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ABSTRACT
Recent advances in the field of generative artificial intelligence (AI)

have blurred the lines between authentic and machine-generated

content, making it almost impossible for humans to distinguish

between such media. One notable consequence is the use of AI-

generated images for fake profiles on social media. While several

types of disinformation campaigns and similar incidents have been

reported in the past, a systematic analysis has been lacking.

In this work, we conduct the first large-scale investigation of the

prevalence of AI-generated profile pictures on Twitter. We tackle

the challenges of a real-world measurement study by carefully inte-

grating various data sources and designing a multi-stage detection

pipeline. Our analysis of nearly 15 million Twitter profile pictures

shows that 0.052% were artificially generated, confirming their

notable presence on the platform. We comprehensively examine

the characteristics of these accounts and their tweet content, and

uncover patterns of coordinated inauthentic behavior. The results

also reveal several motives, including spamming and political am-

plification campaigns. Our research reaffirms the need for effective

detection and mitigation strategies to cope with the potential nega-

tive effects of generative AI in the future.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Security
and privacy→ Human and societal aspects of security and privacy;
• Information systems→ Social networks.
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1 INTRODUCTION
The emergence of generative artificial intelligence (AI) has revolu-

tionized content creation, enabling us to produce highly authentic

and diverse outputs, such as images, videos, texts, and music that

bear a striking resemblance to human-created media. These AI-

driven systems have become ubiquitous in various areas of our soci-

ety and provide reliable support in numerous applications. Among

other use cases, they streamline the writing of emails and texts

or enhance programming with advanced code completion tools.

∗
Equal supervision.

However, alongside its impressive benefits, generative AI also has

the potential for significant detrimental effects. A pressing problem

is the ability to generate compellingly realistic but false content,

which can be used as a way to spread misinformation, manipulate

people, and influence public opinion.

In a significant action in late 2019, Facebook dismantled an ex-

tensive network of over 900 accounts, pages, and groups that had

collectively spent more than 9 million USD on advertisements pro-

moting Donald Trump, potentially impacting the 2020 US presiden-

tial election [75]. A notable feature of this network was the use

of AI-generated profile images, possibly taken from the website

thispersondoesnotexist.com (TPDNE) which became operational

in February 2019. Using NVIDIA’s StyleGAN [54], TPDNE gener-

ates a new facial image every time the page is refreshed, making

it easily accessible to everyone. Since this incident, the use of AI-

synthesized faces in disinformation campaigns has been on the rise,

likely because such images reduce the risk of detection through re-

verse image searches [37]. Investigations have revealed that many

of these deceptive clusters operate with state interests in mind,

seeking to bolster specific narratives [72, 73, 98, 96] or interfere

in the domestic policies of foreign states [74, 42, 41]. Additionally,

there are efforts to influence public opinion [97, 99] or establish

connections with unsuspecting social media users [104, 36]. The

FBI and Europol have expressed concerns that the trend of using

AI-generated content in cybercrime and foreign influence opera-

tions is expected to grow steadily [28, 24]. Given these examples, it

is essential to understand the detection possibility, prevalence, and

usage of AI-generated images in the wild instead of a lab setting.

In this work, we tackle this challenge by concentrating on the

phenomenon of AI-generated images in social media. At the time of

writing, it is becoming increasingly difficult for humans to differen-

tiate these machine-generated media from authentic photographs,

as evidenced by recent studies [50, 101, 70, 94, 58, 71, 33]. Although

the detection of generated images has been explored extensively in

lab settings, there is a surprising lack of comprehensive research

addressing their identification and widespread use on social media

platforms in real-world contexts. In this paper, we provide the first

systematic and large-scale study of AI-generated profile images on

Twitter. Our research is founded on three main pillars.

First, we develop a fast and effective detection pipeline tailored

to the identification of AI-generated images in real-world scenarios.

1

ar
X

iv
:2

40
4.

14
24

4v
1 

 [
cs

.C
R

] 
 2

2 
A

pr
 2

02
4

https://orcid.org/0000-0002-7186-3634
https://orcid.org/0000-0001-9219-1956
https://orcid.org/0000-0002-2783-1264
https://orcid.org/0000-0002-1916-7033
https://orcid.org/0009-0004-7170-1274
https://thispersondoesnotexist.com


Jonas Ricker, Dennis Assenmacher, Thorsten Holz, Asja Fischer, and ErwinQuiring

This task presents unique challenges, including the lack of a defini-

tive ground truth and the diversity of possible image manipulations.

To solve these problems, we carefully design a detection pipeline

step by step. We consider different dataset types, apply a pre-filter

to discard images with too small or no faces, and adapt a state-of-

the-art classification model specifically targeting synthetic profile

images on Twitter. As mentioned above, observations suggest that

the majority of AI-generated profile images originate from TPDNE,

which is why we tailor our detection pipeline to this kind of fake

faces. Finally, we integrate various tools that help with the man-

ual labeling that is required to estimate error rates on unlabeled

in-the-wild data. We study each component of our system in con-

trolled setups and show that the pipeline is capable of accurately

recognizing AI-generated images.

Second, we analyze a large collection of 14 989 385 Twitter profile

pictures to determine how prevalent AI-generated profile pictures

are on the platform. We identify 7 723 accounts that use such im-

ages, which corresponds to a prevalence rate of 0.052 %. This result

indicates a notable presence of generated profile images on Twitter.

We also assess the accuracy and reliability of our findings by esti-

mating error rates. We estimate the false negative rate (FNR)—the

fraction of mislabeled fake images—of our approach to lie between

2.88 % and 3.03 %, and the false discovery rate (FDR)—the fraction

of real images among all images classified as fake—to be 1.4 %. The

results suggest a low error rate of our method.

Third, we contextualize the use of AI-generated profile pictures

on Twitter by examining the corresponding accounts and their

tweets. Our results show clear differences between the two types of

accounts: accounts with fake images tend to have lower social en-

gagement as well as fewer followers and followed accounts. Despite

the generally lower activity, some accounts with fake images are

very active, suggesting possible involvement in spam campaigns.

In addition, fake accounts are often newer and are suspended more

frequently by Twitter, indicating inauthentic behavior. A significant

portion of accounts was created in bulk shortly before our data

collection, which is a common pattern for accounts created for mes-

sage amplification, disinformation campaigns, or similar disruptive

activity. This impression is confirmed by our textual analysis of the

accounts’ tweets. We identify large clusters spamming very similar

contents, frequently referring to giveaways, cryptocurrencies, and

pornography. Notably, we also observe accounts that engage in

contentious or political topics, such as the war in Ukraine, debates

on COVID and vaccinations, and election-related discourse.

Contributions. We make the following key contributions:

(1) Detection Pipeline. We propose a multi-step pipeline for

detecting AI-generated profile images on social media. We

evaluate each stage in a controlled setup and demonstrate

the pipeline’s suitability for real-world settings.

(2) Prevalence Study on Twitter. We apply our pipeline on

14 989 385 authentic profile images to systematically study

the prevalence of AI-generated faces on Twitter.We identify

7 723 accounts with generated profile images, correspond-

ing to a prevalence rate of 0.052 %.

(3) Account and Tweet Analysis. We analyze the user metrics

and tweets of accounts using AI-generated profile images

to learn more about their intended purpose. We identify

prevalent topics and find a significant number of accounts to

apparently participate in coordinated inauthentic behavior.

2 BACKGROUND
We start by providing a short primer on the creation and detection

of AI-generated images.

AI-Generated Content (AIGC). AIGC, sometimes also referred

to as “deepfakes”, is content that appears authentic to humans

but is synthesized or altered using a deep neural network. It is

most prominently associated with manipulated videos in which

the face of a person is replaced with a different one [68], but also

encompasses other types of media including images, audio, and

text. While AIGC offers great creative potential, it is also used for

malicious purposes, including defamatory images and videos [13],

voice cloning [34, 19], fake customer reviews [111], and machine-

generated posts on social media [26, 38].

