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ABSTRACT
A series of graph filtering (GF)-based collaborative filtering (CF)

showcases state-of-the-art performance on the recommendation

accuracy by using a low-pass filter (LPF) without a training pro-

cess. However, conventional GF-based CF approaches mostly per-

form matrix decomposition on the item–item similarity graph to

realize the ideal LPF, which results in a non-trivial computational

cost and thus makes them less practical in scenarios where rapid

recommendations are essential. In this paper, we propose Turbo-
CF, a GF-based CF method that is both training-free and matrix
decomposition-free. Turbo-CF employs a polynomial graph filter to
circumvent the issue of expensive matrix decompositions, enabling

us to make full use of modern computer hardware components (i.e.,
GPU). Specifically, Turbo-CF first constructs an item–item similar-

ity graph whose edge weights are effectively regulated. Then, our

own polynomial LPFs are designed to retain only low-frequency

signals without explicit matrix decompositions. We demonstrate

that Turbo-CF is extremely fast yet accurate, achieving a runtime

of less than 1 second on real-world benchmark datasets while

achieving recommendation accuracies comparable to best competi-

tors.

KEYWORDS
Collaborative filtering; low-pass filter; matrix decomposition; poly-

nomial graph filter; recommender system.
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1 INTRODUCTION
Recommender systems have significantly impacted various indus-

tries, including e-commerce (e.g., Amazon [19]) and content stream-

ing services (e.g., YouTube [6] and Netflix [8]), enabling with person-
alized recommendations. Central to these systems is collaborative
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filtering (CF), which predicts a user’s preferences based on the his-

torical user–item interactions [10, 12, 21, 31, 33, 34, 41]. Notably, CF

techniques based on graph convolutional networks (GCNs) have

been shown to achieve state-of-the-art recommendation perfor-

mance by aggregating the information from high-order neighbors

through message passing [1, 10, 16, 36].

On one hand, it is often the case where the speed at which

recommender systems update their models becomes increasingly

crucial, mainly due to two key factors. First, user preferences are

not static; they tend to evolve rapidly due to various influences such

as trends, personal circumstances, and exposure to new content [1,

17, 24, 35]. In this case, recommender systems must be agile enough

to reflect such evolving preferences. Second, the influx of new data

is often very high, with users constantly interacting with content

and services [13, 35, 39]. For example, social media platforms such

as Gowalla and Facebook may require quick model updates due to

the fast pace of user interactions and content generation [24, 35].

Therefore, these factors result in the need to build an efficient and

prompt system [7, 13, 17]. Such a fast adaptation ensures that the

recommendations remain relevant and in sync with current user

interests and behaviors, thereby enhancing user satisfaction and

engagement with the underlying system [1, 7, 17, 24, 30, 35].

On the other hand, most of existing GCN-based CF methods

[10, 31, 33, 34, 40, 41] have their inherent limitations, notably their

reliance on extensive offline training [3, 15]. Recently, a series of

graph filtering (GF) methods have emerged as another CF technique

since they can naturally alleviate this problem with their training-

free nature. However, conventional GF-based CF methods suffer

from a high computational cost during matrix decomposition to

realize the ideal low-pass filter (LPF), hindering their potential for

real-time applications [4, 20, 27, 37].

To tackle these practical challenges, we introduce Turbo-CF, a
novel GF-based CF method that is both training-free and matrix
decomposition-free. By harnessing the computational efficiency of

polynomial graph filters, Turbo-CF is composed solely of simple

matrix operations (i.e., matrix multiplications). Thanks to its com-

putational simplicity, it becomes more straightforward for Turbo-
CF to make full use of modern computer hardware components

such as GPU. As shown in Figure 1, we demonstrate that our

Turbo-CF is extremely fast yet sufficiently accurate, showing a run-

time of less than 1 second on real-world benchmark datasets (e.g.,
Gowalla and Yelp) while still showing competitive performance

compared to other benchmark CF methods. For reproducibility, the

source code is available at https://github.com/jindeok/Turbo-CF.
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GF-based
GCN-based

Figure 1: Accuracy versus runtime among Turbo-CF and
other benchmark methods on the Gowalla dataset.

