
science. Our work, in contrast, delves into the specific research landscape of decomposition-based
EMO, MOEA/D in particular, offering a targeted exploration of this field. Beyond this, we also aim
to embark on a paradigm shift for carrying out scientific surveys as a data science.

2 Data Collection

This section describes our data collection method and the construction of MOEA/D knowledge graph.

2.1 Candidate Study Identification

2.1.1 Data sources

Here we used the WoS for a systematic literature search and data extraction. WoS’s extensive database
encompasses > 91M entries from 22, 171 sources, including journals and conferences, and > 500
publishers. This range covers well-known publishers such as IEEE, ACM, Elsevier, and Springer, as
well as smaller but renown ones in computer science like PMLR and OpenReview. Choosing WoS is
motivated by its diverse coverage and the quality of its metadata, a factor that has led to its frequent
selection as the data foundation in many SLRs [23–25]. Note that unlike other works that directly
scrape data from the web interface of WoS, we employed the WoS API Expanded. This approach
ensures better reproducibility and flexibility, particularly critical for the large-scale data acquisition
required by our study.

2.1.2 Search strategy

While traditional SLRs often use a combination of keywords and Boolean operators to identify relevant
studies, our work aims to construct a comprehensive overview of the MOEA/D research landscape.
Therefore, we initially included all papers that cited Zhang and Li’s seminal MOEA/D paper [1]. Our
rationale is that papers citing [1] are likely to either apply or extend MOEA/D, compare it with other
EMO methods, or discuss it within a broader EMO context. We deemed all such papers, including
those that only mention [1], as valuable for our analysis to accurately position MOEA/D within the
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entire EMO community. This initial filtering yielded a total of 5, 606 works indexed by WoS as of
March 2024, forming our set of candidate papers for further analysis.

u Remark 1

The citation count for MOEA/D reported in WoS is lower than that found in other databases, such
as Semantic Scholar (6, 729) or Google Scholar (8, 636). This discrepancy is primarily due to the broader
inclusivity of the latter databases, which index a wider array of publication types, including arXiv preprints,
patents, theses, and technical reports. While these sources increase the citation count, they may be less
reliable nor relevant for our analysis, potentially introducing noise into the dataset. Therefore, they were
excluded from consideration in this study.

2.2 Paper filtering

To ensure a comprehensive and unbiased analysis, our goal is to retain as many of the obtained
candidate papers as possible, excluding them only for compelling reasons. To this end, we established
the following five exclusion criteria:

✘ The paper is not written in English.

✘ Duplicated papers.

✘ The length of the paper is less than four pages (e.g., short or work-in-progress papers like GECCO
Companion).

✘ Books, keynote records, non-published, workshop papers, and non-peer-reviewed manuscripts.

✘ Extended journal version of a conference paper.

u Remark 2

We refrained from applying any exclusion criteria based on citation counts, as there is no universally
accepted threshold for defining an ‘influential paper’. Implementing such a criterion could inadvertently
introduce publication bias into our results.

In summary, after applying these criteria, the final selection of papers was determined, comprising
5, 404 papers published between 2007 and 2024.

2.3 Metadata Extraction and Wraggling

At the heart of our data-driven analysis lies a corpus of high-quality meta-features for each paper,
which can be leveraged by data mining techniques to reveal latent patterns. We compiled a set of 13
meta-features from diverse sources, deemed essential for our analysis, as listed in Table 1.

2.3.1 General purpose features

WoS itself offers a wealth of metadata for each paper (refer to F1-F11), and we empirically found that
its data quality significantly surpasses that of other databases like Semantic Scholar. For instance,
Semantic Scholar exhibits a high rate (nearly 40%) of missing data in critical fields such as author
affiliations and paper abstracts and lacks detailed information like keywords or subject categories. In
contrast, only 113 out of the 5, 404 papers in our dataset from WoS had missing fields.

Nonetheless, the raw metadata requires careful preprocessing before it can be analyzed, particularly
for fields like affiliations and venue names. Given the extensive volume of data and the tasks’ low
requirement for advanced human cognition, we utilized GPT-4-0125-preview to review the dataset
and create scripts for data correction2. This process was supervised and validated by one of the
authors.

2All the prompts used in this paper are available in Appendix A.
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Table 1. Paper meta-features considered in this survey.

ID Meta feature Source

F1 Authors WoS
F2 Institutions WoS
F3 Year WoS
F4 Title WoS
F5 Publication venue WoS
F6 Publication type (Journal or Conference) WoS
F7 Author keywords WoS
F8 Web of Science subject category WoS
F9 Publisher WoS
F10 Number of citations WoS
F11 Number of pages WoS

F12 Country Eng.†

F13 Citation context SS‡

† Eng. implies engineered features. ‡ SS stands for Semantic Scholar.

• For author affiliations, we provided GPT with a list of unique affiliation names, requesting the
model to identify and correct potential duplicates that resulted from varied spellings of the same
institution or use of abbreviations.

• For publication venues, we asked GPT to inspect the names of conference proceedings, and
standardize them to a canonical format (e.g., Proc. of the 2015 Genetic and Evol. Computation
Conference → GECCO).

2.3.2 Geographical locations

We also identified the geographical regions of each paper (i.e., F12), a feature not directly available
from WoS. We engineered this feature by extracting the country name from the author addresses
provided by WoS. A document is attributed to a country if at least one author reports an affiliation
within that country. Consequently, a paper with multiple authors may be associated with multiple
countries.

2.3.3 Citation context

In addition, to analyze the authors’ intent when citing MOEA/D, we extracted citation contexts from
each paper (F13), using the Semantic Scholar S2ORC dataset [26]. Each citation context consists of
three parts:

• Citation statement: e.g., the sentence containing the in-text citation from the citing article.

• Citation context: e.g., the sentences before and after the citation statement.

• Location of the citation in the citing article: e.g., Introduction, Methods, Results.

Below is an exemplar citation statement. Note that such statements are available only for papers
that are open-access or from publishers partnered with Semantic Scholar. This accounts for 3, 561
papers in our dataset. Given that a single paper may cite MOEA/D multiple times, this results in a
total of 4, 675 citation statements.

× A Sample Citation Statement

“These algorithms had applied into benchmark problems. Among all these variants only MOEA/D [1],
MOEA/D-DD [4], MOEA/D-DU [8], MOEA/D-UR [16], and MOEA/D-URAW [17] had given the com-
parative results. For this reason, only the results belonging to these 5 algorithms has been reported on the
paper . . . ” — Section: Results
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Figure 2. An illustration of the MOEA/D knowledge graph, containing 5 types of entities and 7 types of relationships.

2.4 MOEA/D Knowledge Graph Construction

We then synthesized all metadata into a bibliographic knowledge graph, as illustrated in Fig. 2. Unlike
traditional co-author or citation networks that focus solely on relationships between a single type of
entity, our approach constructs a heterogeneous network. This network encompasses 5 types of entities,
represented as vertices. For simplicity, we use initial capital letters to denote these entity types, and
n,m, q, r, k to denote the total number of entities for each type, respectively:

1. Authors, A = {ai}1≤i≤n.

2. Venues, V = {vi}1≤i≤m.

3. Papers, P = {pi}1≤i≤q.

4. Institutions, I = {ii}1≤i≤r.

5. Topics, T = {ti}1≤i≤k.

We extracted the distinct authors, venues, and institutions using the paper metadata outlined
in Table 1. At this stage, we utilized WoS subject categories (F8) to represent topics. Further
refinement and exploration of topics through advanced modeling techniques are discussed in Section 4.
This process resulted in a comprehensive set of entities: n = 10, 532 authors, m = 432 venues,
q = 5, 404 papers, r = 1, 661 institutions, and k = 98 topics, representing a broad and diverse research
landscape. Each entity count reflects a careful curation to ensure accuracy and relevance in our
knowledge graph.

