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Abstract— Large language models (LLMs) have shown sig-
nificant potential for robotics applications, particularly task
planning, by harnessing their language comprehension and text
generation capabilities. However, in applications such as house-
hold robotics, a critical gap remains in the personalization of
these models to individual user preferences. We introduce LLM-
Personalize, a novel framework with an optimization pipeline
designed to personalize LLM planners for household robotics.
Our LLM-Personalize framework features an LLM planner
that performs iterative planning in multi-room, partially-
observable household scenarios, making use of a scene graph
constructed with local observations. The generated plan consists
of a sequence of high-level actions which are subsequently exe-
cuted by a controller. Central to our approach is the optimiza-
tion pipeline, which combines imitation learning and iterative
self-training to personalize the LLM planner. In particular, the
imitation learning phase performs initial LLM alignment from
demonstrations, and bootstraps the model to facilitate effective
iterative self-training, which further explores and aligns the
model to user preferences. We evaluate LLM-Personalize on
Housekeep, a challenging simulated real-world 3D benchmark
for household rearrangements, and show that LLM-Personalize
achieves more than a 30 percent increase in success rate
over existing LLM planners, showcasing significantly improved
alignment with human preferences. Project page: https:
//donggehan.github.io/projectllmpersonalize/.

I. INTRODUCTION

The application of large language models (LLMs) to
the robotics domain has demonstrated substantial potential,
especially in the realm of task planning [1], [2], [3], [4],
[5], [6], [7], [8], by leveraging their advanced language
comprehension and text generation capabilities. An important
challenge of using LLM-powered planners is the alignment
of the LLM with the specific task context. While many
studies have focused on grounding LLM planners to the
physical contexts of the tasks to ensure executability of
the generated plans and their relevance to the environment,
our work aims to further extend this foundation to study
personalization, an important aspect to household robotics
which tailors the functionality of the household robot to the
unique and subtle household needs and preferences.

Prior works on LLM grounding have proposed to align
LLMs with the tasks’ physical context through methods
such as translating generated plans to executable actions [4],
integrating contextual information such as affordance [2], [8],
scene graph [3] or environmental feedback [3], [7]. Despite
these advancements, there is noticeable gap in grounding
LLM planners to personalized user preferences due to the in-
herent misalignment between the general-purpose knowledge

1All authors are affiliated with the School of Informatics, University of
Edinburgh, Edinburgh, UK. Correspond to dongge.han@ed.ac.uk.

Environment

LLM Planner Controller

Go to kitchen table,
Look at Pan 1 …

Context 
Generator

Scene graph, 
Instructions, 

Examples

Go to kitchen 
table

Move 
forward

Semantic Sensor
Observed objects, 

receptacles

Optimisation Phase 1: Imitation Learning

Demonstrations

Supervised 
fine-tuning

Optimisation Phase 2: Iterative Self-training

Positive Examples

Interactions

User 
PreferenceSupervised 

Fine-tuning

Agent Model

LLM Planner

LLM 
Planner

Fig. 1: Illustration of LLM-Personalize. Agent architecture:
The Context Generator constructs and updates a scene graph
from local observations. The LLM Planner uses the graph
to produce a plan as a sequence of high-level actions,
and iteratively re-plans when the previous plan has been
executed. Each high-level action is translated to a sequence
of control actions and executed by the Controller. To person-
alize the LLM Planner, we introduce an optimization pipeline
integrating imitation learning and iterative self-training to
fine-tune and align the planner with user preferences.

of LLMs, designed to reflect common preferences, and the
unique preferences of users, e.g., one household may prefer a
coffee mug to be placed on the dining table, whereas another
may prefer for it to be in a kitchen cabinet.

To address this challenge, we propose LLM-Personalize, a
household robotic agent framework that performs object rear-
rangements in multi-room and partially observable household
scenarios. As shown in Fig. 1, the model integrates three key
components: a context generator, an LLM planner, and a low-
level controller. Central to personalizing the LLM planner
to user preferences is our novel optimization pipeline that
combines imitation learning with iterative self-training. In
the first optimization phase, imitation learning is leveraged
to bootstrap the model in order to 1) guide the LLM planner
to interpret complex input contexts, 2) initial alignment of
the planner’s behavior with example user preferences, and
3) bootstrap the LLM planner to generate plans that can
be clearly and straightforwardly annotated with user pref-
erences, thus facilitating effective self-training in the second
phase. Following this, an iterative self-training phase [9] is
employed, enabling the LLM planner to further explore by
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collecting datasets of interactions, and optimize itself based
on the positive interactions according to the user preferences.