2 PRELIMINARY
Given a weighted graph 𝐺 = (𝑉 , 𝐸), the Laplacian matrix 𝐿 of 𝐺

is 𝐿 = 𝐷 − 𝐴, where 𝐷 = diag(𝐴1) is the degree matrix for the

all-one vector 1 ∈ R |𝑉 |
and 𝐴 is the adjacency matrix. A graph

signal is represented as x ∈ R |𝑉 |
, where 𝑥𝑖 represents the signal

strength of node 𝑖 in x. The smoothness of x on 𝐺 is quantified

as 𝑆 (x) =
∑
𝑖, 𝑗 𝐴𝑖, 𝑗 (𝑥𝑖 − 𝑥 𝑗 )2 = x𝑇 𝐿x, where 𝐴𝑖, 𝑗 is the (𝑖, 𝑗)-th

element of 𝐴. By the eigen-decomposition 𝐿 = 𝑈Λ𝑈𝑇 , we can

formally define the graph Fourier transform for a graph signal x
as x̂ = 𝑈𝑇 x, where 𝑈 ∈ R |𝑉 |× |𝑉 |

is the matrix whose columns

correspond to a set of eigenvectors of 𝐿. Now, we are ready to

formally define the graph filter and graph convolution as follows:

Definition 2.1. (Graph filter) [22, 27, 28, 37] Given a graph Lapla-

cian matrix 𝐿, a graph filter 𝐻 (𝐿) ∈ R |𝑉 |× |𝑉 |
is defined as

𝐻 (𝐿) = 𝑈 diag(ℎ(𝜆1), . . . , ℎ(𝜆 |𝑉 | ))𝑈𝑇 , (1)

where ℎ : C → R is the frequency response function that maps

eigenvalues {𝜆1, · · · , 𝜆 |𝑉 | } of 𝐿 to {ℎ(𝜆1), · · · , ℎ(𝜆 |𝑉 | }.

Definition 2.2. (Graph convolution) [27, 28, 37] The convolution

of a graph signal x and a graph filter 𝐻 (𝐿) is given by

𝐻 (𝐿)x = 𝑈 diag(ℎ(𝜆1), . . . , ℎ(𝜆 |𝑉 | ))𝑈𝑇 x. (2)

3 METHODOLOGY
3.1 Motivation and Challenge
Suppose that U and I are the sets of all users and all items, re-

spectively, in recommender systems dealing with user–item ratings.

Then, conventional GF-based CF methods [20, 27, 37] initially con-

struct an item–item similarity graph as

𝑃 = �̃�𝑇 �̃�; �̃� = 𝐷
−1/2

𝑈
𝑅𝐷

−1/2

𝐼
. (3)

Here, 𝑅 ∈ R |U |× |I |
is the rating matrix; �̃� is the normalized rating

matrix; 𝐷𝑈 = diag(𝑅1) and 𝐷𝐼 = diag(1𝑇𝑅); and 𝑃 is the adjacency

matrix of the item–item similarity graph. GF-based CF methods

[20, 27, 37] typically employ both linear and ideal LPFs. As the

representative work, GF-CF [27] performs graph convolution as

s𝑢 = r𝑢 (𝑃 + 𝛼𝐷−1/2

𝑈
𝑈𝑈𝑇𝐷

−1/2

𝐼
), where s𝑢 ∈ R | I |

is the predicted

preferences for user 𝑢; r𝑢 ∈ R | I |
is the ratings of 𝑢, serving as

graph signals to be smoothed; 𝑈 ∈ R | I |×𝑘
is the top-𝑘 singular

vectors of �̃�; 𝑃 is the linear LPF; 𝐷
−1/2

𝑈
𝑈𝑈𝑇𝐷

−1/2

𝐼
is the ideal LPF

of 𝑃 ; and 𝛼 is a hyperparameter balancing between these two filters.