We then established 7 types of relationships between these entities to elucidate the intricate inter-
connections within the MOEA/D research community.

1. Citation relations (paper ⇒ paper), EPP = {eij |pi, pj ∈ P}. We use Semantic Scholar API to
extract the citation data. Citation relations in the network are directed, starting from the cited
paper to the citing paper.

2. Collaboration relationships (author ⇔ author), EAA = {eij |ai, aj ∈ A}. We say that two authors
are connected if they have co-authored at least one paper. The strength of this link is the number
of co-authored papers, weighted by the inverse number of the authors in each paper [27]:

SAA(ai, aj) =
∑

p∈Paij

1

np
, (1)

where Paij is the set of papers co-authored by ai and aj , and np is the number of authors in
paper p.

3. Authorships (paper ⇒ author), i.e., EPA = {eij |pi ∈ P, aj ∈ A}.
4. Affiliation relationships (author ⇒ institution), i.e., EAI = {eij |ai ∈ A, ij ∈ I}.
5. Publication relationships (paper ⇒ venue), i.e., EPV = {eij |pi ∈ P, vj ∈ V}.
6. Topic relationships (paper ⇒ topic), i.e., EPT = {eij |pi ∈ P, tj ∈ T }. Each paper can belongs

to multiple topics.
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7. Interdisciplinary relations (topic ⇔ topic), i.e., EPT = {eij |pi ∈ P, tj ∈ T }. We say two topics
are connected if they co-occur in the same paper, and the strength of this link is defined as the
Jaccard similarity coefficient of the set of papers that contain each topic:

STT (ti, tj) =
|Pti ∩ Ptj |
|Pti ∪ Ptj |

, (2)

where Pti = {p ∈ P|ti ∈ p}.

Finally, we construct the bibliographic knowledge graph formally as a triplet G = ⟨V,E, F ⟩, where

• V = VA
⋃
VV

⋃
VP

⋃
VI

⋃
VT represents the set of vertices, i.e., authors, venues, papers, insti-

tutions, and topics.

• E = ⟨EPP , EAA, · · · ⟩ denotes the set of edges, indicating various types of relationships among
these entities.

• F = ⟨F1, F2, . . . ⟩ encompasses the attributes of each vertex, such as ‘publication year’ for papers,
‘paper counts’ for authors, and ‘country’ for institutions, among others.

This knowledge graph is heterogeneous, reflecting the diversity of entities and relationships; directed,
indicating the directionality of relationships; and attributed, capturing the characteristics of each entity.
It essentially comprises all the information necessary for conducting the comprehensive analysis that
unfolds in the remaining sections of this survey.

3 General Data Analysis

In this section, we provide a general overview of the knowledge graph constructed in Section 2, while
more advanced analysis based on network mining and topic modeling will be presented in the follow-up
sections.

3.0.1 Publication trends

The histogram in Fig. 3(A) depicts the annual distribution of publications related to MOEA/D. The
first follow-up works on MOEA/D appeared in 2008, with the number of publications experiencing a
significant upward trend thereafter, surpassing 100 publications in 2013, reaching 500 by 2019, and
nearing 800 in 2023. The data exhibit an average annual growth rate of 40.50%. Note that data for
2024 are not included in this analysis, as complete statistics are not yet available at the time of this
writing. Additionally, the cumulative number of publications, also depicted in Fig. 3(A), closely follows
a quadratic growth trend, evidenced by a coefficient of determination R2 = 0.999. This suggests that
the MOEA/D research community can expect the continuation of a robust growth trend, with an
increasing number of papers anticipated to address further challenges in the field.

u Remark 3

The publication date considered in this analysis refers to the official date when the work is listed on the
publisher’s website with an assigned digital object identifier. However, it is not uncommon for many studies
to be available as citable pre-prints before their formal publication. As a result, discrepancies may arise
between different data sources.

3.0.2 Researcher involvement

Fig. 3(B) shows the annual count of authors involved in MOEA/D publications and its cumulative
distribution. These plots echo the trends observed in Fig. 3(A). Notably, since 2017, over 1, 000
researchers have contributed to MOEA/D research annually, and the total number of researchers
exceeded 10, 000 earlier 2024. The cumulative distribution of researchers follows a quadratic trend
(R2 = 0.998), suggesting an ongoing increase in the number of researchers joining this community.
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3.0.3 Publication venues

Fig. 3(E) presents the most prevalent venues for MOEA/D publications, while the inner ring of
Fig. 3(D) illustrates the distribution by type. We can see that journals are the primary publication
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Figure 5. Placeholder for disruptiveness plot.

venue, accounting for 76% of all publications. Among these, Appl. Soft. Comput, IEEE Trans. Evol.
Comput., and Swarm. Evol. Comput. have the highest number of publications. Conferences and
symposiums represent the remaining 24%, led by CEC, GECCO, and EMO. Although Evol. Comput.
(26 papers) and PPSN (39 papers) are well recognized within the community, their publication counts
are relatively low, placing them outside the top ranks.

Moreover, the diversity of venues extends beyond the evolutionary computation community into
other computational intelligence domains such as IEEE Trans. Fuzzy Syst., IEEE Trans. Intell.
Transp. Syst., IEEE Trans. Geosci. Remote Sens., and IEEE Trans. Neural Netw. Learn. Syst..
These indicate an interdisciplinary research landscape of MOEA/D. To have a better visualization
of domain diversity, Fig. 3(C) categorizes publications across various subject areas within the WoS.
While this provides a coarse-grained categorization, a more elaborated topic modeling is discussed in
Section 4.

3.0.4 Geographical regions

We visually mapped the geographical distribution of MOEA/D research authors in Fig. 4. From this
diagram, we observe that research on MOEA/D is particularly active in China, which accounts for over
half of the total researchers in this field. Following China, the United States, the United Kingdom,
India, and Spain are among the top contributors to MOEA/D research. This pattern underscores not
only the dominance of specific nations but also a broad, global engagement with MOEA/D research,
spanning 82 countries across all the major continents.

3.0.5 Citation intents

By analyzing citation statements (F13) as described in Section 2, we were able to infer the underlying
intentions behind each citation of MOEA/D, contingent on the availability of citation statements.
While the classification of citation intents has been the subject of previous studies (e.g., [28, 29]), it
is only with the recent advancements in LLMs that we have seen a notable increase in classification
performance [30]. Inspired by this, we prompted GPT-4 to annotate the 4, 675 citation statements we
gathered into four distinct categories, which are illustrated in the outer ring of Fig. 3:

• Background: Approximately a quarter of the citation statements mentioned MOEA/D in the
background section, providing historical context, justifying significance, or offering other infor-
mation directly related to [1].

• Method: Nearly 40% of the citations referred to MOEA/D as their main methodology. These
papers often focus on applying EMO in other disciplines.

• Extension: Another 26% of the citations claim to extend the original MOEA/D framework,
introducing new features, capabilities, or adaptations.

• Comparison: The remaining 12% of the citations conducted performance comparisons with
MOEA/D, often to benchmark new methods or improvements.

