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Research on stochastic differential equations (SDE) involving both additive and mul-

tiplicative noise has been extensive. In situations where the primary process is driven

by a multiplicative stochastic process, additive white noise typically represents an in-

trinsic and unavoidable fast factor, including phenomena like thermal fluctuations,

inherent uncertainties in measurement processes, or rapid wind forcing in ocean dy-

namics. This work focuses on a significant class of such systems, particularly those

characterized by linear drift and multiplicative noise, extensively explored in the lit-

erature. Conventionally, multiplicative stochastic processes are also treated as white

noise in existing studies. However, when considering colored multiplicative noise,

the emphasis has been on characterizing the far tails of the probability density func-

tion (PDF), regardless of the spectral properties of the noise. In the absence of

additive noise and with a general colored multiplicative SDE, standard perturbation

approaches lead to a second-order PDE known as the Fokker-Planck Equation (FPE),

consistent with Fick’s law. This investigation unveils a notable departure from this

standard behavior when introducing additive white noise. At the leading order of

the stochastic process strength, perturbation approaches yield a third-order PDE,

irrespective of the white noise intensity. The breakdown of the FPE further signifies

the breakdown of Fick’s law. Additionally, we derive the explicit solution for the

equilibrium PDF corresponding to this third-order PDE Master Equation. Through

numerical simulations, we demonstrate significant deviations from outcomes derived

using the FPE obtained through the application of Fick’s law
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I. INTRODUCTION

Linear equations forced by both additive and multiplicative noises are prevalent in almost

every scientific discipline. In the general N -dimensional case (N -D), these equations reads

ẋ = −E · x+ f(t)−Ξ(t) · x (1)

where x := (x1, . . . , xN), E and Ξ(t) are N ×N matrices with constant and stochastic com-

ponents, respectively; f(t) is a multidimensional white noise with correlation, or diffusion

matrix given by D. As shown in1, the extension to an infinite (or continuous) vector space of

(1), leads to a general model that describes a large class of important physical phenomena

in fluid dynamics and in quantum mechanics. More in general, the model (1) represents a

random multiplicative process (RMP), a well-known mechanism that gives rise to power-law

behaviors. Widely employed as a model in various systems with both discrete and continuous

time, the RMP has been applied to phenomena such as on-off intermittency2–6 and general

intermittency (see Fig. 1) with power law statistics7,8, lasers9,10, economic activity11,12, fluc-

tuations in biological populations within changing environments13, and the advection of

passive scalar fields by fluids1,14. It is clearly a paradigmatic model for theories on large

fluctuations (e.g.,15 and references therein).

Therefore, the significance of the model (1) cannot be overstated.

For simplicity, this work focuses on the 1-D version of the model (1):

ẋ = −γx+ f(t)− ϵ xξ(t), (2)

which is the primary focus of most of the literature cited above. The extension to the N -

D case (1) of the formal results is straightforward yet somewhat intricate, as detailed in

Appendix A.

Thus, in (2) f(t) is a white noise with diffusion coefficient Df , ξ(t) is a Gaussian stochas-

tic process with zero average, finite correlation time τ̄ 16 and normalized autocorrelation

function φ(t) = ⟨ξ(t)ξ(0)⟩ξ/⟨ξ2⟩ξ. We use the notation ⟨...⟩ξ to indicate the average over

the realizations of the random process ξ(t), which is assumed at equilibrium. We also define

τ :=
∫∞
0

φ(u)du. The value of this integral can be much smaller than the decorrelation

time τ̄ , in those cases when the function φ(u) decays oscillating with time. Without loss of

generality, we assume that ⟨ξ2⟩ξ = 1. Thus, the intensity of the fluctuations in the stochastic
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perturbation is governed by ϵ. However, as demonstrated in Appendix B, the effective adi-

mensional perturbation strength is measured by the parameter δ := ϵτ . Strictly speaking,

a more appropriate definition of δ should be δ = ϵτ̄ . This is because the real parameter

that measures the perturbation strength in the approach illustrated in Appendix B, result-

ing in a series of cumulants, involves the correlation parameter τ̄ (as properly defined in

note16) instead of τ . Thus, for a more rigorous treatment, we should replace δ with δτ/τ̄

in all the analytical results presented hereafter. However, to avoid complicating the formal

expressions, we have chosen to stick with the current definition of δ.

The drift field −γx in the SDE (2) can also be interpreted as originating from the same

multiplicative stochastic process, when its average is equal to −γ/ϵ. If x(t) is intended as

the velocity of a Brownian particle, the SDE (2) has the important characteristic that it can

be considered as a continuous process realization of Lévy flights17 for some parameter range.
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FIG. 1. A representative example, illustrating the intermittent behavior, is depicted in the time

evolution of the amplitude x(t) for the SDE (2) with parameters τ = 0.5, ϵ = 5.0, γ = 2.0, Df = 0.5.

We will refer to f(t) in (2) as the internal or intrinsic noise. This terminology is apt as

it typically originates from intrinsic and unavoidable factors such as thermal fluctuations,

inherent uncertainty in measurement processes, or rapid wind forcing in the context of ocean

dynamics, among other possibilities.