Image Synthesis. Learning a probability distribution from sam-

ples in order to generate novel samples is a longstanding challenge,

especially in the high-dimensional image domain. Besides varia-

tional autoencoders (VAEs) [57] and autoregressive models [103,

102], generative adversarial networks (GANs) [39] have proven to

be effective in synthesizing high-quality images [118, 11, 52, 54,

55, 53, 90, 51]. The StyleGAN family [54, 55, 53] received special

attention due to their ability to generate faces that are practically

indistinguishable from real ones [71]. Recently, it has been shown

that diffusion models (DMs) [95, 48, 20] are able to match and even

surpass the visual quality of GAN-generated images.

Generated Image Detection. There is a continuing arms race

for effective detection techniques and newer generations of image

synthesis algorithms. Broadly speaking, generated image detection

techniques can be divided into two categories: methods that rely on

handcrafted features and learning-based methods. Methods from

the first category either exploit visual defects (e.g., facial inconsis-

tencies [64], impossible reflections [49], irregular pupil shapes [43])

or “invisible” characteristics such as frequency artifacts [117, 22, 32,

9, 91, 10], pixel statistics [69, 65], or model-specific properties [63,

114, 86]. Learning-based methods, on the other hand, use neural

networks to learn a suitable feature representation to distinguish

fake from real images [62, 8, 50, 106, 40, 15, 78, 14].

3 METHODOLOGY
A large-scale study on generated images in the wild comes with

multiple challenges. First, we do not know the ground truth. As a

result, it is difficult to estimate the amount of overlooked generated

images (false negatives) and to be sure that an image detected as gen-

erated is actually generated (precision). Finally, studying millions

of images comes with a computational overhead so that the detec-

tion method has to be efficient, too. We discuss further challenges

and limitations of our study in Section 8. To deal with all these

challenges, we carefully design a multi-step detection pipeline. The

following is a step-by-step description of this pipeline. Note that

while the presented approach is applied to Twitter, our method can

be adapted to any other social network. We provide implementation

details in Appendix A.
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3.1 Data Collection
We describe the four types of datasets that we use for studying gen-

erated images, with Twitter being our use case. Table 1 summarizes

our notation.

In-The-Wild Dataset DX
𝑊
. To estimate the prevalence of gener-

ated images on a social network, it is important to obtain a mostly

unconditional sample. In the case of Twitter, this can be achieved by

using the API endpoint that provides real-time access to a random

1% subset of all publicly posted tweets. We download each author’s

profile image together with their profile metadata (cf. Appendix A.1

for an overview). Note that this approach only enables us to obtain

profile images from users who write posts during the data collec-

tion period. Additionally, we omit users who have not set a profile

image, that is, who are using Twitter’s default profile image. From

March 7 to March 15 2023, we collected 14 989 385 profile images.

Labeled Datasets D𝑅/D𝐹 and Variations. We continue with

labeled datasets of fake and real images which can be used to train

a detector. As discussed in Section 1, existing observations suggest

that the vast majority of generated profile images on Twitter are

taken from TPDNE, which generates images with StyleGAN2 [55]

trained on the FFHQ [54] dataset
1
. We therefore decide to focus

on this specific kind of fake faces and use 10 000 images from

TPDNE as our fake-labeled dataset (denoted by D𝐹 ) and corre-

spondingly 10 000 images from FFHQ as our real-labeled dataset

(denoted by D𝑅 ). We discuss this limitation of focusing on TPDNE

in Section 8. As prior work shows that processing operations like re-

sizing and compression can affect the detection [79, 60], we consider

two dataset variations:

• DX
𝑅
and DX

𝐹
. To obtain profile images with the social net-

work’s processing steps, we adapt the approach from Boato

et al. [6]. We upload both D𝑅 and D𝐹 to Twitter, set each

image as profile image, and then download all images again.

We denote these processed images by DX
𝑅
and DX

𝐹
.

• DX′
𝑅

andDX′
𝐹
. We additionally simulate a user which zooms

into the profile image during the upload, as it is common

for social media platforms. We denote these images byDX′
𝑅

and DX′
𝐹
, respectively.

We confirm in Section 7.2 that considering the preprocessing indeed

improves the detection performance under realistic conditions.

Proxy-Labeled Real Dataset DX
𝑃
. Social media platforms often

have very popular users with a lot of followers. These popular

users are rather unlikely to use deceptive fake images. Hence, we

can build a proxy-labeled dataset with presumably real images. In

particular, we select 10 000 profile images from the accounts inDX
𝑊

with the highest numbers of followers that also pass our pre-filter

(which is presented in the next section). We denote the so-created

proxy-labeled dataset of real profile images by DX
𝑃
.

Documented Fakes Dataset DX
𝐷
. Finally, there are documented

cases of generated profile images that were discoveredmanually. For

example, blog posts regularly report such images when analyzing

inauthentic Twitter accounts [77]. These cases can be used to build a

1
When published in 2019, TPDNE used the original StyleGAN [54], but switched to

StyleGAN2 [55] shortly after its release.

Table 1: Dataset notation. The symbol X indicates that images
were processed by Twitter.

Symbol Description

DX
𝑊

Unlabeled dataset of Twitter profile images.

D𝐹 Labeled dataset of fake images.

DX
𝐹

Labeled dataset of fake images uploaded as profile image and

downloaded afterward.

DX′
𝐹

Version of DX
𝐹
where images are zoomed into during upload.

D𝑅 Labeled dataset of real images.

DX
𝑅

Labeled dataset of real images uploaded as profile image and down-

loaded afterward.

DX′
𝑅

Version of DX
𝑅
where images are zoomed into during upload.

DX
𝑃

Proxy-labeled dataset of supposedly real Twitter profile images.

DX
𝐷

Labeled dataset of documented fake Twitter profile images.

labeled dataset of fake images in the wild, which we denote by DX
𝐷
.

Such a dataset is not free of bias, but provides a good means to

finally check the performance of our classifier on an independent

source. For our study, we use a dataset of 1 353 generated Twitter

profile images that were manually collected between November

2022 and May 2023 [110].

3.2 Detection
Equipped with these different datasets, we can proceed with the

detection of generated profile images. Here, we propose a two-stage

procedure to improve the accuracy and the efficiency.

Pre-Filter 𝜙 . We start with a pre-filter 𝜙 to discard irrelevant

samples. In our case, we can discard images without any face or

where the face is too small. We use the efficient BlazeFace [4] face

detector to detect faces and locate facial landmarks. An image passes

𝜙 if at least one face is detected and the Euclidean distance between

the coordinates of both eyes is greater or equal to 0.1. The pre-filter

serves two purposes: First, the overall computational complexity

decreases by reducing the number of analyzed candidates in the

subsequent, more demanding detection stage. Second, the detection

stage is trained on facial images, so that other types of profile

images, such as logos or monochrome images, could be wrongly

classified as fake. Filtering irrelevant images can therefore decrease

the false positive rate (FPR).

Classifier C. To automatically label a profile image as real or fake,

we use a state-of-the-art CNN detector based on ResNet-50 [46].

Previous work [106, 60, 16, 15, 40] has demonstrated that this model

is able to effectively distinguish real from generated images and that

it provides good generalization capabilities. We initially attempted

to use pre-trained fake image detectors, however, we found that

the heavy pre-processing performed by Twitter makes it necessary

to train our own detector (cf. Section 7.1). In particular, we train

on the combination of DX
𝑅
and DX

𝑃
for real images, and DX

𝐹
for

fake images. The resulting final classifier is denoted by C𝑅X,𝑃X/𝐹X .
Note that we experiment with using other dataset variations to

train a classifier in our ablation study in Section 7.2. Yet, using

processed real, fake, and proxy-labeled real images provides the

highest performance for processed and zoomed inputs.

3
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3.3 Assistance for Manual Labeling
To estimate error rates of our detection scheme on unlabeled in-

the-wild data, it is necessary to manually label these images as real

or fake. As generated images have reached a level of quality which

makes them almost indistinguishable from real images [50, 101, 70,

94, 58, 71, 33], we use two tools to facilitate this process.

Alignment. Faces generated by StyleGAN2 [55] are character-

ized by being almost perfectly aligned with respect to their facial

landmarks, caused by the alignment of the training dataset FFHQ.

