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Abstract

In this work, we use a probabilistic machine learning approach to ef-
ficiently identify drivers who may be using their vehicles for commercial
purposes.

Automotive insurers increasingly have access to telematic information
via black-box recorders installed in the insured vehicle, and wish to iden-
tify undesirable behaviour which may signify increased risk or uninsured
activities. However, identification of such behaviour with machine learn-
ing is non-trivial, and results are far from perfect, requiring human in-
vestigation to verify suspected cases. An appropriately formed priority
score, generated by automated analysis of GPS data, allows underwrit-
ers to make more efficient use of their time, improving detection of the
behaviour under investigation.

An example of such behaviour is the use of a privately insured vehicle
for commercial purposes, such as delivering meals and parcels. We first
make use of trip GPS and accelerometer data, augmented by geospatial
information, to train an imperfect classifier for delivery driving on a per-
trip basis. We make use of a mixture of Beta-Binomial distributions to
model the propensity of a policyholder to undertake trips which result
in a positive classification as being drawn from either a rare high-scoring
or common low-scoring group, and learn the parameters of this model
using Markov-chain Monte-Carlo (MCMC). This model provides us with
a posterior probability that any policyholder will be a regular generator
of automated alerts (drawn from the higher-scoring group and therefore
likely to be engaging in delivery driving) given any number of trips and
alerts. This posterior probability is converted to a priority score, which
was used to select the most valuable candidates for manual investigation.

Testing over a 1-year period ranked policyholders by likelihood of com-
mercial driving activity on a weekly basis. The top 0.9% have been
reviewed at least once by the underwriters at the time of writing, and
of those 99.4% have been confirmed as correctly identified, showing the
approach has achieved a significant improvement in efficiency of human
resource allocation compared to manual searching.

1 Introduction

Use of telematics data in auto-insurance is growing rapidly as new applications
are developed to take the advantage of modern telematics systems and the
widespread use of mobile devices. At present, telematics insurance includes safe
driving and mileage based products where product features such as coverage,
service or pricing are based on the telematics data.

Common data captured by telematics systems includes location, speed, ac-
celeration or braking, fuel consumption, idling time and vehicle faults. This
information can provide in-depth insights and be analysed for events and pat-
terns. In this paper we consider the particular use of vehicles for deliveries.

Delivery driving is considered business use and not usually covered by stan-
dard Social Domestic and Pleasure (SD&P) personal auto-insurance. This could
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mean that an individual driving for a company like Deliveroo, JustEat, UberEats
or Amazon involved in an accident could find their insurer refusing to pay out,
leaving the driver in a potentially devastating financial situation. It also means
they might have been driving illegally. There is a product available called ‘top-
up’ Hire and Reward (H&R) insurance, which a driver can buy as supplemental
cover in parallel with their SD&P insurance. In this work we aim to efficiently
identify delivery driving and so prevent scenarios where consumers may experi-
ence unsatisfactory outcomes as a result of misrepresentation or underinsurance.

Identification of policies undertaking delivery driving represents a twofold
challenge: classification of individual journeys as being potentially being deliv-
eries, and subsequent identification of policies for which to make an intervention
given results for individual trips. Both stages will provide significantly imper-
fect results, and contacting a customer based on a false positive has a significant
impact, both in resources and reputation. For this reason we require human in-
vestigation prior to any action. However, the volume of data generated by
telematics insurance is too great for manual review of all trips to be feasible.
In this study, we investigated the we make use of machine learning to provide a
prioritised ordering of policies for human investigation.