As mentioned, the stochastic differential equation (SDE) (2) has been extensively studied

in the scientific literature. However, in almost all of these works, besides the additive noise
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f(t), the stochastic process ξ(t) has been considered as white noise. In cases where a

colored stochastic process ξ(t) has been considered, as in1, the focus of the work has been

on characterizing the far tail of the probability density function (PDF) of x, which, as we

will see hereafter, does not depend on the spectral properties of the multiplicative noise.

To the best of our knowledge, there are no papers that obtain a simple closed simple form

(i.e., not a formal result with infinite series of operators) for the equation of the PDF in

all its support range and the corresponding equilibrium solution. We will remedy this gap,

focusing on the case in which the δ parameter is small, and we will find surprisingly simple

results, but not fitting either the Fokker-Planck equation (FPE) structure or Fick’s law.

For an easy start, let us first assume that the intrinsic noise is absent.(i.e., f(t) = 0). In

this case it is easy to show that, regardless of the values of τ and ϵ, the Master Equation (ME)

for the PDF of x in (2) coincides with the following FPE (see Appendix B for simplicity, we

use the shorthand ∂y := ∂/∂y):

∂tP (x; t) =

{
γ∂xx+

δ2

τ
∂xx∂x x

}
P (x; t). (3)

This fact indicates that the process (2), with Df = 0, does not depend on the spectrum

(or color) features of the stochastic process ξ(t). Consistently, in the white noise limit, i.e.,

for τ → 0 and δ2/τ = ϵ2τ held constant, the FPE (3) remains unaltered and corresponds

to the standard FPE for SDEs with multiplicative white noise, under the Stratonovich

interpretation of Wiener process differentials.

The FPE (3) can also be rewritten as a conservative equation as

∂tP (x; t) = ∂xJ(x) (4)

with

J(x) :=
{
(γτ + δ2)x/τ +Dξ(x)∂x

}
P (x; t). (5)

where we have introduced the inhomogeneous diffusion coefficient,

Dξ(x) := δϵx2 = δ2x2/τ, (6)

characteristic of multiplicative noise. The interpretation of the terms appearing in Eq. (5)

is straightforward: in absence of internal noise (Df = 0 in (2)), the multiplicative stochas-

tic process generates an additional friction/drift term proportional to the intensity of the
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stochastic perturbation and an inhomogeneous diffusion process, proportional to the gra-

dient of the PDF (thus, following Fick’s law). The equilibrium PDF of (4) is obtained by

setting J(x) = 0 in (5), yielding P (x)eq ∝ x−(1+ γτ

δ2
), showcasing a singular behaviour (it is

non-integrable) around x = 016.

The introduction of an internal diffusion source effectively addresses this issue and is

physically plausible for many realistic models. In fact, by leveraging Fick’s law and including

the standard, constant diffusion coefficient Df in the current (5), we have

J(x) :=
{
(γτ + δ2)x/τ + (Dξ(x) +Df )∂x

}
P (x; t). (7)

The equilibrium PDF, obtained by setting J(x) = 0, is P (x)eq ∝ (Df + Dξ(x))
− 1

2(1+
γτ

δ2
).

which no longer displays a singular behavior around x = 0.

Note that for Dξ(x) ≫ Df , i.e., for x ≫
√
Dfτ/δ2, it behaves similarly to the previous

noiseless case. Thus, if there are no boundary conditions that constrain the variable x

to a finite range, the existence condition for the moments of x remains unaltered by the

introduction of this diffusive term.

We can say that the white noise f(t), corresponding to a diffusion process with a diffusion

coefficient Df , introduces a repulsion from the origin, preventing any path from getting

trapped at the x = 0 point once reached. While the introduction of such intrinsic noise in

multiplicative processes has been acknowledged by many researchers (see the same works

already cited above), however it has been not highlighted the fact that even though the two

fluctuating processes are assumed independent of each other, in effect their contributions

to the current J(x) of (4) don’t simply add up, unless the multiplicative process is a white

noise too. More precisely, in this work we will show that we have

J(x) =
{
(γτ + δ2)x/τ + (Dξ(x) +Df )∂x +DfDξ(x)ϑ∂

2
x

}
P (x; t) (8)

with ϑ, given in (20), having the dimension of time and coinciding with 2τ for γτ ≪ 1 and

with γ−1 for γτ ≫ 1. Thus, in this case the Fick’s law and the corresponding FPE structure

break down.

The last term on the right-hand side of (8), which invalidates Fick’s law, arises from two

factors: the finite time scale of the external stochastic perturbation (colored noise) and the

non-commutativity of its Liouvillian with the Liouvillian associated with the internal noise

(the standard diffusion operator). Specifically, when averaging over the external stochastic
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process, the expansion in cumulants of the PDF coincides with a power series of the adi-

mensional parameter δ (see Appendix B). In the second order (which is the leading one for

weak perturbations), these two factors yield, in the ME of the PDF of x, a correction to the

FPE obtained by applying Fick’s law. This correction is proportional to both δ and Df and

turns out to be a third-order partial differential operator on x.

This result is confirmed by the numerical simulations reported in Section III. We will

undertake a detailed derivation of this phenomenon in the next session. However, it’s crucial

to highlight that this departure from the standard FPE/Fick’s law is a general observation,

applicable beyond the linear drift case of (1), and always occurs when both additive noise

and multiplicative colored stochastic processes are present. For simplicity, here we focus

on the linear 1D case of (2), while a more in-depth exploration of these findings will be

presented in future works.