We empirically evaluate our LLM-Personalize framework
on the Housekeep benchmark [10], a challenging, long-
horizon, partially observable household rearrangements task
suite, featuring diverse house layouts and a wide variety of
receptacles and objects. The quality of object rearrangements
are assessed according to the rearrangement success accord-
ing to the Housekeep benchmark based on their collected hu-
man preference data. We show in our experiments that LLM-
Personalize outperforms state-of-the-art baseline LLM-based
planners [1], [2], [3] with more than a 30 percent increase
in success rate, as a result of improved understanding and
alignment with human preferences. The inherent versatility
and scalability of our framework render it suitable for diverse
household layouts, object selections, and broader household
robotics applications.

II. RELATED WORKS

A. LLM-Empowered Robotic Agents

The use of LLMs for building robotic agents has recently
gained wide research interest. Prior works in task planning
have effectively utilised pre-trained LLMs for generating
executable plans for robotic agents [1], [2], [3], [4], [5],
[6], [7], [8]. However, two key challenges that remain
are the scalability of these methods to long-horizon plan-
ning tasks in large scenes, and misalignment of the LLM
with the human preferences. [11] used LLMs for inferring
rules summarizing personalized user preferences, in contrast,
our work studies optimization and personalization of LLM
planners for complex plan/action sequencing in multi-room
household scenarios. Closely related to our work are [1], [2],
[3]: [2] performs grounding of LLM planners with affordance
functions. However, it is applicable to small scenes and
limited vocabulary of objects. [3] addresses the scalability
problem with a static 3D scene graph. [1] addresses the
scalability problem by allowing LLMs to plan iteratively.
In this work, we directly use LLM for plan generation
similarly to [1]. To address the long-horizon planning and
large scene problem, we allow the agent to start from an
empty graph and dynamically update the graph as it explores
the household, and iteratively re-plan when the current plan
finishes. Moreover, we address the misalignment problem by
developing an optimization pipeline which effectively aligns
the LLM with personalized preferences.

B. Aligning LLMs with Human Preference

Alignment is the process of encoding human preferences
into LLMs to ensure the LLMs generates contents consistent
with human values [12]. Substantial progress have been
made in LLM alignment including reinforcement learning
(RL) based methods such as [13], [14], [9], [15], [16] and
supervised learning (SL) based methods such as [17], [18],
[19], [9], [20], and self-training [9] uses either an RL or
SL objective. In this work, we adopt imitation learning
(IL) to bootstrap our LLM planner to produce high-quality
training examples for the self-training phase. Following

IL, we adapt self-training [9] to our LLM planner which
iteratively explores and aligns itself with human preferences
via supervised fine-tuning. In addition to the methodological
considerations, our approach circumvents the limitations
often encountered with using online blackbox LLMs, where
RL based fine-tuning is not readily available.

III. METHOD

A. Preliminaries

1) Large Language Model (LLM): An LLM [21] is
a transformer-based [22] language model that is capable
of performing general-purpose language generation, e.g.,
GPT [21], PaLM [23], LLaMA [24]. In practice, users inter-
act with LLMs by sending prompts and receiving responses.
Approaches to optimizing an LLM’s performance include
prompting techniques such as in-context learning [21] or
fine-tuning [25]. The linguistic abilities of LLMs enable a
wide range of applications, e.g., in task planning, LLMs can
leverage their capabilities to interpret complex context and
generate detailed, coherent plans [1], [2], [3].

2) Self-Training: Iterative reinforced self-training [9] is
a sample efficient algorithm for aligning LLMs with hu-
man preferences, particularly for the domain of machine
translation. The key mechanism involves a grow step where
a training dataset is collected by prompting the LLM to
generate multiple responses for each prompt, and an improve
step, where the dataset is annotated and filtered according
to human preferences, followed by fine-tuning the LLM
on the dataset using offline RL or supervised learning. For
simplicity we will refer to the method as self-training (ST).