The first stage of our solution uses an automated machine learning pipeline
to provide classification of delivery driving on a per-trip basis, based on GPS
data. In isolation as an individual classifier, this model has a significant false
positive rate, which combined with the highly imbalanced dataset dilutes the
minority of correctly identified trips beyond practical investigation. The sec-
ond stage uses a Bayesian mixture model approach to identify two populations
within all policyholders: a majority group with a low rate of trips being given
positive classifications, and a minority group with a much higher rate of positive
classification. Policyholders can then be assigned a probability of membership
of the minority (higher rate) class at any point in time based on the available
data. This Bayesian approach ensures that the volume of evidence available is
appropriately balanced with the simple number, or fraction, of identified trips
when providing a ranking. Policyholders with all trips undertaken classified as
delivery driving, but only one or two total trips counted, are still ranked lower
than those with a lower fraction, but greater total number trips. The resulting
scores are used to propose a list of policyholders to investigators ordered by
ranking. This allocates time to only those policies that have been identified as
having a high probability of being delivery drivers.

Considering these predictions over a period of 1 year, updated on a weekly
basis, resulted in 99.4% of policies for which manual investigation was under-
taken being labelled as undertaking delivery driving (approximately 0.9% of all
unique policies present in the test period). In Section 2 we describe the data
available and our approach to classifying individual trips as undertaking deliv-
ery driving. We then describe our method for ranking policies for investigation
based on individual trip classification results in Section 3, and give a brief de-
scription of how our methods were deployed for use by underwriters in Section 4.
We present results in Section 5, and discuss our conclusions, business benefits
and possible further extensions in Section 6.
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2 GPS Path Classification

As described above, identifying delivery driver behaviour is a twofold challenge.
This section tackles the first stage, which requires classifying individual trips as
DELIVERY or NON-DELIVERY. Once a prediction has been made for each
individual trip, results can be aggregated at the driver level.

2.1 Data

The data used in this study is from a UK provider of telematic insurance with
tens of millions of trips and hundreds of thousands of drivers available for mod-
elling purposes. Telematic data is arranged into a series of regularly sampled
and timestamped GPS measurements, each with the following attributes:

• Driver identifier

• Trip identifier

• Latitude, Longitude

• Date and time

• Engine status (on/off/running)

• Accelerometer

We note that raw data collected is post-processed to align with the UK road
network with high accuracy. Technical details on how to achieve this lie outside
the scope of this paper and are omitted to comply with intellectual property
protection. In addition to the individual GPS measurements, postprocessing
also identifies the start and endpoints for individual trips. The definition of
what constitutes a trip may vary depending on the application. In the case
of detecting delivery driving behaviour, we used a dividing window of 90 idle
minutes. This allows for idle time between deliveries, including time waiting for
delivery preparation at commercial stops to not constitute a break into separate
trips.

Working with this dataset poses several difficulties compared to a standard
machine learning setting:

Lack of labelled trip data We note that trips do not come with a DELIV-
ERY or NOT A DELIVERY label, which complicates building a super-
vised classifier. Although out-of-policy use for commercial purposes is
known to be a significant issue anecdotally, a consistent set of labels did
not exist.

Scarce and noisy policy-level labels Only six occasional delivery drivers had
been identified at the beginning of this project, with their trip data having
mixed delivery and non-delivery usage.

4



Figure 1: An example of a delivery trip candidate. Red markers represent
stops at busy streets with nearby restaurants; blue markers represent stops at
residential roads; and the green marker represents an (anonymised) policyholder
home address. The radius of the marker is proportional to the amount of time
they stayed there. The driver alternates between the blue markers, which they
visit only for a few minutes before returning to the red markers area. This is a
recognised pattern in delivery driving behaviour.

Dataset size Due to the number of trip and driver data points, exhaustive
manual investigation whether by underwriting experts or data scientists
was unfeasible.

Few previously known examples Only a handful of drivers (<10) were pre-
viously confirmed to engage in delivery driving mixed with personal use.
Furthermore, trip-level labels for these drivers were also unavailable.

Difficulty to compute quantitative metrics The lack of labelled data also
made it difficult to compute traditional classification metrics, such as pre-
cision and recall, for evaluation purposes.