II. A THIRD ORDER PDE FOR THE PDF

Given the infinitely short time correlation of the additive noise f(t), to any realization

ξ(·) of the stochastic process ξ(u), 0 ≤ u ≤ t, from the SDE (2) we can write the following

Liouville equation for the PDF of x: Pξ(·)(x, t):

∂tPξ(·)(x, t)

= {La + ϵ ξ(t)LI}Pξ(·)(x, t), (9)

in which La is the unperturbed Liouville operator given by

La := γ∂xx+Df∂
2
x; (10)

and ϵ ξ(t)LI is the Liouville perturbation operator with:

LI := ∂xx. (11)

If the perturbing process ϵξ(t) is weak (characterized by small values of the δ parameter),

applying a perturbation projection/cumulant approach19–29 to Eq. (9), at the leading order

of δ, we formally obtain the following standard result for the reduced PDF of x (see see

Appendix B for details, note that hereafter P (x; t) := ⟨Pξ(·)(x, t)⟩ξ, where ⟨...⟩ξ is the average
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over the realizations of the stochastic process ξ(t); throughout this work we will consider

t≫ τ):

∂tP (x; t) = LaP (x; t) +
δ2

τ 2
LI

∫ ∞

0

duφ(u) L̃I(−u) P (x; t), (12)

where φ(t) is the normalized autocorrelation function of ξ(t), as defined in the Introduction,

and

L̃I(t) := e−LatLIe
Lat (13)

is the interaction representation of the perturbing Liouvillian LI . By exploiting the

Hadamard’s lemma for exponentials of operators we can also write

L̃I(t) = e−L×
a t[LI ] (14)

in which, for any couple of operators A and B, we have defined A×[B] := [A,B] = AB−BA.

In literature (e.g.30), eA×t [B] is called the Lie evolution of the operator B along A, for a

time t.

Because the perturbing Liouvillian LI of (11) is a first order differential operator, the

order of the differential operator corresponding to the second addend in the r.h.s. of (12) is

obtained by adding to one the order of differential operator of L̃I(−u). From Eq. (14), we

see that this latter is the result of the Lie evolution of LI along the unperturbed Liouvillian

La.

If the decay time of φ(u) is significantly shorter than 1/γ, we can safely assume the

approximation L̃I(−u) ≈ LI inside the integral on the r.h.s. of (12). Consequently, the ME

(12) effectively reduces to a FPE. However, when this is not the case, we must address the

challenge of evaluating the full Lie evolution of LI along La. In-depth exploration of this

topic, from a formal and general perspective, can be found in30. Specifically, Proposition 1

in30 is of particular relevance. For the simple 1-D case with linear drift, corresponding to the

present SDE (2), we can derive the Lie evolution of LI along the unperturbed Liouvillian

La in (14) as follows. From (14) we have

d

dt
L̃I(t) = −L×

a

[
e−L×

a t[LI ]
]
= −e−L×

a t [[La,LI ]] . (15)

By using (10) and (11), we get

[La,LI ] = [γ∂xx+Df∂
2
x , ∂xx] = 2Df∂

2
x (16)
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thus, Eq. (15) can be written as
d

dt
L̃I(t) =− 2e−L×

a t
[
Df∂

2
x

]
=− 2e−L×

a t
[
γ∂xx+Df∂

2
x − γ∂xx

]
= −2(γ∂xx+Df∂

2
x) + 2γL̃I(t) (17)

of which the solution is

L̃I(t) = ∂x x+Df
1− e2γt

γ
∂2
x. (18)

By using Eq. (18) into the ME (12), and exploiting again (10) and (11), we finally obtain

∂tP (x; t) =

{
γ∂x x+Df∂

2
x +

δ2

τ
∂xx∂xx+Dfδ

2ϑ

τ
∂x x∂

2
x

}
P (x; t)

= ∂xJ(x) (19)

with J(x) is given in (8) and the time ϑ defined as

ϑ :=
1

γτ
(τ − φ̂(2γ)) . (20)

The hat over a function indicates its Laplace transform: φ̂(s) :=
∫∞
0

duφ(u)e−su. The third

order PDE (19) with (20) is the main result of the present work. At the leading order

in powers of the δ parameter, Eq. (19) is exact, irrespective of the value of the diffusion

coefficient Df .

Thus, upon introducing the internal noise, alongside the standard diffusion process, an

additional mutual contribution is activated. As we can observe from (19), this mutual contri-

bution of the white internal noise and the external multiplicative stochastic process takes on

an odd nature in terms of partial derivatives. As previously emphasized in the Introduction,

we reiterate that the time parameter ϑ of (20) coincides with 2τ for γτ ≪ 1 and with γ−1

for γτ ≫ 1. Consequently, the adimensional parameter r := ϵϑ is akin the δ parameter,

but is rescaled based on the time scale relationship between the stochastic process and the

unperturbed dynamics.

