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Abstract. We prove that affine Coxeter groups are profinitely rigid.

1. Introduction

For a group G we denote by FpGq the set of isomorphism classes of finite
quotients of G. A group G is called profinitely rigid relative to a class of
groups C if G P C and for any group H in the class C whenever FpGq “

FpHq, then G – H. A finitely generated residually finite group G is called
profinitely rigid if G is profinitely rigid among all finitely generated residually
finite groups.

Theorem 1.1. Affine Coxeter groups are profinitely rigid.

Given a finite graph Γ with the vertex set V pΓq, the edge set EpΓq and
an edge-labeling m : EpΓq Ñ Ně3 Y t8u, the associated Coxeter group WΓ

is given by the presentation

WΓ “

B

V pΓq

ˇ

ˇ

ˇ

ˇ

v2 for all v P V pΓq, pvwq2 if tv, wu R EpΓq,

pvwqmptv,wuq if tv, wu P EpΓq and mptv, wuq ă 8

F

.

The Coxeter groups associated to the graphs in Figure 1 are precisely
the irreducible affine Coxeter groups. More generally, a Coxeter group WΓ

is affine if Γ is a disjoint union of those graphs. It was shown in [MV24]
that irreducible affine Coxeter groups are profinitely rigid relative to the class
consisting of all Coxeter groups, our main result generalises this. Other work
on profinite rigidity of Coxeter groups can be found in [BCR16, BMRS21,
CHMV23, RS22].

An n-dimensional crystallographic group G is a discrete, cocompact sub-
group of the group of isometries of the Euclidean space En. An n-dimensional
crystallographic group G always gives rise to the short exact sequence
1 ãÑ Zn ãÑ G ↠ P ↠ 1 where P is finite and is called the point group
of G. By definition, G is symmorphic if the above short exact sequence
splits. Note that affine Coxeter groups are examples of symmorphic crystal-
lographic groups.

The next proposition collects old and new profinite invariants of crystal-
lographic groups. A group G is said to be just infinite if G itself is infinite
but all proper quotients of G are finite. Let G and H be crystallographic
groups with point groups P1, P2 ď GLnpZq. By definition, P1 and P2 are in
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Figure 1. Coxeter graphs of affine type.

the same Q-class if they are conjugate in GLnpQq. For a group G, the lattice
CFpGq is the lattice of finite subgroups of G modulo the conjugacy relation.

Proposition 1.2. Let G be an n-dimensional crystallographic group and H
be a finitely generated residually finite group. If FpGq “ FpHq, then H is
an n-dimensional crystallographic group whose point group is isomorphic to
the point group of G. In particular, if G is profinitely rigid relative to the
class of n-dimensional crystallographic groups, then G is profinitely rigid in
the absolute sense. Moreover, the following statements hold

(1) CFpGq “ CFpHq;
(2) G is torsion free if and only if H is torsion free;
(3) G is centreless if and only if H is centreless;
(4) G is just infinite if and only if H is just infinite;
(5) Gab – Hab;
(6) G is symmorphic if and only if H is symmorphic;
(7) the point group of G is in the same Q-class as the point group of H.

Proof. The first paragraph of the proposition is given by Proposition 2.6. We
now, prove the “moreover”. (1) is Proposition 2.4, (2) is given by Proposi-
tion 2.6, (3) is Proposition 2.8, (4) is Proposition 2.9, (5) is classical (see for
example [Rei18]), (6) essentially follows from Grunewald–Zalesskii [GZ11]
but we include a proof for completeness (See Proposition 2.6), and finally
(7) is due to Piwek–Popovic–Wilkes [PPW21, page 558]. □

Remark 1.3. If follows from Proposition 1.2 and [PPW21] that every crys-
tallographic group in dimension at most 4 is profinitely rigid. Note that
[FNP80] provides an example of an 11-dimensional crystallographic group
with point group of order 55 which is not profinitely rigid. Further, for each
prime number p ě 23 there exist non profinitely rigid crystallographic groups
of shape Zp´1 ¸ Zp, see [Bri71, Theorem 1].



PROFINITE RIGIDITY OF AFFINE COXETER GROUPS 3

Acknowledgements. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 850930). OV is supported
by DFG grant VA 1397/2-2.

2. The ingredients in Proposition 1.2

The following lemma is well known.

Lemma 2.1. Let G be a virtually free abelian group of rank n ě 1. The
group G is an n-dimensional crystallographic group if and only if G does not
have non-trivial finite normal subgroups.

Let G be a group and N be the set of all finite index normal subgroups
of G. We equip each G{N , N P N with the discrete topology and endow
ś

NPN G{N with the product topology. We define a map

ι : G Ñ
ź

NPN
G{N by g ÞÑ pgNqNPN .

