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Abstract Numerical simulations of ideal compressible magnetohydrodynamic (MHD)

equations are challenging, as the solutions are required to be magnetic divergence-

free for general cases as well as oscillation-free for cases involving discontinuities.

To overcome these difficulties, we develop a locally divergence-free oscillation-

eliminating discontinuous Galerkin (LDF-OEDG) method for ideal compressible

MHD equations. In the LDF-OEDG method, the numerical solution is advanced

in time by using a strong stability preserving Runge-Kutta scheme. Following the

solution update in each Runge-Kutta stage, an oscillation-eliminating (OE) proce-

dure is performed to suppress spurious oscillations near discontinuities by damping

the modal coefficients of the numerical solution. Subsequently, on each element,

the magnetic filed of the oscillation-free DG solution is projected onto a local

divergence-free space, to satisfy the divergence-free condition. The OE procedure

and the LDF projection are fully decoupled from the Runge-Kutta stage update,

and can be non-intrusively integrated into existing DG codes as independent mod-

ules. The damping equation of the OE procedure can be solved exactly, making the

LDF-OEDG method remain stable under normal CFL conditions. These features

enable a straightforward implementation of a high-order LDF-OEDG solver, which

can be used to efficiently simulate the ideal compressible MHD equations. Numeri-

cal results for benchmark cases demonstrate the high-order accuracy, strong shock

capturing capability and robustness of the LDF-OEDG method.
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1 Introduction

Magnetohydrodynamics (MHD) couples fluid dynamics with electromagnetism to

describe the macroscopic behavior of conducting fluids such as plasma. Ideal MHD

equations are applicable when relativistic, viscous and resistive effects can be ne-

glected. The ideal MHD equations have been widely used in areas such as as-

trophysics, space physics and engineering. It is of great importance to design

accurate and robust numerical methods for ideal MHD equations to efficiently

simulate problems in these areas. There are two main difficulties in numerically

solving the ideal compressible MHD equations, namely the magnetic divergence-

free constraint for general cases, and the elimination of spurious oscillations for

cases involving discontinuities.

The first difficulty comes from the physical principle of non-existence of mag-

netic monopoles. Based on this principle, the divergence-free (DF) constraint on

the magnetic filed holds for the exact solution as long as it does initially. For a

simulation, the numerical method must preserve the DF property, of which the

violation may result in nonphysical solution or even break-down of the simula-

tion. Tremendous efforts have been made in developing divergence-free numerical

methods in the past few decades, among which the prominent ones are the con-

strained transport (CT) methods and the eight-wave (EW) methods. The former

approach, named CT by Evans and Hawley [12], refers to a specific finite differ-

ence discretization on a staggered grid that ensures the maintenance of magnetic

divergence. Various adaptations have been developed within different frameworks,

see [11,9,30,14,44]. Additionally, unstaggered CT methods have also been devised

(see e.g., [37,17,34,18,6]), typically based on numerically evolving the magnetic

potential. The latter approach refers to the EW formulation [16] that is based

on proper discretization of the Godunov form [15] of ideal MHD equations. This

approach incorporates an additional source term proportional to magnetic diver-

gence and a simple modification of Riemann solver. It is noted that the Godunov

form of ideal MHD equations has its advantage in terms of positivity, see [40,41,

42,27,46] for specific applications. Besides the CT methods and the EW meth-

ods, existing divergence-free methods can be roughly divided into four categories:

hyperbolic divergence cleaning [10], projection [4], globally divergence-free (GDF)

[25,24,13], and locally divergence-free (LDF) [7,23,45]. In the LDF approach, the

magnetic field is approximated in a local divergence-free polynomial space, so that
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the divergence-free condition can be automatically satisfied inside each element.

The LDF solution can be also obtained by projecting the solution computed in

the standard polynomial space onto a local divergence-free polynomial space [28].

The projection does not interfere with the spatial discretization, thus enabling a

non-intrusive implementation of the LDF approach.

The second difficulty lies in eliminating spurious oscillations near discontinu-

ities while preserving accuracy in smooth regions. To the best of our knowledge,

four kinds of discontinuity capturing approaches have been investigated in previous

studies. Among these, slope limiter is a prominent technique, which is used to reg-

ularize numerical solutions. With proper adjustments of parameters, the limiters

proved to work well, as noted in [8,47]. In particular, some classical and central

discontinuous Galerkin (DG) methods are paired with the minmod total variation

bounded (TVB) slope limiter to solve MHD equations, see, for example, [25,24,

13,7,23,45]. Another well-regarded strategy involves incorporating artificial dif-

fusion terms into the weak formulations, ensuring that the adjusted formulation

aligns with the original system as the mesh size diminishes [3,20,43]. Moreover,

spectral filters constitute a third regularization method, prized for its simple im-

plementation and low computational complexity. The spectral viscosity approach

is a notable example [32]. In [19] and [33], the exponential and adaptive filters

are applied to DG methods, respectively. Additionally, the damping technique re-

cently developed in [31,29,36], can be regarded as the fourth approach, which is

inspired by the spectral filters. In the DG setting, the oscillation-free discontin-

uous Galerkin (OFDG) method [31,29] incorporates a damping term to control

oscillations, rather than a post-processor like slope limiter. Unfortunately, for dis-