B. Problem Formulation

In this paper, we address the lack of personalization
of LLM planners in household robotics tasks. To simulate
a realistic household environment with user preferences,
we employ Housekeep [10], a collection of 3D simulated
household tasks, where a robotic agent is tasked to rearrange
misplaced objects to suit collected user preferences. A scene,
as shown in Fig. 2, refers to a household layout which
includes a selection of rooms (e.g. a room might be a specific
bedroom) and an arrangement of receptacles in each room.
Let j count through each receptacle, and rec j denote high
level information about each receptacle, consisting of its
unique identifier, its receptacle type, and the unique room
and room type it is in. For example we might describe a
rec j as (kitchen 0 table 6) if it is the seventh receptacle in
the household scene (counted from zero), is a table, and is
in the first kitchen. Likewise, let i count through each of the
objects, and let obji denote the high level information about
an object consisting of its unique identifier, and its object
type. For example, obji might be described as (laptop 1) if
it is the first laptop in the scene.

Finally, we use Mt
j to denote the set of indices i of objects

that are on a receptacle j at time t – object locations will
change over time. This set can be empty, and for some
receptacles, Mt

j may be constrained in cardinality. All the
receptacles, objects and locations must be discovered by the
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Fig. 2: The Context generator model maintains and updates the graph of the household state including rooms, receptacles
and objects, derived from the robot’s local observations at each timestep. The information is provided as a prompt for the
LLM planner. The top-down view of the scene is for illustration only, the robot only has access to the 1st-person view.

agent. Their existence is not given a priori. Each task/episode
includes a scene with a random selection of objects, some
of which are potentially misplaced in the wrong receptacles.
The task the agent has to achieve is always communicated
as “Give me the next steps to explore the house and place
misplaced objects on correct receptacles”. The idea of mis-
placement has to be understood or learnt by the model.

At each timestep t, the robot receives an egocentric obser-
vation about a number of receptacles that are in the field of
view, and any objects located therein. We collect the indices
of the observed receptacles in Rt . So the observation at time
t consists of the high level observation ot = {(rec j,obji | i ∈
Mt

j) | j ∈ Rt}, which is a list of the observed receptacles
and the associated objects located on those receptacles,
along with additional lower-level information, such as the
locations of the objects etc. The robot, having the capacity
of holding at most a single object, selects an action from
its (low-level) action space A = {move forward, turn left,
turn right, look up, look down, grab/release}. It receives
a reward +1 for placing an object on a correct receptacle,
−1 for grabbing/removing an already correctly placed object,
else 0. The correctness of obj-rec placement is decided by
a human preference dataset collected by Housekeep from
human annotators. The robot’s learning goal is to find a
control policy that maximizes cumulative rewards over the
episode’s horizon of 1000 timesteps.

In this paper we will utilise a model that consists of a
fixed low-level controller that handles the low level actions,
and just work in a high-level space, for which an observation
representation of the form of ot is fully sufficient.

C. Model
Our robotic agent model is designed to perform long-

horizon planning in the partially observable household sce-
narios by integrating three key components: the context gen-
erator, the LLM planner and the controller. Specifically, the
context generator provides context information for decision-
making in the form of prompts, by maintaining an internal
representation of the household state derived from observa-
tions. For decision making, we choose a two-level design

that integrates a high-level planner powered by an LLM for
generating high-level plans, and a controller which executes
the generated plans using low-level control actions. Given
our primary focus on personalizing LLM planners, we make
use of an off-the-shelf controller from the simulator, and
focus on designing the context generator and LLM planner.

1) Context Generator: The context generator provides
information of the current household context and useful
instructions as a prompt for the downstream LLM planner.
Specifically, our context generator provides three pieces of
information: the current household state, instructions, and
examples for in-context learning [21]. As the agent never
observes the full state of the environment, but only receives
a partial view ot , it is important that the agent maintains and
refines an internal representation of the household state to
correctly choose the placement of objects (e.g., only using
local observations can lead to a suboptimal placement when
the correct receptacle of a misplaced object is in a different
room). To this end, our context generator maintains a graph G
as shown in Fig. 2. When a task starts, the context generator
initializes the graph G0 of the house with empty room nodes.
At each timestep t, the graph is updated with the locally
observed objects and receptacles ot as the agent navigates
around the house. To provide the information for decision-
making, a prompt is constructed with a natural language
description of Gt , the object held by the robot, instructions
(a description of the overall rearrangement task, the role
assigned to the LLM, and the available high-level actions),
and two examples, one for room exploration and another
one for moving an object from one receptacle to another,
allowing the LLM planner to follow via in-context learning.

2) LLM Planner: The LLM planner is the core decision-
making module that generates a high-level plan as a se-
quence of high-level actions, and each high-level action is
translated by the low-level controller to low-level actions and
executed. The set of available high-level actions are: Ω =
{go to obj/rec/room, look at obj/rec, pick up obj, place obj
on rec}, where the obj, rec, room are replaced by the actual
names of these target entities, as introduced in section III-B.
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Fig. 3: Optimization pipeline of LLM-Personalize using imitation learning and iterative self-training.