By superimposing multiple images, this characteristic has been

leveraged to visually identify clusters of fake accounts in social net-

works [72, 74, 42, 41, 97, 98, 36].We automate this manual process by

extracting facial landmarks with BlazeFace [4] and computing the

deviation from a reference. For each landmark 𝐿1, . . . , 𝐿12 (x- and y-

coordinates of eyes, ears, mouth, and nose), we compute its mean 𝜇𝑖
and standard deviation 𝜎𝑖 over a reference dataset. In our study, we

use the training subset of DX
𝐹
as reference. We define an image 𝑥

as being aligned, if the condition

|𝐿𝑖 (𝑥) − 𝜇𝑖 | < 𝑘𝜎𝑖 ∀𝑖 ∈ {1, . . . , 12} (1)

holds, where 𝐿𝑖 (𝑥) are the landmarks extracted from the image 𝑥

and 𝑘 ∈ Z controls the maximum deviation from the reference. We

set 𝑘 = 7. During our evaluation in Section 4, we find that this is

the lowest value at which all generated images in the validation

set of D𝐹 are aligned. While a close alignment hints towards a

face generated by StyleGAN2, it is ineffective if the image has been

cropped or geometrically transformed.

Inversion. Additionally, we leverage GAN inversion [109] as an

assistance tool. For a given input image, this method finds the latent

code which reconstructs the original input when passed through

the generator. We use the provided implementation by Karras et al.

[55] to invert images using StyleGAN2. Previous work has shown

that generated images can be reconstructed more successfully than

real images [1, 55, 80] (we provide a visual example in Appendix B).

Note that inversion also relies on facial alignment. If an adversary

uses a cropped version of a fake face, the inversion result will be

distorted. We therefore only use inversion as labeling assistance if

the image is aligned.

4 EVALUATION
In this section, we proceed with an evaluation of our proposed

methodology in a controlled setting with labeled data. This allows

us to verify the components of our detection pipeline before study-

ing generated faces in the wild on Twitter in Section 5 and analyzing

the corresponding profiles and tweets in Section 6.

Dataset Splits. We randomly split D𝑅 , D𝐹 , and DX
𝑃
into 8 500

train, 500 validation, and 1 000 test images, respectively. DX
𝑅
and

DX
𝐹
are split in the same manner. As we use DX′

𝑅
and DX′

𝐹
only for

evaluation, they only contain the corresponding 1 000 test images,

respectively.

Pre-Filter. We start with the pre-filter 𝜙 that should discard ir-

relevant images, but keep potentially generated images. An image

passes 𝜙 if a face (a) is detected and (b) has a sufficient size (see

Section 3.2). In the following, we apply 𝜙 to the test set from DX
𝐹

Table 2: Evaluation of our pre-filter 𝜙 . We separately analyze
its two conditions, which are the presence of a face and its
sufficient size.

With Face Without Face

Dataset Face Detected Size Check Face Detected Size Check

DX
𝐹

100 % 100 % — —

DX
𝑊

92.47 % 58.16 % 42.53 % 30.27 %

and to 1 000 randomly sampled images from DX
𝑊
. For the latter

subset, we manually label each image whether it (partly) contains a

human face. Our experiment here has three goals: we want to verify

that all generated images from DX
𝐹
pass 𝜙 , confirm that the face

detector works reliably on the in-the-wild images from DX
𝑊
, and

finally get an estimate of the number of kept in-the-wild images

passed to the next stage.

Table 2 shows the results for our evaluation of 𝜙 . All generated

images fromDX
𝐹
pass𝜙 , fulfilling our first goal. Among the sampled

in-the-wild images fromDX
𝑊

with a face, the face detector correctly

identifies 92.47 %. We manually look through the undetected faces.

In most cases, the face is either very small, obstructed (e.g., by

masks or smartphones), or partly outside the frame. The face in

these images is not prevalent, so that we consider it acceptable to

skip them. For in-the-wild images without a face, the face detector

mistakenly locates a face in 42.53% of the cases. We manually in-

spect the mislabeled images. The vast majority contains faces, but

they are drawn, digitally created, or belong to animals or statues.

Only very few detections are obviously “wrong”, such as images

with Twitter’s former default profile image. Since these images are

just passed to the next stage, having some false positives is not

critical. Based on this analysis, we can conclude that the face detec-

tor reliably works, fulfilling our second goal. Finally, we measure

how many images from DX
𝑊

additionally pass the size check and

therefore 𝜙 . In only 58.16% of the face images and 30.27% of the

non-face images, the face is considered large enough, considerably

reducing the number of images passed to the next stage. Overall,

we conclude that our pre-filter allows us to skip irrelevant images

efficiently, without mistakenly discarding generated faces.

Classification. Next, we verify that our classifier C𝑅X,𝑃X/𝐹X is

capable of spotting generated images in realistic settings. We eval-

uate the performance of our classifier under three conditions: (a)

processed images (DX
𝑅
vs. DX

𝐹
), (b) zoomed images (DX′

𝑅
vs. DX′

𝐹
),

and (c) proxy-labeled real and fake images (DX
𝑃
vs. DX

𝐹
). We use

the test set from each dataset.

Figure 1 shows the respective ROC curves. Our classifier has

an almost perfect detection rate with an AUC value close to 1.0.

Note that the setup on zoomed data is slightly more challenging,

because there are no examples of zoomed images in the detector’s

training data. Still, the error rate remains very small. Due to the

strong class imbalance on real Twitter data, a small error rate is

required to avoid an excessive amount of false positives.

4
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Figure 1: Evaluation of our classifier C𝑅X,𝑃X/𝐹X . We show the
ROC curve under different conditions.
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Figure 2: Evaluation of GAN inversion. The lower the LPIPS
distance between the original image and its reconstruction,
the more similar they are.

Assistance Tools. We finally verify our methods that allow us to

better label images for the error-rate estimation later.

Alignment. Using the test set fromDX
𝐹
, we confirm that with 𝑘 = 7,

all fake images are correctly labeled as being aligned. From the

1 000 randomly sampled images from DX
𝑊
, only 35 are aligned.

Inversion. We first verify that generated images can be inverted

more accurately than real images. We invert 500 images from DX
𝑅

and DX
𝐹
, respectively, and compute the LPIPS [116] distance be-

tween original and reconstructed images. This distance metric mea-

sures the perceptual similarity between two images and has been

previously used to estimate the reconstruction quality [55]. The

histograms in Figure 2 show that the reconstructions from DX
𝐹

are perceptually more similar to the originals compared to the re-

constructions from DX
𝑅
. A classification based on the LPIPS scores

results in an AUC of 0.97.

As second experiment, we check that inversion is helpful for

manual labeling. We divide the 1 000 images (500 real, 500 fake)

into 900 training and 100 test images. For each image we construct

a side-by-side view with the original, its reconstruction obtained

by inversion, and the distance measured in LPIPS and MSE (cf.

Appendix B). Using the training set, one annotator practices the

manual classification. We then evaluate the performance based on

the held-out test images. 99 out of 100 images are correctly assigned,

demonstrating a feasible manual inspection.

We emphasize that images from DX
𝑅
are very similar to images

from DX
𝐹
. In contrast, most in-the-wild profile images are visu-

ally different, leading to even worse reconstructions (despite being

aligned) and thus to comparatively high LPIPS values. Hence, we

expect the actual manual labeling process to be easier than in the

controlled setting.

Summary. Our evaluation indicates a valid detection pipeline.

The pre-filter allows skipping irrelevant images while the classifier

allows detecting generated images. The assistance tools can help

with the manual labeling process.

5 DETECTING GENERATED IMAGES
IN THEWILD

Equipped with a valid detection pipeline, we can now explore the

prevalence of generated images on Twitter. To this end, we first

need to calibrate the detection to the real-world setup before we

can present the final results.

Manual Labeling. To begin with, we have to label a subset ofDX
𝑊
.

First, this allows us to get a detection threshold, so that we are

able to classify individual images as real or generated. Note that in

the controlled setup before, we evaluated the overall performance

of C𝑅X,𝑃X/𝐹X with the AUC metric that takes into account all pos-

sible thresholds and thus does not require picking a specific value.

Second, a separate labeled set is necessary to estimate error rates.