Imposing the equilibrium condition to the ME (19), i.e., setting J(x) = 0, we obtain two

different analytical solutions, both involving the Kummer confluent hypergeometric function

of first kind18:

P1(x) = 1F1

(
1

2

(γτ
δ2

+ 1
)
;
1

2

(
1

δr
+ 1

)
;− x2

2Dfϑ

)
P2(x) = 2

1
2(

1
δr

−1)r
1
2(

1
δr

−1)D
1
2(

1
δr

−1)
f x1− 1

δr

× 1F1

(
r (2δϵ+ γ)− 1

2δr
;
3

2
− 1

2δr
;− x2

2Dfϑ

)
. (21)
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This fact is due to the third order nature of the PDE (19). From a mathematical point of

view any linear combination of these two functions is also a possible solution. However, it

is easy to show that the second one is not physically acceptable. In fact, let us consider the

behaviour of these two functions around x = 0. We have

P1(x) ≈ 1− x2 [γτ + δ2]

(2Dfτ) (δr + 1)
+O

(
x3
)

(22)

P2(x) ≈ 2
1
2(

1
δr

−1)r
1
2(

1
δr

−1)D
1
2(

1
δr

−1)
f x1− 1

δr +O
(
x3
)
. (23)

We see that if R := δr < 1, a condition which is typically met, the solution P2(x) is not

integrable, therefore it must be discarded. The expression of the function P1(x) in (22)

implies that the presence of r > 0 smears the equilibrium PDF around x = 0.

Thus, the final result is given by

Peq(x) ∝ 1F1

(
1

2

(γτ
δ2

+ 1
)
;
1

2

(
1

δr
+ 1

)
;− x2

2Dfϑ

)
. (24)

In the case in which the support of the PDF is not limited (for example, if there are not

reflecting boundary conditions at some finite values of x), we can evaluate the asymptotic

behavior as x→ ±∞ of the equilibrium PDF in (24), and the result is Peq(x) ∼ |x|−(
γτ

δ2
+1).

From this expression we observe that even when considering the contribution from the third

partial derivative, the far tails of the equilibrium PDF of x remain unaffected by the presence

of the additive white noise f(t). This implies that, for the case of infinite support of the

PDF, the condition for the existence of the n-th moment of x depends only on the fraction

γτ/(δ2), i.e., it remains independent of the spectral properties of ξ(t). Still in the case of an

unbounded domain for PDF, from the PDE (19) it is possible to obtain the following time

differential equation for the moment of order n of x:

∂t⟨xn⟩ =− nγ⟨xn⟩
(
1− nδ2/(γτ)

)
+ n(n− 1)Df (1− nδr) ⟨xn−2⟩. (25)

For any fixed n, Eq. (25) is a linear relationship between the first n moments of x. The

eigenvalues of the corresponding matrix are −nγ (1− nδ2/(γτ)), thus, they do not depend

on Df and r. Therefore, the relaxation behaviour of the moments is independent on Df and

r as well and they exist only if (1− nδ2/(γτ)) > 0. On the other hand, it is clear from the

same Eq. (25) that the equilibrium values of the moments (if they exist) do depend on Df ,
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and also on the value of R := δr. When it exists, the equilibrium solution of Eq. (25) is

given by

⟨xn⟩eq =

 0 for n odd(
Df

γ

)n/2

(n− 1)!!
∏n/2

j=1
(1−2j δr)

(1−2j δ2/(γτ))
for n even

(26)

From (20) we always have ϑ < 1/γ, from which (1− 2jδ2/(γτ)) > (1− 2j δr). Therefore, if

(1− nδ2/(γτ)) > 0 (as it must be for the n-th moment do exist), then un-physical situation

of an even moment smaller than zero is incompatible with Eq. (26).

This observation appears to contradict both the earlier findings that around x = 0 the

equilibrium PDF broadens with increasing R and that the far tails of this PDF do not

depend on R. The explanation of this apparent contradiction lies in the fact as we move

away from the origin, where the expansion (22) holds, but before we arrive at the asymptotic

tail, the equilibrium PDF decays more quickly as function of x due to the presence of R > 0.

This fact is easily confirmed by plotting the equilibrium PDF with R = 0 and R ̸= 0 (see

next section).

If there is a very large time scale separation, i.e. γτ ≪ 1, from (20) we have

R = δr ≈ ϵ2
∫ ∞

0

duφ(u)u ≈ 2(ϵτ)2 = 2δ2, (27)

that does not depend on γ. The reader should note that in the white noise limit, i.e., as

τ approaches zero while keeping ϵ2τ = δϵ fixed, R in (27) tends to zero. Consequently,

the non-Fick contribution to J becomes negligible as well. Conversely, if δ, the relevant

parameter for the cumulant series, is held fixed (small enough to allow truncating the series

to the second cumulant), while changing the time scale of the noise, R in (27) remains

constant.

In essence, with a small strength of the stochastic process ξ(t) (while it diverges in the

white noise limit), the breakdown of Fick’s law and of the associated FPE for the model (2)

persists, resulting in a ME with a third derivative term.
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III. THE CASE OF ORNSTEIN UHLENBECK EXTERNAL STOCHASTIC

PROCESS: ANALYTICAL AND NUMERICAL RESULTS

To explore the full range of τ and γ, we consider the specific case of exponentially decaying

correlation function: φ(u) = exp(−u/τ), from which, by also exploiting (20), we have:

ϑ =
2τ

(2γτ + 1)
(28)

i.e.,

R := δr =
2δ2

(2γτ + 1)
. (29)

We observe that R depends solely on δ (the small parameter in the cumulant expansion) and

γτ (quantifying the time scale separation between the unperturbed relaxation process and

the relaxation of the correlation function of ξ(t)). It is evident from (29) that R decreases

when the time scale separation decreases (γτ increases) and increases quadratically with δ.