continuous problems, the damping term renders the semi-discrete OFDG system

highly stiff, imposing severe restrictions on step sizes for explicit time integration

to be stable. Recently, on the basis of OFDG method, Peng et al. [36] developed

a simple, efficient and non-intrusive oscillation eliminating (OE) procedure for

the DG method. In the OE procedure, an ordinary differential equation (ODE)

is solved exactly to damp the modal coefficients of the numerical solution. The

numerical results for compressible Euler equations in [36] demonstrate that the

oscillation-eliminating discontinuous Galerkin (OEDG) method is able to suppress

spurious oscillations near discontinuities while preserving accuracy in smooth re-

gions, and also stable under normal CFL conditions. Besides, the OE procedure is

free of characteristic decomposition. Based on these features, the OEDG method

has great potential in more complex applications such as the ideal MHD equations.

In this work, we develop a locally divergence-free oscillation-eliminating dis-

continuous Galerkin (LDF-OEDG) method for ideal compressible MHD equations

to overcome the aforementioned two difficulties. In the LDF-OEDG method, the
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LDF projection and OE procedure are used to obtain divergence- and oscillation-

free solutions. Specifically, all the conservative variables are approximated in the

standard piece-wise polynomial space. The semi-discrete DG scheme is integrated

in time by using a strong stability preserving (SSP) Runge-Kutta scheme [38]

to update the degrees of freedom. Following the solution update in each Runge-

Kutta stage, an OE procedure is performed to suppress spurious oscillations near

discontinuities, by applying an exact damping operator to the modal coefficients

of the DG solution. Subsequently, a LDF projection is performed to enforce the

divergence-free constraint on the numerical solution. On each element, the OEDG

solution is projected onto a local divergence-free polynomial space. Both the OE

procedure and the LDF projection are non-intrusive, in the sense that they are

fully decoupled from the Runge-Kutta stage update. Therefore, they are two post-

processing procedures that can be seamlessly integrated into existing Runge-Kutta

discontinuous Galerkin (RKDG) codes as independent modules, thus enabling a

straightforward and efficient implementation of a LDF-OEDG solver. The LDF-

OEDG method is applied to a series of two-dimensional benchmark ideal com-

pressible MHD test cases. Numerical results demonstrate the high-order accuracy,

strong shock capturing capability and robustness of the LDF-OEDG method.

The remainder of this paper is organized as follows. Section 2 presents the lo-

cally divergence-free Runge-Kutta discontinuous Galerkin method for ideal com-

pressible MHD equations. Section 3 presents the oscillation-eliminating procedure

for the locally divergence-free discontinuous Galerkin method. Numerical results

are presented in Section 4 and concluding remarks are given in Section 5.

2 Locally divergence-free discontinuous Galerkin method for ideal

compressible MHD equations

2.1 Governing equations

In this paper, we consider the ideal compressible MHD equations that can be

formulated in a conservative form as

∂tU+∇ · F (U) = 0, (1)

where U is the vector of conservative variables and F is the vector of convective

fluxes defined by

U =













ρ

ρu

E

B













, F =













ρu

ρu⊗ u+ ptotI −B⊗B

u (E + ptot)−B (u ·B)

u⊗B−B⊗ u













.
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Here ρ is the density, u ∈ R
d is the velocity, B ∈ R

d is the magnetic field,

ptot = p + ‖B‖2

2 is the total pressure, p is the thermal pressure, E is the total

energy, I is the d × d identity matrix, and d is the spatial dimensionality. The

total energy is computed by

E =
p

γ − 1
+

1

2
ρ ‖u‖2 + 1

2
‖B‖2 ,

where γ is the adiabatic index.

Based on the physical principle of non-existence of magnetic monopoles, the

magnetic field B should satisfy a divergence-free (DF) constraint

∇ ·B = 0. (2)

In fact, according to the governing equation of B in (1)

∂B

∂t
+∇ · (u⊗B−B⊗ u) = 0,

we have

∂(∇ ·B)

∂t
= ∇ · ∂B

∂t
= ∇ · (∇ · (B⊗ u− u⊗B)) = ∇ · (∇× (u×B)) = 0,

that is,

∇ ·B(x, t) = ∇ ·B(x, 0), ∀ t > 0,

which implies that the DF constraint (2) holds for the exact solution if the initial

divergence of B is zero.

2.2 Runge-Kutta discontinuous Galerkin method

For the sake of presentation, we consider the two-dimensional case (d = 2) of

(1) to illustrate the spatial and temporal discretizations. A two-dimensional com-

putational domain Ω is partitioned into non-overlapping triangular/rectangular

control volumes. Let Xh be a partition of Ω. On each control volume, the distribu-

tion of each conservative variable is approximated by a polynomial. The piece-wise

polynomial distribution of the numerical solution Uh is discontinuous across cell

interfaces. Specifically, on a control volume K ∈ Xh, solution U is approximated

by a polynomial of degree k as

Uh (x, t) =

k
∑

|α|=0

U
(α)
K (t) φ

(α)
K (x) , ∀ x ∈ K, (3)

where
{

φ
(α)
K

}k

|α|=0
is a polynomial basis and α = (α1, α2) is the multi-index vector

with |α| = α1 + α2. The total number of basis functions is (k + 1) (k + 2) /2. The

basis coefficients
{

U
(α)
K

}k

|α|=0
are the degrees of freedom (DOF).
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The semi-discrete discontinuous Galerkin (DG) scheme for the governing equa-

tion (1) reads

∫

K

(Uh)t φ
(α)
K dx+

∮

∂K

F̂ · n φ
(α)
K ds−

∫

K

F · ∇φ
(α)
K dx = 0, |α| ≤ k, (4)

where ∂K is the boundary of K, n is the outward unit normal of ∂K, and F̂ is

a numerical flux on ∂K. Gauss quadrature rules are used to compute both the

surface and volume integrals in (4). As Uh is discontinuous across cell interfaces,