4 Topic Modeling

To uncover prevalent research trends within the MOEA/D domain from our constructed knowledge
graph, we utilized topic modeling [4], a technique from the NLP domain, to cluster papers based on
textual analysis of their titles and abstracts. These sections typically offer concise summaries of a
paper’s focus and contributions, making them ideal for extracting thematic insights. Topic modeling
on academic papers has been effectively used across diverse fields, including information systems [31],
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computer systems [15], transportation research [16], software engineering [32], healthcare [33]. How-
ever, existing works predominantly applied probability-based topic models like non-negative matrix
factorization (NMF) [34] and latent Dirichlet allocation (LDA) [35], which fall short of capturing the
nuanced semantic similarities between papers, and suffer from poor scalability when handling large
text corpora [36].

In recent years, bidirectional encoder representations from transformers (BERT) [37] and its vari-
ants (e.g., [38–40]) have achieved significant advancements in generating vector representations of
texts which incorporate their inherent semantic meanings. Leveraging these contextual representa-
tions, more advanced topic models have been developed by examining the distances between the
paper’s vector representations in the embedding space [41–43]. They offer a leap in topic coherence,
diversity, and scalability compared to traditional models [36].

In this work, we adopted BERTopic [41], a well-established embedding-based topic modeling frame-
work, combined with the state-of-the-art text embedding models and the power of LLMs, as well
as expert consultations, to offer the first detailed scrutiny of the enormous research landscape of
MOEA/D.

4.1 BERTopic Framework Implementation

A high-level overview of the BERTopic framework is shown in Fig. 6, which consists of five building
blocks connected in a sequential workflow, where each can be implemented with different methods.

4.1.1 Input documents

While existing practices typically use either paper titles or abstracts as input documents for the
topic models, here we combine i): titles, ii): abstracts, and iii): keywords, to incorporate more
comprehensive information. Additionally, it has been recently shown that instruction fine-tuning by
providing further descriptions on the type, objective, and domain of the task can help the model’s
reasoning and tailor the generated embeddings to specific downstream tasks [44]. We thus input the
source text corpora for each paper as follows, taking [45] as an example:

� Textual Information for Embedding

“represent the paper on multi-objective optimization for topic modeling: title: ‘an evolutionary many-
objective optimization algorithm based on dominance and decomposition.’ keywords: ‘decomposition,
evolutionary computation, many-objective optimization, pareto optimality, constrained optimi . . . ’ ab-
stract: ‘achieving balance between convergence and diversity is a key issue in evolutionary multiobjective
optimization . . . ’.”

4.1.2 Document embedding

The first step in the BERTopic framework is to embed the input documents to create representations
in vector space, where documents of similar topics will lie close to each other. For this purpose, we
adopt voyage-2-large model from VOYAGE AI, which can generate better embeddings compared
to traditional models under the Sentence BERT (SBERT) framework [46] or other commercial models
like the text-embedding-3-large from OpenAI on various sentence embedding tasks [47]. This will
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then enable BERTopic to perceive more nuanced details in the paper contents and generate more
accurate topics.

4.1.3 Dimensionality reduction

The embeddings generated by voyage-2-large are in a 1, 565-D space, rendering the concept of spatial
locality ill-defined. In other words, due to the curse of dimensionality [48], distance measures will be-
come approximately the same, posing challenges for clustering algorithms. To address this, BERTopic
first compresses the obtained embeddings to a low-dimensional space via dimensionality reduction.
We adopt UMAP [49] as it is more computationally efficient than other methods like t -SNE [50].

4.1.4 Document clustering

We then identify topics by clustering the reduced embeddings using HDBSCAN [51], which can find clus-
ters of varying densities via a hierarchical clustering approach. It can also handle noises as outliers and
does not force unrelated papers to be assigned to any cluster, thereby improving topic representations.

4.1.5 Topic representation

After obtaining clusters of paper, BERTopic then generates a topic in natural language using a class-
based variation of TF-IDF [52]. Additionally, as we will see later, for many interdisciplinary topics
(e.g., hyperspectral imaging), it is still challenging for general readers to understand the topic even
with TF-IDF keywords. In light of this, we further employed GPT-4 to generate a concise and easily
understandable summary for each topic by providing it with TF-IDF representation, paper titles, and
examplar abstracts.

In practice, we iteratively fine-tuned the instructions in Step 1) and conducted model selection
and hyperparameter tuning for Steps 2) to 5). We also closely collaborated with domain experts in
different fields during this process. Their expertise and feedback were incorporated into the framework
via the zero-shot modeling capability of BERTopic.

By applying this pipeline, BERTopic eventually identified 83 distinct research topics, with 20%
papers identified as outliers. We plot the generated keywords along with their relative frequencies
using wordclouds map shown in Figs. 9 and 10. Here, topics are ranked by their sizes, where T0 is the
largest one while T82 is the smallest. From the wordclouds, it is clear that each topic represents some
coherent area of research, which demonstrates the effectiveness of BERTopic in capturing themes in
the MOEA/D literature. GPT summarizations of these topics are available in Appendix B.

Utilizing wordclouds and low-dimensional visualization of the paper embeddings (see Fig. 8), we
categorize the MOEA/D research topics into two main types: methodological enhancements and
extensions (40 topics), and application-driven research (43 topics). The former encompasses studies
focusing on refining and advancing MOEA/D methodologies, while the latter includes works applying
the method across various domains. Each type is further subdivided into distinct themes, with the
hierarchical structure of these themes illustrated in Fig. 7.

u Remark 4

Outliers in the context of topic modeling do not necessarily imply the papers are of low quality or irrelevant
to our survey. Instead, it may suggest a paper is lying in a mid-region between two or more topics in the
semantic space. Although outliers can be reduced or eliminated by adjusting the hyperparameters of the
clustering algorithm, this will lead to less coherent topics, and the same is true for using overlapping
clustering methods. We thus allow a reasonable amount of outliers in our results.

u Remark 5

The size of the topics here should be interpreted with caution. One reason for this is the presence of
outliers, which implies that we should more focus on the relative sizes of the topics. In addition, since this
paper is routed in the EMO field, we tuned BERTopic to zoom in more into the methodological topics,
while maintaining only a bird-view of the application topics. This is why T0 and T1 are larger than T2 and
T3.
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Figure 7. Hierarchical structure of the BERTopic topics.

4.2 Methodological Topics

The methodological topics pertains to the general family of MOEAs, which consists of five themes.

4.2.1 MOEA/D

Topics under this research theme have been thoroughly reviewed in Part I of this survey series. Many
follow-up works on MOEA/D fall into T2 [53–55], which is the largest topic in the methodology section.
While the T2 is more like a general one, we noticed that several topics mentioned in Part I formed
independent groups, e.g., weight vectors settings (T24), archives (T47), estimation of distribution
methods (T50), and penalties (T53).