The equilibrium PDF (24) in this case reads:

Peq(x) = N 1F1

(
1

2

(γτ
δ2

+ 1
)
;
1

4

(
2γτ + 1

δ2
+ 2

)
;−(2γτ + 1)x2

4Dfτ

)
. (30)

where N is a normalization factor. We note that, except for the quantity Dfτ , which acts

as a scale factor for x, also the equilibrium PDF (30) depends only on δ and γτ .

In figures 3-4, solid lines depict the plots of the PDF (30) for a fixed Dfτ = 0.5 and

different values of δ and γτ corresponding to the points (a)−(d) in the diagram (2). We have

also included the corresponding results of the numerical simulation of the SDE (2) (circles),

where ξ(t) is the Ornstein-Uhlenbeck process. Additionally, to assess the relevance of the

non Fick contribution to the current, we have also plotted, with dashed lines, the normalized

function Peq,FPE(x) ∝ (Df +Dξ(x))
− 1

2(1+
γτ

δ2
) which is the solution for the vanishing “Fick”

current of (7) (or the equilibrium PDF of the corresponding FPE). The excellent agreement

of the analytical result (30) with numerical simulations is evident, while when relying on the

Peq,FPE(x), the comparison with numerical simulations is not at all so good.

IV. CONCLUSIONS

The Fokker-Planck Equation (FPE) holds a central position in statistical mechanics.

Initially derived as the Kramers-Moyal expansion of the Master Equation (ME), limited to
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FIG. 2. Plot of R of (29) vs γτ , for various values of δ (distinct curves). We see that at fixed δ,

as γτ decreases, R increases. The same happens increasing δ, at γτ fixed. The area with dotted

background correspond to δ and γτ values for which the variance of x is finite (γτ − 2δ2>0). The

points in the graph labeled with the letters (a) and (b) ((c) and (d)) corresponds to the γτ and δ

values, used for the four plots of the PDF of figure 3 (figure 4).

Markovian systems, it’s recognized as applicable to non-Markovian processes. Indeed, the

FPE emerges by eliminating irrelevant or fast variables, weakly interacting with the part of

interest, through perturbation techniques like Zwanzig and Mori’s projective methods, or

considerations on the order of magnitude of the generalized cumulants. Thus, it stands as

the most important equation to derive the PDF time evolution in these approximations.

Moreover, the FPE has the advantage of being a second order classical parabolic PDE with
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FIG. 3. Two vertical panels (a) and (b), respectively, displaying the Equilibrium PDF of the SDE (2)

for the case in which the stochastic process ξ(t) is the Ornstein Uhlenbeck process. Panel (a):

Dfτ = 0.5, δ = 0.4 and γτ = 0.4. Panel (b): Dfτ = 0.5, δ = 0.5 and γτ = 0.6. In the bottom part,

the same data as the upper part are presented in semi-logarithmic scale. Circles are the results of the

numerical simulation. Solid lines represent the theoretical result (30), i.e., the equilibrium solution

of the PDE (19), with r given in (28). Dashed lines depict Peq,FPE(x) ∝ (Df +Dξ(x))
− 1

2

(
1+ γτ

δ2

)
,

the solution for the vanishing “Fick” current of (7) (or the equilibrium PDF of the corresponding

FPE). In these two cases, corresponding to the two points (a) and (b) in the diagram of figure 2,

we have γτ > 2δ2, thus the variance of x is finite (see text for details).

well-studied properties on solution existence and positivity. Its importance and widespread

use are undeniable.

The connection between FPE and Fick’s law is not coincidental. The FPE, when ex-

pressed as a continuity equation, reveals that the current linked to the stochastic process

involves a diffusion term that is proportional to the gradient of the PDF, constituting Fick’s

law. Conversely, assuming Fick’s law holds, the continuity equation emerges as a second-
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FIG. 4. The same as figure 3, but for different values of γτ and δ as indicated in the header of the

panels. In these two cases, corresponding to the two points (c) and (d) in the diagram of figure 2,

we have γτ < 2δ2, thus, at equilibrium all the moments of x diverge.

order PDE, exhibiting the structure of an FPE. Hence, whether Fick’s law holds or not, and

the ME with FPE structure structure are intricately connected.

The extensive use of the FPE has led to the development of numerous methods for

extracting crucial statistical information. Standard spectral analysis procedures, similar

to those applied to the Schrödinger equation in quantum mechanics, can be employed.

Additionally, the diffusion and drift coefficients of the FPE allow for the derivation of an

analytical expression for the mean first-passage time. This important quantity represents

the average time for a trajectory, starting from an initial position x0, to reach a specified

target point xT for the first time.

In our study, we demonstrated that when the system of interest is inherently noisy-

featuring sources like Nyquist noise in electric circuits, various thermal fluctuations, rapid

internal dynamics, intrinsic measurement errors, etc., the mentioned standard procedures

15



for eliminating fast or weakly interacting variables (often, but not necessarily, modeled as

stochastic processes) lead to a third-order PDE, instead of an FPE. In fact, an additive

third-order partial differential operator emerges from the interplay between the standard

diffusion process due to internal noise and the diffusion process due to the external colored

stochastic process (or to the irrelevant degrees of freedom we project out).