F̂ ·n is computed by using an approximate Riemann solver. In this work, the local

Lax-Friedrichs flux

F̂ · n =
1

2
[F (UL) · n+ F (UR) · n]−

1

2
λmax (UR −UL) ,

is computed on each surface quadrature point xg ∈ ∂K, where UL is the left

state (inside K), UR is the right state (outside K), and λmax is an estimate of

the local maximum wave speed in direction n. In this work, an orthogonal basis
{

φ
(α)
K

}k

|α|=0
which has the property

∫

K

φ
(αi)
K φ

(αj)
K dx = δij

∫

K

(

φ
(αi)
K

)2
dx,

is used to reduce the semi-discrete DG scheme (4) to

dU
(α)
K

dt

∫

K

(

φ
(α)
K

)2
dx+

∮

∂K

F̂ · n φ
(α)
K ds−

∫

K

F · ∇φ
(α)
K dx = 0, |α| ≤ k.

The orthogonal basis can be obtained by applying the Gram-Schmidt process to

a Taylor basis [19,48,26]. For instance, on a rectangular element K = [x1, x2] ×
[y1, y2], an orthogonal polynomial basis of degree k = 2 is

φ
((0,0))
K = 1,

φ
((1,0))
K = X, φ

((0,1))
K = Y,

φ
((2,0))
K = X2 − 1

3
, φ

((1,1))
K = XY, φ

((0,2))
K = Y 2 − 1

3
,

where

X =
x− xK

hx/2
, Y =

y − yK
hy/2

, hx = x2−x1, hy = y2−y1, xK =
x1 + x2

2
, yK =

y1 + y2
2

.

The semi-discrete DG scheme (4) can be rewritten in an ODE form

d

dt
Uh = Tf (Uh) , (5)

which can be integrated in time to update the DG solution Uh in a step-by-

step manner. In this work, a third-order strong-stability-preserving Runge-Kutta
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(SSPRK3) method [38] is used for time integration. Specifically, for time step n,

the solution at the next time step is computed by

Un,1
h = Un

h + τTf (Un
h) ,

Un,2
h =

3

4
Un

h +
1

4

(

Un,1
h + τTf

(

Un,1
h

))

,

Un+1
h =

1

3
Un

h +
2

3

(

Un,2
h + τTf

(

Un,2
h

))

,

(6)

with τ = tn+1 − tn being the time step size.

2.3 Locally divergence-free Runge-Kutta discontinuous Galerkin method

The RKDG method described in Section 2.2 can be directly applied to the mass,

momentum and energy conservation equations in (1). However, modifications are

needed for the RKDG method to satisfy the divergence-free constraint (2) when

solving the governing equations of the magnetic filed B.

A direct approach to obtain magnetic divergence-free solutions is to use a

locally divergence-free (LDF) basis that has the property

∇ · ψK (x) = 0, ∀ x ∈ K.

Therefore, as a linear combination of the LDF basis functions, the magnetic filed

of the LDF-DG solution

Bh (x, t) =
∑

l

B
(l)
K (t)ψ

(l)
K (x) , ∀ x ∈ K,

can automatically satisfy the divergence-free constraint. For a rectangular element

K = [x1, x2]× [y1, y2], a valid orthogonal divergence-free basis of degree k = 2 is

ψ
(1)
K =

(

φ
((0,0))
K

0

)

,ψ
(2)
K =

(

0

φ
((0,0))
K

)

,

ψ
(3)
K =

(

hxφ
((1,0))
K

−hyφ
((0,1))
K

)

,ψ
(4)
K =

(

φ
((0,1))
K

0

)

,ψ
(5)
K =

(

0

φ
((1,0))
K

)

,

ψ
(6)
K =

(

hxφ
((2,0))
K

−2hyφ
((1,1))
K

)

,ψ
(7)
K =

(

2hxφ
((1,1))
K

−hyφ
((0,2))
K

)

,ψ
(8)
K =

(

φ
((0,2))
K

0

)

,ψ
(9)
K =

(

0

φ
((2,0))
K

)

,

which spans a space ΨK =
{

ψ
(1)
K , · · · ,ψ(9)

K

}

∈ R
2×9. ΨK is a subspace of the

space spanned by the full polynomial basis, i.e.,

ΨK ⊂ ΦK =

{(

φ
((0,0))
K

0

)

, · · · ,
(

φ
((0,2))
K

0

)

,

(

0

φ
((0,0))
K

)

, · · · ,
(

0

φ
((0,2))
K

) }

∈ R
2×12.
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The semi-discrete LDF-DG scheme of the magnetic conservation equation is
∫

K

(Bh)t ·ψ dx+

∮

∂K

(

F̂B · n
)

·ψ ds−
∫

K

FB · ∇ψ dx = 0, ∀ ψ ∈ ΨK , (7)

which is coupled with the mass, momentum and energy parts of usual DG scheme

(4) to solve the complete ideal compressible MHD equations. A LDF-RKDG

scheme can be obtained by applying the SSP Runge-Kutta time integration (6) to

(7).