To handle partial observability in the multi-room households,
we adopt an iterative planning procedure which enables
the LLM planner to re-plan when the previous plan has
finished execution. This allows the agent to obtain a more
comprehensive understanding of the household state while
exploring and navigating the house, leading to improved
rearrangement decisions. On the other hand, compared with
single-step iterative planning where each plan includes only
one high-level action, our approach builds cohesive plans that
better account for the inter-dependencies and the cumulative
effect of the action sequences. The iterative procedure works
as follows: Denote n ∈ N as a high-level planning iteration.
At iteration n, the LLM planner receives a prompt from the
context generator and generates an immediate action plan as
a sequence of high-level actions ω ∈ Ω: pn = (ω0,ω1, . . .)
(see Fig. 3 for two example plans). The plan is sent to the
controller where the high-level actions are executed sequen-
tially. Each high-level action is translated to a sequence of
low-level control actions a ∈ A, e.g., go to pan 1 → (move
forward, turn left, . . .). Once the controller finished executing
all high-level actions in pn, say at timestep t = T , the next
plan iteration n+1 starts where the LLM planner is prompted
again to generate a new plan pn+1 and executed by the
controller. This process is repeated iteratively.

The LLM planner is implemented with an LLM model and
a post-processor. Upon receiving a prompt from the context
generator, the LLM returns a plan in natural language as
a sequence of high-level actions: go to pan 1, pick up pan
1, .... Specifically, the first 10 high-level actions from the
sequence are used, as we often observe a decrease in quality
towards the end of a long response from the LLM. The post-
processor then extracts from each high-level action the target
action (i.e., one of go to, look at, pick up, place) and the
target entities (i.e., obj, rec, room) and send to the controller
to be translated and executed as low-level control actions.

3) Controller: Given our primary focus on personalizing
LLM planners, we assume a room-level topological map is
available (e.g., via semantic mapping [26]). We make use of
the off-the-shelf controller accessible from the Housekeep

simulator. During a task, the robot navigates and continu-
ally updates the map using egocentric observations, camera
projection matrix, RGBD-aligned pixel-wise instance and
semantic masks and relationship sensor to localize objects
and receptacles to update the map. The high-level actions
from the LLM planner are carried out as follows: 1) for
go to, the controller uses the allocentric map and the target
entity (obj, rec, room), and executes a sequence of navigation
actions to reach the target; 2) for look at, the agent orients
itself to face the desired target via look up/down and turn
left/right actions; 3) to carry out pick/place, the agent invokes
a discrete grab/release action that casts a ray, and if it
intersects an obj or rec within 1.5m, it picks or places an
object. More details of the controller can be found in [10].

D. Personalizing the LLM Planner

Despite our model architecture being well-suited to the
partially observable household scenarios, we observed two
challenges that necessitated a tailored optimization process.
1) LLM planners struggle with effectively extracting precise
information from complex input contexts (e.g., resulting in
plans with partial object names). This is compounded by
the complexity of accurately sequencing high-level actions
to ensure executability. 2) Misalignment between the LLM
planners’ decisions and the personalized preferences of users.

Self-training provides a promising approach to optimizing
and personalizing the LLM planner with user preferences.
However, direct application of self-training methodologies
to the LLM planner presents new, unique challenges: Unlike
single-step generation tasks like machine translation, the
household robotics tasks often involve long-horizon plan-
ning, where the LLM planner may generate a plan consisting
of both correct and incorrect placements actions, making it
difficult to annotate with human preferences and extract clean
training examples for automatic self-training.

To this end, we introduce a tailored optimization pipeline
that integrates imitation learning and iterative self-training.
The imitation learning phase bootstraps the LLM planner to
effectively interpret the complex context, produce executable



plans, and perform initial alignment with example user
preferences. Moreover, the demonstrations are designed to
bootstrap the LLM planner to generate plans that can be
clearly annotated, thus facilitating effective self-training in
the second phase. Following this, the iterative self-training
phase allows the LLM planner to further explore and refine
its planning strategies based on user preferences.