Given the inevitability of such internal noise (of varying intensity), we conclude that the

third-order PDE should be considered more fundamental than the FPE in statistical physics.

This fact also implies the breakdown of the Fick’s law.

While this approach can be extended to accommodate more general drift fields, our

current focus in this work is on the simpler linear drift case, which is widely employed

across various disciplines. The analytical expressions of the moments of the PDF reveals

that the unexpected third derivative term significantly tightens the equilibrium PDF, in

comparison to what we would obtain if we dropped this term, maintaining just the standard

structure of the FPE. Figures 3 and 4 support this observation, showing perfect agreement

between numerical simulations of the SDE and the third-order PDE. In particular, the figures

clearly illustrate that the actual PDFs, effectively captured by the third-order PDE, exhibit

a significantly more narrow equilibrium PDFs compared to those derived from the FPE. This

observation agrees with the general finding, emphasized in section II, that the third-order

differential contribution to ME leads to a reduction in the moments of x. Consequently,

the tails of the actual equilibrium PDF (and those of the equilibrium PDF of the third-

order PDE) decay more rapidly than those of the FPE, indicating that crucial statistical

quantities, such as the average first-passage time, computed using standard FPE techniques,

would yield inaccurate results.

Thus, the fact that for the statistical behavior of a specific part of a complex system, the

third-order PDE should be considered more fundamental than the FPE raises the question

of how to extend to this PDE the general methods and results, such like those which allow

the derivation of relevant statistical information from the FPE. For example, in the 1-D

case, it would be interesting to obtain an analytical expression for the equilibrium PDF or

a closed expression for the mean first-passage time. All these are matter of future works.
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Appendix A: The multidimensional case

In this Appendix we generalize the result (19) to the multi-dimensional case. For the

reader convenience, we reapt here the general N -D extension of the SDE (2), already intro-

duced in (1):

ẋ = −E · x+ f(t)−Ξ(t) · x (A1)

where x := (x1, . . . , xN), E and Ξ(t) are N × N matrices with constant and stochastic

components, respectively. Moreover, f(t) is a multidimensional white noise with correlation,

or diffusion matrix given by D.

As for the 1-D case, to any realization Ξ(·) of the matrix stochastic process Ξ(u), 0 ≤

u ≤ t, from (A1) we can write the following Liouville equation for the PDF of x, that we

indicate with PΞ(·)(x, t):

∂tPΞ(·)(x, t)

= {La + LΞ(t)}PΞ(·)(x, t), (A2)

in which the unperturbed Liouvillian is (∂ is the N -D gradient operator and the superscript

“T ” means “transpose”):

La := ∂T · E · x++∂T · D · ∂ (A3)

and the Liouville perturbation operator is

LΞ(t) := ∂T ·Ξ(t) · x. (A4)

We rewrite the Liouville equation (A2) in interaction representation:

∂tP̃Ξ(·)(x, t) = L̃Ξ(t)(t)P̃Ξ(·)(x, t), (A5)
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where

P̃Ξ(·)(x, t) := e−LatPΞ(·)(x, t) (A6)

and

L̃Ξ(t)(t) :=e−LatLΞ(t)e
Lat = e−L×

a t[LΞ(t)]. (A7)

Integrating (A5) and averaging over the realization of Ξ(t), we get

P̃ (x; t) = ⟨←−exp
[∫ t

0

du L̃Ξ(t)(u)

]
⟩Ξ P (x; 0) (A8)

in which ←−exp[...] is the standard chronological ordered exponential (from right to left) and

P̃ (x; t) := e−LatP (x; t) with P (x; t) := ⟨PΞ(·)(x, t)⟩Ξ. By using the generalized cumulant

approach and retaining only the second cumulant we get the following ME for the PDF of

x:

∂tP (x; t) = LaP (x; t) +

∫ ∞

0

du ⟨LΞ(t)L̃Ξ(−u)(−u)⟩Ξ P (x; t), (A9)

corresponding to the N -D version of Eq. (12). To obtain the explicit expression, as PDE,

of the ME (A9), we must solve the Lie evolution of LΞ(t) along the Liouvillian La, i.e.

we have to explicitly evaluate L̃Ξ(u)(u) of (A7), in which La and LΞ(t) are given in (A3)

and (A4), respectively. For that, let us start considering the operator identity e(LA+LB)t =

eLAt ·←−exp
(∫ t

0
du L̄B(u)

)
in which LA and LB are operators that in general do not commute

with each other, and where L̄B(u) := e−LAuLBe
LAu. From this identity, by making the

associations LA = ∂T · E · x and LB = ∂T ·D · ∂ (thus, LA +LB = La), with a few algebra

we easily obtain:

eLat = e∂
T ·E·x t · ←−exp

(∫ t

0

du∂T · eEu · D · eETu · ∂
)
. (A10)

By using (A10) and (A3) in (A7) we get

L̃Ξ(t)(t) :=e−LatLΞ(t)e
Lat

=e−∂T ·E·x t · ←−exp
(
−
∫ 0

−t

du∂T · eEu · D · eETu · ∂
)

· LΞ(t) · e∂
T ·E·x t · ←−exp

(∫ t

0

du∂T · eEu · D · eETu · ∂
)