The LDF-RKDG approach is equivalent to the classical RKDG approach fol-

lowed by a projection, which is derived as follows. As the SSP Runge-Kutta scheme

is a convex combination of forward Euler schemes, we only need to prove the equiv-

alence based on forward Euler time integration. The divergence-free magnetic filed

at time step n is denoted as Bn
h . In LDF-DG approach, the solution is updated by

∫

K

Bn+1
h · ψ dx =

∫

K

Bn
h · ψ dx

− τ

(
∮

∂K

(

F̂B · n
)

· ψ ds−
∫

K

FB · ∇ψ dx

)

, ∀ ψ ∈ ΨK .

(8)

In classical DG approach, the magnetic filed Bn+1,∗
h is computed by

∫

K

Bn+1,∗
h · ψ dx =

∫

K

Bn
h · ψ dx

− τ

(
∮

∂K

(

F̂B · n
)

· ψ ds−
∫

K

FB · ∇ψ dx

)

, ∀ ψ ∈ ΦK .

As ΨK ⊂ ΦK , we have
∫

K

Bn+1,∗
h · ψ dx =

∫

K

Bn
h · ψ dx

− τ

(
∮

∂K

(

F̂B · n
)

· ψ ds−
∫

K

FB · ∇ψ dx

)

, ∀ ψ ∈ ΨK .

(9)

By comparing (8) and (9), we obtain the following relation

∫

K

Bn+1
h · ψ dx =

∫

K

Bn+1,∗
h ·ψ dx, ∀ ψ ∈ ΨK , (10)

which implies that the LDF-DG solution Bn+1
h is the projection of the classical

DG solutionBn+1,∗
h onto the divergence-free subspace ΨK . Therefore, the LDF-DG

scheme is equivalent to the classical DG scheme followed by a projection. For the

rectangular element K using polynomial basis of degree k = 2, the divergence-free

solution is computed by

Bn+1
h =

9
∑

l=1

B
(l)
K ψ

(l)
K , B

(l)
K =

∫

K
Bn+1,∗

h ·ψ(l)
K dx

∫

K
ψ

(l)
K · ψ(l)

K dx
. (11)
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The equivalence relation (10) can significantly simplify the implementation of

LDF-RKDGmethod, in the sense that one only needs to perform a classical RKDG

method with a projection step at the end of each Runge-Kutta stage. State-of-the-

art techniques for the RKDG method such as the oscillation-eliminating procedure

that will be presented in Section 3, can be directly extended to the LDF-RKDG

method, as the LDF projection is non-intrusive and does not interfere with the

DG spatial discretization.

3 Oscillation-eliminating procedure

The ideal compressible MHD equations (1) are nonlinear hyperbolic conserva-

tion laws, which may develop discontinuities within finite time even starting from

smooth initial conditions. The high-order accurate LDF-RKDG scheme presented

in Section 2 produces spurious oscillations near discontinuities, which may lead

to nonphysical solutions or numerical instabilities. Suppressing oscillations in the

vicinity of discontinuities while preserving high-order accuracy in smooth regions

is a significant challenge in numerically solving the ideal compressible MHD equa-

tions. To overcome this difficulty, we develop a LDF-OEDG method that incor-

porates the recently developed oscillation-eliminating (OE) procedure [36] into

the LDF-RKDG framework. The OE procedure controls oscillations by damping

modal coefficients of the numerical solution. The damping ODE of the OE proce-

dure can be solved exactly, making the LDF-OEDG scheme remain stable under

normal CFL conditions. The OE procedure does not affect the order of accuracy,

as the damping term is high-order accurate in smooth regions. Furthermore, the

OE procedure is non-intrusive in the sense that it is fully decoupled from the

Runge-Kutta stage update as well as the LDF projection, enabling a straightfor-

ward implementation of the LDF-OEDG method. Details of the OE procedure

will be presented in the remaining of this section.

3.1 Oscillation-eliminating discontinuous Galerkin method

The semi-discrete OEDG scheme for ideal compressible MHD equations (1) is

obtained through an operator-splitting of the following damped semi-discrete DG

scheme
∫

K

(Uh)t φ
(α)
K dx =−

∮

∂K

F̂ · n φ
(α)
K ds +

∫

K

F · ∇φ
(α)
K dx

−
k
∑

m=0

δmK (Uh)

∫

K

(

Uh − Pm−1Uh

)

φ
(α)
K dx,

(12)
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in which the last term is a damping term that is added to suppress spurious

oscillations near discontinuities. Pm is the standard L2 projection operator onto

P
m (K), the space of polynomials of degree less than or equal to m on K, for

m ≥ 0. For any function w, Pmw ∈ P
m (K) and

∫

K

(Pmw − w) v dx = 0, ∀ v ∈ P
m (K) .