Although such GF-based CF methods often employ an ideal LPF,

they pose a critical challenge: they necessitate matrix decomposi-

tion to acquire𝑈 , incurring substantial computational costs whose

complexity is typically 𝑂 ( |I|3). This leads to a natural question:

"how can we bypass the problem of matrix decomposition without
losing the recommendation accuracy in GF-based CF?". To answer

this question, we propose Turbo-CF, which effectively solves this

challenge using polynomial graph filters.

3.2 Proposed Method: Turbo-CF
3.2.1 Graph construction. We describe how to construct an item–

item similarity graph with 𝑅 for GF. Unlike conventional GF-based

CF methods that symmetrically normalize 𝑅 along the user/item

axis [20, 27, 37], we adopt asymmetric normalization on 𝑅 to regu-

larize the popularity of users/items before calculating 𝑃 , which is

formulated as

𝑃 = �̃�𝑇 �̃�; �̃� = 𝐷−𝛼
𝑈
𝑅𝐷𝛼−1

𝐼
. (4)

Here, 𝛼 ∈ [0, 1] is the hyperparameter to control the normalization

along users/items. Increasing 𝛼 weakens the effect of popular users

(i.e., high-degree users) while strengthening the effect of popular
items. Next, according to the type of graph filter we use based

on 𝑃 , the corresponding filtered signals may be over-smoothed

or under-smoothed, depending on the intensity of connections

between nodes in 𝑃 . Thus, we aim to adjust the edge weights dif-

ferently depending on the graph filter. To this end, we present

an additional adjustment process for the graph 𝑃 by using the

Hadamard power. Finally, the adjusted graph 𝑃 is calculated as

𝑃 = 𝑃◦𝑠 , (5)

where 𝑠 is the adjustment parameter that can be tuned based on

the validation set. We empirically show that properly adjusting the

edge weights in the two graphs (�̃� and 𝑃 ) substantially improves

the recommendation accuracy even without the costly matrix de-

composition, which will be verified in Section 4.5.

3.2.2 Polynomial GF. We now specify how to perform GF based

on 𝑃 . To bypass the high computation overhead of matrix decompo-

sitions in GF, we make use of polynomial graph filters. We denote

the normalized Laplacian matrix of 𝑃 as �̃� = 𝐼 − 𝑃 . Then, since �̃� is

a symmetric positive semi-definite matrix, there exists orthogonal

eigen-decomposition �̃� = �̃�Λ�̃�𝑇 , where �̃� �̃�𝑇 = �̃�𝑇 �̃� = 𝐼 . Thanks

to �̃� being an orthogonal matrix, we can still manipulate the eigen-

values by the matrix polynomial of �̃� (e.g., �̃�2 = �̃�Λ2�̃�𝑇 ) without

the need for costlymatrix decomposition. Thematrix decomposition-
free polynomial graph filter can be expressed as

𝐾∑︁
𝑘=1

𝑎𝑘𝑃
𝑘 , (6)

where 𝑎𝑘 is the coefficient of a matrix polynomial and 𝐾 is the

maximum order of the matrix polynomial bases. We establish the

following theorem, which provides a closed-form solution to the

frequency response function of a polynomial graph filter.

Theorem 3.1. The matrix polynomial
∑𝐾
𝑘=1

𝑎𝑘𝑃
𝑘 is a graph fil-

ter for graph 𝑃 with the frequency response function of ℎ(𝜆) =∑𝐾
𝑘=1

𝑎𝑘 (1 − 𝜆)𝑘 .

The proof of Theorem 3.1 is omitted due to page limitations.