=←−exp
(
−
∫ t

0

du∂T · eEu · D · eETu · ∂
)× [

e−∂T ·E·x t×
[
LΞ(t)

]]
. (A11)
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In the last side of the following equation we have exploited the following identity, easily

demonstrated:

e−LAθ · ←−exp
(
−
∫ t

0

du L̄B(u)

)
= e−LAθ×

[
←−exp

(
−
∫ t

0

du L̄B(u)

)]
e−LAθ

=←−exp
(
−
∫ t+θ

θ

du L̄B(u)

)
e−LAθ. (A12)

By using (A4) and the results of30, in particular those in Section VIA, we have

e−∂T ·E·x t×
[
LΞ(t)

]
= e−∂T ·E·x t×

[
∂T ·Ξ(t) · x

]
= ∂T · eEt× [Ξ(t)] · x. (A13)

Inserting this result in (A11) we obtain

L̃Ξ(t)(t) =

←−exp
(
−
∫ t

0

du∂T · eEu · D · eETu · ∂
)× [

∂T · eEt× [Ξ(t)] · x
]
. (A14)

By expanding the above series of nexted commutators we see that all the terms are zero,

apart the zeroth and the first ones. Therefore, we get

L̃Ξ(t)(t) = ∂T · eEt× [Ξ(t)] · x

− ∂T · eEt× [Ξ(t)] ·
∫ t

0

du
{(

eEu · D · eETu
)T

+ eEu · D · eETu

}
· ∂, (A15)

that, given the symmetry property of the diffusion coefficient matrix, yields the final explicit

differential form for the interaction representation of the Liouvillian LΞ(t):

L̃Ξ(t)(t) = ∂T · eEt× [Ξ(t)] ·
{
x− 2

∫ t

0

du eEu · D · eETu · ∂
}
. (A16)

Thus, by using this expression in the ME (A9), together with Eqs. (A3) and (A4), we arrive

to the final general PDE of third order for the PDF of x for the multi-dimensional case:

∂tP (x; t) =
{
∂T · E · x++∂T · D · ∂

}
P (x; t) +

∫ ∞

0

du

× ⟨∂T ·Ξ(t) · x
(
∂T · e−Eu×

[Ξ(−u)] ·
{
x+ 2

∫ u

0

du eEu · D · eETu · ∂
})
⟩Ξ P (x; t), (A17)

In the simplified case in which Ξ(t) = ϵGξ(t), with ⟨ξ(t)ξ⟩Ξ = φ(t) then we have

∂tP (x; t) =
{
∂T · E · x++∂T · D · ∂

}
P (x; t) +

δ2

τ 2

∫ ∞

0

duφ(u)

× ∂T ·G · x
(
∂T · e−Eu×

[G] ·
{
x+ 2

∫ u

0

du eEu · D · eETu · ∂
})

P (x; t), (A18)

where we have also used the definition of the adimensional parameter δ := ϵτ , that is the

relevant small quantity in the cumulant expansion.
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Appendix B: The cumulant approach as a systematic way to obtain a ME for

the reduced PDF of x

In this Appendix we outline a few minima key steps to obtain the FPE (3) and the

ME (12), starting from the generalized cumulant (or M -cumulant) approach formally pre-

sented in32. We begin with the generic Liouville equation (9) (the stochastic process is one-

dimensional, but the extension to multi-dimensional cases is straightforward), expressed in

interaction representation:

∂tP̃ξ(·)(x, t) = ϵξ(t), L̃I(t)P̃ξ(·)(x, t). (B1)

Here,

P̃ξ(·)(x, t) := e−LatPξ(·)(x, t) (B2)

and

L̃I(t) := e−LatL̃Ie
Lat = e−L×

a t[LI ]. (B3)

In30, L̃I(t) of (B3) is also referred to as the Lie evolution of the operator LI along the

Liouvillian La, for a time −t.

Integrating (B1) and averaging over the realization of ξ(t), we get

P̃ (x; t) = ⟨←−exp
[
ϵ

∫ t

0

du ξ(u)L̃I(u)

]
⟩ξP (x; 0) (B4)

in which ←−exp[...] is the standard chronological ordered exponential (from right to left) and

P̃ (x; t) := e−LatP (x; t) with P (x; t) := ⟨Pξ(·)(x, t)⟩ξ. Moreover, we have exploited the as-

sumption that at the initial time t = 0 the total PDF factorizes as Pξ(·)(x, 0) = P (x; 0)p(ξ).

This is equivalent to stating that at the initial time the PDF of x does not depend on the

possible values of the process ξ, or alternatively, we wait long enough so that the initial

conditions became irrelevant. Apart that, Eq. (B4) is exact; no approximations have been

introduced at this level.

We can look at the r.h.s. of (B4) as a sort of characteristic function, or moment generating

function, with wave number k := iϵ, for the stochastic operator

Ω(u) := ξ(u)L̃I(u). (B5)

Formally, we can then introduce a generalized cumulant generating function32:

⟨←−exp
[
ϵ

∫ t

0

du ξ(u)L̃I(u)

]
⟩ξ :=←−exp [K(ϵ, t)] (B6)
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with

K(ϵ, t) =
∞∑
i=1

ϵiKi(t). (B7)

As for standard stochastic processes, we define the n-times joint M -cumulant of Ω(u), that

we indicate as ⟨⟨Ω(u1)Ω(u2)...Ω(un)⟩⟩, by setting

Ki(t) :=

∫ t

0

du1

∫ u1

0

du2...