Unfortunately, manual labeling of all samples in DX
𝑊

is unfeasi-

ble due to the sheer volume of samples within the dataset. Thus,

we resort to a random subset, containing 10% of all samples. We

then sort these images based on their score (from C𝑅X,𝑃X/𝐹X ) from
low (real) to high (fake) and select the top 1 000 images that pass

𝜙 for manual labeling. We acknowledge that choosing the subset

based on the classifier that we are trying to evaluate introduces an

unwanted bias: there could be fake images with very low scores

that are overlooked. However, we argue that this approach strikes

a balance between practicability and a sound estimation. Selecting

the subset by pure chance would require an enormous amount

of manual labeling to gather a sufficient number of fake images.

Moreover, the scores of our subset range from 1.0 to 0.33. From the

test set ofDX
𝐹
, only 3 out of 1 000 images get a score below 0.33. We

therefore assume that only a very small number of false negatives

is potentially overlooked.

We carefully inspect each image and, if it is aligned, its recon-

struction from GAN inversion. We label an image as real if the

framing and pose do not match with that of D𝐹 , if it contains a

complex and meaningful background, or if the reconstruction devi-

ates significantly from the original. In contrast, images are labeled

as fake if they contain diffuse backgrounds, asymmetries (eyes, ear-

rings), unnatural clothing, color artifacts, and/or an almost perfect

reconstruction. By doing so, we obtain 185 images labeled as “Real”,

725 images labeled as “Fake”, and 90 images labeled as “Unsure”.

Most images with label “Unsure” resemble images from TPDNE,

but do not contain clear artifacts or were strongly edited. We also

assigned this label if we suspect that an image was generated using

a different kind of generative model. We randomly split the 910 im-

ages labeled as “Real” or “Fake” into a validation set (for calibrating
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Figure 3: Score distribution of manually labeled images.

the threshold) and a test set (for estimating the error rates) of equal

size, maintaining the label ratio in both splits.

Choosing a Threshold. Due to the high imbalance between real

and generated images in DX
𝑊
, choosing an appropriate threshold

is not trivial. A too high threshold leads to many overlooked fake

images (low recall), while a too low threshold leads to many real

images classified as fake (low precision). As recall and precision are

equally relevant in our setting, we follow the common practice to

select the threshold based on the F1-score (based on the validation

set). The best F1-score (0.9832) is achieved using a threshold of

0.9899361. Such a high threshold might appear counterintuitive.

Yet, Figure 3 shows that most fake images are confidently classified

as fake—with scores very close or equal to 1. The scores of real

images, however, have greater variation. Thus, choosing a relatively

high threshold gives the best performance. Note that the scores of

real images in this subset are not representative for all real images,

since we purposely selected images with high scores.

Estimating Error Rates. Equipped with our selected threshold,

we can now estimate the error rates of our detector. We start with

the test set of our manually labeled subset and calculate the FNR

and FDR here. The FNR, the fraction of mislabeled fake images,

is 3.03%. The FDR, the fraction of real images among all images

classified as fake, is 1.4 %.

To understand the errors, we take a closer look on the misclassi-

fied images. Figure 4 shows the false negatives within the test set

together with their scores. Although the majority actually gets a

high score and is only classified as real due to the high threshold,

three images have a considerably lower score. We cannot identify a

pattern which causes their misclassification. Neither do we observe

any characteristics that would explain the real images classified

as fake (FDR). As these profile images are real users, we cannot

provide visual examples here.

In addition, we can leverage our independent dataset DX
𝐷

of

fake profile images that were spotted by users on the web before.

We obtain a low FNR of 2.88%, that is, 39 out of 1 353 fake profile

images are incorrectly labeled as real. All images pass the prefilter𝜙 .

All images in DX
𝐷

are aligned according to our definition. False

negatives therefore only depend on the classifier’s score.

Overall, we can confirm the performance of our detector on two

different test sets. While the errors rate are not zero, they are small

enough to draw conclusions in our analysis in the next section.

0.988 0.9823 0.9804 0.9771 0.9498

0.9338 0.9285 0.7561 0.7048 0.5515

Figure 4: Examples of fake images falsely classified as real,
together with their classification score.

Prevalence of Fake Profiles on Twitter. We are now ready

for the final step. We apply our detection scheme on the entire

in-the-wild dataset DX
𝑊
. The pre-filter 𝜙 discards 8 535 322 images,

reducing the number of images by 56.94 %. Next, using our detector,

we classify 7 723 profile images as fake. This is 0.052% of the full

dataset. In the next section, we analyze the profiles behind these

images and their tweets in more detail.

6 ANALYSIS
Our goal in this section is to understand the context where the

generated profile images are used. To this end, we first perform an

analysis of the accounts behind these images (Section 6.1). Then,

we thoroughly analyze the content of the tweets that were sent from
these accounts (Section 6.2). For simplicity, we refer to accounts

using generated profile images as “fake-image accounts” as opposed

to “real-image accounts” in the following.

6.1 User Metrics
We begin by analyzing the difference between fake-image and real-

image accounts regarding social connections, account activity, as

well as account creation and status.

Social Connections. On Twitter, social interactions are primar-

ily measured in the number of followers an account has and the

number of other accounts it follows. Figures 5a and 5b visualize

the distribution of these metrics for real- and fake-image accounts

at the time of data collection. We find that fake-image accounts

have fewer followers (mean: 393.35, median: 60) compared to real-

image accounts (mean: 5 086.38, median: 165) in our dataset. 1 997

(25.86 %) of all fake-image accounts have 9 or fewer followers and

1 063 (13.76%) have exactly zero followers. We notice that 1 996

fake-image accounts (25.84 %) have exactly 106 followers. Our con-

tent analysis in Section 6.2 reveals that these accounts belong to a

large cluster of fake accounts involved in coordinated inauthentic

behavior.

We find that fake-image accounts also follow fewer other ac-

counts (mean: 283.18, median: 21) compared to real-image accounts

(mean: 759.83, median: 262). Interestingly, 2 175 fake-image ac-

counts (28.16%) follow exactly two other accounts. In contrast

to the number of followers, a relatively small number of fake-image

accounts (163, 2.11 %) follows exactly zero other accounts.
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Figure 5: Distributions of user metrics from real- and fake-
image accounts. The points depict 1 000 randomly selected
samples from each class, respectively.

Activity. Figure 5c shows that fake-image accounts do participate

in Twitter based on the number of tweets. Yet, they are overall less

active than real-image accounts. On average, fake-image accounts

posted 3 158.9 (median: 112) tweets, as opposed to 17 096.39 (me-

dian: 3450) tweets from real-image accounts. 1 948 (25.22%) of all

fake-image accounts have 10 or fewer tweets. In addition, Figure 5d

shows the average number of tweets per day, calculated by dividing

the total number of tweets by the number of days the account ex-

ists. Based on the median, fake-image accounts are still less active

than real-image accounts (0.95 vs. 3.7 tweets per day). However,

a large fraction of fake-image accounts posts exceptionally many

tweets per day, causing a higher mean (19.96 vs. 13.56 tweets per

day). In particular, there are 266 fake-image accounts (3.44 %) that

submitted more than 100 tweets per day.

Account Creation and Status. Figure 6a compares the times of

account creation. Fake-image accounts are considerably “younger”,

with more than half of them (52.38%) being created in 2023 (note

that our data collection happened in March 2023). In contrast, only

6.22 % of real-image accounts have been created in this period.

In addition to the creation date, we also examine the account

status after a certain period of time. We checked the status of

all 7 723 fake-image accounts nine months after data collection

by querying the respective profile page. As a reference, we did

the same for an equal number of randomly sampled real-image

accounts. Accounts can be either alive, deactivated (by the user), or

suspended (by Twitter). Figure 7 illustrates that more than half of

the fake-image accounts (52.07 %) have been suspended. In contrast,

only 5.01% of real-image accounts in the reference set have been
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(a) Real- and fake-image accounts.
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(c) Similar to (b), showing only the last three months.

Figure 6: Distributions of account creation times from real-
and fake-image accounts. In (b) and (c) we differentiate fake-
image accounts by their status nine months after data collec-
tion. The points depict up to 1 000 randomly selected samples
for each label and status, respectively.
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Figure 7: Account status nine months after data collection.

suspended. The high number of suspended fake-image accounts

suggests that they were violating Twitter’s rules.

In Figures 6b and 6c, we analyze the account creation of fake-

image accounts given their status. We observe various suspended

accounts that were created in bulk just shortly before our data

collection, especially in the middle of February. Note that we do

not know when these accounts were suspended, so that we cannot

determine the effective lifetime of these accounts.