The map ι is injective if and only if G is residually finite. The profinite
completion of G, denoted by pG, is defined as pG :“ ιpGq. Let G and H be
finitely generated residually finite groups. Then FpGq “ FpHq if and only
if pG – pH, see [DFPR82].

Lemma 2.2. Let G be a finitely generated residually finite group. Denote
by ι : G Ñ pG the canonical homomorphism. If N Ĳ G is a finite normal
subgroup, then ιpNq is normal in pG.

Compare to the proof of Theorem 3.6 in [BCR16].

Proof. Assume for contradiction that ιpNq is not normal in pG. Then there
exist n P ιpNq and g P pG such that gng´1 R ιpNq. Hence the finite set
S :“

␣

gng´1m | m P ιpNq
(

does not include the trivial element. We know
that ιpNq “ tm1, . . . ,mlu. Since pG is residually finite, there exists an epi-
morphism ψk : pG ↠ Hk with Hk finite and ψkpgng´1mkq ‰ 1 for every
k P t1, . . . , lu.

Define ψ “ ψ1 ˆ . . . ˆ ψl : pG Ñ H1 ˆ . . . ˆ Hl by pψ1 ˆ . . . ˆ ψlqphq “

pψ1phq, . . . , ψlphqq. In particular, this map has finite image and 1 R ψpSq.
But ψ˝ιpNq is normal in the image ψ˝ιpGq, and ψ˝ιpGq “ ψp pGq by [BCR16,
Lemma 2.1], so it is necessary that 1 P ψpSq. This contradiction shows that
ιpNq is normal in pG. □

Given a group G we denote by CFpGq the set of conjugacy classes of
all finite subgroups in G. We define a partial order on CFpGq as follows:
rAs ď rBs if there exists a g P G such that A Ď gBg´1.

Proposition 2.3. Let G be a finitely generated virtually free abelian group.
Then, CFpGq “ CFp pGq.

Proof. Let G be a finitely generated virtually free abelian group. We define
a map ψ : CFpGq Ñ CFp pGq via ψ prAsq :“ rιpAqs. Note ψ is clearly order
preserving.
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Virtually abelian groups are finite subgroup separable by [GS78, Theorem
1]. Thus by [CHMV23, Lemma 3.4] the map ψ is injective.

We follow the proof strategy used in [KW93, Theorem 2.7]. For the sur-
jectivity we show that a finite subgroup of pG is conjugate to a finite subgroup
of G. Let H denote a finite subgroup of pG. Since G is virtually free abelian,
there exists a normal subgroup A – Zn such that Q :“ G{A is finite. Thus,
we have H Ď G ¨ pA “ pA ¨ G. Define ρ : H ˆ pA Ñ pA where ρph, aq “ hah´1.
Since G and pA normalize pA, so does H. Thus pA is an H-module, A is an
H-submodule and pA{A is an H-module.

Let h P H. There exist elements gh P G and xh P pA such that h “ xhgh.
The element xh is in general not uniquely determined by h, however, its
image in pA{A is, since GX pA “ A.

Consider the map D : H Ñ pA{A by h ÞÑ xhA. A computation shows
that the map D is a derivation, that is, Dph1h2q “ Dph1q ` h1Dph2q, where
h1Dph2q “ h1xh2h

´1
1 A, for h1, h2 P H. We claim that H1pH; pA{Aq “ 0.

Indeed, let k denote the order of H, let f P H1pH; pA{Aq denote a derivation
and g P H an arbitrary element and set x :“

ř

hPH fphq. Now, we can
compute that gx “

ř

hPH fphq ´ kfpgq “ x ´ kfpgq. Therefore, kf equals
0 in H1pH; pA{Aq; so kfpgq “ gx1 ´ x1 for some x1 P pA{A. Since pA{A is
k-divisible, we can divide by k and obtain fpgq “ gy´ y for y “ x1{k. Thus,
f “ 0.

Since H1pH; pA{Aq “ 0, we see that D is an inner derivation, that is there
exists a b P pA such that Dphq “ hbh´1b´1A for every h P H. It follows that
bhb´1 P G, since Dphq “ xhA “ hbh´1b´1A, which implies ghbhb´1 P A Ď

G. Hence, bHb´1 Ď G as desired. This implies the surjectivity of ψ. □

Proposition 2.4. Let G be a finitely generated virtually free abelian group
and H be a finitely generated residually finite group such that pG – pH. Then,
CFpGq “ CFpHq.

Proof. Since pG – pH is virtually abelian and H ãÑ pH it follows that H
is a virtually free abelian group. Hence, by Proposition 2.3 we have order
isomorphisms CFpGq Ñ CFp pGq Ñ CFp pHq Ñ CFpHq. Let α denote the
composite isomorphism and note that for any rAs P CFpGq and B P αprAsq

we have A – B. □

Lemma 2.5. Let G be a crystallographic group with point group P . Then G
is symmorphic if and only if G has a subgroup isomorphic to P .