1) Imitation Learning: As shown in Fig. 3, we build
a demonstrator module to generate demonstrated responses
for the LLM planner on a set of demonstration tasks.
Upon receiving a prompt x from the context generator,
the demonstrator produces a plan y which performs either
exploration of the rooms or rearrangement of a single object,
using the scene graph from the context generator and the
correct object-receptacle mapping according to the human
preference dataset (described in section III-B). Specifically,
when prompted at the start of a task, the demonstrator
produces a plan of high-level actions to visit each of the
rooms. After the plan is executed, the agent will have
discovered some misplaced objects and receptacles in each
room. The demonstrator will be prompted again to generate
a plan, which rearranges one of the discovered misplaced
object (picked randomly) to a discovered correct receptacle.
The plan is executed by the controller, and we iterate the
procedure until all discovered objects are correctly placed.

To bootstrap the LLM planner, we prepare the collected
demonstrations as pairs of prompts and target responses,
Ddemo = {(xi, yi)}N

i=1, where both xi,yi are sequences of to-
kens, the response yi being a plan by the demonstrator. Given
a pre-trained autoregressive LLM Pθ (y | x) parametrized by
θ , we perform supervised fine-tuning of the LLM model on
Ddemo by minimizing the negative log likelihood (NLL) loss:

LNLL =−E(x,y)∈Ddemo

[
|y|

∑
τ=1

logPθ (yτ | y1:τ−1,x)

]
(1)

The above demonstration design guides the LLM planner
to more accurately extract information from complex input
contexts and improve plan executability. More importantly, it
ensures that each plan has a uniform objective (i.e, perform
exploration or rearrangement of a single object), allowing the
plan to be straightforwardly annotated with user preferences.

2) Iterative Self-training: Next, we fine-tune the boot-
strapped LLM planner to further improve personalization
via iterative self-training on a set of training tasks. This
allows the LLM planner to explore more rearrangement
options and improve its placement decisions through imi-
tating the positive examples. As shown in Fig. 3, to start a
self-training iteration, we use the LLM planner to explore
(with randomness by adjusting the temperature parameter)
by collecting episodes of experiences on the training tasks
and we log M interactions as tuples of prompt, response
and outcomes: {(xi,yi,out i)}M

i=1 (Example outcome: pan 1
moved from kitchen 0 table 6 to kitchen 0 counter 1).
We annotate each prompt and response pair (xi,yi) with
the reward ri ∈ {1,0,−1} for the rearrangement outcomes
according to the user preferences. Then, we collect a self-
training dataset by picking the prompt and response pairs

with positive rewards Dself-train = {(xi,yi) | ri > 0}M
i=1 The fi-

nal step of this self-training iteration is to perform supervised
fine-tuning of the bootstrapped LLM model over Dself-train
with the NLL objective as defined in Equation (1). This
procedure is repeated iteratively where each self-training
iteration performs interaction collection and fine-tuning over
the LLM obtained from the previous iteration.

IV. EXPERIMENTS

A. Overview

We empirically evaluate the performance of LLM-
Personalize on the Housekeep benchmark. In particular,
we aim to evaluate the hypothesis: Optimizing LLM plan-
ner through imitation learning and self-training allows the
LLM planner to improve planning performance and align-
ment with user preferences. We demonstrate this hypothesis
through improved rearrangement success rate compared with
baseline LLM planners and provide qualitative results that
showcase the plans generated. Our ablations studies further
evaluate plan executability, exploration and cross-domain
(scene) generalisation of LLM-Personalize in the different
training phases. These analyses provide a deeper dive into
the improved task success and offer more insights for per-
sonalizing LLM planner in future applications.

B. Experiment Setup

For our main results, we evaluate LLM-Personalize on in-
domain (scene) adaptation performance on 4 different scenes
in the Housekeep benchmark.

1) Environment setup: Each scene contains a different
layout of rooms and receptacles, as shown in Fig. 4. A task is
instantiated with a random selection of 5−10 objects placed
on different receptacles, among them ∼ 3 − 7 objects are
misplaced and needs to be rearranged. For each object, there
is a list of correct receptacles not known to the agent. The
task is challenging since the agent needs to explore the house,
identify misplaced objects and their correct receptacles, and
avoid moving correctly placed objects to wrong receptacles.

2) Evaluation metrics: We evaluate the improvement of
success rate of in-domain adaptation. The success rate [10]
is defined as the percentage of misplaced objects that are
correctly re-arranged at the end of the task, among all
misplaced objects at the start of the task.