4.2.2 General MOEA

This theme covers various topics that are concerned by the broader EMO community, such as perfor-
mance indicators (T19 and T39), parallelization (T36), knee points (T48), robust optimization (T57),
visualization (T79), etc. We also identified groups of papers focusing on exploring the dominance rela-
tionships (T43) as well as seeking balances between convergence and diversity (T42). In addition, there
are several topics pertaining to NSGA-II [56] and NSGA-III [57]. They often cite MOEA/D for com-
parison purposes. This consolidates the rationality of our paper selection protocol in Section 2. Note
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Figure 8. Low-dimensional visualization of the MOEA/D literature landscape by projecting the paper embeddings using
UMAP. Papers are colored and labeled by BERTopic topics. Outliers are shown in light gray. Advanced topics discussed
in Part I are circled.

that having seemingly unrelated papers would not introduce issues to topic modeling, as BERTopic is
able to identify them as isolated topics. In contrast, the inclusion of such papers is beneficial for a
bird-view of the whole EMO community and pinpointing the position of MOEA/D. Finally, we make
notes about T3, the general MOEA topic. It primarily contains survey papers and guidance/notes on
MOEAs. Within it there are also software and tools that implement a large number of MOEAs (e.g.,
Pymoo [58] and PlatEMO [59])

4.2.3 Advanced topics

The next theme incorporates various advanced contents covered in Part I. Notably, constrained MO
(T4), surrogate modeling (T6), preference-based and interactive MO (T7 and T13), dynamic MO (T9)
are among the most popular methodological topics. In addition, we also noticed emerging interests
including multi-modal MO (T16), transfer learning and multi-tasking (T33), as well as large-scale MO
(T40) and objective reduction (T44). For detailed discussions on these topics, we refer the readers to
Part I.

4.2.4 Swarm intelligence

Another line of research that has been gaining traction is the swarm-based methods, which has also
been covered in Part I. In particular, this line is led by particle swarm optimization (T5, e.g., [60–62]).
Another related topic includes whale optimization (T31, e.g., [63]), artificial ant/bee colony (T32,
e.g., [64–67]), immune algorithms (T52, e.g., [68]), and grey wolf optimizers (T81, e.g., [69]).
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Figure 9. Wordcloud map for the BERTopic topics (part 1, word size indicates frequency).

4.2.5 Benchmark test problems

The final theme in the methodological section is about classic MOPs. Among them, multi-objective
knapsack problem (T10, e.g., [70]) is the most popular one, followed by multi-objective traveling
salesman problems (T15, e.g., [71]). Then, we have a dedicated topic for multi-objective benchmarking
and test problems (T26, e.g., [72]). There are also works on multi-objective quadratic assignment
problems (T82, e.g., [73]).

4.3 Applications

In addition to the methodological advancements, topic modeling uncovers a diverse spectrum of
MOEA/D applications, which can be grouped into three thematic realms.

4.3.1 Operations research

A huge portion of MOEA/D applications are in essence planning, scheduling, or routing problems
that are concerned in operations research (OR), while these topics themselves may stem from different
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domains. For instance, ▶ the planning & scheduling topics are associated with various engineering
problems (e.g., [74–76]) like flow-shop (T1) and supply chain (T64) scheduling, and there are also
portfolio selection problems from the finance domain (T18, e.g., [77]), software project scheduling
from the software engineering domain (T65, e.g., [78]), as well as weapon target assignment problem
from military OR (T41, e.g., [79]). On the other hand, ▶ the set of routing problems, e.g., [80], involve
different types of vehicles, from robotics (T34) and cars (T14), to UAVs (T62) and aircrafts (T54), and
even satellites (T66).

4.3.2 Engineering

MOEA/D has also been widely applied in various real-world engineering scenarios. For instance, ▶
assisting the design of analog circuit (T21) and antenna (T23) in electronics engineering (e.g., [81]), ▶
optimizing wireless sensors, devices (T12, T17) and communication networks (T56, T71) in communi-
cation engineering (e.g., [82–84]), as well as ▶ facilitating various types of engineering shape design
problems (T25, T28, T46, T70, e.g., [85–87]).
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4.3.3 Computer science

In the recent decade, with the advancements in both hardware and algorithms, the computer science
(CS) domain has also seen a surge in MOEA/D applications. This is especially true for ML, where the
most prominent examples are multi-objective neural architecture search (T11, e.g., [88]) and multi-
objective feature selection (T20, e.g., [89]). In addition, for other ML tasks like clustering (T29, e.g.,
[90]), recommendation (T49, e.g., [91]), and reinforcement learning (RL, T68, e.g., [92]), considering
multiple conflicting objectives has also received growing attention.

4.4 Topics distribution over time

In this study, our interest is not confined to the spatial distribution of current research topics. We are
also interested in investigating the temporal dynamics of the research over time. While BERTopic offers
a method for dynamic topic modeling, challenges such as inaccuracies from unclassified papers (i.e.,
outliers) and the model’s limitations in addressing overlapping topics necessitate a tailored approach.
To overcome these issues, we manually crafted query strings based on paper abstracts to compile an
extended set of papers for each topic identified by BERTopic. This adjustment allows for papers to be
assigned to multiple topics, enhancing the granularity of our analysis. Then, we employed the method
in [93] to model the temporal distribution of topics, with a particular focus on the seven advanced
variants of MOs and applications of MOEA/D.
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4.4.1 Advanced research topics

Fig. 11 depicts the evolution of the seven advanced topics from 2008 to 2023, revealing a growth trend
consistent with the overall increase in publications, as previously shown in Fig. 3. Notably, topics
related to constrained MOPs (T4), preference-based MOPs (T7, T13, T48), and dynamic MOPs (T9) are
particularly prominent (Fig. 11A), collectively accounting for approximately 400 papers published in
2023. Even after adjusting for overlap, these topics contribute to 319 unique publications. Considering
the total publication count of about 800 in 2023, nearly 40% of the papers touch on at least one of these
topics, highlighting their significant interest within the community. Nonetheless, the relative share
of these three dominant topics has seen a decline over time, despite their growth in their absolute
numbers (Fig. 11(A), right). This shift can be attributed to the emergence and growth of other topics
such as surrogate-assisted MO (T6), multi-modal MO (T16), multi-task MO (T33), and large-scale MO
(T40, T44), indicating a diversification in research interests.

4.4.2 General trend on applications

We then take a look at Fig. 11(B), which shows the trends for 3 general MOEA/D application domains.
We found that while the number of publications all underwent a steady growth, the pace has been
faster for the computer science domain ever since 2012, which is in line with the rapid development
of ML in the past decade. This surge is contrasted by a proportional decline in engineering-focused
applications, although the OR domain has sustained a consistent proportion of publications. However,
we note that as discussed before, many topics under OR actually stem from engineering domains. This
nuance suggests that the observed shift may not truly reflect a departure from traditional engineering
applications but rather highlight the expanding diversity and interdisciplinary nature of MOEA/D
applications.

4.4.3 Top-10 application topics

Fig. 12(A) illustrates the evolution of the top-10 application topics of MOEA/D, among which energy
(T0), flow-shop shceduling (T1), and community detection (T8) are the most prevalent ones. In partic-
ular, we can see that applications in the energy sector have increased dramatically in the past decade,
which can be regarded as part of the global efforts to advance sustainable development goals (SDGs)
of the United Nations. Other popular application topics include neural networks design (T11), wireless
sensor network optimization (T12), vehicle routing (T14), edge computing (T17), portfolio selection
(T18), feature selection (T20), analog circuits design (T21), and resorvior management (T22).

4.4.4 Emerging application topics

We also identified 5 most emerging application topics of MOEA/D, as ranked by their annual growth
rate in publications since 2018. Note that several topics appeared in Fig. 12(A) also exhibit high
growth rates, but here we adhere to ones that are relatively new to the community. From the results
in Fig. 12(B), we can see that RL (T68) has been the most rapidly growing application of MOEA/D,
whose publications have increased by nearly 4× in the past two years. Further, with the maturity
and commercialization of UAV technologies, applications of MOEA/D in this domain (T62) have
also gained attention since 2020. In addition, for some traditional domains, e.g., structral (T25)
and mechanical (T46) design, as well as product line scheduling structral (T38), we also observed a
significant increase in the number of publications in the past several years.