Proof. Let 1 ãÑ Zn ãÑ G
π
↠ P ↠ 1 be the short exact sequence associated to

G. If there exists a group homomorphism φ : P Ñ G such that π ˝ φ “ idP ,
then φ is injective and therefore G has a subgroup φpP q – P .

For the other direction let H ď G be a subgroup such that H – P . Since
the kernel of π is torsion free, the map π|H : H Ñ P is injective and therefore
an isomorphism since |H| “ |P |. We define ϕ :“ π´1

|H . It is straightforward
to verify that ϕ is a section. □

Proposition 2.6. Let G be an n-dimensional crystallographic group with
point group P and H be a finitely generated residually finite group. If pG – pH,
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then H is an n-dimensional crystallographic group with point group isomor-
phic to P . Moreover,

(1) G is symmorphic if and only if H is symmorphic.
(2) G is torsion free if and only if H is torsion free.

Proof. Let H be a finitely generated residually finite group with pG – pH. By
[GZ11, Proposition 2.10] follows that H is a virtually free abelian group of
rank n with quotient isomorphic to P .

By Lemma 2.1 the crystallographic group G does not have non-trivial
finite normal subgroups, thus by Proposition 2.3 we know that pG does not
have non-trivial finite normal subgroups. Hence, pH and therefore H does
not have any non-trivial finite normal subgroups either. Thus, by Lemma 2.1
we see that H is an n-dimensional crystallographic group.

Now, Proposition 2.4 implies that G is torsion free if and only if H is
torsion free. Further, G has a subgroup isomorphic to P if and only if H
has a subgroup isomorphic to P . Thus, by Lemma 2.5 we obtain that G is
symmorphic if and only if H is symmorphic. □

Theorem 2.7. [RT10, Theorem 6] Let G be a crystallographic group. Then
ZpGq – Zn, where n is the rank of the abelianization of G.

Proposition 2.8. Let G be an n-dimensional crystallographic group. Then
pG is centreless if and only if G is centreless.

Proof. We have ZpGq Ď Zp pGq (see [BRS23, Lemma 2.1]). Hence, if pG is
centreless, then G is centreless as well.

Now, assume that ZpGq is trivial. By Theorem 2.7 we know that G has
finite abelianization, thus the commutator subgroup rG,Gs has finite index
in G and therefore rG,Gs “ {rG,Gs has finite index in pG. It follows that pGab

is finite.
The profinite completion pG has a normal subgroup N isomorphic to xZn

such that pG{N – P where P is the point group of G. Let m “ |P |.
Assume for a contradiction that pG has a non-trivial centre. By Proposi-

tion 2.3 we know that pG does not have non-trivial finite normal subgroups,
hence the torsion part of the centre of pG is trivial. Thus there exists a
non-trivial n0 P N X Zp pGq.

Now we consider the transfer map tr : pG Ñ N defined by Schur in [Sch02]
as follows: let g1, . . . , gm be a set of left coset representatives of N in pG. For
g P pG and i “ 1, . . . ,m, there exists ni P N such that ggi “ gjni for some
gj . We define trpgq :“ n1 ` . . .`nm. In particular we have: trpn0q “ m ¨n0,
thus the order of trpn0q is infinite. Hence, pG has an infinite abelian quotient
which contradicts the fact that the abelianization of pG is finite. □

Proposition 2.9. Let G be a virtually free abelian group of rank n ě 1 with
quotient P and H be a finitely generated residually finite group. If pG – pH,
then G is just infinite if and only if H is just infinite.

Proof. By Proposition 2.6 we have that H is a crystallographic group. Since
pG – pH, the point groups P and P 1 are in the same Q-class by [PPW21, page
558]. A result of Ratcliffe–Tschantz [RT10, Theorem 11] shows that a crystal-
lographic group is just infinite if and only if the corresponding representation
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of the point group P Ñ GLnpZq is Z-irreducible. Moreover, by [CR62, page
497] we have that Z-irreducibility is equivalent to Q-irreducibility. Since Q-
irreducibility is preserved by conjugation in GLnpQq, it follows that G is just
infinite if and only if H is just infinite. □

3. Proof of Theorem 1.1

The following lemma follows from [Dav08, Proposition 17.2.1], [PV24,
Theorem 3.4], and Lemma 2.1.

Lemma 3.1. A Coxeter group WΓ is crystallographic if and only if every
connected component of Γ is isomorphic to one of the graphs in Figure 1.