It is defined that P−1 = P 0. The damping term penalizes the deviation between

the DG solution and its lower-order polynomial projections. The penalization effect

is controlled by damping coefficients {δmK}km=0, which should be small in smooth

regions and large near discontinuities. The damping coefficients should also be

scale-invariant and evolution-invariant. The detailed formulae for the damping

coefficients will be given in Section 3.2.

For discontinuous problems, the damped ODE (12) is highly stiff and unstable

under normal CFL conditions. To reduce the stiffness of the system, Peng et. al.

[36] propose to split (12) into two ODEs, namely a conventional semi-discrete DG

scheme (5) and a damping ODE, as

d

dt
Uh = Tf (Uh) , (13a)

d

dt
Uσ = −Σ (Uh)Uσ, (13b)

where Σ (Uh) is a damping operator. Equation (13b) corresponds to the following

initial value problem















d

dt̂

∫

K

Uσφ
(α)
K dx = −

k
∑

m=0

δmK (Uh)

∫

K

(

Uσ − Pm−1Uσ

)

φ
(α)
K dx,

Uσ|t̂=0 = Uh,

(14)

where t̂ is a pseudo-time different from t. We define Fτ as the solution operator

of problem (14) with a pseudo-time step size τ , i.e., (FτUh) (x) = Uσ(x, τ). As

pointed out in [36], with orthogonal DG basis functions
{

φ
(α)
K

}k

|α|=0
, the damping

operator Σ (Uh) simplifies to a diagonal matrix, thus resulting in an exact solution

FτUh = U
(0)
K φ

(0)
K (x) +

k
∑

j=1

e−τ
∑j

m=0
δm
K
(Uh)

∑

|α|=j

U
(α)
K φ

(α)
K (x), (15)

where the basis coefficients are U
(α)
K =

∫

K
Uhφ

(α)
K dx/‖φ(α)

K ‖2L2(K). It is shown in

(15) that, the OE procedure does not affect the cell-average UK = U
(0)
K φ

(0)
K , thus

preserving the conservation property of the original DG scheme. The OE procedure

actually damps the coefficients of high-order terms in numerical solution (3). The
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OEDG method based on the third-order SSP Runge-Kutta time stepping can be

expressed as

Un,1
h = Un

σ + τTf (Un
σ) , Un,1

σ = FτU
n,1
h ,

Un,2
h =

3

4
Un

σ +
1

4

(

Un,1
σ + τTf

(

Un,1
σ

))

, Un,2
σ = FτU

n,2
h ,

Un,3
h =

1

3
Un

σ +
2

3

(

Un,2
σ + τTf

(

Un,2
σ

))

, Un+1
σ = FτU

n,3
h .

Thanks to the exact OE solver (15), the OEDG method remains stable under

normal CFL conditions. Furthermore, the OE procedure is fully decoupled from the

Runge-Kutta stage update, thus can be implemented as an independent module

that can be easily incorporated into existing DG codes.

3.2 Damping coefficients

There are several requirements for the design of the OE damping operator. First,

the damping coefficients should be sufficiently large in the vicinity of discontinuities

to suppress oscillations, while sufficiently small in smooth regions to preserve ac-

curacy. Second, the damping coefficients should be scale- and evolution-invariant,

to make the OE procedure perform consistently well for problems across various

scales and wave speeds. We adopt the formulae in [36] that generate damping

coefficients satisfying the aforementioned properties.

The damping coefficient δmK (Uh) is computed as

δmK (Uh) =
∑

e∈∂K

βe
σm
e,K (Uh)

he,K
, (16)

where he,K = sup
x∈K dist (x, e) is a characteristic length scale for cell interface e,

and βe is the local maximum wave speed in the normal direction ne evaluated at

the cell-average UK . Let u
(i)
h be the i-th component of the state vector Uh and

N be the total number of components. The coefficient σm
e,K (Uh) is defined as

σm
e,K (Uh) = max

1≤i≤N
σm
e,K

(

u
(i)
h

)

, (17)

with

σm
e,K

(

u
(i)
h

)

=























0, if u
(i)
h ≡ avg

(

u
(i)
h

)

,

(2m+ 1)hm
e,K

2 (2k − 1)m!

∑

|α|=m

1

|e|
∫

e

∣

∣[[∂αu
(i)
h ]]
∣

∣ds

‖u(i)
h − avg(u

(i)
h )‖L∞(Ω)

, otherwise,

(18)
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where ∂αu
(i)
h is the partial derivative defined as

∂αu
(i)
h (x) =

∂|α|

∂xα1∂yα2

u
(i)
h (x),

∣

∣[[∂αu
(i)
h ]]
∣

∣ is the absolute value of the jump of ∂αu
(i)
h , and avg

(

u
(i)
h

)

=
1

|Ω|
∫

Ω
u
(i)
h dx

is the average of u
(i)
h over Ω. The common scalar quantity ‖u(i)

h −avg(u
(i)
h )‖L∞(Ω)

is computed at the beginning of the OE procedure and then used for all the ele-

ments. The face integral of
∣

∣[[∂αu
(i)
h ]]
∣

∣ on e is calculated by using Gauss quadrature

rules.