Finally, an interesting aspect of the temporal distribution is the noticeable ‘pause’ or decline in
the growth trends of topics illustrated in Fig. 11(A) and Fig. 12(A) during 2020, likely attributed to
the disruptions caused by the COVID-19 pandemic. Despite this setback, the growth trends showed a
robust recovery starting from 2022 onwards. Interestingly, this pandemic-induced impact appears less
pronounced in the broader trends shown in Fig. 11(B). This resilience may stem from the inclusion of
a wide array of topics, which contributes to the overall resilience against fluctuations in specific areas
of research.
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Figure 13. Chord diagram showing the linkages between different sectors of research themes in the MOEA/D landscape.
This is determined via keyword co-occurrence in paper abstracts. A thicker chord indicates a stronger linkage between two
topics. Direction of the linkages is only for enhanced readability. Linkages with strengths below ϵ = 0.15 (equation (2))
are masked.

4.5 Topic Linkages

The extended overlapping paper set for topics also provides a useful lens to analyze the linkages
among major themes of research in the MOEA/D landscape following equation (2). We present the
results as a chord diagram in Fig. 13. Starting with the general MOEA/D topic , we observe strong
connections with nearly all other topics, encompassing both methodological studies and real-world
applications. This demonstrates the broad impact of MOEA/D across various areas. Moving counter-
clockwise along the circle are the 7 advanced variants of MO, showing their primary associations with
applications in addition to their connections with the core MOEA/D theme.

Specifically, constrained MO is the most prevalent among the 7 variants, drawing significant
attention across all major application domains. Preference-based MO shows a strong presence
particularly in CS , OR , and power engineering . Note that the absence of preference incorporation
in other domains simply indicates its relative emphasis falls below a certain threshold, ϵ = 0.15.
Similarly, dynamic MO demonstrates robust linkages with all application fields, aligning with our
earlier observation of a dominant and increasing interest in these three topics. Regarding the remaining
four MO variants, their connections with CS are notably strong, except for multi-modal MO .
Furthermore, multi-task MO is also prominent in OR , and many engineering design tasks adopt
surrogate modeling .

We also observed the intertwining between different application domains. For instance, many
studies within power engineering essentially tackle planning and scheduling problems traditionally
addressed in OR . There is also close relationship between power engineering and the broader field of
electrical engineering (EE) , highlighted by a prominent chord connecting the two topics. In addition
to these, topics on NSGA and swarm optimizers are also shown to be linked with many topics in the
diagram, but with a much weaker strength, as our survey is focused on MOEA/D. We also explore
topics related to performance indicators in MO, which mainly interacts with methodological themes.
Additionally, the subject of robustness and uncertainty in MO has attracted interest across both
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Figure 14. General pattterns for MOEA/D citation networks. (A) The growth of the network nodes and edges from
2008 to 2024. (B) The average degree of the network each year. (C) Cumulative distribution of the number of citations
of each paper within the network. (D) The number of new citations of a paper per year as a function of the citation it
has already collected.

methodological and application domains.

5 Citation Network Analysis

While in Section 4, topic modeling based on advanced NLP and ML techniques has provided one-of-
a-kind bird-view of the entire research landscape of MOEA/D, it treated each paper as an isolated
entity. However, scientific publications are inherently interconnected through citation networks, which
serve as channels for knowledge accumulation and dissemination. Citation network analysis [94] has
been extensively studied to understand the themes of research, to trace the evolution of fields, and to
identify or forecast influential works [18,95]. In this section, we conduct graph mining of the citation
relationships in our constructed knowledge graph to illuminate the MOEA/D research landscape from
four different perspectives.

5.1 Network Evolution

The MOEA/D citation network has experienced significant growth over the past decade. As shown
in Fig. 14(A), the network’s expansion adheres to the densification power law [96], with an exponent
α = 1.41, indicating an acceleration beyond linear growth (α = 1). This results in an increasing
average out-degree (expected citations within the network) over time as shown in Fig. 14(B), making
the network denser.

Despite this overall growth in network density, not all papers are equally likely to get new citations.
From Fig. 14(C), we find that the citation3 distribution among the network is highly skewed, which
also follows power law, with exponent α = 1.04. In particular, while the expected paper citation
grows over time, only approximately 6% papers garnered > 10 citations as of March 2024, merely
1% exceeded 100 citations, and only a handful of works received more than 1, 000 citations. Similar
patterns, known as scale-free networks [97], have also been observed for citation networks of other

3The citation index discussed throughout this section is defined as the out-degree of each node in the constructed
MOEA/D citation network. The value can thereby be lower than total citations of a paper.
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type-token ratio in paper titles and abstracts. Note that as the calculation of CD index requires information regarding
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domains [98]. We contend that there are the following three factors related to the polarization in the
paper citations.

Preferential citations. One well-known model that elucidates the degree accumulation mechanism
in scale-free networks is the preferential attachment [97]. This concept suggests that nodes newly
added to the network tend to connect with those already having a higher degree. Applied to the
citation network, this phenomenon is depicted in Fig. 14(D), where the annual increase in citations
for a paper is plotted against its existing citation count. It is evident that researchers are prone to
cite well-recognized articles over those less-cited ones, with a power law exponent of α = 0.876. This
bias towards more cited works underpins the scale-free structure of the MOEA/D citation network,
exemplifying the ‘rich-get-richer’ dynamic.

Knowledge obsolescence. While preferential attachment governs the creation of new citations, this
growth dynamics can be counterbalanced by other factors. One such example is known as knowledge
obsolescence [99], which suggests a tendency towards obsolescence for old knowledge. As a result,
the citation growth of the top-cited papers can slow down over time, and the distribution exhibits an
exponential cut-off [100], as can be observed in Fig. 14(C) for citation > 1, 000.

Competition. Another factor that constrains citations is the competition among papers on simi-
lar topics according to a fitness score [101]. This fitness reflects a paper’s perceived relevance and
attractiveness to the community.

5.2 Paper Disruptiveness

The significant growth of MOEA/D literature not necessarily equates to increased innovative knowl-
edge, as many papers may simply echo or refine established ideas rather than introducing disruptive
paradigms. To discern the disruptive nature of MOEA/D publications, we apply the CD index, a
metric devised by the scientometrics community [102]. This index evaluates a paper’s influence by
examining how its citations relate to those of its predecessors. A paper with a CD index approaching
1 is considered disruptive, indicating that subsequent work citing it tends not to cite its antecedents,
thereby marking a deviation from prior knowledge. On the other hand, a CD index near −1 signifies
a consolidating paper, which suggests later citations also acknowledge its precursors, thus reinforcing
existing research frameworks. Employing the CD index enables an assessment of whether MOEA/D
literature predominantly consolidates existing knowledge or serves as a catalyst for research innovation.

From the results shown on the left of Fig. 15, we find that MOEA/D research is becoming less
disruptive over time, with the CD index dropping from 0.54 in 2009 to 0.10 in 2022. This observation
also resonates with linguistic analysis, wherein the introduction of new words in paper abstracts
and titles is becoming less frequent, as indicated by the declining type-token ratio [103], measured
by unique/total words shown in Fig. 15 (Right). These observations are consistent with general
trends in the global scientific literature, and can be partially attributed to a dearth of ‘low-hanging
fruit’ [103,104].
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Figure 16. MOEA/D citation network visualized via a force-directed layout. Node size and color corresponds to the
PageRank centrality of each paper.