∫ un−1

0

dun⟨⟨Ω(u1)Ω(u2)...Ω(un)⟩⟩. (B8)

Using (B8) in the r.h.s. of (B6) and expanding both exponential functions, we get the

standard relationship among cumulants and moments. For example, the joint two and four

times M -cumulants are given in terms of moments as (to improve readability, until the end

of this paragraph we will avoid putting the subscript “ξ’ to the angle brackets):

⟨⟨Ω(u1) Ω(u2)⟩⟩ = ⟨Ω(u1) Ω(u2)⟩ = L̃I(u1)L̃I(u2)⟨ξ(u1) ξ(u2)⟩ (B9)

and

⟨⟨Ω(u1) Ω(u2)Ω(u3) Ω(u4)⟩⟩ =

⟨Ω(u1) Ω(u2)Ω(u3) Ω(u4)⟩ − ⟨Ω(u1) Ω(u2)⟩⟨Ω(u3) Ω(u4)⟩

− ⟨Ω(u1) Ω(u3)⟩⟨Ω(u2) Ω(u4)⟩ − ⟨Ω(u1) Ω(u4)⟩⟨Ω(u2) Ω(u3)⟩ =

L̃I(u1)L̃I(u2)L̃I(u3)L̃I(u4) [⟨ξ(u1) ξ(u2) ξ(u3) ξ(u4)⟩ − ⟨ξ(u1)ξ(u2)⟨ξ(u3)ξ(u4)⟩]

− L̃I(u1)L̃I(u3)L̃I(u2)L̃I(u4)⟨ξ(u1)ξ(u3)⟩⟨ξ(u2)ξ(u4)⟩

− L̃I(u1)L̃I(u4)L̃I(u2)L̃I(u3)⟨ξ(u1)ξ(u4)⟩⟨ξ(u2)ξ(u3)⟩, (B10)

respectively. From (B10) it is clear that the Gaussian nature of ξ(t) does not implies the same

for Ω(t) of Eq. (B5), as the time-dependent Liouvillian L̃I(u) generally does not commute

with itself evaluated at different times. However, when the unperturbed Liouvillian La and

perturbation Liouvillian LI commute with each other, as in the case of Eq. (10) with Df = 0

and LI of Eq. (11), we have L̃I(u) = LI , that does not depend on time. Hence, in this case

the Gaussian nature of ξ(t) is transferred to the stochastic operator Ω(t). Therefore, in

this specific scenario, the M -cumulant series appearing in the exponential function of (B6)

reduces to only the second term containing the second M -cumulant, simplifying to (without

loss of generality, we consider the average value of ξ(t) to be zero):

P̃ (x; t) = exp

[
ϵ2LILI

∫ t

0

du1

∫ u1

0

du2⟨ξ(u1) ξ(u2)⟩
]
P (x; 0). (B11)
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Time-deriving this result we obtain

∂tP̃ (x; t) =ϵ2LILI

∫ t

0

du⟨ξ(t) ξ(u)⟩ P̃ (x; t)

=ϵ2LILIτ P̃ (x; t). (B12)

Getting rid of the interaction representation and by using (10) with Df = 0 and (11),

Eq. (B12) becomes exactly the FPE (3).

In the more general case, the Liouvillians La and LI do not commute with each other, so

L̃I(u) of (B3) depends on time. The advantage of utilizing the M -cumulants lies in the fact

that, similar to standard cumulants, they are exactly zero when referring to independent

random variables32. Thus, the time lag between two events increases until they become

independent of each other, any joint M -cumulant containing these two events must tend to

zero. To model this situation more realistically, we assume that independence does not occur

abruptly at a fixed time lag τ̄ but instead follows a smoother pattern, characterized by an

exponential trend. Formally, for a series of events ξ(t1), ξ(t2), ..., ξ(tn) with t1 ≥ t2 ≥ ... ≥ tn,

we assume that the corresponding joint n-cumulant decays at least exponentially with the

time lag u1 − un::

|⟨⟨Ω(u1)Ω(u2)...Ω(un)⟩⟩| ≲ exp(−(u1 − un)/τ̄). (B13)

In this scenario, along with the definitions (B7) and (B8), it is evident that the argument of

the exponential function in the right-hand side of (B6) now yields a power series of δ̄ := ϵτ̄ .

For a sufficiently small δ̄, we can truncate this series to the first non-zero term, which is the

second one. Thus, Eq. (B6), combined with Eq. (B6) and (B9), gives

P̃ (x; t) =←−exp
[
ϵ2
∫ t

0

du1

∫ u1

0

du2L̃I(u1)L̃I(u2)⟨ξ(u1) ξ(u2)⟩+O(δ̄4)

]
P (x; 0). (B14)

Time-deriving this result we obtain

∂tP̃ (x; t) = ϵ2
∫ t

0

duL̃I(t)L̃I(u)⟨ξ(t) ξ(u)⟩ P̃ (x; t) +O(δ̄4t/τ̄) (B15)

Getting rid of the interaction representation and by using again (10) (but now letting Df ̸= 0)

and (11), Eq. (B15) becomes the approximate ME (12).
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