Interestingly, Theorem 3.1 implies that we can design arbitrary LPFs

by deciding proper coefficients of polynomials, depending on the
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Figure 2: The schematic overview of Turbo-CF. The graph
signals are smoothed by using polynomial LPFs in Turbo-CF.
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Figure 3: Frequency response functions of three polynomial
LPFs. In Figure 3(c), the dotted blue line corresponds to the
ideal LPF ℎ(𝜆) = 1𝜆≤0.1.

characteristics of a given task or dataset. Based on the polynomial

graph filter in Eq. (6), Turbo-CF can is formalized as follows:

s𝑢 = r𝑢
𝐾∑︁
𝑘=1

𝑎𝑘𝑃
𝑘 , (7)

where r𝑢 is the 𝑢-th row of 𝑅, which will be used as graph signals

of user 𝑢; and
∑𝐾
𝑘=1

𝑎𝑘𝑃
𝑘
is the polynomial graph filter for graph

𝑃 . Figure 2 illustrates how the graph signals are smoothed through

the polynomial graph filter in Turbo-CF.

3.2.3 Filter design. We note that discovering the optimal polyno-

mial low-pass graph filter in Eq. (7) involves an extensive search

for coefficients {𝑎𝑘 }𝐾𝑘=1
using a validation set. This process is not

ideal as it requires costly recalibration with varying datasets. Addi-

tionally, since GF-based CF methods necessitate loading the high-

dimensional matrix 𝑃 into memory, handling high-order polynomi-

als (e.g., 𝐾 > 3) can cause additional space complexity issues. To

this end, as an alternative, we design three polynomial LPFs up to

the third order (i.e., 𝐾 = 3) for GF. Figure 3 displays the frequency

response functions of the three polynomial LPFs. The explicit forms

of the three LPFs derived from Theorem 3.1 are expressed as follows.

• (Linear LPF) This filter employs the first-order matrix poly-

nomial 𝑃 as a low-pass graph filter. Its frequency response

function is ℎ(𝜆) = 1 − 𝜆.
• (Second-order LPF) This filter employs the second-order

matrix polynomial 2𝑃 − 𝑃2
as a low-pass graph filter. Its

frequency response function is ℎ(𝜆) = 1 − 𝜆2
.

• (Polynomial approximation to ideal LPF) Previous stud-
ies [20, 27, 37] have proven that utilizing an ideal LPF (i.e.,
ℎ(𝜆) = 1𝜆≤𝜏 with cutoff frequency 𝜏) alongside a linear LPF

is indeed beneficial in improving the recommendation accu-

racy. In this context, we aim to gain a similar effect to the

case of using such an ideal LPF while avoiding the compu-

tational demands of matrix decomposition. To this end, we

numerically approximate the ideal LPF using a polynomial

function. Precisely, a linear LPF combined with the ideal

LPF can be formulated as 𝑃 + 𝛽 ˆ𝑓𝜏 (𝑃), where 𝛽 is a hyperpa-

rameter and
ˆ𝑓𝜏 (𝑃) is the approximated ideal LPF with cutoff

Table 1: The statistics of three datasets.

Dataset # of users # of items # of interactions Density

Gowalla 29,858 40,981 1,027,370 0.084%

Yelp 31,668 38,048 1,561,406 0.130%

Amazon-book 52,643 91,599 2,984,108 0.062%

frequency 𝜏 . In our study, we employ the third-order poly-

nomial function to balance the approximation quality and

computational burden. We numerically solve a non-linear

least squares problem to find the coefficients {𝑎𝑘 }3

𝑘=1
in Eq.

(6) for the approximation of ℎ(𝜆) = 1𝜆≤𝜏 . For instance, as
shown in Figure 3(c), we can pre-compute the coefficients of

polynomials as
ˆ𝑓𝜏 (𝑃) = −𝑃3 + 10𝑃2 − 29𝑃 for the ideal LPF

with 𝜏 = 0.1.

We note that, besides the aforementioned three LPFs, one can design

any LPFs by setting {𝑎𝑘 }𝐾𝑘=1
based on one’s own design choice.

It is also worth noting that, as shown in Eq. (7), the polynomial

low-pass graph filters can be implemented through simple matrix

calculations, which allows us to more effectively leverage well-

optimized machine learning and computation frameworks such as

PyTorch [23] and CUDA [26] via parallel computation. Thanks to

such rapid computation of polynomial low-pass graph filters via

our Turbo-CFmethod, the optimal filter for a given dataset can also

be readily found using the validation set.