Success Rate =
(

#correct at the end−#correct at the start
#total misplaced objects at the start

)
With the success rate defined in terms of difference, an
agent is judged fairly for its correct and wrong placements:
an agent which performed poorly that resulted in more
misplaced objects at the end of the task will yield a negative
success rate. We measure the success rate on train and
test tasks at each phase of the optimization pipeline. For
each scene, we randomly sample three disjoint set of 10
demonstration tasks, 20 training tasks and 5 test tasks. Hence
the agent will encounter a random selection of objects and
placement configurations on each task. During both training
and testing, we collect experiences of 5 episodes per task,



(a) Scene 1 (kitchen, living
room, corridor, bathroom, util-
ity room, pantry room)

(b) Scene 2 (kitchen, liv-
ing room, dining room, child’s
room, bathroom, bedroom)

(c) Scene 3 (corridor, bathroom,
bedroom)

(d) Scene 4 (kitchen, living room,
bathroom, bedroom, lobby)

Fig. 4: The Housekeep scenes used in our experiment.

TABLE I: Average success rate on train and test sets across scenes. Each entry denotes the mean ± standard error of the
mean across episodes. (Boldface: best variant across the task set, ST: self-training, IL: imitation learning)

Scene ID Scene 1 Scene 2 Scene 3 Scene 4 Average

Task Set train test train test train test train test test

Baselines
SayCan -2.6 ± 1.9 0.0 ± 0.0 -1.2 ± 1.2 -10.6 ± 6.8 -3.3 ± 2.2 -8.0 ± 4.9 -1.6 ± 1.6 0.0 ± 0.0 -4.6 ± 2.9

SayPlan -7.0 ± 5.9 -5.0 ± 5.0 -6.8 ± 2.7 -1.6 ± 9.2 0.4 ± 4.5 -13.0 ± 8.3 -10.7 ± 3.8 -12.3 ± 15.3 -7.9 ± 9.4

LLM-Planner 5.3 ± 4.4 -3.6 ± 4.8 -8.4 ± 3.8 -9.8 ± 6.3 -14.2 ± 4.0 -4.0 ± 3.3 -29.6 ± 5.2 -30.2 ± 4.8 -11.8 ± 4.8

Ours
LLM-Personalize (IL) 4.1 ± 2.6 17.6 ± 6.1 -3.3 ± 3.0 12.6 ± 9.0 22.6 ± 2.6 24.3 ± 4.4 10.9 ± 3.3 25.7 ± 6.7 20.0 ± 6.5

LLM-Personalize (ST iter=1) 17.9 ± 3.7 25.8 ± 6.6 19.4 ± 2.9 21.7 ± 5.6 32.4 ± 3.2 41.4 ± 6.3 24.2 ± 3.2 10.2 ± 6.7 24.7 ± 6.3

LLM-Personalize (ST iter=2) 25.5 ± 3.1 29.6 ± 5.4 18.5 ± 2.6 25.2 ± 4.0 33.5 ± 3.8 43.3 ± 4.3 29.1 ± 2.9 20.4 ± 6.8 29.6 ± 5.1

and present the mean and standard error of the metrics across
all collected episodes in the task sets.

3) Architecture and Baselines: We compare LLM-
Personalize with state-of-the-art LLM planning baseline
methods: LLM-Planner [1], SayPlan [3] and SayCan [2]. We
use GPT-3.5-turbo as the LLM across all compared methods,
and the temperature during LLM generation is set to 1 to
reduce deterministic repetition in LLM responses (default
range is 0− 2). For all methods, the prompt includes the
instruction, graph description and two examples. We allow
all methods to plan iteratively after the robot executed the
previous plan. LLM-Planner with these configurations is
adopted as the base model of LLM-Personalize, which we
then optimize using imitation learning and self-training. The
fine-tuning as defined in Eq.(1) is performed via the OpenAI
fine-tune API. To adapt SayCan to Housekeep with large
number of available actions, we adopt the implementation
in [1], where the list of affordable high-level actions (e.g.,
go to a discovered object) are provided in each prompt,
together with the list of previously executed actions. For
SayPlan, we additionally provide the state and affordance
of the receptacles and objects (e.g., pick up) as in [3] and
allow 10 LLM semantic search steps and 5 revision (re-
plan) retries for each plan iteration where the final revised
plan is executed, and the revision feedback is provided by a
verification module (e.g., cannot pick up obj as the agent is
holding another object).