5.3 Community Structure

In addition to the evolutionary dynamics, MOEA/D citation network also reveals a highly modular
structure (see Fig. 16), i.e., papers are more densely connected to each other within each commu-
nity than those outside it. Such communities are often formulated based on three types of citation
relationships:

• Direct citation: It is the most direct relationship between papers, where the citing paper may
have utilized, built upon, or discussed the content of the cited one. It is the fundamental building
block of the evolution of science.

• Co-citation [105]: It occurs when two papers are simultaneously cited in one or more subsequent
papers, which indicates potential overlaps in research content or focus.

• Bibliographic coupling [106]: In contrast to co-citation, bibliographic coupling examines histor-
ical connections where two papers share common references, which establishes a similar back-
ground or context for two works.

Exploring citation communities within the MOEA/D domain offers a unique perspective, poten-
tially validating or complementing insights from our previous topic modeling efforts. To this end, we
first applied a community detection algorithm to examine the underlying structure of these commu-
nities. We then develop a compact visualization of the network with detected communities.

To identify communities within the citation network, we utilized the well-known Louvainmethod [107],
renowned for its iterative approach to optimizing modularity [108] by aggregating closely-knit com-
munities. The parameter resolution therein allows for adjusting the granularity of detected commu-
nities, enabling tailored analysis of the network’s structure.

When setting resolution as 3, the Louvain method identified 69 communities, comparable to the
number of topics obtained in the topic modeling. The results, depicted in Fig. 17, use a compressed
network visualization where each node corresponds to an identified community. These research themes
generally mirror those discovered through BERTopic. Furthermore, a detailed comparison of individual
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topics reveals substantial overlaps between papers grouped by both Louvain and BERTopic. For
instance, topics on preference, reference vectors, and knee points demonstrate Jaccard similarities of
0.77, 0.65, and 0.57, respectively, underscoring a high level of agreement between the two methods.

However, Louvain also outputs some communities that are seemingly very different from BERTopic.
For example, the largest community detected here is labeled as ‘nature-inspired algorithms’, which not
only covers topics like whale and wolf optimizers that are identified as independent topics previously,
but also incorporates other other ones such as salp swarm algorithm [109] and bat algorithm [110].
Another example is the communities regarding heuristics, combinatorial optimization, and hyper-
heuristics. Papers in these groups are often assigned to one of the application topics by BERTopic.
Also, some other topics mentioned in Part I, such as differential evolution, are also detected as
separate communities by Louvain.

Such difference between the results from BERTopic and Louvain primarily stems from their distinct
inherent mechanisms for evaluating paper similarities.

• Topic modeling in BERTopic leverages sentence embedding models to investigate semantic re-
semblances in paper content, which are generally trained on broad text corpora. This training
enables them to excel at identifying overarching themes, particularly application domains, by
capturing semantic similarities but might overlook nuanced methodological distinctions that
demand deep expertise.

• In contrast, community detection algorithms focus on the structural connections among papers,
and are good at identifying research streams or groups. These groups, though possibly divergent
in content, often converge on similar methodological concerns. This structural approach, how-
ever, may sacrifice the coherence of communities compared to the semantic richness captured by
topic modeling.

Albeit these differences, the results yielded by the two methods are largely consistent. By addi-
tionally considering the new topics identified here, we now have a more comprehensive view of the
MOEA/D research landscape.
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Figure 18. The most essential 40 nodes in the MOEA/D citation network. Node size is proportional to number of
citations, color indicates publication year. Edge width implies paper similarity based on co-citation and bibliographic
coupling. Paper information can be found in Appendix C.

5.4 Main Path Analysis

In addition to identifying communities within citation networks, another interesting line of work in
bibliometric analysis is to delineate the evolution of a field through the extraction of a main path from
the network. This main path aims to spotlight landmark studies and their interconnections [111–113].
However, given the intricate citation networks characteristic of domains such as MOEA/D, a singu-
lar path—or even variations like citation trees [21]—may not adequately represent the multifaceted
relationships among papers. While subgraphs featuring the most influential papers could potentially
depict more complex knowledge flows, their interpretability tends to diminish with an increase in the
number of edges.

To address these challenges, we propose a novel approach for main path analysis, which consists
of three key steps.

Identifying essential works. We first employ the ranking method proposed in [114] to identify a
group of the most influential papers in the citation network. It simultaneously considers: ▶ paper
citations relationships (i.e., number of citations, and whether the citing papers themselves are influen-
tial); ▶ author authority; and ▶ venue prestige during the ranking by leveraging the knowledge graph
described in Section 2. In addition, the dynamic nature of the network is also taken into account to
alleviate the bias to earlier, established works. It can thus provide more reasonable ranking results
compared to other ranking methods like Cite-Rank [115] and P-Rank [116].

Network trimming. We then extract a subgraph containing the most essential papers. We further
trim this subgraph by allowing papers that cite others to also ‘inherit’ their references, thereby elimi-
nating redundant connections to earlier works such as MOEA/D when they are already acknowledged
by the cited papers. By doing so, the network can better focus on paths that lead to new knowledge.

Edge weighting. To further enhance interpretability, we adopt the concept of co-citation and bibli-
ographic coupling introduced in Section 5.3 to assign weights to the edges in the obtained subgraph.
For each pair of papers, we count their co-citations and the Jaccard similarity of their set of references.
We then use the normalized sum of these two measures as the weight of the path between the two
papers, where a larger weight indicates higher relevance and similarity.

Fig. 18 illustrates the ‘backbone’ of the MOEA/D citation network extracted by our method,
which mainly comprises papers published in the 10 years after the inception of MOEA/D that have
established their influences. Over half of these works have been reviewed in Part I of this survey (see
Appendix C for detailed information). Overall we see that most works are built upon two foundational
works: MOEA/D in 2007 [1], and NSGA-III in 2014 [57, 117]. The presented studies do not exhibit
typical sequential patterns, but rather form a complex interwoven structure. A primary reason here is
that the MOEA/D literature is often closely related to the broader EMO domain, and thereby studies
in both areas are frequently connected. Notably, works by Prof. Hisao Ishibuchi, e.g., [118,119], often
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Figure 19. General pattterns for MOEA/D author collaboration networks. (A) Network growth during 2008 and 2024.
(B) Network diameter (largest connected component) and number of connected components each year. (C) Percentages
of nodes that can be reached within different numbers of hubs from the highest-degree node in the largest connected
component. (D) Distribution of the size of the connected components in the network, excluding the largest one. (E)
Cumulative distribution of author connections within the network. (F) Assortativity coefficient for author nationality
and primary research interest.

serve as bridges between different research streams. These works are usually based on well-motivated
purpose-built experiments that offer insights into the behavior of EMO algorithms and spark further
research.

6 Collaboration Network Analysis

In this section, we analyze the author collaboration network, another important component of the
MOEA/D knowledge graph. Similar to the previous sections, we begin by examining various network
metrics to illuminate the composition and evolution of the MOEA/D research community. Thereafter,
we spotlight the most active researchers in this domain and dissect their collaboration patterns.