Takeaways. Our analysis shows that real and fake-image accounts

notably differ. Fake-image accounts have fewer social interactions,

both regarding the number of followers and the number of ac-

counts they follow. While these metrics are distributed evenly for

real-image accounts, we observe patterns with fake-image accounts.

There are large groups with identical values, indicating an orches-

trated network of inauthentic users. Moreover, fake-image accounts
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Figure 8: Number of tweets (top) and corresponding accounts
(bottom) for the 20 most represented languages. The smaller
bar indicates the number of unavailable tweets/accounts in
each language. Note that a single account can be associated
with multiple languages.

are not passive, they considerably participate in Twitter based on

the number of tweets. Although they are in general less active than

real-image accounts, there are several fake-image accounts that

post very frequently, hinting towards spamming attacks. Finally,

fake-image accounts have a more limited lifetime. They are usually

created more recently than real-image accounts, and they are also

disproportionately often suspended by Twitter. This suggests in-

authentic behavior. Moreover, a substantial number was created

in bulk just before our data collection period started. This bulk
creation (or batch creation) is a common pattern for inauthentic

behavior, used, for example, to amplify messages or to participate

in spamming or trolling activities [44, 31].

6.2 Content Analysis
To evaluate the purpose of the identified fake-image accounts, we

proceed to analyze their tweets (original as well as retweets) posted

in 2023. We utilize data collected in the context of a large-scale

Twitter stream archiving effort [25] based on Twitter’s 1 % sampled

stream (the same we used to create DX
𝑊
). This allows us to access

information about the activity of the profiles before and after the

profile collection week (until Twitter restricted access to its API in

June 2023). In total, we have access to 111 165 tweets from the 7 723

fake-image accounts in our collection.

We begin our analysis with the language and availability. The
upper half of Figure 8 shows a breakdown of the number of tweets

per language. Using the accounts’ status nine months after our

data collection (cf. Section 6.1), we can also calculate the fraction of

unavailable tweets. Overall, 49.6% of all tweets were unavailable

after nine months. Interestingly, Turkish and Arabic stand out as

languages with significantly higher unavailability rates (87.95 % and

95.59 %, respectively) than other languages. The number of unique

accounts that created the tweets in each language are reported in

the lower half of Figure 8. It shows that Turkish tweets, for instance,

stem from a relatively small number of users.

We proceed with a textual analysis. To identify structural pat-

terns, we employ state-of-the-art sentence embeddings [85] to

group the tweet texts into semantically related clusters. We utilize

the cosine similarity between the sentence embeddings to deter-

mine cluster belonging. A new observation (tweet) is assigned to

an existing cluster if a certain similarity threshold (in our case 0.6)

is reached. Otherwise a new cluster will be generated. Furthermore,

we limit our analysis on clusters that exhibit a minimum cluster size

of 50 (i.e., at least 50 tweets should be in one cluster). This approach

allows us to identify dominant trends. Note that it does not provide

a distribution of topics, because not every tweet is assigned to a

cluster. For the purpose of visualization, we use UMAP [66] as a

dimensionality reduction technique to generate a two-dimensional

representation of the clustering outcome (cf. Figure 9). For each

cluster, we calculate the class-based term frequency–inverse docu-

ment frequency (TF-IDF) terms to determine representative class

tokens. In a subsequent step, we conduct a manual qualitative re-

view of all clusters to identify and describe common themes, which

are detailed in the following paragraphs. We describe the general

cluster contents and provide representative examples for important

topics. We also analyze the metadata of accounts within cluster and

report unusual characteristics.

English (Unavailable tweets). The clustering for English content

posted by users that are not on the platform anymore reveals a

notable pattern: we observe a single, extremely large cluster that

encompasses 49.67 % of all unavailable English tweets. Despite the

variability of the actual content, these tweets all share a common

structure. Each tweet begins by mentioning a specific Twitter user,

followed by a short sequence of English terms. Interestingly, these

sequences do not form logical sentences, so they are neither seman-

tically nor syntactically correct. Each of these sentences is then

followed by a specific Chinese hashtag that can be translated to:

“This is really useful”. Unfortunately, we can only speculate about

their purpose. Our hypothesis is that the embedded hyperlinks

within the tweets may have directed users to malicious external

websites. As the links are no longer functional, we cannot verify

this hypothesis.

The accounts’ metadata corroborate the assumption that the

1 579 accounts within this cluster were part of an organized net-

work. All but three were created between February 16 and February

20, which is consistent with our observations in Figure 6c. Up to

754 accounts were created on a single day. We also find that this

cluster contributes to the large number of accounts with identical

social connections (cf. Figure 5a and Figure 5b). 94.93 % have exactly

106 followers and 95.31% follow exactly two other accounts. The

usernames (Twitter handles) appear to be constructed from a list

of German-sounding first names and last names (or initials), and

optionally one or multiple digits (e.g.,@GuntherForstner86). 67.44 %
of all accounts have the same display name that can be translated to

“Noon Namshi Sivvi discount code is strong and effective” (Noon and

Namshi are e-commerce platforms operating in the Arabic region).

These accounts also have their location set to “KSA” (Kingdom of

Saudi Arabia). Moreover, the accounts contain nonsense descrip-

tions like “Personal west service street laugh small.”. We hypothesize

that these were automatically generated or translated. Again, we

can only speculate about the reason, especially about the mixed use
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Figure 9: UMAP representation of English tweets posted by users that are still available. Distinct (groups of) clusters are
annotated by their most representative tokens. Different clusters are separated by color.

of English, German, Arabic, and Chinese language. We also notice

that 99.18 % of all accounts in this cluster use profile images that are

duplicates within our dataset of fake-image accounts. Appendix D

elaborates our method for identifying duplicate images.

The remaining clusters mainly focus on giveaways, often related

to cryptocurrencies, with tweets like

$50 (2 winners x $25) 24 hours - like, follow)
i will #giveaway 100 usdt worth of $loop as we cele-
brate our 10k milestone

or the promotion of illegal content such as links to broadcasting

streams of soccer matches, e.g.,

live stream arouca vs benfica live [link]

Another trend is the distribution of links to websites and Telegram

groups containing explicit content, e.g.,

follow for more [link]

English (Available tweets). The clustering of tweets from users

who were still active after nine months reveals similarities and dif-

ferences. Figure 9 depicts a visual representation of the top clusters

with their representative text tokens. A significant portion of all

clusters is again related to various forms of cryptocurrency, stocks,

and giveaways, e.g.,

drop your #tezos #nft if you need it sold!
15000$ in $eth — 5 lucky winners!

Additionally, we find a significant share of adult content/porn

related clusters, actively advertising explicit content, also through

dedicated patterns like

beautiful/charming/etc. [profile of porn actress] [link]

Compared to inactive users, we observe that available accounts

also engage in discussions on contentious or political issues. These

include, for example, the war in Ukraine, election-related discourse,

and debates on COVID and vaccinations:

welcome to nazi ukraine #russia
desantis racks up wins while trump, potential 2024
opponents take swipes at florida governor

albos crocodile tears: watch this video, that the main-
stream media refuses to show.

someone needs to find an antidote for the vaxxx

Turkish (Unavailable tweets). For the Turkish accounts, we

restrict our analysis to content posted by users who have been

removed, since this is the majority of the dataset. Our findings

indicate that all of this content is related to pornography or escort

services. The primary distinction among the clusters are the cities

mentioned within the posts. Most tweets also contain links to other

websites, which are no longer functional. Upon examining the meta-

data of all 932 accounts, we again identify the systematic pattern

for usernames that we already observed in the large cluster of Eng-

lish tweets. However, first and last names appear to be of Turkish

descent. Moreover, almost all accounts have their location set to a

real Turkish city. 46.78 % of all accounts again use duplicate profile

images and 85.52 % were created within one month. These findings

again indicate that at least some systematic approach (automatic

or semi-automatic) is used to generate the accounts.