C. Main Results

1) Quantitative Results: We compare the performance in
terms of average success rate of LLM-Personalize with the
baseline methods in Table I, and we also demonstrate the

effectiveness of our optimization framework by comparing
the performance of LLM-Personalize at different optimiza-
tion phases, namely, the base version (using LLM-Planner),
imitation learning (IL), and various iterations of self-training
(ST). Each table entry shows the mean and standard error of
the mean across all tasks in the train/test set and 5 runs per
task. Overall, we observe that LLM-Personalize significantly
outperforms all baseline methods in terms of mean success
rate across the tested scenes. For example, on the test set
of Scene 1, the success rate of the baselines are near zero
or negative, while LLM-Personalize achieved 29.6% after
imitation learning and two self-training iterations. This trend
can be similarly observed across all scenes. To examine
closely into the difference, we analysed some detailed prompt
and responses and identified that SayCan often has difficulty
picking the best (high-level) action from a large number
of available actions due to the large number of objects,
receptacles and rooms. LLM-Planner is often able to produce
correct pick and place action sequences following the in-
context examples. Compared with LLM-Planner, SayPlan
improves slightly (on 5 out of 8 task sets) as a result
of improvement in plan executability due to revision with
feedback. However, all baselines have difficulty knowing
whether an object is misplaced or correctly placed, as well
as the correct receptacles to place objects, due to lack
of personalization. As a result, the negative scores across
the baseline methods are often due to picking and placing
correctly placed objects onto wrong receptacles.

Comparing the different stages of LLM-Personalize on
the test sets, we observe a general trend where the com-
bination of imitation learning and self-training lead to better
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Plan Iteration #2 LLM-Personalize RESPONSE
step 1: go to cracker box 1 
step 2: look at cracker box 1 
step 3: pick up cracker box 1 
step 4: go to pantry room 0 top cabinet 54 
step 5: look at pantry room 0 top cabinet 54 
step 6: place cracker box 1 on pantry room 0 top cabinet 54

Plan Iteration #3 LLM-Personalize RESPONSE
step 1: go to xylitol sweetener 1 
step 2: look at xylitol sweetener 1 
step 3: pick up xylitol sweetener 1 
step 4: go to pantry room 0 top cabinet 54 
step 5: look at pantry room 0 top cabinet 54 
step 6: place xylitol sweetener 1 on pantry room 0 top cabinet 54

Plan Iteration #8 LLM-Personalize RESPONSE
step 1: go to chocolate box 1 
step 2: look at chocolate box 1 
step 3: pick up chocolate box 1 
step 4: go to kitchen 0 bottom cabinet 30 
step 5: look at kitchen 0 bottom cabinet 30 
step 6: place chocolate box 1 on kitchen 0 bottom cabinet 30

Plan Iteration #1 LLM-Personalize RESPONSE
step 1: go to kitchen 0 
step 2: go to utility room 0 
step 3: go to pantry room 0 
step 4: go to corridor 0 
step 5: go to living room 0 
step 6: go to bathroom 0

… plan iterations #4 ~ #7 …

Fig. 5: Demonstration of four planning iterations generated and executed by LLM-Personalize (top row) and the resulting
graphs (bottom row) on a test task in Housekeep. Green/red object (leaf) nodes indicate correct/wrong placements. The
object being moved is shown in boldface with highlighted edge. This episode starts with 2 correctly placed objects and 5
misplaced objects (left), and changed to 6 correctly placed objects and only 1 misplaced objects after rearrangements (right).
For clarity, the graphs only show receptacles with objects and omit all other receptacles.

TABLE II: Ablation Study: Cross-domain generalisation
success rate. (Boldface: best across the task set, ST1/2: self-
training iteration 1 or 2, IL: imitation learning)

Scene Pairs Scene 1 & 2 Scene 3 & 4

Task Set train(Scene2) test(Scene1) train(Scene4) test(Scene3)

LLM-Planner -8.4 ± 3.8 -3.6 ± 4.8 -29.6 ± 5.2 -4.0 ± 3.3

LLM-Personalize(IL) -3.3 ± 3.0 13.2 ± 6.5 10.9 ± 3.3 34.3 ± 5.4

LLM-Personalize(ST1) 19.4 ± 2.9 13.0 ± 4.6 24.2 ± 3.2 31.2 ± 4.9

LLM-Personalize(ST2) 18.5 ± 2.6 17.0 ± 4.5 29.1 ± 2.9 42.4 ± 3.8

results. First, bootstrapping from demonstrations improves
over LLM-Planner (i.e., the base LLM-Personalize model).
For example, on Scene 1, the success rate improved from
−3.6% to 17.6%. This improvement is a result of improved
executability due to action sequencing, better context under-
standing (e.g., agent correctly extracts and uses object names
from the prompt), and initial alignment to personalized
preferences shown in the demonstrations. Second, the self-
training iterations further improves from the bootstrap vari-
ants with improved alignment with personalized preferences.
For example, on Scene 1, the success rate after two iteration
of self-training grows from 17.6% to 29.6% compared with
the imitation bootstrapped variant. We also observed that
after bootstrapping, the model learns to explore object place-
ments with improved accuracy during self-training and with
more self-training iterations, the model exploits and commits
to the learned correct placements while avoiding wrong ones.