2.2 Feature Engineering

GPS trip data is of variable length, and much of the useful information is in
relation to features in the world at or near to the given location, not inherent in
the actual values. To extract useful information which is suitable to be passed
to a machine learning algorithm we must use domain knowledge to construct
a feature set from the raw data. The feature set we constructed aggregates
trip-level features with a strong emphasis on qualifying the type and number of
destinations in a single trip. In doing so, we encapsulate underwriting domain
knowledge concerning the behaviour of delivery drivers in real life. For exam-
ple, it is likely that delivery drivers perform multiple deliveries in one journey,
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which would suggest long trips with an alternation between residential and high-
street-like destinations. We provide an example of this behaviour in Figure 1.
Additionally, other trip-level characteristics such as time of the day, and day of
the week, are also likely to inform the model.

We identified trip destinations by selecting consecutive trip stationary points
that had an inter-sample absolute displacement of EPS ≤ 10−5. Whenever a
stationary point’s duration was shorter than 90 seconds it was discarded on the
assumption that the driver may be stopped at a traffic light or other short term
obstruction, rather than at a genuine trip destination. Each stationary point
was augmented using a database of commercial points of interest, such that:

• a stationary point with 2 or more commercial locations within a radius of
50m was marked as a commercial destination;

• a stationary point within 150m of the driver’s home postcode was marked
as a home destination; and

• a stationary point that does not satisfy either of the conditions above was
marked as a residential destination.

Following the computation of trip stationary points, we include in our feature
set:

TRIP DURATION MINUTES Total trip duration in minutes.

NUMBER WAITS TRIP Total number of stationary points in the trip.

AVERAGE TRIP WAIT MINUTES Average duration of stationary points in trip, in
minutes.

TOTAL COMMERCIAL WAITS Number of commercial destinations.

RATIO BUSY WAITS Ratio between number of commercial and residential desti-
nations.

TIME OF DAY TRIG Time of the day encoded through a trigonometric transfor-
mation.

2.3 Modelling

The remainder of this section explains how we constructed a supervised trip-
level classifier. First, we used an unsupervised approach, to guide identification
of delivery trips from a limited set of policies which were known in advance to
be undertaking delivery driving. This allowed for a feasible, manual investiga-
tion by the insurer’s underwriting team to confirm trip-level labels, enabling a
subsequent supervised classification stage.
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Unsupervised delivery trip shortlisting

Given the unlabelled nature of this telematic dataset, constructing a supervised
classification model was not immediately feasible. In order to curate an initial
set of labels, we developed an unsupervised pipeline by exploiting a set of six
confirmed delivery drivers. These drivers had mixed usage, with some of their
trips not being used for delivery purposes.

In order to create an initial shortlist of delivery trips, we constructed an
unsupervised pipeline through of Uniform Manifold Approximation and Projec-
tion for dimension reduction (UMAP) [1] followed by Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) [2], which was ap-
plied following the feature engineering pipeline previously described. UMAP
is a non-linear dimensionality reduction technique that more accurately pre-
serves global and local structure, as well as non-linear relationships, than other
approaches such as Principal Component Analysis or t-distributed Stochastic
Neighbour Embedding. This makes it suitable for being used in tandem with
clustering approaches. HDBSCAN is an extension of the density-based DB-
SCAN approach to clustering, which does not require tuning the number of
sought clusters (unlike classical methods such as k-means clustering) this is ad-
vantageous for us as there may be an unknown number of characteristic driving
behaviour patterns in addition to delivery driving.

Running this clustering pipeline on all available trip data from the six con-
firmed delivery drivers resulted in a set of clusters as shown in Figure 2, with
one of them containing most of the trips with a high number of commercial
destinations. This cluster contained 62 candidate trips, which were manually
reviewed by the insurer’s own underwriting team. Following this review 58 out
of the 62 trips were confirmed to be delivery trips.