4 EXPERIMENTAL RESULTS AND ANALYSES
4.1 Experimental Settings
Datasets. We carry out experiments on three datasets: Gowalla,

Yelp, and Amazon-book. Statistics of the three datasets are summa-

rized in Table 1.

Benchmark methods.We compare Turbo-CF with eight bench-

mark CF methods, including matrix factorization-based (MF-BPR

[25] and NeuMF [11]), generative model-based (Multi-VAE [18] and

DiffRec [32]), GCN-based (NGCF [33], LightGCN [10], LR-GCCF

[2], and GF-based (GF-CF [27]) methods.

Evaluation protocols. We randomly select 70/20/10% of the in-

teractions for each user as the training/test/validation sets, where

the validation set is used for hyperparameter tuning as well as LPF

selection in Section 3.2.3. We use Recall@𝐾 and normalized dis-

counted cumulative gain (NDCG@𝐾 ) as our performance metrics,

where 𝐾 is set to 20 by default.

Implementation details. To ensure the optimal performance of

the benchmark methods used for comparison, we directly quote the

results reported [4, 10, 38], except DiffRec [32] where the results

were not reported on the same datasets. All experiments are carried

out on a machine with Intel (R) 12-Core (TM) i7-9700K CPUs @

3.60 GHz and an NVIDIA GeForce RTX A6000 GPU.

4.2 Runtime Comparison
Table 2 summarizes the runtime of Turbo-CF using three differ-

ent graph filters against some of the benchmark methods on the

Gowalla dataset as other datasets exhibit similar tendencies. Here,

runtime indicates the training time for GCN-based approaches

(NGCF and LightGCN) while the processing time for GF-based

approaches (GF-CF and Turbo-CF). Our findings are as follows:
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Table 2: Runtime of baselines and Turbo-CF using the three
different graph filters in Section 3.2.3 on the Gowalla dataset.

NGCF LightGCN GF-CF Turbo-CF
Runtime 6h34m15s 4h1m9s 2m33s 0.3s/5.6s/5.8s
Training ✓ ✓ ✗ ✗

Table 3: Performance comparison among Turbo-CF and com-
petitors. The best and second-best performers are highlighted
in bold and underline, respectively.

Gowalla Yelp Amazon-book

Method Recall NDCG Recall NDCG Recall NDCG

MF-BPR 0.1291 0.1109 0.0433 0.0354 0.0250 0.0190

NeuMF 0.1399 0.1212 0.0451 0.0363 0.0258 0.0200

Multi-VAE 0.1641 0.1335 0.0584 0.0450 0.0407 0.0315

DiffRec 0.1653 0.1417 0.0656 0.0552 OOM OOM

NGCF 0.1570 0.1327 0.0579 0.0477 0.0344 0.0263

LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

LR-GCCF 0.1701 0.1452 0.0604 0.0498 0.0375 0.0296

GF-CF 0.1849 0.1518 0.0697 0.0571 0.0710 0.0584

Turbo-CF 0.1835 0.1531 0.0693 0.0574 0.0730 0.0611

(i) In comparison with LightGCN using a lightweight architec-

ture design, Turbo-CF significantly boosts the computational

efficiency, achieving up to ×48, 230 faster runtime without

costly model training.

(ii) Even compared to GF-CF, Turbo-CF offers ×510 faster run-

time when the linear LPF is used. This is attributed to the

design of Turbo-CF where matrix decomposition is unnec-

essary and rather much simpler polynomial GF, composed

of simple matrix multiplications, is utilized.

4.3 Recommendation Accuracy
Table 3 compares the performance of Turbo-CF and eight competi-

tors. Our findings are as follows:

(i) Turbo-CF consistently achieves competitive performance

compared to the state-of-the-art CF methods, while achiev-

ing the best performance in NDCG@20 on Yelp and in both

metrics onAmazon-book. Specifically, Turbo-CF shows gains
up to 4.6% in terms of NDCG, compared to the second-best

performer on the Amazon-book dataset.