Comparing the train and test performances of LLM-
Personalize for each scene, we observe that the testing per-
formance generally increases with increased training perfor-
mance, except for Scene 3, where the test performance drops
as a result of overfitting. This shows that our model is able
to learn personalized preferences seen during training, and
generalize to unseen object combinations and placements.

2) Qualitative Results: In Fig. 5, we present plans gen-
erated by LLM-Personalize and executed by the robot on a
test task in the Housekeep simulator and the resulting graph
of the household scene after each plan iteration. We can
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Fig. 6: Ablation study: (a) shows the percentage of exe-
cutable high-level action steps, (b) shows the unique place-
ments executed. x-axis refers to LLM-Personalize at different
optimization phases – Base: before optimization, IL: imita-
tion learning, ST: self-training. Each point is an average value
over 25 episodes (5 runs per task over 5 tasks in the test set)
and shaded area refers to standard error of the mean.

see that the agent learned to start by exploring the house,
then rearrange one misplaced object at a plan iteration, and
successfully rearranged 4 out of 5 misplaced objects.

D. Ablation Studies

In this section, we present ablation studies on LLM-
Personalize’s plan executability, exploration vs. exploitation
and cross-domain transfer performance.

1) Cross-domain Transfer Results: In addition to the
improved in-domain adaptation results in Table I, we show
in Table II cross-domain transfer performance of LLM-
Personalize. In this experiment, we train the model on a
source scene (e.g., scene 2 or scene 4), and observe the
performance change on the test set on a different scene (e.g.,
scene 1 or scene 3) with different rooms and receptacles.
From the table, we can observe that through imitation learn-
ing and self-training, LLM-Personalize is able to transfer to
a different scene with improved test performance.

2) Executability: In Fig. 6a we present the executability
improvement of LLM-Personalize (IL, ST1, ST2) compared
to the base LLM-Planner (Base). Each point refers to the av-
erage percentage of high-level actions generated by the LLM
planner that are successfully executed per episode. As ex-



pected the IL bootstrapping significantly improved the plan-
ner’s executability, due to improved context (prompt) under-
standing and action sequencing, enabling LLM-Personalize
to produce high quality training examples for self-training,
and we can observe consistently high executability from the
LLM-Personalize(ST1) and LLM-Personalize(ST2) variants.

3) Exploration vs. Exploitation: To analyse how the
agent’s exploration vs. exploitation behavior changes at
different optimization phases, we show in Fig. 6b the av-
erage number of unique placements executed per episode,
where each unique placement refers to a pair of object
and receptacle where the agent placed the object on the
receptacle. Higher degree of exploration behavior is indicated
by higher number of unique placements, and in contrary,
lower number of unique placements indicates more exploita-
tion behavior. As shown in Fig. 6b, we see an increasing
trend in exploration from LLM-Planner (Base) to LLM-
Personalize(IL), partly due to improved plan executability.
From IL to ST1, the agent further increased exploration,
where it explores placements beyond the behaviors learned
from demonstrations. For example, on Scene 3 the average
unique placements increased from 2.32 to 9.48. Compared
with ST1, ST2 typically shows higher exploitation behavior
where the agent learns to commit to the correct placement
combinations for better task performance.

V. CONCLUSIONS

We proposed LLM-Personalize, a household robotics
agent framework with an LLM-based architecture capable
of performing long-horizon planning in multi-room, partially
observable household scenarios, and an optimisation pipeline
designed to personalize the LLM planner according to user
preferences. This novel approach effectively addresses the
critical gap in the personalization of LLM planners for
household robotics. Our model achieves superior alignment
with user preferences, outperforming existing work in the
challenging Housekeep rearrangement tasks. Looking for-
ward, the versatility and scalability of the agent design and
optimization pipeline makes LLM-Personalize a promising
solution for a broad range of household robotics applications.
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