Supervised classification

Following the manual review of true delivery trip labels by the insurer’s Un-
derwriting team, these were used to construct a supervised model. This was
achieved through Mind Foundry Analyze, which is a workbench for automati-
cally building and selecting from a wide range of models, including Extremely
Randomised Forests, XGBoost Classifiers. In addition to model training, MF
Analyze is powered by its in-house Bayesian optimiser, which also finds the best
model family with its corresponding optimal hyperparameters. The resulting
model is a trip-level classifier that takes as input the feature set described above,
and returns a binary prediction.

2.4 Conclusion

This section introduced our methodology to develop a GPS path classifier for
detecting delivery trips. This was achieved by crafting a domain-driven feature
set and making use of a one-off experiment to curate a set of high-confidence
labels in collaboration with the insurer’s Underwriting department. These labels
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Figure 2: Output of our unsupervised pipeline on the deliveries dataset. This
2-dimensional representation of the dataset exhibits four distinct groups discov-
ered by our approach. By matching up a handful of manually-identified true
delivery trips with the clusters, we found that Cluster 3 (red) contained all of
these examples. By submitting a random selection of 62 samples from Cluster
3 for manual review by the insurer’s underwriting team, 58 of them were found
to be true delivery trips.

8



were subsequently used to train a trip-level binary classifier on Mind Foundry’s
end-to-end model building workbench, MF Analyze.

However, we note that the ultimate goal is to produce driver-level referrals, so
we require an additional stage which aggregates trip-level predictions in a robust
way to prioritise policies which are most likely undertaking delivery driving.
Simple approaches such as taking the simple delivery trip rate or raw count
are unsuitable: Using the raw count of delivery trips per policy will not to
prioritise policies which have a high proportion of predicted delivery trips, but
low total overall driving volume. On the other hand, using the delivery trip rate,
i.e. the ratio of delivery trips over the total number, will not prioritise policies
that have a large number of delivery trips within an even higher total volume.
Given that the false positive rate of our model is not insignificant, and that
delivery driving is considered to be a rare activity, we can anticipate that the
majority of highly scored policies under a total rate metric would be those that
are not undertaking delivery driving, but have all of only a small number of trips
positively misclassified. Furthermore, it must be noted that trip-level errors are
likely to be biased by the behavior of a policyholder. A driving pattern that the
model misclassifies as a delivery, is likely to be regularly repeated by the same
policyholder, leading to a much higher false positive rate for some policyholders
than would be expected for independent trip-level classification.

The next section proposes a novel Bayesian approach to produce driver-level
scores that prioritise the drivers that are most likely to be delivery drivers. Our
approach combines the counts of delivery and non-delivery classifications per
policy to train a probabilistic mixture model based on the Beta-binomial distri-
bution. This provides a principled posterior probability of any individual policy
undertaking delivery driving given the observed trip classifications. Further-
more, by using a Bayesian approach, we are able to encapsulate Underwriting
domain expertise in the shape of a prior distribution.

3 Policy Classification

We have described the provision of a per-trip classifier. However, even with
a reasonably high model performance, a non-negligible false positive rate and
heavily imbalanced data will still most likely lead to an excess of positively
classified trips, the majority of which are false positives. Fortunately, we do not
need to consider trips in isolation.

We hypothesize that trips are not incorrectly classified at random, but in-
stead that policyholders may undertake particular non-delivery driving patterns
which our model is unable to distinguish from delivery driving, and that the
driving habits of a policyholder over several trips will have a particular ex-
pected rate of generating positive trip classifications. However, policyholders
actually undertaking delivery driving are expected to incur a much higher rate
of positive classification. The policyholder classification challenge is to identify
these particular policies given the number of positive and negatively classified
trips for each policyholder in a given interval. Intuitively we seek some ranking
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methodology which will prioritise a high fraction of positively classified trips
but discount a small total number of trips. The highest scored policies from
this secondary classification are then the most promising candidates for further
investigation.