Computation of the damping coefficients on a rectangular elementK = [x1, x2]×
[y1, y2] is presented as an illustration of how to use formulae (16) to (18). Let βx

K ,

βy
K be the estimates of the local maximum wave speeds in the x- and y-directions,

respectively. Then δmK (Uh) can be calculated by

δmK (Uh)

= max
1≤q≤N





βx
K

(

σm
x=x2

(u
(q)
h ) + σm

x=x1
(u

(q)
h )
)

hx
+

βy
K

(

σm
y=y2

(u
(q)
h ) + σm

y=y1
(u

(q)
h )
)

hy



 ,

with

σm
x=x2

(u
(q)
h ) =



















0, if u
(q)
h ≡ avg(u

(q)
h ),

2m+1
2(2k−1)m!h

m
x

∑

|α|=m

1
hy

∫ y2

y1

∣

∣[[∂αu
(q)
h ]]
∣

∣

x=x2

dy

‖u(q)
h − avg(u

(q)
h )‖L∞(Ω)

, otherwise,

σm
y=y2

(u
(q)
h ) =



















0, if u
(q)
h ≡ avg(u

(q)
h ),

2m+1
2(2k−1)m!h

m
y

∑

|α|=m

1
hx

∫ x2

x1

∣

∣[[∂αu
(q)
h ]]
∣

∣

y=y2

dx

‖u(q)
h − avg(u

(q)
h )‖L∞(Ω)

, otherwise.

It is observed from (14) and (16) - (18) that, the damping term−Σ (Uh)Uσ is a

high-order term in smooth areas, thus the seemingly “first-order” operator splitting

presented in Section 3.1 does not affect the order of accuracy of the OEDG scheme.

Actually, it is proved in [36] that, the OEDG method can preserve order of accuracy

in smooth regions. The accuracy-preserving property of the OEDG method is also

demonstrated by the numerical results in Section 4 of this paper. The strong

discontinuity capturing capability of the OEDG method is demonstrated by the

numerical results in Section 4. It is observed in (16) that the damping coefficients

are proportional to wave speeds, leading to an evolution-invariant property of

the OEDG method. The OEDG method is also scale-invariant, as the damping

coefficients are normalized by the L∞-norm of the solution fluctuation.
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3.3 Locally divergence-free oscillation-eliminating discontinuous Galerkin method

There are two main difficulties in developing high-order DG schemes for ideal

compressible MHD equations, namely the preservation of magnetic divergence-

free property and the elimination of spurious oscillations near discontinuities. The

LDF-DG scheme presented in Section 2 can be used to obtain high-order accurate

divergence-free numerical solutions of ideal compressible MHD equations. The OE

procedure presented in Section 3 can be used to suppress spurious oscillations in

the vicinity of discontinuities while preserve accuracy in smooth regions. There-

fore, we propose a LDF-OEDG method to obtain high-order accurate divergence-

and oscillation-free numerical solutions of ideal compressible MHD equations. The

implementation of the LDF-OEDG scheme is described in Algorithm 1.

Algorithm 1 LDF-OEDG for ideal compressible MHD equations.

1: function U
n+1
σ =LDF-OEDG(Un

σ , τ)

2: Set U
n,0
σ = Un

σ

3: Set SSPRK3 coefficients: c1 = 1, c1 = 1
4
, c3 = 2

3

4: for s← 1, 3 do

5: Surface and volume flux integrals in (4) to compute right-hand-side Tf

(

U
n,s−1
σ

)

6: Runge-Kutta stage update U
n,s
h = (1− cs)Un

σ + cs
(

U
n,s−1
σ + τTf

(

U
n,s−1
σ

))

7: OE procedure U
n,s
σ = FτU

n,s
h using the exact damping operator in (15)

8: Splitting of Un,s
σ into two parts: the flow field U

n,s
σ,F and the magnetic filed B

n,s,∗
σ

9: Projection of Bn,s,∗
σ to obtain a LDF magnetic filed B

n,s
σ , as in (11)

10: Formation of a divergence- and oscillation-free solution U
n,s
σ =

(

U
n,s
σ,F,B

n,s
σ

)T

11: end for

12: Update solution U
n+1
σ = U

n,3
σ

13: end function

4 Numerical results

This section presents numerical results for several benchmark two-dimensional

ideal MHD cases to verify the accuracy, resolution and robustness of the proposed

LDF-OEDG method. We specifically explore the third-order accurate (k = 2)

LDF-OEDG method on rectangular meshes. The third-order SSP Runge-Kutta

scheme is used in time integration, with the time step size

τ =
CFL

λx/hx + λy/hy
,

where λx and λy are the largest wave speeds in x- and y-direction, respectively.

The CFL number is taken as 0.15. For all cases, the adiabatic index is γ = 5/3,

unless otherwise noted.
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Example 1 (Accuracy test) The first example is a two-dimensional vortex problem,

which was adapted to MHD equations by Balsara [1] from the isentropic vortex

problem [21] in gas dynamics. The solution is a smooth vortex stably convected

with the velocity and magnetic field. The mean flow is (ρ,u,B, p) = (1, 1, 1, 0, 0, 1).

A vortex is added to the mean flow with the following perturbations

(δux, δuy) =
1

2π
e0.5(1−r2) (−y, x) ,

(δBx, δBy) =
1

2π
e0.5(1−r2) (−y, x) ,

δp =
−r2

8π2
e(1−r2),

where r2 = x2+y2. The computational domain is [−5, 5]× [−5,5]. Periodic bound-

ary conditions are imposed on the left/right and top/bottom boundaries, respec-

tively.