(ii) The competitive performance of Turbo-CF demonstrates

that the polynomial GF is still effective in guaranteeing sat-

isfactory recommendation accuracies, even without using a

matrix decomposition-aided ideal LPF in GF-CF.

(iii) In short, Turbo-CF is extremely fast yet reliable, making it a

strong benchmark for CF-based recommender systems.

4.4 Effect of Polynomial Graph Filters
To discover a relationship between accuracy and runtime, Table

4 summarizes the runtime and recall according to three different

polynomial graph filters in Turbo-CF. We present three variants of

Turbo-CF, namely Turbo-CF-1, Turbo-CF-2, and Turbo-CF-3, which
represent Turbo-CF using the linear LPF, second-order LPF, and

polynomially approximated LPF to the ideal one, respectively.

(i) The optimal polynomial graph filter in terms of Recall@20 is

observed differently depending on each dataset. Turbo-CF-3,
Turbo-CF-2, and Turbo-CF-1 achieve their best performance

Table 4: Runtime and recall according to three different poly-
nomial graph filters in Turbo-CF.

Gowalla Yelp Amazon-book

Runtime Recall Runtime Recall Runtime Recall

Turbo-CF-1 0.32s 0.1823 0.31s 0.0689 27.9s 0.0730

Turbo-CF-2 5.59s 0.1740 4.80s 0.0693 OOM OOM

Turbo-CF-3 5.79s 0.1835 4.82s 0.0689 OOM OOM

0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

(a) Effect of 𝛼 .

0.5 0.6 0.7 0.8 0.9 1

0.1

0.15

0.2

(b) Effect of 𝑠 .

Figure 4: The effect of two hyperparameters on the Re-
call@20 for the Gowalla dataset.

on Gowalla, Yelp, and Amazon-book, respectively. This in-

dicates that higher-order polynomial LPFs do not always

guarantee better performance and using a linear LPF is often

sufficient to achieve satisfactory performance.

(ii) As stated in Section 3.2.3, GF-based CF methods require

loading the high-dimensional matrix 𝑃 into memory. Thus,

the inclusion of high-order polynomials (Turbo-CF-2 and

Turbo-CF-3) causes out-of-memory (OOM) issues on larger

datasets such as Amazon-book. To relieve this, we can utilize

efficient algorithms for matrix multiplication such as the

Strassen algorithm [14, 29] or submatrix partitioning [5, 9];

this enables us to greatly reduce the memory complexity

when large-scale matrix multiplication is involved.

4.5 Sensitivity Analysis
We analyze the impact of the key parameters in Turbo-CF, including
two balancing parameters 𝛼 and 𝑠 for graph construction, on the

recommendation accuracy for the Gowalla dataset as other datasets

exhibit similar tendencies. Other parameters are set to the pivot

values. First, Figure 4(a) shows that the optimal 𝛼 is found at 𝛼 =

0.7, which confirms that symmetric normalization 𝛼 = 0.5 is not

an optimal choice for ensuring accurate recommendations. Next,

Figure 4(b) shows that the optimal 𝑠 is found at 𝑠 = 0.6, not at 𝑠 = 1.

The sensitivity analysis on 𝛼 and 𝑠 validates that properly adjusting

the two balancing parameters 𝛼 and 𝑠 leads to sufficient gains.

5 CONCLUSIONS
In this paper, we proposed Turbo-CF, a GF-based CF method that

is both training-free and matrix decomposition-free. Turbo-CF was

built upon a computing hardware-friendly polynomial graph filter to
circumvent the issue of expensive matrix decomposition. Extensive

experiments demonstrated (a) the extraordinarily computational

efficiency of Turbo-CF with a runtime of less than 1 second on

Gowalla and Yelp datasets and (b) the competitive recommendation

accuracy of Turbo-CF compared to other benchmark methods.
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