Arabic (Unavailable tweets). For Arabic tweets, we again only

consider accounts that have been suspended. All clustered tweets

appear to be related to literature, with individual clusters being
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Figure 10: Topic distribution of 1 000 manually inspected
available accounts.

characterized by mentions of certain authors, countries, or topics—

all related to the Arabic region. These tweets make up 72.34% of

all unavailable Arabic tweets. Surprisingly, the tweets share a com-

mon structure with those from the large cluster of English tweets:

they contain the specific Chinese hashtag, an external link, and an

incoherent sentence. Our metadata analysis suggests that the 1 806

accounts indeed belong to the same cluster, despite the different lan-

guage. Almost all accounts were created between February 16 and

February 20, with 892 being created on a single day. We observe the

same anomalies regarding the (German) usernames, locations, de-

scriptions, and social connections. Given the book-related content

and the frequently occurring username that promotes a discount

code, we hypothesize that the external links might have referred to

the respective shopping platforms.

Takeaways. Our content analysis reveals that English, Turkish,

and Arabic are the dominant languages used by the fake-image ac-

counts in our collection. We identify large networks of fake-image

accounts that were probably automatically created and that par-

ticipated in large-scale spamming attacks. We observe recurring

patterns as part of the automation. Accounts are created in bulk.

Tweets, usernames, locations, descriptions, and social connections

follow a systematic pattern. Multiple accounts within a network

share the same profile image. Furthermore, our analysis shows that

frequently occurring topics are cryptocurrencies, giveaways, and

content related to pornography and escort services. Fake-image ac-

counts also participate in controversial political discussions. These

findings align with prior analyses of inauthentic content on Twit-

ter [84, 17, 76, 82].

6.3 Sample Study on Available Accounts
Finally, we analyze the current behavior of fake-image accounts

that are still alive at the time of writing (February–March 2024).

This gives insights about the use-case of rather long-term fake-

accounts. As we cannot use data from Twitter’s API any longer,

we randomly select 1 000 available fake-image accounts and visit

their Twitter profile manually. Two annotators independently check

the most recent tweets and assign a topic to each profile (Cohen’s

kappa: 0.84). Accounts where both annotators disagree are revisited.

We choose topics from five categories, so that we can get a broad

understanding of the prevalent application scenarios.

Figure 10 depicts the distribution of topics. The majority of fake-

image accounts participates in the political discourse (36.1%) or

shares finance-related content (33.1 %), mostly related to cryptocur-

rencies. 5.1 % of the profiles revolve around other websites or prod-

ucts (“Business”), while 4.3% share explicit content or promote

Table 3: Evaluation of existing pre-trained detectors. We re-
port the AUCs under different conditions.

Condition CWang CGrag C
Ojha

C𝑅X,𝑃X/𝐹X

(a) DX
𝑅
vs. DX

𝐹
0.7279 0.9249 0.6405 0.9998

(b) DX′
𝑅

vs. DX′
𝐹

0.7243 0.9600 0.6338 0.9997

(c) DX
𝑃
vs. DX

𝐹
0.8713 0.9015 0.6922 0.9998

(d) D𝑅 vs. D𝐹 0.9466 1.0000 0.8296 —

escort services (“Sex”). The remaining accounts (21.4%) cover di-

verse topics or have an empty timeline. Taken together, we observe

similar topics as before in our cluster analysis.

6.4 Summary
Our systematic analysis revealed 7 723 Twitter accounts that use AI-

generated profile images. By analyzing both their user metrics and

the content of their tweets, we identify particular patterns. Some of

these patterns, like the high number of suspended accounts, strik-

ing similarities within the accounts’ properties, or the multitude of

similar tweets posted by different users, represent strong evidence

that a subset of these accounts are part of organized, inauthentic

networks. While many accounts amplify content related to cryp-

tocurrencies or pornography, we also observe accounts that express

controversial political opinions.

7 ABLATION STUDY
Before finishing our study, we shortly confirm the design choices of

the classification methodology proposed in Section 3. In particular,

we justify the need to train our own classifier (Section 7.1) and

study the impact of training data (Section 7.2).

7.1 Evaluation of Pre-Trained Detectors
Detecting GAN-generated images is a well-researched problem and

several pre-trained detectors have been proposed (cf. Section 2).

However, we observe that the performance of these detectors suffer

from Twitter’s image processing, making it necessary to directly

train a classifier on processed profile images.

Setup. We test three existing pre-trained classifiers: CWang [106]

(which is the basis of our classifier), CGrag [40], and C
Ojha

[78].

Appendix C provides more details on these three classifiers. We

evaluate four conditions (see Table 3). The conditions (a)-(c) corre-

spond to those in Figure 1 and all use images processed by Twitter.

We additionally test the pre-trained detectors on unprocessed im-

ages in condition (d).

Results. Table 3 shows the AUCs of the three classifiers compared

to C𝑅X,𝑃X/𝐹X . Our trained detector significantly outperforms the

pre-trained classifiers under the Twitter conditions (a)-(c). The

fact that the latter perform better under the clean condition (d)

demonstrates the strong effect of Twitter’s processing. It is therefore

not possible to use a pre-trained detector for our study of in-the-

wild profile images.
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Table 4: Evaluation of three detector variants trained on dif-
ferent datasets. We report the AUCs under different condi-
tions.

Condition C𝑅/𝐹 C𝑅X/𝐹X C𝑅X,𝑃X/𝐹X

(a) DX
𝑅
vs. DX

𝐹
0.9971 0.9998 0.9998

(b) DX′
𝑅

vs. DX′
𝐹

0.9953 0.9995 0.9997

(c) DX
𝑃
vs. DX

𝐹
0.9983 0.9994 0.9998

7.2 Effect of Training Data
Our datasets described in Section 3.1 allow for different combina-

tions of training data. In the following, we justify the choice of

training our detector on real images, proxy-labeled real images, and

fake images.

Setup. We consider three classifier variants and analyze their per-

formance under the three conditions from Figure 1, respectively.

The classifier C𝑅/𝐹 is trained on D𝑅 and D𝐹 and represents the

most straightforward option. The images are not processed by Twit-

ter, but we resize them to 400 × 400 pixels to match the resolution

of actual profile images. The second classifier, C𝑅X/𝐹X , is trained on
the same images but with Twitter’s processing. Finally, C𝑅X,𝑃X/𝐹X
is additionally trained on DX

𝑃
as real images.

Results. Table 4 shows the AUCs of the three detector variants un-
der the different conditions. Our finally chosen classifier, C𝑅X,𝑃X/𝐹X ,
has the highest performance in all conditions. The classifier C𝑅/𝐹
trained on unprocessed images performs worse than both variants

trained on processed images, confirming our findings from Sec-

tion 7.1. Note that, while an AUC > 0.99 is still very high, the small

difference can cause a significant increase in false positives, given

the size of DX
𝑊
. Overall, our results provide two insights. First, the

classifier C should be trained on images that are processed similarly

to the target images. Second, including proxy-labeled real images

from the target distribution (DX
𝑃
) improves the detection perfor-

mance. A closer look shows that this causes a better separation

of the classifier scores, shifting scores towards either end of the

output range. This motivates our choice of C𝑅X,𝑃X/𝐹X for our study.

8 DISCUSSION AND LIMITATIONS
Our work systematically examines the prevalence of generated

images on Twitter. Despite great effort, our study has limitations

that we discuss in the following.

Sampling Bias. The restricted 1% access to Twitter as well as

the limited and randomly chosen collection period can introduce a

sampling bias [2] to our study. Especially the presence of several

large clusters with seemingly orchestrated accounts in our collected

dataset has a significant effect on our analysis. These clusters and

their concrete topics are expected to change over time. Nevertheless,

the characteristics, such as the bulk creation of accounts, should

generally apply. The same holds for high-level tendencies, such as

political amplification or spamming. These are also in line with

prior observations on Twitter misuse [84, 17]. Finally, we note a pos-

sible bias due to the restructuring of Twitter/X after the takeover

by Elon Musk. It is possible that with the rise of hate speech and

bots [47], the prevalence of generated profile images has also in-

creased. Unfortunately, the current API limits impede a replication

of our analysis.

Selection Bias in Analysis. A full analysis of all tweets is beyond

the scope of our work. Thus, our cluster analysis is not exhaustive

and only focuses on the prevalent trends. Still, this allows us to

identify the primary contexts in which generated images are used

on Twitter, so that we can draw general conclusions on topics.

Focus on Images Generated from TPDNE. We focus on fa-

cial images from TPDNE that are generated by StyleGAN2 [55].