This example is used to assess the order of convergence of the LDF-OEDG method

for smooth problems. The simulations are performed up to t = 20, on a set of

successively refined rectangular meshes. The L2-errors and orders of accuracy for

some representative conservative variables are listed in Table 1. The test results

show that, the proposed LDF-OEDG method with k = 2 can achieve the expected

third-order accuracy.

Table 1: Accuracy test results for the vortex problem.

ρ ρux Bx E

Mesh L2-error Order L2-error Order L2-error Order L2-error Order

16× 16 2.12E-03 1.10E-02 1.14E-02 1.50E-02

32× 32 2.59E-04 3.03 5.92E-04 4.22 5.84E-04 4.28 9.88E-04 3.93

64× 64 4.45E-05 2.54 5.54E-05 3.42 5.17E-05 3.50 1.23E-04 3.01

128× 128 7.29E-06 2.61 7.83E-06 2.82 6.51E-06 2.99 1.86E-05 2.73

Example 2 (Orszag-Tang problem) The classic Orszag-Tang problem [35] is widely

used to assess resolution of numerical methods. The initial conditions are

(ρ,u,B, p) = (γ2,− sin y, sinx,− sin y, sin 2x, γ).

The computational domain is [0, 2π] × [0, 2π], with periodic boundary conditions

imposed on top/bottom and left/right boundaries. The computational domain is

divided into 192× 192 uniform cells in this test.



A LDF-OEDG Method for Ideal MHD Equations 15

Figure 1 plots the density contours at t = 0.5, 2, 3 and 4 computed by the LDF-

OEDG method. One can observe that the solution is smooth at early stage (t =

0.5). Then the shocks have already appeared at t = 2. After that, the shocks

interact with each other and the complicated structures involving multiple shocks

emerge at t = 3 and 4. It is observed that the results are consistent with those

in [22,23], and the complex shock structures are correctly captured with high

resolution by the proposed LDF-OEDG method.
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(c) t = 3
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4

5

6

(d) t = 4

Fig. 1: Orszag-Tang problem. Density contours computed by LDF-OEDG on a

192× 192 mesh.

Example 3 (Rotor problem) The rotor example [2,39] is used to further verify the

resolution of the LDF-OEDG method. In this problem, a dense rotating disk of

fluid is located in the central area, surrounded by the ambient fluid. An intermedi-

ate flow state is set between these two areas for a smooth initial condition, which

is given by

(ρ,u,B, p) = (ρ0, u0
x, u

0
y, 2.5/

√
4π, 0, 0.5)
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with

(ρ0, u0
x, u

0
y) =



















(10, − (y − 0.5)/r0, (x− 0.5)/r0), if r ≤ r0,

(1 + 9f, − f · (y − 0.5)/r, f · (x− 0.5)/r), if r0 < r < r1,

(1, 0, 0), if r ≥ r1,

where r0 = 0.1, r1 = 0.115, f = (r1−r)/(r1−r0) and r =
[

(x− 0.5)2 + (y − 0.5)2
]1/2

.

The computational domain is [0, 1]× [0, 1], with periodic boundary conditions im-

posed on top/bottom and left/right boundaries.

Numerical results computed by the LDF-OEDGmethod at t = 0.295 on a 200×
200 mesh, including the contours of density ρ, thermal pressure p, hydrodynamic

Mach number ‖u‖2 /c with c =
√

γp
ρ , and magnetic pressure ‖B‖22 /2, are shown

in Figure 2. Results computed by a LDF-DG method using the TVB limiter is also

shown in Figure 2 for a comparison. It is observed in Figure 2 that, the flow fields in

the central area computed by the LDF-DG method with the TVB limiter are more

noisy than those computed by the proposed LDF-OEDG method, demonstrating

the superior shock capturing capability of the LDF-OEDG method.

For a more detailed resolution comparison, in Figure 3, we present the Mach

number contours in the central rotating area computed on four successively refined

rectangular meshes with 100 × 100, 200 × 200, 400 × 400 and 800 × 800 cells,

respectively. It is observed from Figure 3 that, the solution resolution increases

with the grid refinement. Furthermore, the solutions computed by the LDF-OEDG

method have remarkably higher resolution than those computed by the LDF-DG

method with the TVB limiter, indicating the superior performance of the OE

procedure to the TVB limiter.

Example 4 (Blast problem) The classic MHD blast wave problem [2] is used to

assess the shock capturing capability and robustness of the LDF-OEDG method.

This a challenging problem, in which a strong circular magneto-sonic shock for-

mulates and propagates into the ambient plasma with a small plasma-beta β =

2p/‖B‖22. A smaller β yields a higher probability of producing negative pressure.