The output of the trip-classification process is a set of binary labels tripij ∈
{0, 1} for trip j by policyholder i. Given this data we now wish to determine
the posterior probability of an unseen label ki, the likelihood that policyholder
i is part of a minority (delivery-driving) group ( ki = 1 ) which has a much
higher rate of positive trip classifications than the larger population ( ki = 0 )
We do not in this work use the ordering of trips, so this can be simplified to use
only the count of trip and positive trip classifications

p(ki | tripi0, tripi1, . . . tripin) = p(ki | yi, xi) (1)

where xi is the total number of trips, and yi is the number of positively labeled
trips by policyholder i. We are able to compute the number of trips X =
x0, x1, . . . xN and positively classified trips Y = y0, y1, . . . yN . However, we have
true labels ki for only an insignificant number of cases, so are not able to train
a traditional supervised model to make predictions based on p(ki | yi, xi, X, Y ).

To solve this problem of learning a mapping from classified trip counts to
a class probability in the absence of labels, we choose to use our knowledge
of the process generating the data to construct a probabilistic model which
describes how delivery driving influences the classification of trips. We can then
estimate the unknown parameters, Θ of this model using the available data,
and given these learned parameters provide a posterior probability of delivery
driving given observed trip counts for each policy p(ki | xi, yi,Θ). We have some
intuition for the likely values of Θ, but do not know exact values, so we encode
our uncertainty by choosing a set of hyperparameters Φ, to impose a prior over
the values of Θ.

We therefore wish to perform inference to learn the posterior distribution
over the model parameters p(Θ | X,Y,Φ) given the observed data and our hyper-
parameters. We can then make predictions over the unobserved ki conditioned
on this learned distribution

p(ki | xi, yi, X, Y,Φ) =

∫
p(ki | xi, yi,Θ,Φ)p(Θ | X,Y,Φ)dΘ. (2)

Note that in this construction we have no information about unobserved class
labels k. Ensuring that it will represent the high-trip-classification-rate delivery-
driving class we are interested in is determined by our model construction and
choice of hyperparameters guiding the learning process. In future iterations
of this work, when significant numbers of verified observations of ki will be
available, the model training process could be modified appropriately to accom-
modate this information.

Our choice for how to parameterize the quantities of interest and their de-
pendencies determines the difficulty of the inference problem, and how likely
we are to be successful. As noted we are not considering the relative ordering
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θ

αc, βcΨ

ki

qi xi

yi

k ∈ {0, 1}

i ∈ 1, 2, . . . , N

Figure 3: Directed Graphical Model for the latent variable mixture model con-
struction. Only the data x, y and the model hyperparameters Ψ are observed,
all other quantities must be inferred.

of positively and negatively classified trips as features. We also do not expect
that the total number of trips made, xi, is directly indicative of delivery driving,
although it does represent the volume of available information, so does appear
in modelling. Given these assumptions the expected value of yi given xi for a
policy can be expressed as

E[yi | xi, qi] = xiqi, 0 ≤ qi ≤ 1. (3)

The per-policy rate, qi, is drawn from some unknown distribution which is not
equal for the delivery-driving and non-delivery driving groups

p(qi | ki = 0) ̸= p(qi|ki = 1). (4)

Given these choices we can write the posterior probability of ki as

p(ki|xi, yi,Θ) =
p(xi, yi|ki,Θ)p(ki|Θ)

p(xi, yi, ki,Θ)

=
p(yi|xi, ki,Θ)p(ki,Θ)p(xi)

p(xi, yi, ki,Θ)

∝ p(yi|xi, ki,Θ)p(ki|Θ)p(xi)

= p(yi|qi, xi)p(qi|ki,Θ)p(ki|Θ)p(xi)

(5)

The model structure induced by these choices is illustrated in Figure 3.
It remains to select the exact form of the given distributions. The prior

probability of being a delivery driver is simply a constant parameter, p(ki) = θ,
and since p(y | q, x) is the sum result of x binary trials, each with probability
q, it is given by the Binomial distribution, p(y | q, x) = (n, x)px(1 − p)n−x.
However, the form of p(q | k) may be any distribution supported on [0, 1].
Selecting p(q | k) as being drawn from a mixture of the Beta distributions,

p(qi | ki = k) = Beta(αk, βk), k ∈ {0, 1} (6)
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is a natural choice as this is the conjugate prior to the Binomial distribution.
This is a well understood distribution with closed form expressions for mean
and variance, allowing us some understanding of the prior distribution imposed
on the form of p(q) by our choice of hyperparameters.