Although we are unable to provide statements regarding the preva-

lence of other types of generated images on Twitter, we expect to

cover the most prevalent type. TPDNE has made it considerably

easier to access generated images compared to other generative

models. Several reports confirm that GAN-generated faces are in

fact used by fake social media accounts [75, 72, 74, 42, 97, 73, 96, 98,

41, 108]. Moreover, most alternative models need to be deployed

locally. This requires technical knowledge and possibly specialized

hardware. Although text-to-image models like Stable Diffusion or

Midjourney can be accessed through a browser, generating images

at scale may require significant time and additional costs. Achiev-

ing good images can require multiple attempts and services like

Midjourney require payment. Finally, we note that detecting all
kinds of generated images, especially in a real-world setting where

images are heavily processed, is still an open challenge [40, 14].

Therefore, we focus on one setting where we aim at developing a

highly reliable detector.

Likelihood of Overlooked Fake Profiles. As discussed in Sec-

tion 5, classifying in-the-wild data always requires trading off the

number of overlooked fakes against the number of falsely detected

real images. While we make our best efforts to evaluate the per-

formance of our detection pipeline under realistic conditions, we

cannot exclude that the actual FNR is higher than our estimate.

Fake profile images with an unusual processing could potentially

bypass our detector. Furthermore, our tool-assisted manual labeling

process is not guaranteed to be error-free. However, as the FNR

on the independent dataset DX
𝐷
closely matches our estimate, the

likelihood of overlooked generated images should be low.

9 RELATEDWORK
Studying generated faces on social media touches different research

areas. In the following, we examine related methods and concepts.

Detecting Generated Images on Social Media. Despite the

plethora of proposed fake image detection methods (cf. Section 2),

there exists only little work on the detection in real-world settings.

Boato et al. [6] create a synthetic dataset of processed images by

sharing real and generated images on different social media plat-

forms. They find that a classifier trained on “original” images is

not able to effectively detect shared images, unless it is fine-tuned.

This confirms our results in Section 7. In a related work [61], the

same methodology is applied to deepfake videos, yielding similar

11



Jonas Ricker, Dennis Assenmacher, Thorsten Holz, Asja Fischer, and ErwinQuiring

findings. Sabel and Stiff [89] present an approach to detect gener-

ated text and profile images on Twitter. They collect tweets related

to controversial topics (e.g., COVID-19) and separately classify the

tweet’s text and the corresponding profile image. Their method can

detect generated media but is highly sensitive to selected thresh-

olds. High precision thresholds cause a significant decrease in true

positives, resulting in many overlooked generated images.

Closest to our work is the concurrent preprint by Yang et al.

[110]. They estimate the prevalence of generated profile images

on Twitter based on 254 275 randomly sampled accounts using

their proposed GANEyeDistance metric. This metric relies on Style-

GAN2’s facial alignment by computing the distance between the

actual and expected eye location. Their evaluation shows a FDR

of 85.86%, requiring to check each detected image manually. In

Appendix E, we describe their method in more detail, reproduce

it, and compare it with our method. We find that their approach

is also vulnerable to simple geometric transformations, making it

more likely to overlook generated faces. In contrast, we use a larger

dataset and build a more robust detection method. Based on the

results, Yang et al. [110] estimate a lower bound of 0.021–0.044 % ac-

tive Twitter accounts that use GAN-generated profile images. Our

estimated rate with 0.052% is slightly higher, which we attribute

to our higher detection performance and the fact that we discard

accounts with Twitter’s default profile image.

Human Perception of Generated Social Media Profiles. Since

it is unlikely that artificially generated social media profiles can

be prevented completely, studying their effect on humans and our

society is crucial. Mink et al. [67] conduct a user study to measure

users’ trust towards such profiles in a social engineering context.

They find that users are likely to accept a connection request from

a LinkedIn profile using generated faces or texts. Even participants

that were explicitly informed about the presence of fake accounts

had an acceptance rate of 43 %. A similar work [87] in which partic-

ipants were asked to label profiles as real or fake in a Twitter-like

environment, shows that human performance is almost equivalent

to random guessing (48.9 %). These findings emphasize the need for

reliable detection methods of generated contents in social networks.

Social Media Studies. Complimentary to our work, a large body

of interdisciplinary research has focused on the misuse of social me-

dia [17, 30, 112]. For example, the 2016 US elections were marked by

accusations of opinion manipulation through automated accounts

on social media, particularly on Twitter, so that researchers investi-

gated these inauthentic and coordinated campaigns [5, 3]. In recent

years, research has increasingly focused on the harms caused to on-

line communities and the potential to manipulate public sentiment.

Studies have extensively explored the roles of disinformation spread,

online conspiracy proliferation, and political interference [105, 93,

59]. Another research direction is the identification of inauthentic

behavior in context of financial campaigns [18, 100]. Recently, these

research efforts are facing new challenges given the increasing use

of AI-generated content by social bots [30].

10 CONCLUSION
Generative AI provides unprecedented capabilities to create decep-

tively realistic content, be it images, videos, text, or music. Despite

the considerable applications for the good, these methods also raise

significant concerns about their harmful effects. On social media,

generated images can be misused to create seemingly real accounts

that spread, for example, political misinformation or spam. While

the detection of generated content has been explored extensively in

controlled laboratory settings, there has been limited systematic re-

search on the prevalence on social media. In this paper, we provide

the first systematic large-scale study of generated profile images

on Twitter. To build a reliable detection method, we carefully build

a pipeline step by step where we consider different dataset types,

pre-filtering, classification, and labeling-assistance methods.

In our dataset of 14 989 385 profile images from Twitter, we clas-

sify 7 723 profile images as generated. This is 0.052 % of the dataset,

showing that generated profile images are notably present on Twit-

ter. Our analysis of the corresponding accounts and their tweets

leads to various insights. Fake-image accounts and real-image ac-

counts differ regarding social connections, account activity, account

creation time, and availability rate. For example, many fake-image

accounts are created in batches and have identical metadata, indicat-

ing that they are part of an organized network. The tweet analysis

shows that frequently occurring topics are cryptocurrencies, give-

aways, content related to pornography and escort services, as well

as controversial political discussions.

In summary, our work introduces a detection method for study-

ing generated content on social media. Our analysis underlines that

generated images are used as profile images for a wide range of

applications. Addressing this threat will require several steps. First,

platforms can implement detection algorithms to flag generated

content, as Meta has announced lately [12]. Second, watermark-

ing methods (e.g., [29]) that integrate a detectable watermarking

directly into the generation process can facilitate the detection.

Finally, raising more awareness about the existence and impact of

generated content will be necessary.

ETHICS STATEMENT AND DATA AVAILABILITY
Working with real-world data from social media carries ethical

and privacy-related risks. We take different measures to reduce

these risks. In our study, statistics of real accounts are reported in

aggregated form. We show personal information, such as profile

images and tweet texts, only for accounts using generated images.

However, we acknowledge that we cannot completely avoid the

risk of falsely labeling a real image as generated.

To foster the development and evaluation of real-world gener-

ated image detectors, we plan to share our labeled image datasets.

Moreover, to comply with Twitter’s/X’s terms of service (ToS), we

will release the IDs of users and tweets from our in-the-wild dataset.

Due to the recent changes to Twitter’s API, we are aware that ac-

cessing the full dataset based on the IDs is challenging.We therefore

invite researchers to contact us for discussing further uses of the

dataset and potential collaborations.
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A METHODOLOGY DETAILS
Here, we provide implementation details of our methodology.

A.1 Data Collection

In-the-Wild Dataset DX
𝑊
. We access the Twitter API using the

tweepy [45] Python package and download the profile image of each

tweet’s author from the respective profile_image_url. Table 5
lists all metadata fields we obtain from the API. The second column

denotes how many accounts in DX
𝑊

have a value in the respective

field.