Proof of Theorem 1.1. We first prove the result for the irreducible crystal-
lographic Coxeter groups. Let rXn be one of the graphs in Figure 1 and let
W “ W

rXn
. Then W – QpX_

n q¸WXn , where QpX_
n q – Zn is the corresponding

coroot lattice and WXn is the corresponding finite Coxeter group. We denote
by QpXnq the corresponding root lattice and by P pXnq the weight lattice.
See [Kan01, pages 81 and 118] for the definitions of these lattices and for the
Coxeter graphs of type Xn. Note that by Lemma 3.1 the Coxeter group W
is an n-dimensional crystallographic group.

Let G be a finitely generated residually finite group such that xW – pG. If
n ď 4, then W – G by Remark 1.3. Now we assume that n ě 5. By Propo-
sition 1.2 it follows that G is an n-dimensional symmorphic crystallographic
group whose point group is in the same Q-class as WXn and W ab – Gab. We
consider two cases:

Case 1: Assume that rXn is not of type rBn or rCn.
Since n ě 5 the Coxeter graph rXn is of type Ãn,rDn,rE6,rE7 or rE8. Thus the

corresponding root lattice QpXnq is equal to the coroot lattice QpX_
n q, see

[Kan01, pages 102–105]. Hence W – QpXnq ¸WXn .
By [Fei98, Theorem 1], there exists a WXn invariant lattice L such that

G – L ¸ WXn and QpXnq Ď L Ď P pXnq. Thus W is a normal subgroup of
G of index |L{QpXnq|. Note that W ab – W ab

Xn – Z2 by [MV24, Propositions
2.2 and 2.3]. Since Gab – W ab – Z2, it follows that L{QpXnq is trivial or is
isomorphic to Z2.

The lattice QpXnq is a normal subgroup of G, thus G{QpXnq – L{QpXnq ¸

WXn . Since |L{QpXnq| ď 2, the semidirect product is indeed a direct product.
Thus G{QpXnq – L{QpXnq ˆWXn ↠ L{QpXnq ˆW ab

Xn – L{QpXnq ˆZ2. Since
Gab – W ab – Z2 we conclude that L{QpXnq is trivial and therefore G – W .

Case 2: Assume that rXn is of type rBn or rCn.
First we note that WBn “ WCn . Further, the irreducible affine Coxeter

group W
rXn

does not have a quotient isomorphic to pZ2
2q ¸WBn or Z4 ¸WBn

by [Max98, Proposition 7.2].
By [Fei98, Theorem 1], there exist WBn invariant lattices L1 Ď L2 Ď L3

such that |Li{Li´1| “ 2 for i “ 2, 3 and W
rBn

– Ll ¸ WBn , W
rCn

– Lk ¸ WBn

and G – Lm ¸ WBn for k, l,m P t1, 2, 3u. Moreover, L3{L1 – Z4 if n is
odd and L3{L1 – Z2

2 if n is even. Thus the group L3 ¸ WBn has a quotient
isomorphic to Z2

2 ¸ WBn if n is odd and Z4 ¸ WBn if n is even, namely
pL3 ¸WBnq{L1.
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Further, the group L2 ¸ WBn has a quotient isomorphic to Z3
2. More

precisely: the abelianization of the point group WBn is Z2
2. Hence, L2 ¸

WBn ↠ pL2 ¸WBnq{L1 – L2{L1 ¸WBn ↠ Z2 ˆW ab
Bn – Z3

2.
Note that the abelianization of W

rBn
is isomorphic to Z2

2. Thus W
rBn

–

L1 ¸WBn .
Since W

rCn
does not have a quotient isomorphic to Z2

2 ¸WBn or Z4 ¸WBn

we know that W
rCn

– L2 ¸ WBn . Thus the groups W
rBn

– L1 ¸ WBn and
W

rCn
– L2¸WBn can be distinguished from L3¸WBn by their finite quotients.

Further, the abelianization of W
rCn

is Z3
2, thus the group W

rBn
can be

distinguished from W
rCn

by the abelianisation. Finally, we obtain G – W
rXn

.
It remains to deal with the case of a non-trivial direct product. Let

WΓ1 , . . . ,WΓn be irreducible affine Coxeter groups. Assume that yWΓ1 ˆ

. . . ˆ zWΓn – pG. By Proposition 1.2, G is a symmorphic crystallogrphic
group. We may decompose G as a direct product of directly indecomposable
groups G1, . . . , Gm, thus G – G1 ˆ . . . ˆ Gm and each Gi is a symmorphic
crystallographic group for i “ 1, . . . ,m. Now, applying [GZ11, Proposition
2.17 (2)] we obtain n “ m and that there exists σ P Sympmq such that
yWΓi – zGσpiq. Since irreducible affine Coxeter groups are profinitely rigid we
obtain WΓi – Gσpiq. Thus WΓ1 ˆ . . .ˆWΓm – G. □
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