To allow our hyperparameters to independently control our beliefs over the
mean and a measure of the uncertainty of p(q|k) we reparameterise our distri-
butions such that our hyperparameters are given by

Φ = {µ0, µ1, r0, r1, θ}
µk = βk(αk + βk)

rk = αk + βk − τk

τk = max

(
αk + βk

αk
,
αk + βk

βk

) (7)

(The offset term τ ensures that αk, βk > 0 to avoid numerical issues).
In a setting in which we intended to identify unknown structure in the data

we would select our hyperparameters, Φ, to place broad uninformative priors
over the model parameters Θ = {α0, α1, β0, β1, θ}. However, in this setting we
have relatively little data, and have strong belief that our classes are heavily
imbalanced in favour of k = 0 (θ is close to zero) The majority class tends
to have low rates of positive trip classification (p(qi | k = 0) assigns most
mass towards zero) The minority class has much higher rates of positive trip
classification (p(qi | k = 1) assigns most mass towards one). We therefore choose
more specific values

p(µ0) ∼ Beta(1, 3)

p(µ1) ∼ Beta(4, 1)

p(r0) ∼ Gamma(4, 1)

p(r1) ∼ Gamma(8, 1)

p(θ) ∼ Beta(30, 1).

(8)

The samples from the prior distributions induced over p(θ, q | k = 0) and
p(θ, q | k = 1) are shown in the top row of Figure 4.

Given a probabilistic model equipped with priors over unknown parame-
ters and an observed dataset, we have several available approaches to learn the
parameters given the available data. The final required posterior over class
membership for each policy given training data, p(ki | xi, yi, X, Y,Φ) is not
available in closed form, so our inference method must be approximate. We se-
lected Markov-Chain Monte-Carlo (MCMC) inference as it allows us to specify
informative priors, (allowing inference to be effective with limited data), as it
provides a distribution over learned parameters (likely providing more uncertain
predictions than point estimate), and due to the availability of suitable imple-
mentations (we used a Hamiltonian Monte-Carlo implementation provided by
the tensorflow-probability Python package [3]).

Briefly, MCMC is an approach to drawing samples from a distribution given
the ability to evaluate the likelihood (probability up to a constant factor) at
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a point. Since the probability of the parameters conditioned on the data is
proportional to the probability of the data conditioned on the parameters we can
thus obtain samples of our model parameters from the joint distribution of model
parameters conditioned on the data and hyperparameters Θj ∼ p(Θ|X,Y,Φ).
For a proper introduction we recommend [4]. From the resulting samples we
can approximate the probability of class membership for any given policy given
the associated trip counts

p(ki | xi, yi,Φ, X, Y ) =

∫
Θ

p(ki | xi, yi,Θ)p(Θ | Φ, X, Y )dΘ

≈ 1

N

N∑
j

p(ki | xi, yi,Θj).

(9)

While a posterior predictive probability of the minority class may be most
useful in a machine learning setting it is not necessarily intuitive, or conve-
nient to represent and compare values (many values will appear on screen as
‘0.9999. . . ’ or ‘0.0000. . . ’). For this reason we pass the probability through a
logit followed linear transform, such that a 99% probability archives a score of
3, while the prior probability of minority class achieves a score of zero (Scores
are clipped to remain between zero and 10). As a monotonic transform this
makes no difference to the ranking order, but is considered preferable for dis-
play purposes.