Initially,

(ρ,u,B, p) =







(

1, 0, 0, 100√
4π

, 0, 1000
)

, if r ≤ R,
(

1, 0, 0, 100√
4π

, 0, 0.1
)

, if r > R,

where R = 0.1, r =
(

x2 + y2
)1/2

. This initial condition corresponds to a very

small plasma-beta β = 2.51E − 04, making the numerical simulation quite chal-

lenging. The adiabatic index is γ = 1.4. The computational domain is [−0.5,0.5]×
[−0.5,0.5]. Outflow boundary conditions are imposed on domain boundaries.
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Fig. 2: Rotor problem. From top to bottom: contour plots of the density ρ, thermal

pressure p, Mach number ‖u‖2 /c and magnetic pressure ‖B‖22 /2, respectively. The
solutions are computed on a 200 × 200 mesh. Left: LDF-DG with TVB limiter;

right: LDF-OEDG.
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Fig. 3: Rotor problem. Mach number contours (zoom-in central part). From top

to bottom: on meshes with 100 × 100, 200× 200, 400 × 400 and 800× 800 cells,

respectively. Left: LDF-DG with TVB limiter; right: LDF-OEDG.
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A simulation is performed on a 200× 200 mesh until t = 0.01 using the LDF-

OEDG method. As the plasma-beta β is quite small, the numerical scheme needs

to be robust, otherwise there is a high probability of simulation failure. The numer-

ical results, including the contours of density ρ, thermal pressure p and magnetic

pressure ‖B‖22 /2, are shown in Figure 4. It is observed in Figure 4 that the sim-

ulation results are in good agreement with those reported in [2,5], demonstrating

the strong shock capturing capability and robustness of the LDF-OEDG method.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) ρ

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) p

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) ‖B‖22 /2

Fig. 4: Blast problem. Contours of density, thermal pressure, and magnetic pressure

computed by LDF-OEDG.

Example 5 (Loop advection problem) The magnetic field loop advection problem,

originally proposed in [14], is used to assess the capability of a numerical scheme to

preserve the loop’s initial shape and magnetic field strength over time. The initial

condition is

(ρ,u,B, p) = (1, 2, 1,Bx, By , 1),
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where

(Bx, By) =

(

∂Az

∂y
,−∂Az

∂x

)

, Az =







A0(R− r), if r ≤ R,

0, if r > R,

with A0 = 10−3, R = 0.3 and r =
(

x2 + y2
)1/2

. It is noted that Bx and By are the

first two components of the curl of the magnetic vector potential ∇× (0, 0, Az)
T.

The computational domain is [−1, 1]× [−0.5, 0.5], with periodic boundary condi-

tions imposed on top/bottom and left/right boundaries.

The gray-scale images of ‖B‖22 at t = 0, 2 and 10, computed by the LDF-

OEDG method on a 200 × 100 mesh, are shown in Figure 5. It is observed that

the majority of field dissipation occurs at the center and boundaries of the field

loop, and the loop’s initial shape is preserved over time. These phenomena agree

with the results in [14,13].

(a) t = 0 (b) t = 2

(c) t = 10

Fig. 5: Loop advection problem. Gray-scale images of ‖B‖22.
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Example 6 (Shock cloud interaction problem) The last example is a cloud–shock

interaction [9], which is a model widely used in astrophysics. Its main characteristic

is the interaction between a high density cloud and a strong shock wave. Set

Ω1 ={(x, y)|0 ≤ x ≤ 1.2, 0 ≤ y ≤ 1},
Ω2 ={(x, y)|1.2 ≤ x ≤ 2, 0 ≤ y ≤ 1,

√

(x− 1.4)2 + (y − 0.5)2 ≥ 0.18},
Ω3 ={(x, y)|1.2 ≤ x ≤ 2, 0 ≤ y ≤ 1,

√

(x− 1.4)2 + (y − 0.5)2 < 0.18}.
The initial solution is given by

(ρ, ux, uy, uz, Bx, By , Bz, p) (x, y)

=



















(3.88968,0, 0,−0.05234,1, 0, 3.9353,14.2641), x ∈ Ω1,

(1,−3.3156,0, 0, 1, 0, 1, 0.04), x ∈ Ω2,

(5,−3.3156,0, 0, 1, 0, 1, 0.04), x ∈ Ω3.

The computational domain is [0, 2]× [0, 1], with outflow boundary conditions.

Simulations are performed on a 600× 300 mesh, up to t = 0.6. The gray-scale

images of density ρ, pressure p, magnetic field components Bx and By , computed

by the LDF-OEDGmethod and the LDF-DGmethod with TVB limiter, are shown

in Figure 6. It is observed that the complex flow structures and discontinuities are

well resolved, and these results are fairly close to those presented in [9,13].

5 Conclusions

This paper presents a locally divergence-free oscillation-eliminating discontinuous

Galerkin (LDF-OEDG) method for ideal compressible MHD equations. The OE

procedure, which introduces a damping mechanism for modal coefficients of the

DG solution, is employed to suppress spurious oscillations near discontinuities.

The damping ODE can be exactly solved, thus making the OEDG method stable

under normal CFL conditions. The magnetic divergence-free constraint is satisfied

by performing a projection of the OEDG solution onto a divergence-free subspace

on each element. In each Runge-Kutta stage, the DG spatial discretization, the

OE procedure and the LDF projection are fully decoupled, thus enabling an easy

implementation of the LDF-OEDG method. The LDF-OEDG method is applied

to a series of benchmark ideal MHD test cases. Numerical results demonstrate

the high-order accuracy, strong shock capturing capability and robustness of the

LDF-OEDG method.
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Fig. 6: Shock cloud interaction problem. From top to bottom: gray-scale images

of density ρ, pressure p, magnetic field components Bx and By at t = 0.6 on a

600× 300 mesh. Left: LDF-DG with TVB limiter; right: LDF-OEDG.
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