6.1 Network Patterns

6.1.1 Network components

Fig. 19(B) also shows the evolving number of connected components within the network. We find
that the MOEA/D community is fragmented into a significant number of isolated research groups—
approximately 1, 000 at the end of 2023. These groups are predominantly small, with most comprising
< 5 researchers shown in Fig. 19(D), and they mainly focus on application-oriented research. The
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largest of these isolated groups includes 24 researchers. In contrast, the network’s main component
encompasses more than 5, 700 authors. This indicates a vast difference in scale and possibly in research
focus within the community.

6.1.2 Network growth and small world effect

As shown in Fig. 19(A), the MOEA/D community has been growing at an accelerated pace in recent
years, with a power-law exponent α = 1.06. This indicates that, as the network expands, the density
of connections between researchers intensifies, prompting the community to exhibit characteristics of
‘small-world’ networks [120]. A tangible example of this phenomenon is the stable network diameter d
shown in Fig. 19(B). Despite the network’s continual expansion, the diameter has remained constant at
approximately 14 since 2015, which is relatively short considering the scale of the network. Moreover,
as shown in Fig. 19(C), in the largest component, around 70% of authors can be reached within just 3
hops from the highest-degree node, and nearly all authors are within 5 hops. This compact connectivity
suggests that the MOEA/D research community is becoming increasingly cohesive, facilitating easier
access to collaborators and knowledge dissemination across the network.

6.1.3 Degree distribution

As depicted in Fig. 19(E), the degree distribution in the author collaboration network exhibits a highly
skewed pattern, similar to what is observed in citation networks. The majority of authors are connected
to only a small number of other researchers. These typically include students, who are most frequently
connected to their supervisors and immediate colleagues. This pattern, characterized by numerous low-
degree nodes, forms the foundational structure of the entire network, suggesting a significant presence
of tightly-knit research groups. Note that it is important to understand this distribution, because
it reflects on the hierarchical and potentially insular nature of collaborations within the community,
while also highlighting the pivotal role of more connected individuals in bridging disparate groups.

6.1.4 Mixing patterns

Another dimension of our investigation is to understand whether MOEA/D researchers prefer col-
laborating with others in their geographic region or those working on similar topics. Analysis of the
assortativity coefficients [121] in Fig. 19(F) shows an increasing trend over time for both geographical
and topical collaboration preferences. This suggests a growing inclination within research groups to-
wards more conservative collaboration patterns and focused areas of interest. While this may foster
in-depth exploration within established research domains, it is expected to promote broader inter-
disciplinary and cross-regional partnerships, which have been shown to infuse fresh perspectives and
foster innovation in a research community [122,123].

6.2 Active researchers

To identify the most influential authors within the MOEA/D community, we utilize Google’s PageRank
centrality [124], a metric widely acknowledged for its effectiveness in highlighting key figures in net-
worked environments such as citation networks [125]. To ensure a robust comparison, we complement
this with additional centrality measures as follows.

• Degree centrality: It reflects the quantity of an author’s connections within the community.
Authors with high-degree centrality are considered central figures. However, this may not fully
reflect the influence of an author since it overlooks the connection’s strength and quality.

• Weighted degree centrality: By factoring in the strength of collaborations, this measure offers a
nuanced measure an authors’ connections in the network. Yet, it still does not account for the
qualitative aspect of connections.
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Table 2. 50 Most active authors in the MOEA/D research community.

Author Name PageRank Degree w Degree #Citations #Papers Betweenness YoE

Zhang, Qingfu 3.5E−3 227 111.5 12, 329 150 5.9E−2 2007
Jin, Yaochu 2.0E−3 111 70.4 9, 019 94 2.1E−2 2008
Deb, Kalyanmoy 2.0E−3 108 53.0 9, 286 78 1.3E−2 2009
Ishibuchi, Hisao 2.0E−3 102 106.4 4, 249 150 1.3E−2 2009
Yang, Shengxiang 1.8E−3 118 59.2 3, 715 78 1.7E−2 2013
Gong, Maoguo 1.8E−3 112 57.6 3, 163 74 1.2E−2 2009
Tan, Kay Chen 1.7E−3 139 54.5 3, 146 72 2.8E−2 2011
Coello Coello, C. A. 1.7E−3 118 53.9 3, 192 83 3.4E−2 2010
Jiao, Licheng 1.7E−3 122 50.5 3, 242 64 3.4E−2 2009
Zhang, Jun 1.6E−3 138 44.8 3, 080 57 2.6E−2 2011
Wang, Rui 1.4E−3 93 41.5 2, 538 55 1.5E−2 2012
Yen, Gary G. 1.4E−3 76 38.2 3, 036 56 1.1E−2 2011
Wang, Ling 1.4E−3 95 38.1 1, 705 52 1.4E−2 2017
Lin, Qiuzhen 1.4E−3 78 53.2 1, 767 66 2.0E−3 2015
Zhang, Xingyi 1.2E−3 67 42.4 4, 698 54 4.5E−3 2015
Yao, Xin 1.1E−3 86 33.6 3, 821 45 1.6E−2 2011
Gao, Liang 1.1E−3 67 31.7 894 41 5.9E−3 2016
Li, Miqing 1.1E−3 74 34.2 3, 284 46 8.1E−3 2013
Gong, Dunwei 1.1E−3 86 29.7 1, 477 38 1.3E−2 2014
Zheng, Jinhua 1.0E−3 61 36.5 1, 297 46 3.1E−3 2013
Zhou, Aimin 1.0E−3 61 32.1 3, 119 45 8.5E−3 2008
Zou, Juan 1.0E−3 65 35.3 477 44 3.5E−3 2017
Tian, Ye 9.9E−4 57 36.0 4, 540 46 7.8E−3 2015
Liu, Hai-Lin 9.5E−4 38 31.3 1, 205 46 1.5E−3 2012
Nojima, Yusuke 9.2E−4 35 52.3 2, 381 72 2.9E−4 2009
Li, Ke 8.9E−4 53 26.7 2, 523 37 5.8E−3 2013
Liu, Jing 8.6E−4 53 22.9 889 34 5.4E−3 2013
Cai, Xinye 8.5E−4 62 27.4 1, 282 35 6.5E−3 2013
Zhang, Tao 8.3E−4 46 23.2 1, 223 31 5.2E−3 2013
Mirjalili, Seyedali 8.0E−4 58 16.0 5, 040 21 7.6E−3 2015
Gong, Wenyin 8.0E−4 38 23.8 369 32 1.6E−3 2015
Wang, Lei 7.9E−4 52 20.1 366 26 7.3E−3 2013
Das, Swagatam 7.7E−4 52 18.1 2, 083 25 6.7E−3 2011
Zhang, Mengjie 7.7E−4 40 22.3 626 31 2.8E−3 2017
Wang, Yuping 7.5E−4 34 21.7 459 32 3.7E−3 2008
Liu, Ruochen 7.2E−4 37 20.2 411 27 1.1E−3 2014
Cheng, Ran 7.1E−4 42 26.9 5, 017 35 1.0E−3 2015
Zhang, Kai 7.0E−4 52 18.4 558 24 3.7E−3 2015
Cao, Bin 7.0E−4 44 18.4 1, 587 23 2.2E−3 2017
Zhou, Mengchu 6.7E−4 54 17.2 1, 090 4 6.0E−3 2017
Li, Hui 6.7E−4 45 21.7 4, 719 30 1.1E−2 2008
Kwong, Sam 6.7E−4 47 19.4 2, 150 25 4.9E−3 2012
Ong, Yew-Soon 6.7E−4 49 19.7 1, 983 26 4.0E−3 2011
Fu, Yaping 6.6E−4 33 17.4 635 23 6.3E−4 2014
Fan, Zhun 6.5E−4 46 21.4 1, 093 27 2.9E−3 2014
Zhu, Zexuan 6.2E−4 63 19.3 785 24 9.4E−3 2015
Wang, Jiahai 6.2E−4 42 17.2 912 23 1.8E−3 2013
Zhou, Yuren 6.2E−4 29 22.1 934 31 1.7E−3 2017
Dai, Cai 6.2E−4 24 16.7 322 28 1.3E−3 2014
Wang, Handing 6.1E−4 42 17.9 1, 579 27 5.0E−3 2013
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Figure 20. Local community of top-50 active authors in the MOEA/D research community. Node size and color are
proportional to the author’s PageRank centrality and year of entry, respectively. Edge width implies collaboration
strength, as defined in Section 2.4.