4 Implementation

Following the construction of both a trip-level GPS path classifier, and the
driver-level and policy-level classifiers, we developed a web application to al-
low underwriters to continuously validate the results produced. The pipeline
described in Sections 2 and 3 produces new predictions at a regular cadence
given updated data, which are then sorted by the resulting score, as shown in
Figure 5.

Results are sorted by priority score, and underwriters can then review in-
dividual drivers top-bottom starting with those likeliest to be delivery drivers,
thus maximising the meaningfulness of the limited time they can spend on man-
ual reviews.

5 Results

Result gathering was performed in two phases. In the first phase, following the
initial modelling process detailed above, predictions from a test set of individual
GPS traces were manually labelled by underwriters. Following this the trained
models were deployed on incoming data, with underwriters using the provided
predictions to guide investigation, for which we present results gathered over
a one year period. Predictions and scores were updated on a weekly cadence,
with a rolling 1-month window of data being included in predictions.
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Figure 5: Screenshot of web application (on dummy data) developed to review
drivers suspected to carry out commercial activities outside their policy T&Cs.
The Priority column provides the output of the model described in Section 3

5.1 Path Classification

Following the development of the supervised model presented in Section 2, 100
delivery trip candidates were referred to the insurer’s Underwriting department,
representing the 100 trips with the highest predictive score as calculated by the
model. Out of these, 96 were confirmed to be true delivery trips.

Following this investigation, the model was deployed to make live predictions
at the trip level. In order to assess the policy-level model presented in Section 3,
the trip-level model was run over GPS data corresponding to over 75000 distinct
policies.

5.2 Policy Classification

At the time of training the policy classification model predictions were avail-
able for all trips undertaken in a one-month window, representing over 400000
trips undertaken by over 75000 distinct policies, the distribution of total and
positively classified trips observed is illustrated in Figure 6. Drawing 5000 pa-
rameters sampled from our MCMC model resulted in the posterior distributions
shown in the lower row of Figure 4. As illustrated this suggests that the mean
rate of positively-classified trip generation by the majority (non-delivery) group
is around 0.1, with the large majority being under 0.2, while for the minority
class a much higher mean with significant probability of rates even up to 1.0
are predicted. The posterior distribution on the probability of a policy being a
member of the minority class given no observations is not predicted as likely to
be greater than around 1%, with a mean of 0.4%. From these parameters we can
compute the probability of minority class membership for any number of posi-
tive and negatively classified individual trips, which is given in Figure 7. We can
see that this posterior map has the characteristics that we required. For larger
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Figure 6: Heatmap (hue is log-scaled) of policy counts by count of delivery
and non-delivery classified trips (zero trips not included) While the overwhelm-
ing majority of policies have no positively classified trips, the number with a
significant fraction still far exceeds manual processing capacity. Constructing
a ranking of policies most likely to contain true-positive classifications allows
efficient use of available human resources.

total numbers of trips a majority being positively identified represents a high
likelihood of being a delivery driver, but for small numbers the fraction needs
to be larger, and in particular policies having only 3 or 4 positively classified
trips with no others are not considered conclusively to be delivery drivers.

During 1 year of trial use the scores and individual trip classifications were
made available to underwriters investigating delivery driving. Use of these quan-
tities allowed highly scored policies, and positively classified trips undertaken
by those policyholders to prioritise for investigation. During this time approx-
imately 0.8% of individual policies were investigated (only 1 month of history
is typically considered, so this represents at most 0.13% of all trips and 2.6%
of individual positively classified trips being manually viewed due to machine
learning predictions). From these investigations only 0.4% of reviewed policies
were labelled by underwriters as not being delivery drivers (99.6% accuracy).
This represents a highly efficient use of time due to machine learning, a ran-
dom selection policy would be expected to provide a negative result for the
overwhelming majority of policies, so is not a practical use of resources.