Labeled Datasets D𝑅/D𝐹 and Variations. We collect 10 000 im-

ages from TPDNE by repeatedly querying the website, mimicking

a user creating a fake profile. We analogously take the first 10 000

real images from the FFHQ dataset. To avoid an unwanted bias

based on image processing, we convert the PNG files from FFHQ

to JPEG using the same parameters as TPDNE. Then, to obtain

processed images as they would appear on Twitter (DX
𝑅
and DX

𝐹
),

we upload each image as a profile image and download it. We ob-

served a difference in the image processing between API-based

and browser-based uploads. Images uploaded with the API kept

their resolution, while images uploaded in the browser were re-

sized to 400 × 400 pixels. As the majority of in-the-wild images

has the resized resolution, we select the browser-based approach

and automate the upload using the web automation framework

Selenium [92]. To obtain the zoomed-in versions (DX′
𝑅

and DX′
𝐹
),

the automated upload procedure is extended by first zooming into

each image by a random amount and then moving the image by a

random x- and y-offset. We ensure that the image still looks like a

plausible profile image at the maximum zoom rate.

A.2 Pre-Filter
BlazeFace [4] predicts a bounding box as well as the x- and y-

positions of six facial landmarks (eyes, ears, mouth, and nose) in

normalized coordinates between 0 and 1. If an image contains mul-

tiple faces, we select the one with the largest bounding box.

A.3 Classifier
Our architecture and training procedure is adapted fromWang et al.

[106]. We follow the common practice of initializing a ResNet-

50 [46] with weights from an image classifier trained on Ima-

geNet [88] and replace the final layer to reflect the binary clas-

sification setting. During training, we use a batch size of 32 and

optimize the model using Adam [56] and binary cross-entropy loss.

In the case of C𝑅X,𝑃X/𝐹X we ensure balanced sampling of real/proxy-

labeled real and fake samples. The learning rate is reduced by a

factor of 10 if the validation loss does not decrease by 0.001 during 5

epochs. We perform early stopping once the learning rate becomes

smaller than 10
−6

. For training C𝑅/𝐹 , the images inD𝑅 andD𝐹 are

resized to 400×400 using bilinear interpolation to match the profile

image dimensions of Twitter. The training data is augmented using

three kinds of perturbations, each applied with probability 𝑝 = 0.1:

Gaussian blurring with a kernel size of 9 and 𝜎 uniformly sampled

from [0.5, 5.0], JPEG compression with quality uniformly sampled

from [30, 100], and resizing, with scale and aspect ratio uniformly

sampled from [0.25, 0.75] and [0.8, 1.25], respectively. During train-
ing, we randomly extract crops of size 224 × 224, while we take the

center crop of the same size during validation and testing.

B INVERSION EXAMPLES
Figure 11 depicts example images to demonstrate the assisted man-

ual labeling. The left image is the original while the right image is

its reconstruction obtained by GAN inversion. For the real image

from D𝑅 , we observe that the background is inaccurate and the

face is slightly blurred. In contrast, the generated image from D𝐹

can be reconstructed very accurately, including the background.

C PRE-TRAINED DETECTORS
Here we provide details on the three existing pre-trained classi-

fiers we evaluate in Section 7.1. CWang [106] is the model on that

our detector is based on. However, it is trained on a diverse set of

images generated by ProGAN [52] and corresponding real images

from LSUN [113]. We select the version Blur+JPEG (0.1) since the
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Table 5: Overview of metadata for accounts in our dataset DX
𝑊
.

Field Count Description

id 14 989 385 Unique user identifier.

username 14 989 385 Username (handle).

name 14 989 385 Name shown in profile (display name).

created_at 14 989 385 Account creation time.

location 7 940 863 User-specified location.

description 14 989 385 Profile bio.

url 3 654 749 User-specified URL.

profile_image_url 14 989 385 URL to user’s profile image.

public_metrics.followers_count 14 989 385 Number of followers.

public_metrics.following_count 14 989 385 Number of accounts user is following.

public_metrics.tweet_count 14 989 385 Number of tweets.

public_metrics.listed_count 14 989 385 Number of lists containing user.

protected 14 989 385 Whether account is private.

verified 14 989 385 Whether account is verified.

withheld.country_codes 4 192 Countries where user is not available.

pinned_tweet_id 6 866 224 Identifier of user’s pinned tweet.

entities.url.urls 3 654 749 Details about profile website.

entities.description.mentions 1 611 345 Details about user mentions in description.

entities.description.urls 780 440 Details about URLs in description.

entities.description.hashtags 1 340 520 Details about hashtags in description.

entities.description.cashtags 35 746 Details about cashtags in description.

(a) Real image from D𝑅 .

(b) Generated image from D𝐹 .

Figure 11: Examples of original images (left) and their recon-
structions (right).

authors report a good performance on images generated by Style-

GAN2 [55]. CGrag [40] is an improved version of CWang that avoids

downsampling in the first layer of the ResNet-50 [46] backbone to

preserve high-frequency artifacts (at the cost of a larger model).

Besides training on ProGAN [52] images, the authors provide a

detector trained on StyleGAN2 [55] images, which we select since it

should yield the best results on our dataset. Finally, C
Ojha

follows a

different approach and leverages the feature space of a pre-trained

vision transformer (CLIP-ViT [21, 83]. It uses a single linear layer on

top (trained on ProGAN [52] images) to predict whether an image

is real or fake.

D DUPLICATE IMAGE DETECTION
Despite the trivial access to generated faces using TPDNE, creators

of fake account clusters might use the same face for multiple ac-

counts. To identify such duplicates, we need an approach that is

robust to subtle differences caused by varying image processing.

We adapt the technique used by previous works [35, 115, 107] and

cluster images based on their perceptual hashes (pHashes). Percep-

tual image hashing [27] aims to extract a meaningful representation

of an image that does not depend on individual pixel values, but on

the perceived content. The algorithm we use [7] achieves this by

deriving 64 bits from the DCT coefficients belonging to the lower

frequencies of an image. To obtain groups of duplicate images,

we apply the DBSCAN [23] clustering algorithm to our calculated

pHashes. We use the implementation from scikit-learn [81] and set

the minimum number of elements to 2. We empirically find that

we obtain meaningful clusters by setting the maximum allowed

Hamming distance between two pHashes to 3.

In total, we identify 540 groups of duplicated images with an

average size of 4.88 images. The distribution of the sizes is given

in Figure 12. About half of all groups consist of only two or three

duplicated images, while the most frequently used faces appeared

in 18 profiles.

16



AI-Generated Faces in the Real World: A Large-Scale Case Study of Twitter Profile Images

2 4 6 8 10 12 14 16 18
#Duplicates

0

50

100

150

200

C
o
u

n
t

Figure 12: Size distribution of duplicate image clusters.
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Figure 13: Examples of fake images that evade alignment-
based detection. Below each image we provide itsGANEyeDis-
tance G. The reference eye position is highlighted. Note that
we only display images which we confidently consider to be
fake to avoid disclosing real profile images.

E EVALUATION OF ALIGNMENT-BASED
DETECTION

In the concurrent work by Yang et al. [110], the authors iden-

tify GAN-generated faces on Twitter using a method that is re-

lated to our concept of alignment (cf. Section 3.3). They define the

GANEyeDistance G as the normalized Euclidean distance between

the actual and expected location of each eye. They propose to con-

sider an image to be potentially GAN-generated if G < 0.02. To

reach a final decision, they propose to manually classify images

based on visual artifacts. While this approach is easy to implement

and computationally efficient, we find that is suboptimal regarding

(a) the number of false positives (causing a large manual workload)

and (b) the number of false negatives (overlooking generated faces

that are not aligned).

We test G with the suggested threshold on 150 000 randomly

chosen images from DX
𝑊

(about 1 %, which yields 730 candidate

profiles. For all samples inDX
𝑊
, the estimated number of candidates

therefore is 73 000. Manually classifying these images would require

an excessive amount of manual effort.

On the other hand, we find 440 images inDX
𝑊

that are detected as

fake by C𝑅X,𝑃X/𝐹X but are overlooked when classifying based on G.

Naturally, it can be assumed that in this subset our classifier has a

higher number of false positives, since most generated images are

in fact aligned. Still, after manual inspection, we rate 303 of these

images to be definitely or very likely generated. Note that manual

labeling is more challenging on these images since we cannot resort

to GAN inversion. Figure 13 depicts some examples together with

their value of G. One can see that zooming in by a small amount

is sufficient to cause a misalignment. We consider it probable that

malicious accounts do this on purpose to appear more credible and

avoid detection based on facial landmarks.
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