• PageRank centrality: It adds a layer by valuing the quality of connections, recognizing authors
linked to well-regarded peers as more influential. Therefore, it pinpoints pivotal nodes within
the network.

• Betweenness centrality: It measures an author’s role as a knowledge broker, identifying those
who bridge diverse groups within the MOEA/D ecosystem.

These measures together enable a comprehensive assessment of author influence. They indicate not
only who is central but also who facilitates knowledge flow and community cohesion in MOEA/D
research. Table 2 presents the top-50 authors in the MOEA/D community, ranked according to various
centrality measures and bibliometric indicators. Notably, researchers with the highest PageRank
centrality are Qingfu Zhang, Yaochu Jin, Kalyanmoy Deb, Hisao Ishibuchi, and Shengxiang Yang.
These authors typically also ranked high by other metrics, and thereby play a crucial role in the
community. In particular, Prof. Qingfu Zhang, one of the co-authors of the seminal paper of MOEA/D,
dominates the rankings in all measures assessed.

We also visualize the collaboration network of these top-50 authors in Fig. 20. From this plot, we
find that they are closely connected to each other. Notably, within this network, cohesive local groups
are prevalent, with 26 4-cliques and 14 5-cliques. Notably, authors who serve as bridges between these
groups, such as Carlos A. Coello Coello and Kay Chen Tan, often have high betweenness centrality.
Central figures in the network, especially Qingfu Zhang, have strong collaborative ties with Hui Li,
Aimin Zhou, Kalyanmoy Deb, Ke Li, and Sam Kwong. Within the whole network, the strongest tie
is between Prof. Hisao Ishibuchi and Prof. Yusuke Nojima.

u Remark 6

As we only considered the collaboration network for this ranking, the results are only indicative of the
authors’ social connections in the community, and should not be considered as a measure of research impact
or academic reputation.

ì 27 / 35



Acknowledgment

This work was supported in part by the UKRI Future Leaders Fellowship under Grant MR/S017062/1
and MR/X011135/1; in part by NSFC under Grant 62376056 and 62076056; in part by the Royal
Society under Grant IES/R2/212077; in part by the EPSRC under Grant 2404317; in part by the Kan
Tong Po Fellowship (KTP\R1\231017); and in part by the Amazon Research Award and Alan Turing
Fellowship.

References

[1] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposi-
tion,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007. 1, 3, 9, 23

[2] D. Budgen and P. Brereton, “Performing systematic literature reviews in software engineering,”
in ICSE’06: Proc, of the 28th International Conference on Software Engineering. ACM, 2006,
pp. 1051–1052. 1

[3] D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, L. A.
Stewart, and P.-P. Group, “Preferred reporting items for systematic review and meta-analysis
protocols (prisma-p) 2015 statement,” Syst. Rev., vol. 4, no. 1, p. 1, 2015. 2

[4] R. Churchill and L. Singh, “The evolution of topic modeling,” ACM Comput. Surv., vol. 54, no.
10s, nov 2022. 2, 3, 9

[5] M. Falkenberg, A. Galeazzi, M. Torricelli, N. Di Marco, F. Larosa, M. Sas, A. Mekacher,
W. Pearce, F. Zollo, W. Quattrociocchi, and A. Baronchelli, “Growing polarization around
climate change on social media,” Nature Climate Change, vol. 12, no. 12, pp. 1114–1121, 2022.
2

[6] A. Ameur, S. Hamdi, and S. B. Yahia, “Sentiment analysis for hotel reviews: A systematic
literature review,” ACM Comput. Surv., vol. 56, no. 2, pp. 51:1–51:38, 2024. 2

[7] S. Fortunato and D. Hric, “Community detection in networks: A user guide,” Phy. Rep., vol.
659, pp. 1–44, 2016. 2

[8] P. Bedi and C. Sharma, “Community detection in social networks,” WIREs Data Mining Knowl.
Discov., vol. 6, no. 3, pp. 115–135, 2016. 2

[9] C. A. Brittin, S. J. Cook, D. H. Hall, S. W. Emmons, and N. Cohen, “A multi-scale brain map
derived from whole-brain volumetric reconstructions,” Nature, vol. 591, no. 7848, pp. 105–110,
2021. 2

[10] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Amatriain, and J. Gao, “Large
language models: A survey,” CoRR, vol. abs/2402.06196, 2024. 2

[11] Z. Tan, A. Beigi, S. Wang, R. Guo, A. Bhattacharjee, B. Jiang, M. Karami, J. Li, L. Cheng, and
H. Liu, “Large language models for data annotation: A survey,” CoRR, vol. abs/2402.13446,
2024. 2

[12] J. S. Huh, C. Shin, and E. Choi, “Pool-search-demonstrate: Improving data-wrangling
LLMs via better in-context examples,” in TPL’23: Proc. of the NeurIPS 2023
Second Table Representation Learning Workshop, 2023. [Online]. Available: https:
//openreview.net/forum?id=6Kb3pE9nWQ 2

[13] Y. Chang, K. Lo, T. Goyal, and M. Iyyer, “Booookscore: A systematic exploration of book-
length summarization in the era of LLMs,” in ICLR’24: Proc. of the 12th International Confer-
ence on Learning Representations, 2024. 2

ì 28 / 35

https://openreview.net/forum?id=6Kb3pE9nWQ
https://openreview.net/forum?id=6Kb3pE9nWQ


[14] J. S. Liu, L. Y. Lu, W.-M. Lu, and B. J. Lin, “Data envelopment analysis 1978–2010: A citation-
based literature survey,” Omega, vol. 41, no. 1, pp. 3–15, 2013. 2, 3

[15] S. Heldens, P. Hijma, B. van Werkhoven, J. Maassen, A. S. Z. Belloum, and R. van Nieuwpoort,
“The landscape of exascale research: A data-driven literature analysis,” ACM Comput. Surv.,
vol. 53, no. 2, pp. 23:1–23:43, 2021. 2, 3, 10

[16] L. Sun and Y. Yin, “Discovering themes and trends in transportation research using topic
modeling,” Transportation Research Part C: Emerging Technologies, vol. 77, pp. 49–66, 2017. 2,
3, 10

[17] J. J. Jeong, Y. Zolotavkin, and R. Doss, “Examining the current status and emerging trends
in continuous authentication technologies through citation network analysis,” ACM Comput.
Surv., vol. 55, no. 6, pp. 122:1–122:31, 2023. 2, 3

[18] S. Fortunato, C. T. Bergstrom, K. Börner, J. A. Evans, D. Helbing, S. Milojević, A. M. Petersen,
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