Successfully identifying a large number of policies engaging in delivery driv-
ing with minimal false positives demonstrates significant business value for the
overall approach, which was originally designed on the basis of very limited pos-
itively labelled data. The distribution of trips being individually classified for
the overall population, and for confirmed delivery-driving policies after one year
of data collection and manual investigation is shown in Figure 8. The observed
distributions are broadly consistent with those predicted using the modelling
described in Section 3, and as noted above the predictions generated led to an
accuracy of 99.6% for policies that were given manual review, suggesting the ap-
proach is viable and provides useful predictions. On the other hand, there are
some notable differences between our modelling and the observed data. First,
the parameters generated by MCMC suggest a low prior probability of the mi-
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Figure 7: Score lookup-table for total and positively classified trip counts.
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Figure 8: Distribution of the fraction of trips being individually classified as
delivery-driving overall and for identified and confirmed delivery driving polices
(note the log scale). Policies that have made no trips are excluded.
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nority class of approximately 0.4%, with 1% being in the tail of the distribution.
However, we have in fact obtained manual positive labels for 0.8% of policies,
and the minimal false positive rate for investigations suggests this may be a
lower bound rather than the true number present. It therefore seems likely that
the true value of θ lies outside the range predicted by our modelling. Second,
our original assumption was that delivery drivers would incur a majority of trips
being positively classified and this was encoded in our prior for p(q | k = 1) by
setting the priors for µ1 and r1 in Equation 8. However, both the learned pos-
terior from initial training data, and the observed distribution after a year of
data collection place the mean value of p(q | k = 1) at significantly less than 0.5.
This has not in fact impacted the ability of the model to successfully make pre-
dictions, but does point to the importance of appropriate selection of modelling
assumptions.

6 Conclusions & Future Work

This work has detailed making use of machine learning to enable detection of
driving characteristics, automating a previously manual task which was of too
great volume to be performed in full. Automation ensures a consistent ap-
plication of investigation, so enables fairer risk assessment and treatment of
customers. Provision of the resulting predictions in a ranked score enabled the
insurer to focus on highest risk and manage risks appropriately with available
resources. Our approach has allowed a very restricted number of existing iden-
tified cases within the data to be expanded to positive identification of delivery
driving in ∼ 0.8% of policies on a rolling basis. The process has provided
a more effective and efficient means for the insurer to identify potential un-
derinsurance or misrepresentation at scale, ultimately to improve business and
customer outcome, and has provided an exemplar use case driving further adop-
tion of human-AI collaboration within the business. There is clear potential to
expand the approach to other behaviours of interest to telematics insurers, in-
cluding business use, private hire or other driving behaviour. More general
applications could also be explored, including classification problems where the
approach could be adopted as part of a model to detect fraud, theft or other
high risk events or measuring confidence around prediction in pricing / risk cost
models.

From a modelling perspective initially only a limited number of confirmed
cases of delivery driving had been identified, so training of the per-trip classi-
fier was undertaken with very limited training data. This resulted in a limited
level of performance for the per-trip classification process. Furthermore, the
policy classification was undertaken in a fundamentally unsupervised manner,
attempting to learn and distinguish two distinct but unlabelled classes from
the available data. Making use of these predictions to guide investigations has
yielded significant new data which gives potential for significant further improve-
ments. In particular, following a year of guided investigations a much greater
volume of labelled trips is available than at the original model training time.
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This indicates the potential for further insights into possible feature engineering,
and greater model performance on individual trip classification. We now have
positive labels for a significant number of policies undertaking delivery driving,
and have learned that the distribution of positive trip-classification rates for de-
livery drivers is significantly different to our prior belief. Updating our priors to
reflect this new understanding, an increased volume of data, and including these
partially available labels as observations of yi in the inference process can be
expected to provide a much more effective policy classification metric in future.
It is also worth noting that any improvements to the individual trip classifier
can be expected to yield greater separation, and therefore greater performance
in policy classification.
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